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Abstract 
 

Friction Stir Processing (FSP) has been shown to improve the strength, ductility and 

toughness of both aluminium and steel materials through grain refinement and the even 

distribution of precipitates within the substrate matrix. This article presents the application of 

FSP of Cold Spray deposited Tungsten Carbide – Cobalt (WC-Co) of two distinct types, on a 

series of aluminium substrates. Microstructural investigations of FSP processed samples 

exhibit interaction between the deposited WC-Co particles and aluminium alloy and show the 

homogeneous dispersion of deposited particles through the metal matrix. Results show that 

the dispersion of these particles varies with powder type, FSP parameters and substrate 

characteristics. A parallel study focusing on the hardness of the FSP generated Metal Matrix 

Composite (MMC) further demonstrate the potential of combining Cold Spray and FSP 

technologies to tailor surface properties for specific applications. 

 

Introduction 
 

Friction Stir Processing (FSP) is a variant of the widely adopted Friction Stir Welding (FSW) 

process used to carry out solid state welding of a variety of metals and alloys. FSP makes use 

of a rotating tool that is plunged into a chosen substrate. The heat generated as a result of 

friction, causes the substrate to plastically deform with the rotation of the tool forcing 

material from the leading edge round to the rear of the tool. Details of the FSP process can be 

found elsewhere, [1] [2] [3] [4], but the beneficial features of the process include substantial 

grain refinement and homogeneous distribution of impurities and precipitates throughout the 

metal matrix, both of which lead to improvements in the mechanical properties of the 

material [5] [6].  

Cold Spray (CS) Deposition is a surface coating technique that was developed in the mid 

1980’s at the Institute for Theoretical and Applied Mechanics, Russian Academy of Science 

in Novosibirsk [7]. The process accelerates micro particles to high velocities by the use of 

compressed gas through a supersonic nozzle. Particles are fired at the material surface at a 

temperature lower than that of their melting point, with the bonding mechanism occurring as 

a result of plastic deformation due to the high velocities involved [8]. This subsequently leads 

to the coating layer being formed from solid-state particles. Given that the deposition is 

achieved without the melting of the powder particles, any undesirable phase transformations, 

common to high temperature deposition methods, are avoided [9]. 

 

 



The present study is a highly novel preliminary assessment that considers the effect of CS 

deposited WC-Co, combined with subsequent FSP. The microstructure and hardness are 

evaluated for a variety of substrate and coating combinations. Limited data exists in the area 

of combined CS deposition and FSP. Previously, Hodder et al [10] have reported the co-

deposition of Al and Al2O3 onto AA6061 Al alloy with the aim of investigating the influence 

of Al2O3 content on the coating following stirring. Hodder found that homogenous 

distribution of the hard Al2O3 particles within the MMC lead to increased hardness, with a 

reduction in the mean free particle distance of the Al2O3 particles below a distance of 5m 

resulting in the greatest hardness increase. The aim of the present study is to investigate the 

effect of varying FSP tool geometry, coating type and substrate material on the 

microstructure and mechanical properties of the modified surface. The results from this study 

will form an initial insight to evaluate the interaction between deposited coating and substrate 

following FSP and develop a pathway for further research in this area.  

 

Experimental Procedure 
 

CS deposition was carried out using a CGT Kinetics 4000/47 CS system, connected to a PF 

4000 Comfort series powder feeder operating at a powder feed rate of 3.5rpm. The carrier gas 

used to accelerate the powder particles was nitrogen and operated at a pressure of 30Bar for 

all WC-Co coatings. The CS apparatus was mounted to an OTC 6 axis robotic arm to 

increase repeatability and reproducibility of results. The spray gun was fitted with a long pre-

chamber to increase the nozzle exit temperature of the powder to around 700
o
C. An iterative 

approach was used to determine the most appropriate stand-off distance and traverse speed, 

with a series of test coupons being sprayed with varying parameters. The stand-off distance 

between the substrate and nozzle was set to 50mm, with the nozzle traversing horizontally 

across the substrate at a speed of 50mm/s. It was found that further reducing the stand-off 

distance resulted in a shot blasting affect, with very little powder adhering to the substrate. In 

order to provide a suitably large coated area for subsequent FSP, eight passes were carried 

out, with an overlap of 2mm. This gave a total track width of 50mm. The two WC-Co 

powders used in the study have distinct internal structures. WC-17Co powder is comprised of 

nano scale Tungsten Carbides, evenly distributed throughout a Cobalt matrix [11]. WC-25Co 

is comprised of a Tungsten Carbide core surrounded by a Cobalt binder. The diameter of 

powder particles lies between 5µm and 30µm. The CS system was used to deposit the two 

powder types onto four aluminium substrates. Each test plate measured 200mm by 120mm by 

3mm. Test plates were degreased using acetone prior to CS deposition. Table 1 outlines the 

FSP parameters that were applied to the coated specimens and the specific alloy grades 

assessed. 

 
Substrate Coating Tool Type Rotation 

Speed (RPM) 

Traverse Speed 

(mm/min) 

Plunge Depth 

(mm) 

Dwell 

Time (s) 

AA2024-T3 WC-25Co Pinless Tool 

Steel 

300 50 0.25 0 

AA2024-T3 WC-17Co Pinless Tool 

Steel 

300 50 0.25 5 

AA5083-O WC-25Co M44185 600 150 5.05 0 

AA5083-O WC-17Co M44185 600 150 5.05 0 

AA6082-T6 WC-17Co M44185  600 300 5.05 0 

AA6082-T6 WC-25Co M44185  600 300 5.05 0 

AA6N01-

T6 

WC-25Co M44185  600 250 5.05 0 

AA6N01-

T6 

WC-17Co M44185  600 250 5.05 0 

Table 1 – Test specimens with associated FSP tool type and process parameters. 
 



As FSP tool design is crucial to producing a high quality stirred zone, two tool types were 

investigated. The first being a pinless tool with fixed shoulder comprised of concentric 

circular features, manufactured from tool steel, the second being an MS-M-005 PCBN tool 

with 5mm pin length and a fixed shoulder with concentric circular features. The 5mm pin 

also featured a spiral pattern to force material from the surface down to the root of the stir 

zone. 

 

The following testing programme was conducted to achieve the outcomes of this study: 

 

 Optical Microscopy: to establish the interaction, (if any), between deposited coating and 

substrate. Evaluate the distribution of deposited coating through the substrate. Images 

were taken using an Olympus G51X series optical microscope. 

 Scanning Electron Microscopy (SEM): To verify images obtained from optical 

microscopy and to identify the elements present within the MMC. WC-Co content was 

quantified by taking SEM images at prescribed locations and carrying out Energy-

dispersive X-ray spectroscopy (EDX) analysis. Hitachi S-3000N VP-SEM series 

Scanning Electron Microscope (SEM) with EDX used to carry out analysis. 

 Micro-hardness measurement: To establish the hardness at various locations within the 

stir zone. Mitutoyo MVK-G1 micro-hardness tester was used to evaluate hardness with a 

200gf load. 

 The areas assessed are outlined in Figure 1 with the locations kept consistent throughout 

all analysis.  

Figure 1 displays the cross section of a friction stir processed region. Numbers 1-4 signify the 

locations in which optical and electron microscopy were carried out with number 5 denoting 

the friction stirred root region. The advancing side and retreating side of the stir zone have 

also been indicated. It should be noted that the advancing side and retreating side on samples 

W30 and W31 are reversed due to the rotation of the pinless tool being opposite to that of the 

PCBN tool. 
 

 

 

 
Figure 1 – Cross section of FSP friction stir region showing the hardness indent locations and 

locations of optical and SEM images. 
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Results 
 

Table 2 outlines the nomenclature adopted to describe individual specimen corresponding to 

a particular coating and substrate combination.  

   

Specimen 

Code 

Substrate Coating 

W30 AA2024-T3 WC-25Co 
W31 AA2024-T3 WC-17Co 

W41 AA5083-O WC-25Co 

W44 AA5083-O WC-17Co 

Table 2 – Sample coding system. 

 

Specimen 

Code 

Substrate Coating 

W50a AA6082-T6 WC-17Co 
W50b AA6082-T6 WC-25Co 

W54a AA6N01-T6 WC-25Co 

W54b AA6N01-T6 WC-17Co 

 
 

Optical Microscopy 

 

Optical microscopy was employed for initial assessment to determine whether CS deposited 

particles had been successfully embedded into the substrate during FSP processing, or simply 

removed by the FSP tool. Figure 3 exhibits a magnified region of the top surface of sample 

W31, showing a larger concentration of WC-Co particles, compared to that seen in W30. 

This suggests that the amount of WC-Co coating present in W31 is greater than that found in 

W30. A comparison of both images reveals that W31 exhibits a more homogeneous layer of 

embedded particles, with the WC-Co regions present in W30 being relatively inconsistent in 

size and shape.  

 

 
 

  

A 

Narrow band of WC-Co 

particles – approximately 

200ȝm wide. 

Uneven surface 

topography as a result of 

low heat input and FSP 

tool features. 

Region of uncoated 

material between surface 

and WC-Co. 



 
Figure 3 – Micrographs displaying advancing side of A) Specimen W30 B) W31 located in 

region 2 from Figure 1, prepared to a 1m finish. [x50 Unetched] 

 

Previous studies have shown that the heat input to the stir zone relates to the plasticity of the 

substrate material [12]. Based on this, the 5s dwell time during FSP of sample W31 has 

increased the heat in the FSP region, thereby increasing the plasticity of the substrate alloy. 

This, in turn has permitted a greater quantity of the coating to be embedded into the softer 

substrate. It is likely that particle morphology has also influenced the particle flow behaviour 

during FSP, and has affected the distribution pattern seen in the substrate material. The nano 

scale carbides within the Cobalt matrix in WC-17Co could permit the larger (≈200m) 

particles to break down more easily and embed within the substrate. It is important to 

highlight that despite the differences between the two samples, both exhibit significant 

interaction and mixing between the coating and substrate. The next series of images refer to 

the specimens processed using the 5mm PCBN tool. Figure 4 shows magnified images of 

region 3 in specimens W50a and W50b, with Figure 5 exhibiting the stir root for specimens 

W54a and W54b.  

 

 

B 

A 

Regions of finely 

dispersed coating 

showing significant size 

reduction. 

Unaffected WC-Co 

particles embedded 

throughout Al matrix. 

Comparably wide band 

of WC-Co particles – 

approximately 600ȝm 

wide. 

Pockets of high 

concentrations of WC-

Co on substrate surface. 



 
Figure 4 – Micrographs of A) Specimen W50a, B) Specimen W50b taken at Location 3 from 

Figure 1, prepared to a 1m finish. [x50 Unetched] 
 

Specimen W50b exhibits a homogeneous distribution of particles along the top surface of the 

substrate, whereas W50a contains large, (≈200m) particles that are present throughout the 

stir zone. Given that both samples were stirred using the same tool, and identical FSP 

parameters, it is likely the variation in particle morphology and their distinct flow behaviours 

in plasticized aluminium during processing, has resulted in this distinct difference in 

microstructure. 

 

Tool traverse speed was reduced to 250mm/min for samples W54a and W54b, with all other 

parameters kept consistent with previous samples. In doing so, the heat input into the sample 

is increased. A by-product of this increased heat is increased plasticity in the stir region, 

which can potentially permit greater flow of the deposited coating particles. This feature of 

material flow was investigated by Thangarasu et al; and demonstrated that an increase in the 

traverse speed leads to an increase in micro hardness [13].  

 

 

B 

A 

1000x magnification of 

finely dispersed coating 

with even particle size 

distribution. 

WC-Co coating has been 

evenly embedded along 

top surface of processed 

region. 

High magnification 

reveals only slight 

variation in particle size. 

WC-Co particles 

following the flow 

pattern of plasticised 

substrate down to the stir 

root. 

Large quantity of coating 

pulled down to stir root – 

more than can be seen in 

previous examples. 



 
Figure 5 – Friction Stir root (Figure 1) comparison for A) Specimen W54a, B) Specimen 

W54b. [x50 Unetched]  

 

Assessment of microstructure at locations 2 and 3 of specimens W54a and W54b showed 

significantly less WC-Co particles at the surface when compared to that seen in Figure 4, 

with the quantity of coating particles varying significantly between the advancing and the 

retreating sides. However, as shown in Figure 5, large quantities of WC-Co particles were 

present at the root of the stir zone in both specimens. Though heat input has potentially 

caused more of the coating particles to flow down towards the root of the stir zone, the varied 

material flow patterns of different aluminium alloy substrates, even with similar FSP tool and 

process conditions, needs to be considered and may well determine the distribution pattern of 

coating particles within the substrate. Moreover, particle size also reduces towards the base of 

the pin, which aligns with the area exposed to the highest shear forces [14].  The results from 

specimens W54a and W54b also corroborate those found in W50a and W50b in relation to 

the breakup of powder particles. Although not shown within this report, similar studies on 

specimens W41 and W44 again showed that coating WC-25Co is more easily broken down 

and dispersed through the substrate. 

 

EDX Analysis 

 

Using SEM, EDX analysis was performed to assess the elements present within the stir zone. 

Table 3 illustrates the results from the EDX analysis of various locations within the 

specimens. A diagram showing the assessed locations can be seen in Figure 1.  

 
Spectrum  O Mg Al Mn Co Cu W Total 

Sample I.D. Location         

W31 1 0 1.21 83.25 0.63 1.07 5.29 8.56 100 

W31 2 0 1.25 85.73 0.55 0.95 5.17 6.35 100 

W31 3 0 1.15 80.83 0.63 1.67 4.52 11.18 100 

W31 4 1.81 1.2 81.43 0.55 1.19 4.92 8.89 100 

W50b 2 0 0.52 63.27 0 5.44 0.48 30.29 100 

W50b 3 0 0.5 62.9 0 4.67 0.56 31.31 100 

W50b 5 0 0.48 89.08 0.54 0.93 0.7 8.28 100 

W54a 2 0 0.53 85.56 0 1.89 0 12.02 100 

B 

Large WC-Co particles, 

(≈30m), suggest FSP 

was not successful in 

breaking up and evenly 

dispersing the deposited 

coating. 

Particles reduce in size 

towards the base of the 

dark region – 

corresponding with the 

base of the pin.  



W54a 3 0 0.53 69.63 0 4.84 0 25 100 

W54a 5 0 0.48 75.91 0 2.88 0.63 20.1 100 

Table 3 – EDX analysis of FSP regions. 

 

The results indicate a distribution pattern of W and Co particles across the width of each stir 

zone, with a slight reduction in weight % observed in the retreating sides of W31 and W50b, 

with a significant reduction observed in W54a. This variation in elemental distribution is a 

potential consequence of reduced frictional heating, observed in the retreating side of the 

tool. The impact of tool design on the distribution of coating particles is also evident through 

relative comparison of sample W31, produced using a pinless tool, with samples W50b and 

W54a, produced using the PCBN tool. Higher heat input due to higher tool rotation speed, 

resulting in increased plasticity is also an important factor in increasing the quantity of WC-

Co in the Al matrix. 

 

Hardness 
 

Micro hardness measurements were taken for the FSP processed region with and without 

deposited coating, along with unaltered substrate. The results of these measurements can be 

seen in Table 4, with the location of hardness intends being outlined in Figure 1. 

  
    <Advancing             Retreating> 

Sample I.D.   Distance from Centre (mm) 

 Un-modified 

Substrate (Hv) 

Distance from 

Surface (mm) 

-5 -2 0 2 5 

   Hardness (Hv) 

W31-1 130 0.1 226 201 214 124 166 

  0.3 166 148 150 148 158 

W44 (coated + stirred) 77 0.1 233 171 90.1 82.8 87 

  0.3 217 84.6 161 79.9 84 

   1 

 

90 82.2 91.3 81.5 102 

  3 85.3 86.3 84.5 80.9 87.2 

W50b (stirred) 85.5 0.1 70.2 67.3 67.2 75.8 73.4 

  0.3 77.8 76.8 76.7 75.1 76.3 

  1 74.6 75.1 75.2 72.6 75.6 

  3 N/A 57.8 71.3 72.2 N/A 

W50b (coated + stirred) 85.5 0.1 76.4 91 86.7 84.2 77.2 

  0.3 77.8 79.4 79 79.6 81.4 

  1 77.7 76.8 72.6 79.5 80 

  3 N/A 60.6 75.5 71.3 N/A 

W54a (stirred) 74 0.1 63.4 51.3 66 53.2 65 

  0.3 66.7 65.9 67.7 67.7 68.1 

  1 66.5 66.4 63.9 65.7 66 

  3 N/A 64.9 69.7 66.5 N/A 

W54a (coated + stirred) 74 0.1 62.4 55.8 47.6 59.2 70.2 

  0.3 74.6 72.1 71.2 69.4 69.1 

  1 72.4 70.4 72.4 68.1 70.3 

  3 N/A 74.3 85.5 82.4 N/A 

Table 4 – Hardness variation throughout stirred region. 

 



Results indicate that samples W31 and W44 exhibit a significant increase to hardness post 

FSP processing, in regions with a high weight % of WC-Co. Specimens W50 and W54, 

however, exhibit a drop in hardness when compared to the parent substrate. Given the 

elevated temperature associated with the high rotation speeds in these samples, it is likely this 

has had a softening effect on the hardened, T6, condition. This softened matrix is incapable of 

supporting the hard WC-Co particles under load and as a result, the hard phase particles have 

little impact on the hardness of the matrix, even in regions of high coating density, i.e. the stir 

zone root. Despite this, the non-heat treated alloy, AA5083-O responded well to the process – 

showing an increase in hardness of over 200% in one location.  

 

Conclusion 

 

 The hardness of AA6XXX-T6 alloys decreases with FSP. The high heat input results in 

an annealing effect of the hardened condition.  

 The AA2024-T3 alloy shows an increase to hardness of around 43%, after FSP of CS 

deposited WC-Co coating. 

 The AA5083-O alloy demonstrated significant hardness increase of over 200% after 

FSP of CS deposited WC-Co coatings 

 When compared to pinless tool geometry, the PCBN tool promotes greater mixing and 

increases weight % of WC-Co embedded within the Al matrix due to the higher 

rotation speeds and addition of the 5mm spiral pin. 

 Specimens produced using the PCBN tool demonstrate that WC-25Co experiences a 

higher level of particle size reduction compared with WC-17Co. This confirms that 

powder morphology has a significant effect on the resultant MMC. 
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