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A RENORMALIZED NEWTON METHOD

FOR LIQUID CRYSTAL DIRECTOR MODELING

EUGENE C. GARTLAND, JR∗ AND ALISON RAMAGE†

Abstract. We consider the nonlinear systems of equations that result from discretizations of a
prototype variational model for the equilibrium director field characterizing the orientational prop-
erties of a liquid crystal material. In the presence of pointwise unit-vector constraints and coupled
electric fields, the numerical solution of such equations by Lagrange-Newton methods leads to linear
systems with a double saddle-point form, for which we have previously proposed a preconditioned
nullspace method as an effective solver [A. Ramage and E. C. Gartland, Jr., SIAM J. Sci. Comput.,
35 (2013), pp. B226–B247]. Here we propose and analyze a modified outer iteration (“Renormalized
Newton Method”) in which the orientation variables are normalized onto the constraint manifold
at each iterative step. This scheme takes advantage of the special structure of these problems, and
we prove that it is locally quadratically convergent. The Renormalized Newton Method bears some
resemblance to the Truncated Newton Method of computational micromagnetics, and we compare
and contrast the two. This brings to light some anomalies of the Truncated Newton Method.

Key words. liquid crystals, director models, unit-vector constraints, saddle-point problems,
reduced Hessian method, Renormalized Newton Method

AMS subject classifications. 49K35, 49M15, 65H10, 65K10, 65N22

1. Introduction. Many continuum models for the orientational properties of
liquid crystals involve one or more state variables that are vector fields of unit length.
The pointwise unit-vector constraints associated with discretizations of equilibrium
models of such systems give rise to indefinite linear algebraic equations of saddle-point
form when these constraints are imposed via Lagrange multipliers. In problems such as
these, indefiniteness also frequently manifests itself due to another influence, coupling
with applied electric fields, and this leads to a double saddle-point structure. Models
with some similar features arise also in the area of computational micromagnetics.

In [21] we analyzed a model problem of this type and proposed a nullspace method
using MINRES with diagonal block preconditioning as a natural approach to solve the
linear systems that result when Newton’s method is applied to the Lagrangian. The
main ideas are briefly summarized below. These models are nonlinear and depend on
multiple physical and geometric parameters, and it is typical for the equilibrium solu-
tions (phases) to undergo transitions at critical values of certain of these parameters.
The context we imagine is the numerical bifurcation and phase analysis of a discretiza-
tion of a model for a realistic device or experiment in the large scale regime—this is
the main motivation for this work. In such a setting, parameter continuation leads
to the repeated solution of systems of the type we are studying here. In the course
of such path following, good initial guesses are available, however, and global Newton
methods are generally employed.

At each computed equilibrium point along a branch of solutions, one performs
auxiliary calculations of the free energy and the local stability of the solution—it is
necessary to be able to compute both stable and unstable solutions. For parameter
ranges in which multiple equilibrium solutions exist, the solution of least free energy
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2 E. C. GARTLAND, JR. AND A. RAMAGE

gives the globally stable phase of the system. Local stability is characterized by
certain eigenvalue calculations and identifies equilibria that have the potential of being
globally stable. Aspects of this are discussed in [9] and [10].

The objectives of this present paper are to introduce and analyze an alternative
outer iteration (“Renormalized Newton Method”), which is a variation of Newton’s
method that takes greater advantage of the special structure of such problems and
which we prove retains the local quadratic convergence properties of Newton’s method.
Also presented are results of numerical experiments comparing the performance of the
basic Newton Method and the Renormalized Newton Method on a model problem
that admits multiple distinct solutions, one with a defect (singularity) and two oth-
ers without. In addition, comparisons are made between the Renormalized Newton
Method and the “Truncated Newton Method” of computational micromagnetics [8,
§4.2], for which we also provide some analytical observations. The separate document
of Supplementary Material contains more background on the liquid crystal model (in-
cluding its relation to the Landau-Lifshitz model of ferromagnetics), demonstration
of the lack of an “energy decay property” for general liquid crystal free energy func-
tionals (under renormalizing a director field of greater than unit length), and results
of some numerical experiments on the Truncated Newton Method.

2. A prototype liquid crystal director model with a coupled electric

field. Many experiments and devices involving liquid crystal materials can be effec-
tively modeled using a macroscopic continuum framework in which the orientational
state of the system is described by a director field (a unit-length vector field represent-
ing the average orientation of the molecules in a fluid element at a point), traditionally
denoted by n. Most devices and many experiments involve the interaction between a
liquid crystal material and an applied electric field (which is used to control the liquid
crystal orientational properties). This is a coupled interaction, with the electric field
influencing the orientations of the molecules and the molecular orientational proper-
ties in turn influencing the local electric fields through their effect on the dielectric
tensor. The free energy is the thermodynamic potential that determines equilibrium
states in systems such as these, for which we consider the simplest prototype model:

F [n, U ] =
1

2

∫

Ω

[
K|∇n|2 − ε(n)∇U · ∇U

]
, |∇n|2 =

3∑

i,j=1

(
∂ni

∂xj

)2

. (2.1)

Here Ω is the region occupied by the liquid crystal material, K is a positive material-
dependent “elastic constant,” ε is the dielectric tensor (which depends on n), and U
is the electrostatic potential. The local electric field is given by E = −∇U , and the
expression above for |∇n|2 is for a fixed Cartesian frame. See [22, §2.2], [23, §3.2],
and the Supplementary Material for more detail.

The tensor field ε is real, symmetric, and positive definite, with eigenvalues ε0ε‖

(for eigenvectors parallel to n) and ε0ε⊥ (for vectors perpendicular to n). Here ε0
is the vacuum dielectric constant, and ε‖ and ε⊥ are the relative permittivities of
the material. The parameters ε0, ε‖, and ε⊥ are all positive, while the “dielectric
anisotropy” εa := ε‖ − ε⊥ can be positive or negative (and gives rise to a torque on
the molecules due to the electric field). The strong form of the constrained equilibrium
equations for (2.1) is

−K∆n = λn+ ε0εa
(
∇U · n

)
∇U, div

(
ε(n)∇U

)
= 0, |n| = 1, (2.2)

which is to be solved in Ω subject to appropriate boundary conditions on n and
U . Here the Lagrange multiplier field λ is associated with the pointwise unit-vector
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constraint, and the electrostatics equation takes the form

div
(
ε(n)∇U

)
=

∑

i,j

∂

∂xi

(
εij

∂U

∂xj

)
= 0 (2.3)

with respect to a fixed Cartesian frame.
A distinguishing feature of these problems is the intrinsic saddle-point nature of

the electric-field coupling: equilibria are minimizing with respect to n but maximiz-
ing with respect to U . These models bear some similarity to the Landau-Lifshitz
free-energy model for equilibrium states of magnetization in ferromagnetic materials,
and we carefully compare and contrast these in §S1.2 of the Supplementary Material.
It is in general convenient for analysis and appropriate for numerical explorations to
express all aspects of the problem (free-energy functional, Euler-Lagrange equations,
etc.) in dimensionless form, and we give a typical non-dimensionalization in §S1.3 of
the Supplementary Material. Under such a rescaling, the basic forms of all the ex-
pressions remains the same, and so we will retain the notation above. From this point
on, however, we assume that all quantities are dimensionless, following a reasonable
non-dimensionalization such as that in §S1.3.

3. Lagrange-Newton scheme and nullspace method. One can discretize a
coupled, constrained equilibrium problem of the type presented in §2 in a variety of
ways, starting from weak or strong formulations of (2.2) and utilizing various types
of finite elements or finite differences or other discretization methods. Our preference
is to approximate the free energy functional F directly by some appropriate finite
elements and quadrature scheme, obtaining

F [n, U ] ≈ f(n,U), n = (n1, . . . ,nn), nj ∈ R
3, U = (U1, . . . , Un),

where n and U contain the discrete director and electric potential degrees of freedom
in some ordering. Here n represents the total number of free nodes in the discrete
model. The precise details of the discretization, which can be in any number of space
dimensions, are not important. The unit-length constraint is to be imposed on the
local director at each free node. This can be done using either Lagrange multipli-
ers or penalty methods, for example. Our preference is for the former, because of
issues related to conditioning, choosing penalty parameters, and the like. Augmented
Lagrangian methods have also been suggested for such problems—see [12, §3.7].

In our approach, the full set of discrete, coupled, equality constrained equilibrium
equations derives from a Lagrangian:

∇L = 0, where L(n,λ,U) = f(n,U) +

n∑

j=1

λjgj(n), gj(n) :=
1

2

(
|nj |

2 − 1
)
. (3.1)

Here λ = (λ1, . . . , λn) is the vector of Lagrange multipliers. In most circumstances,
the system (3.1) can be seen to be a consistent approximation to (2.2) (in an appro-
priate scaling)—see [21] and §5.1 below for specific examples. The same basic idea
can be used for problems in any number of space dimensions. In one, two, or three
dimensions, the single, double, or triple integrals defining F would give rise to dis-
cretized equilibrium equations (and Hessian blocks below) that scale differently with
respect to mesh parameters. While such aspects have the potential to affect condi-
tion numbers and scaling strategies (which will be addressed in [10]), they are not
of concern for the analysis that follows, which is for a discretized problem on a fixed
grid.
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3.1. Newton equations. A global Newton method applied to the system ∇L =
0 in (3.1) above leads to a linear system for the Newton corrections of the form




A B D
BT O O
DT O −C





δn

δλ

δU


 = −



∇nL
∇λL
∇UL


, (3.2)

where

A = ∇2
nn

L, B = ∇2
nλ

L, D = ∇2
nU

L, C = −∇2
UU

L,

and O denotes a zero matrix of appropriate dimensions. Our main interest is in
effective numerical bifurcation and phase exploration of problems with such structure
in the large scale regime, where iterative methods are called for, and where one must
be able to compute both stable and unstable solutions. It is important to appreciate
that the Amatrix block in (3.2) need not be positive definite or even nonsingular—this
is demonstrated in the numerical experiments in §5 below.

For a particular application, the specific form of f(n,U) in (3.1) depends upon
the form of F [n, U ] and on the details of the discretization used. Thus the compo-
sition of the Hessian matrix is somewhat problem dependent. Exact Hessians (not
approximated ones) are used in general, and in [21] the structure of the matrix blocks
in (3.2) is described in detail for a specific model problem discretized via piecewise-
linear finite elements. There are some features of the Hessian matrix that are common
to all problems. Observe that

L = f +

n∑

j=1

λjgj ⇒ ∇nL = ∇nf +

n∑

j=1

λj∇ngj ,

with gj =
1
2 (|nj |2 − 1), from which follows

∇ngj = [0, . . . ,0,nj ,0, . . . ,0]
T and ∇2

nn
gj = diag(O, . . . , O, I,O, . . . , O).

Here nj is in the j-th position in the column vector ∇ngj (and the zero vectors are
3-vectors), and I is in the (j, j) position in ∇2

nn
gj (and the zero matrices and identity

matrix are 3× 3). We see that the A matrix is 3n× 3n and has the general form

A = ∇2
nn

L = A0+Λ, A0 = ∇2
nn

f, Λ =



Λ1

. . .

Λn


, Λj =



λj

λj

λj


. (3.3)

For our model problem (2.1), the leading terms of A0 would resemble a discretization
of −K∆n (in a certain scaling), although lower-order terms could cause loss of positive
definiteness. We also see that the B matrix is 3n× n and is given by

B = ∇2
nλ

L = [∇ng1, . . . ,∇ngn] =



n1

. . .

nn


. (3.4)

Under a reasonable discretization, the n × n matrix C will be real, symmetric, and
positive definite, corresponding to the coefficient matrix associated with a discretiza-
tion of (2.3). The matrix D is 3n × n and embodies the coupling between δn and
δU. See [21, §3.3] or §5.1 below for specific examples.
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A point to keep in mind is that in general, the matrix A depends on all of n, U,
and λ:

A = A(n,λ,U) = A0(n,U) + Λ(λ).

For our simplified model problem (2.1), though, A0 (and hence A) is independent of
n. The positive definiteness of C generally derives from the uniform ellipticity of the
electric potential terms in F (see the Supplementary Material). The specific details
of the confinement of the sample and the boundary conditions on U play a role, and
these vary from problem to problem.

At regular solution points (away from bifurcation points and turning points),
the coefficient matrix is symmetric, non-singular, and indefinite—that is, it has both
positive and negative eigenvalues—and the linear system is in so-called saddle point
form. Note that when both pointwise unit-vector constraints and coupled electric
fields are present, these problems have a double saddle-point structure, as seen in
(3.2). For a model with no electric field or for one with no unit-vector constraints
(for example, if one were able to use an angle representation for n), one would obtain
instead either of the more common saddle-point forms

[
A B
BT O

]
or

[
A D
DT −C

]
.

3.2. Nullspace method. The nullspace method (or reduced Hessian method) is
a technique for eliminating constraint blocks in systems such as these ((3.2) or systems
with a coefficient matrix like the left side above), by using a matrix, which we denote
Z, whose column space is the null space of BT—see for example [2, §6]. As we have
shown in [21], it is trivial to construct such a matrix for problems such as ours, and
it takes the form

Z =




l1 m1

l2 m2

. . .

ln mn


. (3.5)

Here lj and mj are local 3-vectors and are constructed by simple formulas from nj

such that, at each node, lj , mj , nj form an orthogonal triple, and we assume that
nj 6= 0, ∀j (the “non-degeneracy condition” of [21]).

Consider now the second block equation of (3.2),

BT
δn = −∇λL, (3.6)

which is an under-determined system of n equations in 3n unknowns. Assuming non-
degeneracy of the current local directors (nj 6= 0, ∀j), the columns of both B and Z
are linearly independent and together form an orthogonal basis for R3n, as a result of
which we have

BTZ = On×2n, ZTB = O2n×n, BTB, ZTZ diagonal and nonsingular,

and (3.6) is guaranteed to be consistent. Decomposing a solution of (3.6) into its
components in the normal space to the constraint manifold at n and those in the
tangent space,

δn = Br+ Zp, r ∈ R
n, p ∈ R

2n,
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and substituting this decomposition into (3.6), one obtains

BT
δn = BTB r+BTZ p = BTB r = −∇λL ⇒ r = −(BTB)−1∇λL,

and we see that the solution set of (3.6) can be written

δn = δ̂n+ Zp, δ̂n := −B(BTB)−1∇λL, p arbitrary. (3.7)

Projecting the first block equation of (3.2) into its normal-space and tangent-
space components gives

BTA δn+BTB δλ+BTD δU = −BT∇nL

ZTA δn+ ZTB δλ+ ZTD δU = −ZT∇nL.

The first equation above can be solved for δλ once δn and δU have been determined:

δλ = −(BTB)−1BT (∇nL+A δn+D δU). (3.8)

Substituting the representation (3.7) into the second equation (and using ZTB = O)
gives

ZTAZ p+ ZTD δU = −ZT∇nL− ZTA δ̂n,

while using the same representation δn = δ̂n + Zp in the third block equation of
(3.2) gives

DT
δn− C δU = −∇UL ⇒ DTZ p− C δU = −∇UL−DT

δ̂n.

The equations for p and δU (uncoupled now from the equations for δλ) can thus be
written as a reduced 3n× 3n system:

[
ZTAZ ZTD
DTZ −C

] [
p

δU

]
= −

[
ZT

(
∇nL+A δ̂n

)

∇UL+DT δ̂n

]
. (3.9)

Note again that BTB is a diagonal matrix, and this is true in any number of space
dimensions—once a consistent ordering of the nodes and constraints is decided upon,

the B matrix always has the generic form (3.4). Thus the computation of δ̂n and
δλ is quite simple. This approach is examined analytically and through numerical
experiments in [21] on a specific model problem.

3.3. Geometric interpretation. The particular solution δ̂n in (3.7) can be

seen to be the minimum 2-norm solution of BTδn = −∇λL (since ‖δn‖22 = ‖δ̂n‖22 +
‖Zp‖22 in (3.7), by virtue of the mutual orthogonality of the columns of B and those
of Z). Pointwise it has the explicit form

(δ̂n)j =
1

2

(
1− |nj |

2

|nj |2

)
nj , j = 1, . . . , n. (3.10)

Thus the representation (3.7) decomposes the increment δn at each point into a com-

ponent parallel to nj ((δ̂n)j above) and a component perpendicular to nj ((Zp)j =

pjlj + qjmj , where p = [p1, q1, . . . , pn, qn]
T ). The component (δ̂n)j is local, com-

pletely driven by the pointwise unit-vector constraint, and independent of the liquid
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crystal distortional elasticity (which is captured by the components of Zp). It can be
seen as a linearized correction in the nj direction towards satisfying the unit-vector
constraint at the j-th grid point.

One can compare (δ̂n)j in (3.10) with the true increment (in the nj direction) that
would be needed to bring an un-normalized local director nj onto the local constraint
manifold |nj | = 1:

nj 7→
nj

|nj |
= nj + δntrue

j ⇒ δntrue
j =

1− |nj |

|nj |
nj =

2|nj |

1 + |nj |
(δ̂n)j .

Since

2|nj |

1 + |nj |
> 1 ⇔ |nj | > 1 and

2|nj |

1 + |nj |
< 1 ⇔ |nj | < 1,

we see that (δ̂n)j is too large if |nj | < 1 and too small if |nj | > 1. We conclude

that the calculated Newton correction δn = δ̂n+Zp necessarily produces a new local
director

nj + δnj = nj + (δ̂n)j + (Zp)j , (δ̂n)j ‖ nj , (Zp)j ⊥ nj

that satisfies

|nj + δnj | ≥ 1,

with equality above if and only if |nj | = 1 (which implies that (δ̂n)j = 0) and
(Zp)j = 0. Thus successive Newton iterates generally exceed the pointwise unit-
vector normalization, approaching it in the limit as the Newton iteration converges.
We will use these observations in an attempt to accelerate this process.

4. Alternative outer iteration: Renormalized Newton Method. While
a global Newton scheme is a natural choice for an outer iteration, specific features
of problems such as these (with such pointwise unit-vector constraints) suggest some
simplifications, which lead to a closely related variant. In particular, we have already
observed the simplifications that accompany the circumstance in which the current
approximate n is normalized : |nj | = 1, j = 1, . . . , n. In this situation, lj , mj , nj form

an orthonormal triple at each grid point, and BTB = I. Since ∇λL = 0, δ̂n = 0, and
δnj ⊥ nj for all j, the nullspace-method equations (3.9) and (3.8) take the simpler
form

[
ZTAZ ZTD
DTZ −C

] [
p

δU

]
= −

[
ZT∇nf
∇Uf

]
, δn = Zp,

δλ = −BT(∇nf +A δn+D δU).

Here we have used the facts that

∇nL = ∇nf +Bλ ⇒ ZT∇nL = ZT∇nf,

since ZTB = O by construction, and ∇UL = ∇Uf. By virtue of the simple, local
nature of our constraints, it is quite easy to force them upon any approximate discrete
director field n by simply normalizing each local director. Furthermore, we know from
the discussion in §3.3 that the basic Newton iteration produces local directors that
are systematically too long (|nj | > 1).
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Also, the Lagrange multipliers occur in a simple way, linearly in the ∇nL = 0

equations, and in general these are not of the same level of physical interest as are n

and U. Given the n∗ and U∗ components of an exact solution of ∇L(n∗,λ∗,U∗) = 0,
the Lagrange multipliers can be computed directly (and locally) via

∇nL = ∇nf +Bλ = 0 ⇒ λ
∗ = −B(n∗)T∇nf(n

∗,U∗)

⇔ λ∗
j = −∇nj

f(n∗,U∗) · n∗
j , j = 1, . . . , n.

When n and U correspond to the components of an approximate (not yet converged)
solution of ∇L = 0, the over-determined system ∇nf + Bλ = 0 (viewed as 3n
equations in λ1, . . . , λn) is not necessarily consistent, and the formulas above give the
linear least squares solution:

min
λ

‖∇nf +Bλ‖2 ⇔ λ = −(BTB)−1BT∇nf = −BT∇nf.

These then are the features we will exploit: renormalizing the discrete director at each
outer iterative step and eliminating the Lagrange multipliers by the formulas above.
Our algorithm for the “Renormalized Newton Method” takes the following form.

Algorithm 4.1 (Renormalized Newton Method). Repeat until convergence:
1. in: n, U satisfying |nj | = 1, j = 1, . . . , n
2. build B(n) and ∇nf(n,U)
3. set

λ = −BT∇nf (4.1)

4. build A(n,λ,U) = A0(n,U) + Λ(λ), C(n), D(n,U), Z(n), and ∇Uf(n,U)
5. solve

[
ZTAZ ZTD
DTZ −C

] [
p

δU

]
= −

[
ZT∇nf
∇Uf

]

6. update and normalize:

δn = Zp, nRN
j =

nj + δnj

|nj + δnj |
, j = 1, . . . , n, URN = U+ δU

7. out: nRN, URN satisfying |nRN
j | = 1, j = 1, . . . , n

We note that the gradient ∇nf(n,U) used to calculate λ above is already needed
and that the calculation is simply done componentwise: λj = −∇nj

f ·nj , j = 1, . . . , n.
The other matrix and vector components above are computed exactly as before, the
Lagrange multipliers entering only in A. If we compare this modified step with the
basic Newton step (nN,λN,UN) from (n,λ,U), with the same input n andU and with
λ computed as above, we see that nRN is simply a renormalized version of nN = n+δn,
λ is treated as an intermediary (and computed differently than λN = λ + δλ, only
when needed at the next step), and URN = UN = U+ δU.

As is proven below, this scheme is locally quadratically convergent, and so stop-
ping criteria generally used for Newton-like iterations can be used here. These can be
based on relative nonlinear residuals of ZT∇nf and ∇Uf , for example. More simply,
one can just monitor the magnitudes of the corrections δn and δU, relying on the
property

‖x(k) − x∗‖ = ‖x(k+1) − x(k)‖+O
(
‖x(k) − x∗‖2

)
, x = (n,U), x∗ = (n∗,U∗).
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The entries of n are O(1) by nature. If the problem has been well scaled (as in §S1.3),
then so will the entries of U be. Otherwise, one can take into account a scale factor
for U and use a stopping condition of the form

‖δn‖∞ ≤ tol and ‖δU‖∞ ≤ tol ∗ (scale for U).

See for example [15, §5.2].
Besides the modest analytical simplifications gained by this scheme, it is phys-

ically intuitive and somewhat analogous to other numerical approaches that have
been applied to related problems. The numerical device of renormalizing after each
step has been used by computational physicists in this area for a long time (in the
context of the pseudo-time-relaxation approach to computing constrained equilibria)
and has also been employed by numerical analysts in the context of both relaxation
and gradient methods [1, 3, 17]. Analogous ideas have been used in the area of
micromagnetics—see [8, §4], [16, §2.2.1], or [20, Ch. 4]. In §4.3 below, we explore the
relationship of the Renormalized Newton Method to the Truncated Newton Method
of computational micromagnetics.

4.1. Local quadratic convergence analysis of the Renormalized Newton

Method. In spite of the attractive features discussed above, one would not contem-
plate using such an alternative outer iteration if it did not preserve the quadratic local
convergence properties of the basic Newton method. In fact it does, which we now
prove. The analysis relies upon two facts: first, that the error in λ computed by (4.1)
as an approximation to the Lagrange multiplier vector λ∗ of the exact solution (n∗,
U∗) is of the same order as the errors in n − n∗ and U −U∗, and second, that the
renormalization step is second order in the Newton correction δn. We establish these
preliminary results in two lemmas, after first introducing some notation and recalling
some local convergence results for the basic global Newton iteration.

Let x∗ = (n∗,λ∗,U∗) be a regular discrete constrained equilibrium solution, that
is,

∇L(x∗) = 0, ∇2L(x∗) non-singular. (4.2)

We note that this can include locally unstable solutions as well as locally stable
solutions. The only situation excluded is that of singular equilibrium solutions, at
which ∇L(x∗) = 0 but the Hessian ∇2L(x∗) is singular—in a typical parameter study,
such situations would occur at bifurcation and turning points, for example.

For convenience, we work with vector and matrix 2-norms, and adopt the notation

Bε(x
∗) =

{
x | ‖x− x∗‖2 ≤ ε

}

=
{
(n,λ,U) | ‖n− n∗‖22 + ‖λ− λ

∗‖22 + ‖U−U∗‖22 ≤ ε2
}
,

B′ε(x
∗) =

{
(n,U) | ‖n− n∗‖22 + ‖U−U∗‖22 ≤ ε2

}
,

B′′ε (x
∗) =

{
(n,U) ∈ B′ε(x

∗) | |nj | = 1, j = 1, . . . , n
}
.

We recall that we assume that our problem has been non-dimensionalized, so that n,
λ, U, and x are all dimensionless. We note that B′ε(x

∗) corresponds to the λ = λ∗ sec-
tion of Bε(x

∗) and that (n,λ,U) ∈ Bε(x
∗) implies (n,U) ∈ B′ε(x

∗), while B′′ε (x
∗) is a

subset of B′ε(x
∗), adding only the requirement that n be normalized. For conventional

discretizations, the discrete Lagrangian L is an algebraic function (a multivariate poly-
nomial in the components of x) and is therefore infinitely continuously differentiable.
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As such, it satisfies any needed regularity hypotheses, and standard results on the
local convergence of Newton’s Method hold—see for example [4, §5.2], [15, §5.1], or
[19, §10.2.2]. A sufficient (lesser) hypothesis for the analysis that follows is that the
Hessian ∇2L be Lipschitz continuous on a neighborhood of x∗.

Theorem 4.2 (Local Newton Convergence). Let x∗ be a regular critical point of
L, as in (4.2), with ∇2L Lipschitz continuous on a neighborhood of x∗, then there exist
positive constants CN and εN satisfying CNεN < 1, such that for any x ∈ BεN(x

∗), the
Newton step xN is well defined and satisfies

‖xN − x∗‖2 ≤ CN‖x− x∗‖22. (4.3)

We recall that from this basic estimate it follows that the Newton iteration is
quadratically convergent from any initial guess x(0) ∈ BεN(x

∗) by arguing as follows:

‖x(1) − x∗‖2 ≤ CN‖x
(0) − x∗‖22 ≤ CNεN‖x

(0) − x∗‖2,

which implies {x(k)}∞k=0 ⊂ BεN(x
∗) (since CNεN < 1),

‖x(k) − x∗‖2 ≤ (CNεN)
k‖x(0) − x∗‖2 → 0, as k →∞,

and

‖x(k+1) − x∗‖2 ≤ CN‖x
(k) − x∗‖22, k = 0, 1, . . . .

Our objective here is to establish an analogous result for the Renormalized Newton
scheme. The following lemma shows that if (n,U) is sufficiently close to (n∗,U∗),
then (n,λ,U) (with λ calculated using (4.1)) is guaranteed to be within the region
of attraction of the basic Newton iteration.

Lemma 4.3. Let x∗ be a regular critical point of L, as in (4.2), with ∇2L Lipschitz
continuous on a neighborhood of x∗, then there exist positive constants C1 and ε1 such
that

(n,U) ∈ B′εN(x
∗) ⇒ ‖λ− λ

∗‖2 ≤ C1

√
‖n− n∗‖22 + ‖U−U∗‖22

and

(n,U) ∈ B′ε1(x
∗) ⇒ (n,λ,U) ∈ BεN(x

∗),

with λ computed from (n,U) using (4.1). Here εN is the local Newton radius of
Theorem 4.2.

Proof. Let (n,U) be in B′εN(x
∗). The approximate λ computed using (4.1) and

the exact Lagrange multiplier vector λ∗ satisfy

λ = −B(n)T∇nf(n,U), λ
∗ = −B(n∗)T∇nf(n

∗,U∗).

Subtracting these and using the fact that the matrix function B is linear in its argu-
ment (B(n) = B(n− n∗) +B(n∗)), we obtain

λ
∗ − λ = B(n∗)T

[
∇nf(n,U)−∇nf(n

∗,U∗)
]
+B(n− n∗)T∇nf(n,U),

which implies

‖λ− λ
∗‖2 ≤ ‖B(n∗)T‖2‖∇nf(n,U)−∇nf(n

∗,U∗)‖2

+ ‖B(n− n∗)T‖2‖∇nf(n,U)‖2. (4.4)
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The difference of the gradients above can be estimated using remainder formulas, such
as in [4, §4.1] or [19, §3.2]:

‖∇nf(n,U)−∇nf(n
∗,U∗)‖2

≤ max
0≤t≤1

‖∇2
nn

f(n∗ + t(n− n∗),U∗ + t(U−U∗))‖2‖n− n∗‖2

+ max
0≤t≤1

‖∇2
nU

f(n∗ + t(n− n∗),U∗ + t(U−U∗))‖2‖U−U∗‖2

≤M1‖n− n∗‖2 +M2‖U−U∗‖2,

with

M1 := max
(n,U)∈B′

εN
(x∗)
‖∇2

nn
f(n,U)‖2, M2 := max

(n,U)∈B′
εN

(x∗)
‖∇2

nU
f(n,U)‖2. (4.5)

The matrix 2-norms of B(n∗)T and B(n − n∗)T can be estimated by observing
that they both stem from matrices of the general form

B(b) =



b1

. . .

bn


, b = (b1, . . . ,bn), b1, . . . ,bn ∈ R

3,

for which

B(b)B(b)T =



b1b

T
1

. . .

bnb
T
n


.

It follows that

‖B(b)T ‖2 =
√
λmax(B(b)B(b)T ) = max

{
|b1|, . . . , |bn|

}
.

Thus

‖B(n∗)T ‖2 = max
{
|n∗

1|, . . . , |n
∗
n|
}
= 1

and

‖B(n− n∗)T ‖2 = max
{
|n1 − n∗

1|, . . . , |nn − n∗
n|
}
≤ ‖n− n∗‖2.

With the help of these estimates, it follows from (4.4) that

‖λ− λ
∗‖2 ≤M1‖n− n∗‖2 +M2‖U−U∗‖2 +M3‖n− n∗‖2,

with

M3 := max
(n,U)∈B′

εN
(x∗)
‖∇nf(n,U)‖2, (4.6)

which in turn implies that

‖λ−λ
∗‖2 ≤ C1

√
‖n− n∗‖22 + ‖U−U∗‖22 , with C1 :=

√
(M1 +M3)2 +M2

2 . (4.7)
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If we now take

ε1 :=
εN√
C2

1 + 1
,

we obtain

(n,U) ∈ B′ε1(x
∗) ⇒

‖n− n∗‖22 + ‖λ− λ
∗‖22 + ‖U−U∗‖22 ≤

(
C2

1 + 1
)(
‖n− n∗‖22 + ‖U−U∗‖22

)

≤
(
C2

1 + 1
)
ε21 = ε2N ⇒ (n,λ,U) ∈ BεN(x

∗).

The above is consistent with general results for “least squares multipliers”—see
for example [11, §6.6] or [18, §18.3]. Thus, for (n,U) ∈ B′ε1(x

∗), the Newton step
(from (n,λ,U), with λ as in (4.1)) is well defined, and hence so is the Renormalized
Newton step. Our next preliminary result shows that the renormalization step is
second order in δn and therefore preserves the order of accuracy of the basic Newton
step.

Lemma 4.4. Let x∗ be a regular critical point of L, as in (4.2), with ∇2L Lipschitz
continuous on a neighborhood of x∗, then there exists a positive constant C2 such that

(n,U) ∈ B′′ε1(x
∗) ⇒ ‖nRN − n∗‖2 ≤ C2‖x− x∗‖22,

where ε1 is as in Lemma 4.3 and x = (n,λ,U), with λ computed as in (4.1).
Proof. We know from Lemma 4.3 that for (n,U) ∈ B′′

ε1
(x∗) ⊂ B′ε1(x

∗), the point
(n,λ,U) is in BεN(x

∗) and that the Newton step from (n,λ,U) is well defined and
satisfies the inequality (4.3). The Renormalized Newton step is also well defined, and
the local geometry relating the two is as follows. For j = 1, . . . , n,

nN
j = nj + δnj , |nj | = 1, nj · δnj = 0, |nN

j | ≥ 1, nRN
j =

nN
j

|nN
j |

,

from which follows

nN
j − nRN

j = (|nN
j | − 1)nRN

j

and

|δnj |
2 = |nN

j |
2 − 1 = (|nN

j | − 1)(|nN
j + 1) ⇒ |nN

j | − 1 =
|δnj |2

|nN
j |+ 1

≤
1

2
|δnj |

2.

With this we can estimate

‖nRN − nN‖2 ≤
n∑

j=1

‖nRN
j − nN

j ‖2 ≤
1

2

n∑

j=1

|δnj |
2 =

1

2
‖δn‖22. (4.8)

To proceed, we must relate the Newton correction δn to the errors in the initial vectors
(n,λ,U), which can be done as follows:

nN = n+ δn ⇒ nN − n∗ = n− n∗ + δn

⇒ ‖δn‖2 ≤ ‖n
N − n∗‖2 + ‖n− n∗‖2

≤ CN‖x− x∗‖22 + ‖x− x∗‖2, using (4.3)

≤ (CNεN + 1)‖x− x∗‖2, using ‖x− x∗‖2 ≤ εN,

≤ 2‖x− x∗‖2, using CNεN < 1

⇒
1

2
‖δn‖22 ≤ 2‖x− x∗‖22. (4.9)
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Combining (4.8) and (4.9) with (4.3), we obtain

‖nRN − n∗‖2 ≤ ‖n
RN − nN‖2 + ‖n

N − n∗‖2

≤
1

2
‖δn‖22 + ‖n

N − n∗‖2

≤ (2 + CN)‖x− x∗‖22.

Thus the lemma is proved with C2 := 2 + CN.
With the help of these lemmas, we can now prove the basic result that establishes

the local quadratic convergence of the Renormalized Newton Method algorithm.
Theorem 4.5. Let x∗ be a regular critical point of L, as in (4.2), with ∇2L Lips-

chitz continuous on a neighborhood of x∗, then there exist positive constants CRN and
εRN satisfying CRNεRN < 1, such that for any (n,U) ∈ B′′εRN

(x∗), the Renormalized

Newton step (nRN,URN), calculated via Algorithm 4.1, is well defined and satisfies

√
‖nRN − n∗‖22 + ‖U

RN −U∗‖22 ≤ CRN

(
‖n− n∗‖22 + ‖U−U∗‖22

)
.

Proof. Given any (n,U) in B′′
ε1
(x∗), with ε1 as in Lemma 4.3, define λ as in

(4.1). Lemma 4.3 guarantees that x = (n,λ,U) ∈ BεN(x
∗), and so the Newton and

Renormalized Newton steps are well defined. Lemma 4.4 guarantees that

‖nRN − n∗‖2 ≤ C2‖x− x∗‖22,

with C2 as in Lemma 4.4, and we also have

‖URN −U∗‖2 ≤ CN‖x− x∗‖22

from (4.3), because URN = UN. It follows that

√
‖nRN − n∗‖22 + ‖U

RN −U∗‖22 ≤
√
C2

2 + C2
N ‖x− x∗‖22.

Now

‖x− x∗‖22 = ‖n− n∗‖22 + ‖λ− λ
∗‖22 + ‖U−U∗‖22

≤
(
C2

1 + 1
)(
‖n− n∗‖22 + ‖U−U∗‖22

)
,

where C1 is as in (4.7). We thus have

√
‖nRN − n∗‖22 + ‖U

RN −U∗‖22 ≤
√

C2
2 + C2

N

(
C2

1 + 1
)(
‖n− n∗‖22 + ‖U−U∗‖22

)

and can take

CRN :=
√
C2

2 + C2
N

(
C2

1 + 1
)

and choose εRN ≤ ε1 such that CRNεRN < 1.
One can now use exactly the same arguments as in the basic local Newton Con-

vergence Theorem (sketched after the statement of Theorem 4.2) to show that the
Renormalized Newton iteration is well defined and quadratically convergent from any
initial point in B′′εRN

(x∗).
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In the analysis above, the various constants (C1, C2, ε1, . . . ) depend on the
discrete Lagrangian L in (3.1) through the bounds M1, M2, and M3 in (4.5) and
(4.6), and these will change from problem to problem. For example, consider the
model problem in two dimensions used for the numerical experiments in §5:

F [n] =
1

2

∫

Ω

|∇n|2, n = n(x, y), Ω = (0, 1)2.

Discretized as in §5 on a uniform mesh with n2 mesh cells of edge length h = 1/n
(and (n− 1)2 free interior nodes), one has the discrete free energy

f(n) =
1

4

n−1∑

i,j=0

[
|ni+1,j − nij |

2 + |ni+1,j+1 − ni,j+1|
2

+ |ni,j+1 − nij |
2 + |ni+1,j+1 − ni+1,j |

2
]
.

Formulas for ∇nf and ∇2
nn

f are given in (5.2) and (5.5) respectively. Note that for
this model problem, A0 = ∇2

nn
f is constant, independent of n, and ∇nf(n) = A0n

(see §5.1).
The constants M1 and M3 can be estimated from these formulas—there is no

electric field in this model problem, and so there is no M2 to estimate. For M1 we
obtain an exact expression:

M1 = max
n∈BεN

(n∗)
‖∇2

nn
f(n)‖2 = ‖A0‖2 = λmax(A0) = 8 sin2

π(n− 1)

2n

⇒ M1 < 8 and M1 = 8(1 +O(h2)), as h→ 0. (4.10)

For M3 we obtain a bound:

‖∇nf(n)‖2 = ‖A0n‖2 ≤ ‖A0‖2(‖n− n∗‖2 + ‖n
∗‖2)

⇒ M3 = max
n∈BεN

(n∗)
‖∇nf(n)‖2 ≤ 8(εN + n). (4.11)

Here we have used (4.10), the definition of BεN(n
∗), and ‖n∗‖22 =

∑n−1
i,j=1 |n

∗
ij |

2 =

(n− 1)2 (since |n∗
ij | = 1, ∀ i, j). That ‖n∗‖2 = n− 1 (and ‖∇nf(n

∗) = O(n) above)
is due to the definition of the vector 2-norm (the standard definition, as used above).
Thus for this example we have M1 = O(1) and M3 = O(n), as n → ∞. If the
vector 2-norm were defined instead to be consistent with the continuous 2-norm (e.g.,

‖n‖22 = h2
∑n−1

i,j=1 |nij |
2), then both ‖n∗‖2 and ‖∇nf(n)‖2 would be O(1), and M1

would remain O(1).
If the same model problem were discretized in the same way in one or three space

dimensions (with Ω = (0, 1) or Ω = (0, 1)3 respectively, say), then we would obtain
instead M1 = O(1/h), M3 = O(1/h2) (in one dimension) and M1 = O(h), M3 = O(1)
(in three dimensions). The analysis in this sub-section is for a problem (in any space
dimension) on a fixed grid. Those familiar with the analysis of the “harmonic mapping
case” in [1] will wonder if any of those results are relevant here. That analysis relies
upon a certain “energy decay property” of the Dirichlet energy under renormalizing
an approximate director field of greater than unit length. Unfortunately that property
does not hold for general liquid crystal free-energy functionals, which we show in §S2
of the Supplementary Material.
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4.2. Director fields with defects. An issue that could complicate matters
is the possible presence of defects in the domain of the liquid crystal. These are
singularities in the director field n, usually caused by boundary conditions or some
other form of frustration. The two canonical examples are radial line and point
sources:

n(x, y) =
1

r

[
(x− xd) ex + (y − yd) ey

]
, r2 = (x− xd)

2 + (y − yd)
2 (4.12)

and

n(x, y, z) =
1

r

[
(x− xd) ex + (y − yd) ey + (z − zd) ez

]

r2 = (x− xd)
2 + (y − yd)

2 + (z − zd)
2.

(4.13)

The first is referred to as a “disclination line” (and is uniform in the z direction), and
the second, a “point defect.” The director field is undefined at the defect location,
and the singularity is not removable. For the fields above, one can calculate

|∇n| =





1

r
, for (4.12)

2

r
, for (4.13)

. (4.14)

We see that |∇n|2 is integrable in 3-D but not in 2-D, and so point defects have finite
free energy in Oseen-Frank models, while disclination lines do not.

The analysis of [13] shows that the equilibrium director fields associated with
Oseen-Frank models (with or without electric and/or magnetic fields) are infinitely
differentiable in the interior of the domain away from defects. In many liquid-crystal-
based devices or experiments, defects are not present; in many other cases, however,
they are. The accurate numerical modeling of director fields with defects is a chal-
lenging problem in its own right and is beyond the scope of this paper. Local mesh
refinement and such are required to resolve the rapid variation of n near the defect,
and some cutoff or excision is required, since the director field is not even defined
at the defect location. If one were to model a director field with a defect using a
finite-difference grid or finite-element mesh, then the free-energy-minimizing discrete
director field would position the defect location off the grid/mesh, and calculated so-
lutions would sometimes obtain a slightly inaccurate defect location due to “trapping”
of the defect in the wrong grid cell.

The analysis of the previous sub-section should remain valid for most reasonable
discretizations (on a fixed grid or mesh) of problems with defects, although one would
expect the various constants and bounds and regions of attraction of the Newton
schemes to be affected. The analysis certainly remains valid for the case of standard
finite-element schemes: for a given fixed mesh, the discrete Lagrangian is still just
a polynomial function of the components of the discrete director n, the Lagrange
multipliers λ, and the potential U, and the bounds M1, M2, and M3 are still finite.
In numerical experiments in §5 below, we illustrate the robustness of both the basic
Newton iteration and the Renormalized Newton Method for a model problem with a
defect.

4.3. Comparison with the Truncated Newton Method of computa-

tional micromagnetics. The closest analogue to the Renormalized Newton scheme
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of which we are aware is the Truncated Newton Method utilized in micromagnet-
ics [8, §4.2], and it is natural and interesting to compare the two. The Truncated
Newton Method (as adapted to micromagnetics) is used to minimize a discretization
of the Landau-Lifshitz free energy of a ferromagnetic material subject to pointwise
unit-length constraints on the normalized magnetization vector field, which is usu-
ally denoted by m and is analogous to the liquid crystal director field n—see the
Supplementary Material. In our setting, the approach amounts to the following. Let
f(n1, . . . ,nn) be a discretized free energy, with n = (n1, . . . ,nn), nj ∈ R

3 a current
approximate director (or magnetization) field, normalized so that |nj | = 1, ∀j. One
develops a constrained local quadratic model using paths of the form

nj(ε) =
nj + εpj

|nj + εpj |
, −ε0 < ε < ε0, so that |nj(ε)| = 1 and nj(0) = nj . (4.15)

Here p is an arbitrary direction

p =



p1

...
pn


, p1, . . . ,pn ∈ R

3.

We note that this kind of device is commonly used for analytical as well as numerical
purposes in both the liquid crystals and the micromagnetics areas—see for example
[23, §3.5], where it is used systematically to derive constrained equilibrium equations,
natural boundary conditions, and the like for the Oseen-Frank elastic model for ne-
matic liquid crystals. The constrained local quadratic model follows by expanding

f(n1(ε), . . . ,nn(ε)) = f(n) + εG(n) · p+
ε2

2
H(n)p · p+ · · · ,

where G(n) and H(n) are the constrained/projected gradient and Hessian evaluated
at n(0) = n. The constrained Newton direction is characterized by

H(n)p = −G(n),

which corresponds to Eqn. (65) of [8]—here we have absorbed the ε into p.
If one performs the necessary calculus, one finds that

G =



G1

...
Gn


, Gj = ∇nj

f − (∇nj
f · nj)nj = Πj∇nj

f, Πj := I − njn
T
j , (4.16)

which is Eqn. (62) of [8]. Here Πj is the local orthogonal projector transverse to nj ,
which is commonly denoted P (n) = I − n ⊗ n in the liquid crystals area (see [23]),
and we can write

G = Π∇nf, Π =



Π1

. . .

Πn


.

Recall that in our Renormalized Newton Method, the approximate Lagrange multi-
pliers are computed via (4.1) as

λ = −B(n)T∇nf(n) ⇔ λj = −∇nj
f · nj , j = 1, . . . , n. (4.17)
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In terms of this, then, we can write

Gj = ∇nj
f + λjnj ⇔ G = ∇nf +B(n)λ = ∇nL,

and we see that our formulas for the λj arise naturally in this expansion calculus
and that the projected gradient G is precisely the gradient with respect to n of the
Lagrangian L in (3.1) when the Lagrange multipliers are given by the formulas (4.17)
above (which are the same as (4.1) before). The projected Hessian takes the form

H = Π∇2f Π+ ΛΠ−H2, (4.18a)

where the diagonal matrix of approximate Lagrange multipliers Λ is as given in (3.3)
(again with λj evaluated by (4.17) above), and

H2 :=



n1G

T
1 +G1n

T
1

. . .

nnG
T
n +Gnn

T
n


. (4.18b)

This is equivalent to Eqn. (63) of [8]. The 3n × 3n matrices H and H2 are real and
symmetric.

The projection Π can be seen to be related to the matrices B and Z utilized in
our Renormalized Newton algorithm via

Π = I −BBT = ZZT.

Using also the observation that ΛΠ = ΠΛΠ, one is able to compare directly the
Truncated Newton step

H(n)p = −G(n), H = ZZT(∇2
nn

f + Λ)ZZT −H2, G = ZZT∇nf (4.19)

with the Renormalized Newton step

ZT(∇2
nn

f + Λ)Zq = −ZT∇nf, p = Zq. (4.20)

In both instances, the Lagrange multipliers that form Λ are given by the explicit for-
mulas (4.1), (4.17). Observe that ∇2

nn
f+Λ is simply the A block of the Hessian of the

Lagrangian L in the notation of §3 here. Also note that at equilibrium, the projected
gradient must necessarily vanish (ZT∇nf = 0 ⇒ G = ZZT∇nf = 0) and so, there-
fore, must the H2 part of the projected Hessian matrix H. The convergence analysis
of §4.1 here shows that this H2 term is not needed for local quadratic convergence
anyway.

We see that there is a definite relationship between the Truncated Newton Method
of computational micromagnetics and the Renormalized Newton Method we have
developed here. There are also important differences. The Truncated Newton system
(4.19) is of size 3n, whereas (4.20) is of size 2n. This is reflective of the essential
analytical difference between the two schemes: in the Truncated Newton step, the
Hessian ∇2

nn
L = ∇2

nn
f +Λ is flanked by a projection (Πx = ZZTx is the orthogonal

projection of x onto the tangent space to the constraint manifold at n), whereas in the
Renormalized Newton step, the Hessian is flanked by a coordinate map (ZTx gives the
coordinates of the tangent-space component of x with respect to the orthonormal basis
provided by the columns of Z). The Truncated Newton scheme leaves the problem
in R

3n (even though there are only 2n degrees of freedom locally on the constraint
manifold), whereas the Renormalized Newton scheme moves the problem to a 2n-
dimensional setting. The unnecessary extra degrees of freedom in the Truncated
Newton approach contribute to the degeneracies identified in the next section.
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4.4. Convergence issues for the Truncated Newton Method. We further
our comparison of the Renormalized Newton Method and the Truncated Newton
Method, continuing to consider the problem of minimizing a general discretized free
energy f(n1, . . . ,nn) subject to |nj | = 1, j = 1, . . . , n, with associated Lagrangian
L(n,λ) = f(n) +

∑n

j=1 λjgj(n), as in (3.1) (but with no electric field). At any

regular constrained equilibrium point n∗, we have ∇L(n∗,λ∗) = 0 and ∇2L(n∗,λ∗)
nonsingular, where here

∇2L =

[
∇2

nn
L ∇2

nλ
L

∇2
λn

L ∇2
λλ

L

]
=

[
A B
BT O

]
, A = ∇2

nn
f + Λ.

With n∗ normalized (|n∗
j | = 1, ∀j) and B and Z constructed as before in (3.4) and

(3.5) (mutually orthonormal columns, BTZ = O, ZTB = O), the Lagrange multipliers
associated with n∗ are given by λ∗ = −B(n∗)T∇nf(n

∗), and it can be shown that
[
A B
BT O

]
is nonsingular ⇔ ZTAZ is nonsingular.

It follows that the coefficient matrix of the Renormalized Newton step (4.20), namely
ZT (∇2

nn
f+Λ)Z, is nonsingular at (n∗,λ∗), and by continuity at any (n,λ) sufficiently

close to (n∗,λ∗).
Consider on the other hand the coefficient matrix H(n) (4.18) of the Truncated

Newton step (4.19). As already observed, at n = n∗, we must have G(n∗) = 0, which
implies that H2(n

∗) = O and

H(n∗) = Π (∇2
nn

f + Λ)Π = ZZT(∇2
nn

f + Λ)ZZT.

This matrix is necessarily singular, with a nullity at least n (since ZT has an n-
dimensional null space). To be precise, we have the following.

Proposition 4.6. Let n∗ be any constrained stationary point of the discretized
free energy f(n1, . . . ,nn) subject to |nj | = 1, j = 1, . . . , n. Then the projected Hessian
H(n) (4.18) of the Truncated Newton step (4.19) evaluated at n = n∗ has the form

H(n∗) = ZZT
(
∇2

nn
f(n∗) + Λ(λ∗)

)
ZZT, λ

∗ = −B(n∗)T∇nf(n
∗),

with Λ, B, and Z as in (3.3), (3.4), and (3.5). As a consequence, the matrix H(n∗)
is singular, and N (H(n∗)) ⊃ N (ZT ), which implies that nullity(H(n∗)) ≥ n. If in
addition n∗ is regular, then

N (H(n∗)) = N (ZT ) and nullity(H(n∗)) = n.

Here N (M) denotes the nullspace of the matrix M .
Proof. The facts that the nullspace of H(n∗) contains the nullspace of ZT and

that the nullity of H(n∗) is greater than or equal to n are clear from the preceding
discussion and from the form of H(n∗) above. It only remains to be shown that if n∗

is a regular constrained equilibrium point of f , then N (H(n∗)) ⊂ N (ZT ), which can
be seen as follows. At a regular point n∗, ZTAZ is nonsingular and

p ∈ N (H(n∗)) ⇒ ZZTAZZTp = 0

⇒ ZTZZTAZZTp = 0

⇒ ZTAZZTp = 0, since ZTZ = I

⇒ ZTp = 0, since ZTAZ is nonsingular

⇒ p ∈ N (ZT ).
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Therefore, when n∗ is regular, the nullspace of H(n∗) coincides with the nullspace of
ZT , and the nullity of H(n∗) is exactly n.

Thus the coefficient matrix of the linear system (4.19) is necessarily singular
(with a large nullity) at the local minimizers being sought, and the system will be
very ill-conditioned in neighborhoods of any such points. Another difficulty with
the Truncated Newton Method is that the linear system H(n)p = −G(n) for the
projected Newton correction p is in fact solved by the current approximate discrete
director field n. We have the following.

Proposition 4.7. Let n be a normalized discrete director field (n = (n1, . . . ,nn),
|n1| = · · · = |nn| = 1), f(n) a discrete free energy, and G(n) and H(n) the projected
gradient and Hessian of the Truncated Newton Method, (4.16) and (4.18) respectively.
Then the linear system for the Truncated Newton step H(n)p = −G(n) is solved by
p = n:

H(n)n = −G(n).

Proof. This can be verified directly:

ZTn = 0 ⇒ Hn = −H2n = −




...
(Gi · ni)ni + (ni · ni)Gi

...


 = −




...
Gi

...


 = −G,

since Gi · ni = 0 and ni · ni = 1, i = 1, . . . , n. This can also be seen from (63) of [8],
by directly verifying that H[m]m = −G[m] (in the notation of that paper).

Thus the linear system for the Truncated Newton step (4.19) is always consistent
and always admits the solution p = n. If H is nonsingular, then p = n is the
only solution. The difficulty with this is that the vector p = n does not provide a
descent direction to use in a line search: it is in the normal space to the constraint
manifold at n and has no component in the tangent space. Both of these properties
(singularity of H(n∗) and p = n solution of H(n)p = −G(n)) are confirmed by
numerical experiments in the Supplementary Materials.

One must keep in mind that the Truncated Newton step (4.19) is just a part
of an energy minimization algorithm. As described in [8], this system is solved ap-
proximately via a Preconditioned Conjugate Gradient method, and the approximate
solution vector p is tested to see if it is a descent direction for the discretized Landau-
Lifshitz free energy. If it is, then it is used in the subsequent line search; if not,
another p is used (the steepest-descent direction p = −G(n), one would suppose).
Codes based upon the Truncated Newton Method energy minimization approach have
been used to compute interesting domain patterns and structures in thin magnetic
films [5, 6, 7, 8], and it is indicated in those references that the same solutions have
also been obtained by separate codes using a different approach (time relaxation to
steady state). We can only assume that in the energy minimization code, either the
approximately computed solution to H(n)p = −G(n) has enough of a component
in the tangent space for it to be used in a line search or that the steepest-descent
direction is chosen instead in the logic of the code at that stage. It does not seem
possible for the Truncated Newton Method, as described in the references above, to
be locally quadratically convergent, and we are not aware of any analysis or numeri-
cal benchmarking in support of that. The problems of interest to us are saddle-point
problems, in any event.
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Fig. 5.1. Equilibrium director fields of Harmonic Mapping Problem (5.1): planar disclination
line (left, locally unstable), upward “escape” solution (right, locally stable). Not displayed is a
downward “escape” solution, which is the mirror image with respect to the xy plane of the pictured
upward “escape” solution.

5. Numerical examples. We contrast some numerical aspects of the basic
Newton Method and the Renormalized Newton Method on a model problem in two
space dimensions. The problem admits multiple solutions, equilibrium director field
solutions with defects as well as solutions that are defect free.

5.1. Model problem and discretization. We consider the “Harmonic Map-
ping Problem” associated with an equal-elastic-constant free energy functional, with
no electric or magnetic field, rescaled to the unit square, and subject to the boundary
conditions of a line disclination (as in (4.12)):

min
|n|=1

F [n], F [n] =
1

2

∫

Ω

|∇n|2 dA =
1

2

∫

Ω

[
|∇u|2 + |∇v|2 + |∇w|2

]
dA

n = u(x, y) ex + v(x, y) ey + w(x, y) ez, Ω = (0, 1)2

n = nb on ∂Ω, nb(x, y) =
(x− xd) ex + (y − yd) ey√

(x− xd)2 + (y − yd)2
.

(5.1)

The defect location is taken to be (xd, yd) = (1/3, 2/3) in the examples computed
below. For this combination of geometry and boundary conditions, we anticipate
(and find) three equilibrium solutions: an xy-planar line disclination and a pair of
solutions that are mirror images of each other (across the xy plane) and which avoid
the singularity of the planar solution by “escaping into the third dimension”—see
Fig. 5.1. The two “escape” solutions are locally stable—appropriate criteria for lo-
cal stability for discretizations of such problems are derived in [9, 10] and discussed
below. The disclination line solution is technically inadmissible for an Oseen-Frank
free energy—the integral functional is divergent, as was pointed out in §4.2—but it
satisfies the Euler-Lagrange equations away from the defect point and is useful for
numerical illustrations.

This model problem is discretized with bilinear finite elements on a uniform mesh,
in the notation

nij ≈ n(xi, yj), xi = ih, yj = jh, i, j = 0, . . . , n, h = 1/n.

A four-point, nodal quadrature rule is used,

∫ yj+1

yj

∫ xi+1

xi

W (x, y) dx dy ≈
h2

4

[
Wij +Wi+1,j +Wi,j+1 +Wi+1,j+1

]
,
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resulting in the discretized free energy

f(n) =
1

4

n−1∑

i,j=0

[
|ni+1,j − nij |

2 + |ni+1,j+1 − ni,j+1|
2

+ |ni,j+1 − nij |
2 + |ni+1,j+1 − ni+1,j |

2
]
.

In the above expression, appropriate boundary values are used for nij at all boundary
nodes. The constrained equilibrium equations derive from the Lagrangian, as in (3.1),
and take the form

∇nij
L = ∇nij

f + λijnij = −∆hnij + λijnij

∆hnij := ni,j−1 + ni−1,j + ni+1,j + ni,j+1 − 4nij ,
(5.2)

giving the difference equations (from ∇nL = 0)

−∆hnij + λijnij = 0, |nij | = 1, i, j = 1, . . . , n− 1

nij = nb
ij , i or j = 0 or n.

(5.3)

This scheme is readily seen to be O(h2) consistent with the Euler-Lagrange equations
of the continuous problem, which are usually written

∆n+ λn = 0, |n| = 1 in Ω, n = nb on ∂Ω, (5.4)

although the signs and scalings of the Lagrange multipliers are different. The Lagrange
multiplier field for a solution to (5.4) above can be derived using n · n = 1 and is
given by

λ = −∆n · n = |∇n|2,

which is O(1) away from defects but O(1/r2) near them—here r is the distance to the
defect point.

Numerical experiments were conducted in Matlab using both the basic Newton
scheme (§3 above) and the Renormalized Newton scheme (§4 above) for this dis-
cretized model problem. Linear systems were solved by the Matlab backslash operator
using sparse direct numerical linear algebra. The blocks of the Hessian were built as
in §3, with the A0 matrix of (3.3) here given by

A0 = ∇2
nn

f = −



∆h

∆h

∆h


 (5.5)

(with ∆h the matrix of the 2-D discrete Laplacian associated with the difference
operator of (5.2)) with respect to the ordering

n = (u1, . . . , uN , v1, . . . , vN , w1, . . . , wN ), N := (n− 1)2.

Initial guesses were constructed by blending the true continuous line-disclination so-
lution with a vertical field in the interior:

ninit
ij =

(1− |α|)nb
ij − α ez

|(1− |α|)nb
ij − α ez|

, i, j = 1, . . . , n− 1, −1 ≤ α ≤ 1, (5.6)

with nb as in (5.1). Positive α’s correspond roughly to upward escape, while negative
α’s correspond to downward escape. For α ∈ [−0.3, 0.3], we normally obtained con-
vergence to the planar solution; while with α ≈ 0.6 or −0.6, we normally obtained the
upward or downward “escape” solution respectively. The values α = 0.3 and α = 0.6
were used in most of the experiments below.
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Table 5.1
Convergence behavior of the basic Newton Method versus the Renormalized Newton Method

for the model Harmonic Mapping Problem (5.1), discretized as in (5.3), with n = 128 (N = 1272

interior nodes). Final computed solution is the planar line disclination as in Fig. 5.1 left (with a
defect at the point (xd, yd) = (1/3, 2/3)), from the initial guess (5.6) with α = 0.3.

Newton Renormalized

iter ‖∇nL‖∞ ‖∇λL‖∞ ‖δn‖∞ ‖δλ‖∞ ‖ZT∇nf‖∞ ‖δn‖∞

1 9.71(−01) 2.22(−16) 1.28(+00) 1.53(+00) 1.06(+00) 1.28(+00)
2 7.15(−01) 9.75(−01) 1.53(+00) 3.26(−01) 3.38(−01) 6.64(−01)
3 1.73(−01) 1.21(+00) 8.66(−01) 7.55(−01) 4.44(−01) 5.42(−01)
4 4.23(−01) 4.46(−01) 3.23(−01) 5.89(−01) 1.64(−01) 2.19(−01)
5 1.07(−01) 9.99(−02) 1.57(−01) 1.25(−01) 6.35(−02) 6.43(−02)
6 1.81(−02) 1.26(−02) 1.85(−02) 2.10(−02) 1.86(−03) 1.49(−03)
7 3.90(−04) 1.96(−04) 4.25(−04) 2.56(−04) 4.32(−06) 1.50(−05)
8 1.09(−07) 1.03(−07) 1.55(−07) 2.47(−07) 5.55(−11) 3.05(−11)
9 3.82(−14) 1.24(−14) 4.56(−14) 1.58(−14) 1.00(−15) 2.10(−15)

10 9.97(−16) 2.22(−16) 3.86(−15) 1.33(−15) 9.07(−16) 1.74(−15)
11 9.60(−16) 2.22(−16) 3.00(−15) 1.33(−15) 1.02(−15) 2.50(−15)

5.2. Numerical results. In the absence of any electric or magnetic field, the
basic Newton step (3.2) takes the form

[
A B
BT O

] [
δn

δλ

]
= −

[
∇nL
∇λL

]
, n← n+ δn, λ← λ+ δλ, (5.7)

while the Renormalized Newton step becomes

ZTAZp = −ZT∇nf, δn = Zp, nij ←
nij + δnij

|nij + δnij |
.

Here A = A0 + Λ(λ) as in (3.3), with λ given by the current approximate λ for
the Newton step versus λ = −B(n)T∇nf(n) for the Renormalized Newton step.
Both iterations were started from the same initial guess, as in (5.6), with λinit =
−B(ninit)

T∇nf(ninit) used to initialize the Lagrange multipliers for the basic Newton
iteration—thus both n and λ coincide entering the main loops for both iterative
solvers. Representative data for the convergence behavior of the two methods are given
in Tables 5.1 and 5.2 with n = 128 for both the planar disclination-line solution (which
is locally unstable) and the (upward) “escape” solution (which is locally stable). The
tables indicate that the Renormalized Newton Method converges a little more rapidly
(normally reaching target tolerances in one or two fewer iterations than the basic
Newton scheme) and that the convergence behavior of both iterations is essentially
the same for solution fields with defects as it is for those without defects.

The Renormalized Newton Method was also found to be a little more “robust,”
in the sense that it would sometimes converge from an initial guess from which the
basic Newton iteration failed. This is illustrated in Table 5.3, which also gives the
number of iterations required for each to achieve machine attainable accuracy from
the same initial guess. The numbers to put in such a table are somewhat subjective,
since the last iteration or two before convergence completely stalls typically only make
incremental progress. For example, for the data in Tables 5.1 and 5.2, we would say
that the Newton scheme is fully converged after 10 iterations for the planar solution
and 11 iterations for the escaped solution, while the Renormalized Newton scheme
takes 9 and 8 iterations respectively.
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Table 5.2
Convergence behavior of the basic Newton Method versus the Renormalized Newton Method

for the model Harmonic Mapping Problem (5.1), discretized as in (5.3), with n = 128 (N = 1272

interior nodes). Final computed solution is the upward “escape” solution as in Fig. 5.1 right (which
is defect free), from the initial guess (5.6) with α = 0.6.

Newton Renormalized

iter ‖∇nL‖∞ ‖∇λL‖∞ ‖δn‖∞ ‖δλ‖∞ ‖ZT∇nf‖∞ ‖δn‖∞

1 1.24(+00) 1.67(−16) 1.44(+00) 2.98(+00) 1.54(+00) 1.44(+00)
2 5.84(−01) 2.23(+00) 9.98(−01) 1.85(+00) 2.97(−01) 1.33(+00)
3 6.64(−01) 1.03(+00) 9.18(−01) 8.07(−01) 1.89(−01) 3.06(−01)
4 7.18(−01) 9.57(−01) 7.83(−01) 6.11(−01) 3.70(−03) 4.71(−02)
5 4.58(−01) 7.76(−01) 5.56(−01) 2.06(−01) 1.15(−05) 9.92(−04)
6 1.02(−01) 2.84(−01) 1.74(−01) 1.20(−01) 1.94(−09) 8.67(−07)
7 2.08(−02) 3.02(−02) 4.20(−02) 4.43(−02) 1.74(−15) 2.04(−13)
8 1.73(−03) 1.17(−03) 2.61(−03) 2.11(−03) 9.43(−16) 5.66(−15)
9 5.51(−06) 6.87(−06) 1.20(−05) 8.70(−06) 8.91(−16) 4.51(−15)

10 1.04(−10) 1.33(−10) 1.82(−10) 2.01(−10) 8.85(−16) 4.83(−15)
11 8.84(−16) 2.22(−16) 3.95(−15) 1.18(−15)
12 1.02(−15) 2.22(−16) 3.95(−15) 1.21(−15)

Table 5.3
Number of iterations required to achieve machine attainable accuracy by the basic Newton

Method versus the Renormalized Newton Method for the model Harmonic Mapping Problem (5.1),
discretized as in (5.3). Initial guesses for both the planar disclination-line solution (with defect at
(xd, yd) = (1/3, 2/3)) and the upward “escape” solution (which is defect free) were given by (5.6),
with α = 0.3 and α = 0.6 respectively. With α = 0.3, for n = 16 and n = 32, the basic Newton
iteration failed to converge; while for n = 4, the Renormalized Newton Method converged to the
“wrong solution” (the downward “escape” solution instead of the planar solution). With α = 0.6,
for n = 64, the Newton scheme again failed to converge.

planar solution (α = 0.3) escape solution (α = 0.6)

Newton RN Newton RN
n iterations iterations iterations iterations

4 16 — 7 6
8 7 7 7 6

16 — 8 7 6
32 — 11 12 7
64 11 9 — 7

128 10 9 11 8
256 8 9 9 8
512 9 9 9 8

The size of the Newton system (number of unknowns) is 4N (with N = (n−1)2),
whereas the size of the Renormalized Newton system is 2N . The sparsities of the
coefficient matrices are comparable. As a consequence, the Renormalized Newton
Method requires less time per iteration when the linear systems are solved by direct
methods, as we have done in these experiments. Table 5.4 compares the sizes of the
two systems and the time per iteration. This is a casual comparison, using elapsed
clock time obtained via Matlab’s tic-toc functions (total time for the main loop
divided by the total number of times through the loop). The runs were done on a
laptop with a 2.93GHz dual-core processor and 8 GB memory.

For problems for which iterative methods are necessary, we would use MINRES
for both the basic Newton Method as well as the Renormalized Newton Method—
the coefficient matrix for the Newton scheme (5.7) is highly indefinite, and ZTAZ is
indefinite on branches of locally unstable solutions (which one often needs to follow in
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Table 5.4
System size and time per iteration for the basic Newton Method and the Renormalized Newton

Method for representative runs for the Harmonic Mapping Problem (5.1), discretized as in (5.3).
Here n = number of mesh cells in one direction; N = (n − 1)2 = number of interior nodes; size
= total number of unknowns (4N for Newton, 2N for Renormalized Newton); time = time per
iteration (in seconds, from tic-toc, total time for execution of main loop divided by number of
times through the loop).

Newton Renormalized

n N size time size time

4 9 36 3.50(−3) 18 3.00(−3)
8 49 196 5.50(−3) 98 5.00(−3)

16 225 900 1.64(−2) 450 1.24(−2)
32 961 3,844 6.73(−2) 1,922 4.42(−2)
64 3,969 15,876 4.52(−1) 7,938 2.33(−1)

128 16,129 64,516 2.71(+0) 32,258 1.21(+0)
256 65,025 260,100 1.83(+1) 130,050 6.71(+0)
512 261,121 1,044,484 1.66(+2) 522,242 3.55(+1)

Table 5.5
1-norm condition numbers for the coefficient matrices of the basic Newton Method (M in (5.8))

and the Renormalized Newton Method (ZTAZ) on the fully converged planar defect solution (Fig. 5.1
left) and the (upward) “escape” defect-free solution (Fig. 5.1 right) of the Harmonic Mapping Prob-
lem (5.1), discretized as in (5.3). Condition numbers were estimated using Matlab’s condest()

function.

defect solution defect-free solution

n cond(M) cond(ZTAZ) cond(M) cond(ZTAZ)

4 7.07(+01) 1.79(+01) 8.66(+01) 2.21(+01)
8 1.68(+02) 5.57(+01) 1.30(+02) 8.93(+01)

16 3.01(+02) 2.55(+02) 4.55(+02) 3.47(+02)
32 1.57(+03) 1.22(+03) 1.71(+03) 1.39(+03)
64 3.79(+04) 3.37(+04) 6.77(+03) 5.72(+03)

128 2.13(+04) 1.89(+04) 2.70(+04) 1.89(+04)
256 7.90(+04) 7.02(+04) 1.08(+05) 8.81(+04)
512 3.56(+05) 3.17(+05) 4.31(+05) 3.52(+05)

numerical bifurcation analysis). The Newton system can be optimally preconditioned
using the approach of [14, §6]. Optimal preconditioners for ZTAZ will be the subject
of subsequent work [10].

The condition numbers of the coefficient matrices

M =

[
A B
BT O

]
vs ZTAZ (5.8)

were found to be comparable and to scale as expected for a discretization of a second-
order PDE problem:

cond(M), cond
(
ZTAZ

)
= O

(
1/h2

)
= O

(
n2

)
.

The variation in the condition numbers was also negligible when comparing solutions
with defects to those without. See Table 5.5, where the 1-norm condition numbers
were estimated using Matlab’s condest() function.

For both schemes, one area in which a difference can be seen in the behavior on
the defect director field (the locally unstable planar solution) versus the defect-free
equilibrium director fields (the locally stable up/down “escape” solutions) is in the
values of the Lagrange multipliers. The way this problem has been scaled, the discrete
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Table 5.6
Least and greatest discrete Lagrange multipliers for fully converged planar solution (disclination

line, Fig. 5.1 left) versus “escape” solution (defect-free upward “escape” solution, Fig. 5.1 right) of
the Harmonic Mapping Problem (5.1), discretized as in (5.3).

planar solution “escape” solution

n minλij maxλij minλij maxλij

4 −2.47(+0) −2.05(−1) −1.76(+0) −2.97(−1)
8 −2.28(+0) −2.71(−2) −5.09(−1) −3.62(−2)

16 −2.20(+0) −5.38(−3) −1.33(−1) −5.97(−3)
32 −2.20(+0) −1.21(−3) −3.33(−2) −1.25(−3)
64 −2.18(+0) −2.88(−4) −8.35(−3) −2.90(−4)

128 −2.17(+0) −7.03(−5) −2.09(−3) −7.04(−5)
256 −2.17(+0) −1.74(−5) −5.22(−4) −1.74(−5)
512 −2.17(+0) −4.32(−6) −1.30(−4) −4.32(−6)

Lagrange multipliers satisfy

λij ≈ −h
2 ∗ λ(xi, yj),

where λ(x, y) is the Lagrange multiplier field of the continuous Euler-Lagrange equa-
tion (5.4). As observed in the previous subsection, λ = |∇n|2 for solutions of (5.4),
and so by virtue of (4.14), we have

λij =

{
O
(
h2

)
, for defect-free solutions

O
(
h2

(
1 + 1/r2

))
, for director fields with defects.

Thus the discrete Lagrange multipliers should be O(h2) throughout the domain for
the “escape” solutions, while they will attain maximal O(1) values on the nodes of
the mesh cell containing the defect point for the planar solutions. This is indeed what
is observed, as demonstrated in Table 5.6.

5.3. Discussion. The performance of both the basic Newton Method and the
Renormalized Newton Method was very satisfactory on these model test problems.
It is perhaps a little surprising that there wasn’t more of a difference between the
runs with the defect solutions versus those with the defect-free solutions: the con-
dition numbers and convergence rates and the like were all quite comparable. The
Renormalized Newton Method displayed some modest advantages: more robust with
respect to obtaining convergence from crude initial guesses, fewer iterations to achieve
convergence tolerances in general (one or two per run, typically), and less execution
time (roughly half the time of the basic Newton Method for realistic n’s, improving as
n increases). For the applications of interest to us (involving parameter continuation,
path following, numerical bifurcation and phase analysis), which require the repeated
solution of such systems, these incremental advantages can lead to appreciable gains
in efficiency. For applications in three space dimensions, iterative methods would be
required for the numerical linear algebra, and preconditioned MINRES would be used.
Optimal preconditioners for the basic Newton Method are known [14]. Precondition-
ers for the Renormalized Newton Method are under development [10].

It is worthwhile to comment at this point on the spectral properties of the matrices
that arise in these methods:

A = A0 + Λ, M =

[
A B
BT O

]
, and ZTAZ.
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As previously noted, M is nonsingular if and only if ZTAZ is nonsingular (assuming
B and Z are constructed as in §3 and all of the discrete directors are nonzero).
Local stability of solutions of such problems (including cases with coupled electric
fields) is discussed in [9, 10]. For the model Harmonic Mapping Problem used in
the numerical experiments of this section, it is simply a matter of considering the
minimum eigenvalue of ZTAZ:

λmin

(
ZTAZ

)
> 0 ⇒ locally stable

λmin

(
ZTAZ

)
< 0 ⇒ locally unstable.

The A matrix is symmetric, and for an unstable solution, it is necessarily indefinite
(by virtue of the above). For a stable solution, A need not be positive definite or even
nonsingular, and for our numerical experiments with locally stable solutions, A was
found to be positive semi-definite but singular with a zero eigenvalue of multiplicity
at least three. The M matrix is 4N × 4N symmetric but highly indefinite. On
locally stable solutions, it has 3N positive eigenvalues and N negative ones; while
on unstable solutions, it has more than N negative eigenvalues. For our numerical
experiments, ZTAZ was indeed found to be positive definite on stable solutions. On
unstable solutions, it was nonsingular but indefinite, with one negative eigenvalue for
small values of n and two negative eigenvalues for large values of n.

A crossover in the behavior of the matrices was observed in going from n = 64 to
n = 128. For n = 4, 8, . . . , 64, the A matrix has a zero eigenvalue of multiplicity three,
and ZTAZ has one negative eigenvalue; while for n = 128, 256, and 512, the A matrix
appears to have a slightly higher-dimensional null space (five or six, more likely the
latter), and ZTAZ has two negative eigenvalues. One can also detect the approach
of this crossover in Table 5.5, in which the condition numbers of both M and ZTAZ
are larger than the trends would suggest for n = 64 on the planar, disclination-line
solution. Numerical experiments on aspects of the Truncated Newton Method are
reported in §S3 of the Supplementary Material.

6. Conclusion. We have introduced and studied a prototype director model for
the equilibrium orientational configuration in a liquid crystal material, focusing on
the commonly occurring case of a coupled electric-field interaction. The prototype
model embodies the essential features of models for realistic experiments and device
simulations. It also shares similar features with the Landau-Lifshitz model for the
magnetization in a ferromagnetic material, and the relationship between the two has
been discussed. The equilibrium equations associated with discretizations of the liquid
crystal model have a double saddle-point structure, arising from the pointwise unit-
vector constraints on the components of the director field and from the nature of the
coupling between the director field and the local electric field. This paper complements
[21], where we have proposed a preconditioned nullspace method as an effective way
to solve the associated Lagrange-Newton equations, and the basic ideas of that paper
have been reviewed here. The main results here have been the introduction of a
modified version of Newton’s method (which we refer to as the “Renormalized Newton
Method”) that takes advantage of the special structure of the problem and the proof
that this method is locally quadratically convergent.

The Renormalized Newton scheme has two key features: eliminating the Lagrange
multipliers (by least-squares approximations) and renormalizing the local directors at
each iterative step. The resulting outer iteration only involves the director and elec-
trostatic variables and remains on the constraint manifold at each stage. In addition
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to proving quadratic convergence of our method (whenever the basic global Newton
method is so), we have also presented numerical experiments on a model problem
in two space dimensions comparing the basic Newton Method and the Renormalized
Newton Method. The test problem admits three different solutions, one with a defect
(a line disclination) and two that are defect free. The convergence behavior of neither
scheme was affected by the presence of the defect. In general, the Renormalized New-
ton scheme demonstrated several advantages over the basic Newton scheme: smaller
system size, less time per iteration, fewer iterations required to achieve convergence
tolerances, and convergence from some crude initial guesses from which the basic
Newton scheme failed to converge.

The Renormalized Newton Method bears some resemblance to the Truncated
Newton Method of computational micromagnetics, and so we have carefully compared
and contrasted the two. This revealed some anomalies of the Truncated Newton ap-
proach. In particular, the linear system for the basic Truncated Newton step does not
appear to yield solutions that provide descent directions for the discretized free energy
being minimized, and the coefficient matrix of this system is necessarily singular at
the solutions being sought.

It is also common in computational micromagnetics to use numerical solutions of
the time-dependent Landau-Lifshitz-Gilbert equations to obtain desired steady state
minimizers of the Landau-Lifshitz free energy, and schemes with provable exponential
convergence in time can be found in [20]. The application domain of interest to us
(and main motivation for this work) is concerned with numerical bifurcation and phase
analysis, for which it is necessary to be able to follow branches of unstable solutions
(as well as branches of stable solutions). While time-stepping methods are often useful
for obtaining starting points on solution branches, they can’t be used systematically
for full continuation and path following in general (because of the inability to compute
unstable solutions with them).

The main thrust of this paper (and its predecessor [21]) is effective numerical
techniques for dealing with pointwise unit-vector constraints in discretizations of equi-
librium problems of the type found in liquid crystal director modeling. The ease with
which the tangent spaces and normal spaces of the constraint manifold can be char-
acterized and constructed for these particular types of constraints makes nullspace
(reduced Hessian) methods very natural and effective and leads to a structure that
can be further exploited. The ideas here are not tied to a particular problem or dis-
cretization approach. The techniques should be useful in a variety of settings in which
such constraints appear, including computational micromagnetics.
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