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Abstract:

The use of condition monitoring systems on wind
turbines has increased dramatically in recent times.
However, their use is mostly restricted to vibration
based monitoring systems for the gearbox, genera-
tor and drive train. There are many forms and types
of condition monitoring systems now available for
wind turbines. A survey of commercially available
condition monitoring systems and their associated
costs has been undertaken for the blades, drive train
and tower. This paper considers what value can be
obtained from these systems if they are used cor-
rectly. This is achieved by running simulations on
an operations and maintenance model for a 20 year
life cycle wind farm. The model uses Hidden Markov
Models to represent both the actual system state and
the observed state. The costs for system failures are
derived, as are possible reductions in these costs
due to early detection. Various scenarios are sim-
ulated including the addition of condition monitoring
systems to the drive train and blade and tower mon-
itoring. Finally, the efficacy of these systems is ex-
amined and its effect on operation costs.

Keywords: Condition monitoring, structural health,
operations and maintenance.

1 Introduction

Wind energy has enjoyed a large growth in recent
years as countries around the world seek to exploit
renewable resources. Offshore wind projects have
been part of this expansion but access related issues
such as remote locations, specialist access equip-
ment and extreme weather has led to operation and
maintenance (O&M) costs which are up to five times
that of onshore [23]. O&M costs are a sizeable part
of the total costs associated with an offshore wind

project - up to 30% of the energy generation cost
[30].

As such, there has been many investigations to dis-
cover ways of reducing O&M costs. Increased utili-
sation of SCADA data and condition monitoring (CM)
systems have allowed for a shift in maintenance pat-
tern.

Maintenance plans can be divided generally into
preventative and corrective maintenance. Correc-
tive maintenance occurs after a failure has occurred.
Preventative maintenance is used to minimise down
time by servicing or component replacement. This
can be in the form of scheduled maintenance, where
servicing occurs based on calendar intervals, or
condition based maintenance (CBM), where main-
tenance actions are triggered based on the actual
condition of a component.

CBM theoretically allows for a reduction in both
downtime and maintenance operations. The major-
ity of CM systems are vibration based and focused
on the drive train of wind turbines - the generator,
gearbox and associated bearings - as these compo-
nents historically have large amounts of downtime
per failure[19].

Several studies examine the possible benefit of CM
drive train systems and the majority of these show a
return on investment (ROI) of the monitoring equip-
ment [1, 15, 2]. These studies assume that the CM
system installed is perfect and will always inform the
user ahead of any impending failure mode. However,
this is not the case and false alarms and missed fail-
ures will incur costs.

These imperfections and their effects on O&M costs
have been examined [14, 30, 28]. The ROI peri-
ods for the systems increase in these studies and in
some cases the use of CM systems cease to be eco-
nomically valid. These named studies almost all ex-
clusively use only a vibration based condition moni-
toring system.



CM systems analysing parts of the wind turbine other
than the drive train are available commercially and
some experimental CM techniques show promise
[9]. These include systems for monitoring founda-
tions, offshore foundation areas (to examine scour)
and blades.

There has been limited work examining the eco-
nomic benefit of CM systems other than vibration
drive train CM systems. The work of McMillan and
Thöns [27] examines the use of CM systems on off-
shore foundations and May and McMillan [13] take
a broad approach to the use of CM systems for all
subsystems.

This paper will look at extending the studies of eco-
nomic benefit conducted for vibration drivetrain CM
studies to other CM systems by examining the cap-
ital expenditure (CAPEX) and operational expendi-
ture (OPEX) of these devices against any reductions
in O&M costs.

2 Condition Monitoring Systems

The condition monitoring systems noted below have
been selected due to the possibility of them deliv-
ering real-time information to a turbine operator and
being included in a regular SCADA or existing CM
system data stream. The majority of these technolo-
gies have been chosen from the studies of CM sys-
tems by Ciang, Lee and Bang [3], Crabtree [4] and
of Sørensen et al. [21].

2.1 Oil Analysis

By analysing the quality and the debris suspended
within lubricating oil much can be learned about a
component’s condition. This can be used to ascer-
tain further information about a gearbox, generator
or bearing. There have been many approaches of
analysing oil suggested. However, the majority of
these methods are offline and as such cannot be
conducted in real time [12].

Dielectric current sensors can monitor a change in
the electromagnetic properties of oil and can detect
both types (ferrous and non-ferrous) and an estima-
tion of the amount of debris. Another technique uses
magnets to attract ferrous particles onto a screen.
Once the screen is full it is then flushed. The time
between flushes are recorded to give an indication of
oil debris content. Examples of online sensors that
are commercially available include: the HYDAClab
from HYDAC and the TechAlert 20 from Macom.

2.2 Vibration

Vibration based CM systems have been widely
adopted for monitoring wind turbine drive trains. Ac-
celerometers are used to measure the forces being
applied to the component and these are trended over
time with frequency. Techniques on how to anal-
yse this vibration data for wind turbines are given by
Hameed et al. [11].

However, vibration systems have also been utilised
for other applications including blade and tower mon-
itoring. The monitoring techniques and methods are
similar to that of drive train CM systems but are sam-
pled at lower frequencies. The vibration data can
be further used to assess changes in the natural
frequency of the structure and foundation. Mode
shapes and modal frequencies change as cracks or
weld damage occur. The low frequency structural
vibration data can be used to calculate a real time
mode shape and compare this to that of a known
health configuration.

Some commercial examples of these systems in-
clude: BLADEControl from Bosch Rexroth to monitor
blade loadings and ice detection; and XY CANopen
from Gram & Juhl to monitor tower sway.

2.3 Optical Fibre

Optical fibre systems have been demonstrated on
wind turbine blades to measure strain using two dis-
tinct methods. In one method, the attenuation of
light as it travels through the fibre is measured. It is
from measuring this deviation that strain can be de-
termined. The second method uses fibre Graff grat-
ings. A Graff grating is an etching in a optical fibre
that reflects a certain wavelength of light. If the grat-
ing is subject to strain then the wavelength returned
to the measuring point alters. As multiple gratings
can be used on the same fibre and are highly sensi-
tive, FBG allow for blade impacts to be detected.

Some optical systems are available for retrofitting
onto an existing turbines with minimal modification
to the turbine. However, some systems require that
the fibres are impregnated into the blades during the
curing phase. This obviously requires special blades
be manufactured. One study suggests that having fi-
bres impregnated may actually be advantageous to
ensure that the curing of blades is completed prop-
erly [20]. There is the possibility to realise time and
energy savings in the manufacturing process using
this technique.

Optical systems are available commercially include
SmartScan from Smart Fibre Ltd. and windMETER
from FiberSensing.



2.4 Acoustic Emission

Acoustic emission (AE) involves the use of piezo-
electric sensors to record the release of stored elas-
tic energy during cracking and deformation. This en-
ergy release is in the form of high energy waves and
are outside the audible range. The signals can be
categorised by their amplitude into the type of dam-
age occurring and when several sensors are used a
location can be determined. AE events have been
shown to ’cluster’ around the ultimate failure point.

Systems have been developed for monitoring both
the structural health of blades and the drive train.
The WinTur system is an AE blade health monitor-
ing system being developed principally by TWI and
SWANwind from Curtiss Wright Flow Control is a
drive train monitoring product.

3 Operation Modelling

3.1 Markov Processes

The wind is a stochastic process and complex load-
ings lead to complex component failure patterns.
Various methodologies have been implemented to
examine the failure process and the effectiveness
of various O&M plans. Gamma processes [10], P-
F Curves [28] and Markov chains have been widely
used to represent wind turbine failure patterns. Sim-
ulations are used instead of analytical expressions
to account for these wind complexities.

Failure rates are commonly used to express the
number of failures, f , expected to occur over a given
time period, N . These can be converted into a per-
centage chance of failure, U , for a given period of
time, t. These are shown in Equations 1 and 2. Fail-
ure rates can be used to populate a state transition
matrix, P , used in Markov processes as in Equation
3. In this Equation, the ability of the system to transi-
tion from a failed state to a repaired one is given as
a percentage, µ.

λ =
f

N
(1)

U(t) = 1− e(−λt) (2)

P =

(

1− U U

µ 1− µ

)

(3)

E =

(

V 1− V

1−R R

)

(4)

Figure 1: Example of a Hidden Markov Process

3.2 Condition Monitoring System

Hidden Markov Models (HMM) have the ability to
hide the actual state of the system. The observable
state of the system can be different to the actual con-
dition of the system. This is shown graphically in
Figure 1. In HMM, it is the emissions matrix, E, that
contains the probabilities of what is observed by the
operator and is shown in Equation 4. The emissions
matrix is used to define how accurately the condi-
tion monitoring system reports failures and how fre-
quently it returns false results.

The effectiveness of the condition monitoring system
to detect a failure before it occurs is stored as a per-
centage, R, in E. The higher the value of R then the
increased likelihood of the system detecting failures
before they occur. Weiss [29] gives detection rates
for the GE Bentley Nevada ADAPT wind system and
these are shown in Table 1.

In this paper, multiple CM systems that observe dif-
ferent properties are added to the same sub-system.
These have been modelled as parallel systems and
are shown in Equation 5 [25]. In this equation, Rp is
the overall chance of detection and Ri is the individ-
ual system detection rate.

Rp = 1−ΠRi (5)

The reliability of the system is defined as V . This
is the ability of the CM system to correctly return
an operational state. The lower the percentage, the
greater chance of the system showing an erroneous
failed state. The effects of reliability have been in-
vestigated [13] for this paper the reliability has been
fixed and kept at 99.99%.

These two properties, V and R, allow for false pos-
itives, false negatives, faults that can’t be detected
using CM systems and CM system failures to be ac-
counted for.



Sub Assembly Detection Rate

Gearbox 50%

Generator 80%

Drive Train (incl. Main
Bearing and Coupling)

40%

Table 1: CM System Detection Rates

3.3 Model

A model has been constructed that represents tur-
bines as structures with 13 sub assemblies and is
shown in Figure 2. This follows the taxonomy as
used in Faustlich, Hahn and Tavner [8]. A notable
exception to this taxonomy is the addition of a sub
system representing the offshore foundation.

Each subsystem contains the information as shown
in Figure 3. A wind farm is constructed from multi-
ple independent turbine structures. Failure modes
are divided into ’Major’ and ’Minor’ and populated
with failure rates from Egmond aan Zee offshore
wind farm [16] as modified by Dinwoodie, Quail and
McMillan [7].

In 2009, Egmond aan Zee noted that the connection
between the transition piece and the foundation was
exhibiting greater settlement than expected [17]. The
grout in the connection had failed and the tower was
resting on temporary support brackets [24]. While
no immediate safety issues were discovered, some
work was promptly undertaken on 3 turbines to se-
cure the long term operation of the assets. The foun-
dation subsystem in this paper will be used to repre-
sent the grouted connection and a SHM will be used
to monitor it.

The model is solved by simulation. The model gener-
ates an operational and observed state for every tur-
bine subsystem. This is repeated for each turbine in
the farm and for each operational year. An algorithm
then compares the operational and observed states
and notes any differences. O&M costs for both a PM
and CBM are calculated from the subsystem failures.

In the model, each turbine is simulated indepen-
dently for 3000 Markov years. The resulting total
failures are then averaged. This gives the failure rate
for that operational year.

4 Cost Modelling

The annual operating and maintenance costs are
calculated from adding the costs incurred from re-
placing spare parts, the lost production, the crew and

Turbine

Rotor Hub

Rotor Blades

Sensors

Electrical Control

Electrical System

Foundation

Support and Housing

Yaw System

Drive Train

Hydraulic System

Mechanical Brake

Generator

Gearbox

Figure 2: Model structure of an individual wind tur-
bine

Subsystem

Failure Repair Costs

Down Time

CM False Alarm Rate

CM Detection Rate

Failure Rate

Failure Modes

Figure 3: Information contained within each subsys-
tem



vessel hire and the installation and use of CM sys-
tems.

The costs for each year are levelised to represent
the Net Present Value (NPV) of the lifetime operating
costs. NPV is shown in Equation 6 where a discount
rate, r of 4% is used and cost of year i is defined by
COP .

NPV =

y
∑

i=1

C(i)OP

(1 + r)i
(6)

4.1 Spare Parts

A failure in a subsystem will incur a cost for part
replacement. The cost depends on the severity of
the failure and damage caused by the failure, Cf .
The cost of replacement parts, CRP , are summed
for each subsystem, k, as seen in 7.

If the failure is detected in advance by the CM system
then in some cases the replacement costs, CCMf ,
can be lowered if the damage isn’t as severe. This
alternate cost, CRPC , is shown in Equation 8.

The costs for turbine spare parts are compiled from
Poore and Walford [18]. This gave 2004 onshore
costs based on turbine size. The cost was adjusted
to account for inflation to 2012 - set at 2.2%. The
additional cost of marinisation for offshore use was
found using a factor of 1.27 [7].

The cost of the repairs are taken from two articles
reporting on the possible costs of the connection re-
pair [5, 22].

CRP =

k
∑

i=1

C(i)f (7)

CRPC =

k
∑

i=1

(C(i)f + C(i)CMf ) (8)

4.2 Lost Production

A turbine cannot produce energy while it is not op-
erational or offline during maintenance. The longer
the down time (DT) associated with a failure then
the greater the lost production (LP). In a cost bene-
fit analysis this number is used to represent income
that could have otherwise been earned.

The cost of lost production, CLP , is sum of the DT
from all subsystem failures multiplied by the energy
production cost, CP , shown in Equation 11. This is
the cost of energy in the market (including obligation

tariffs prices per unit) multiplied by the capacity fac-
tor, CF . This is shown in Equation 9. The capacity
factor used in the model is 33.3% is based on the
value from Egmond aan Zee [16].

If a CM system can detect a failure in advance then
the DT will be reduced. Logistic operations can be
started before the failure occurs, CCMf . However,
when using a CM system the possibility of a false
alarm occurs. A critical subsystem alarm will result
in a turbine shut down until a trained technician can
inspect the component. This time for false alarms,
Tfa, is added to the DT in Equation 11. No average
down time associated with false alarms was avail-
able so therefore 24 hours is used to represent the
DT in the model as an approximation.

CLP = CP ×

k
∑

i=1

T (i)f (9)

CLPC = CP ×

k
∑

i=1

(T (i)f + ... (10)

...T (i)CMf + T (i)fa)

CP = CF × (CROC + CEP ) (11)

4.3 Installation Costs

To complete resets and to replace spare parts, tech-
nicians and appropriate vessels need to be used.
Each failure mode is assigned a failure category.
This category relates to the severity of the failure.

A high category failure indicates that large parts will
need to be replaced requiring an crew access vessel
and a crane vessel. It also requires a large logistics
time and a crew in excess of 7. Conversely, a false
alarm is classed as a low category failure, requiring
inspection only. This can be organised quickly utilis-
ing only a crew access vessel and a small crew.

The installation costs, CI , are given in Equation 12.
The costs of vessel hire, CE , are based on Din-
woodie, Quail and McMillan [6] as are the labour
costs per hour, per crew member. The total number
of work hours per job are estimated from a commer-
cial report.

CI =
k

∑

i=1

(C(i)E + C(i)L) (12)

4.4 Monitoring Systems

The majority of condition monitoring systems incur
costs for the procurement and installation of the CM



system and annual costs associated with mainte-
nance, analysis and software. Generic costs have
been anonymised from an array of vendors and av-
eraged to produce the values shown in Table 2. The
capital cost of the system is added to the O&M costs
for the first operation year. The annual costs are
added to the costs for each year of operation.

5 Cost Benefit Analysis

The simulations in this paper use a wind farm con-
sisting of 30 turbines of 3 MW size for an opera-
tional life of 20 years. The costs for turbine spare
parts, installation costs, lost production (including
false alarms) and costs for monitoring systems are
summed. A base case demonstrating only preven-
tative maintenance is used to compare the results
of a CBM plan. Unless otherwise stated, every CM
system has a detection rate of 80%, excluding the
system for the vibration drive train which is as noted
in Table 1.

5.1 Drive Train CM Systems

As noted earlier, most studies find that vibration
based CM systems for the drive train offer return
on investment (ROI). Of the other CM methods dis-
cussed, both oil sensors and AE systems can be
used on drive trains. The effects of these systems
on the operating costs are examined in Table 3. As
shown in Table 1, a system defined for a drive train
detects failures on the gearbox, generator and drive
train - which includes the main bearing and output
shafts.

Drive Train CMS Lifetime Saving Over PM

Vibration £4,266,000

Vibration & Oil Sensor £4,157,000

Vibration & AE £4,160,000

Vibration, Oil & AE £3,984,000

Table 3: Drive Train CM Systems

The model produces annual costs for both compet-
ing maintenance strategies. The first year O&M
costs for the CbM strategy is £6,102,000, consist-
ing of £2.41m in spare parts, £3.30m in lost produc-
tion and £0.28m including CM annual operating fees.
This compares to £6.43m for the PM strategy.

In the model, a vibration CM system offers poten-
tial lifetime savings of approximately £4m over a PM
strategy. The addition of either oil sensors or an AE

system reduce the lifetime savings. This indicates
that the additional O&M cost reductions found from
adding CM systems are outstripped by the cost of
the CM systems themselves.

The probability of detection increases from 40%
for the drive train with only a vibration CM sys-
tem to 97.6% for one with all three drive train sys-
tems. However, this results in an increase of capital
costs for a 30 turbine wind farm from £135,000 to
£493,000.

5.2 Structural Monitoring

Blade, tower and foundation SHM systems were
added to a standard vibration based drive train CM
system. The effects of these systems on operating
costs are shown in Table 4.

SHM System
& Drive Train Vib CM

Lifetime Saving Over PM

Blades (Optical) £7,858,000

Blades (Vib) £7,665,000

Blades (AE) £7,537,000

Tower £4,139,000

Tower & Blades (Vib) £7,569,000

Tower & Foundation £4,155,000

Tower, Foundation &
Blades (Vib)

£7,554,000

Foundation £4,264,000

Table 4: SHM Systems on Blades and Tower

Blade SHM systems offer further savings over a
drive train monitoring system alone. The largest
saving over a PM strategy was when using the op-
tical blade SHM system at £7,858,000 an increase of
84%. Adding a SHM system to monitor the tower in-
creases lifetime costs over solely using a drive train
CM by 2.5%. Utilising a tower, foundation and blade
SHM system as well as a drive train CM results in an
increase of 77%.

The ability of the CM and SHM systems to detect
failures has a direct influence on the ROI of the sys-
tems. This is investigated in Figure 4. In this figure
a monitoring system consisting of a vibration system
placed on the drive train, blades and tower is shown.
The detection rates for both SHM systems started at
60% and was increased in increments to 99% and
the resulting levelised lifetimes savings recorded.



Subsystem Drive Train Blades Tower Foundation

CM Type Vibration Oil Acoustic Vibration Acoustic Optical Vibration Vibration

Capital Costs [e] 8,040 11,310 10,000 13,360 34,850 15,080 5,300 18,000

Annual Costs [e] 700 0 0 950 0 0 100 5000

Table 2: Anonymised Generic Costs of Commercially Available CM and SHM Systems

Figure 4: Detection rate of Blade, Tower and Foun-
dation CM systems versus potential levelised lifetime
savings

At 60% the lifetime O&M saving was £6,500,000.
This increased to £8,552,000, an increase of 32%,
when the fault detection rate was set at 99% and fol-
lowed a linear pattern for detection rates in between.
If a system with a better detection rate can be found
then it is likely to decrease the O&M costs for a wind
farm.

The detection rates of the tower and foundation SHM
systems were also examined in a similar manner and
are shown in Figure 5. Increasing the detection rate
from 60% to 99%, yields an increase in savings of
4% from £4.06m to £4.22m.

6 Discussion

Monitoring the gearbox and generator subsystems
appear to offer the largest benefits to O&M costs.
These systems have large down times associated
with major failures (> 3000 hours), high repair costs

Figure 5: Detection rate of only Tower and Founda-
tion SHM systems versus potential levelised lifetime
savings

(> £100,000) and not insignificant failure rates (>
0.1 annually). Drive train Vibration CM have the ad-
vantages of monitoring these subsystems and the
main shaft at a relatively low cost. Acoustic emis-
sion can monitor all these subsystems but at larger
cost. Arguably, AE system may have a greater de-
tection rate than their vibration based counterparts
but the additional cost appears to out-weigh these
benefits. Oil sensors can diagnose a wide range
faults, some out with the capabilities of either an AE
or vibration CM, but the higher cost may not have a
large ROI. The model is not capable of defining the
different failure modes where one sensor type is bet-
ter than another so both systems may have larger
ROI than initially indicated. Rotor blades and hub
systems also have similar failure characteristics that
allow for monitoring to reduce O&M costs.

Due to the high reliability (failure rates of 0.01 annu-
ally for major [7]) and the small down time associated
with tower faults (approximately 600 hours for a ma-
jor fault) a SHM system appears to increase some
running costs as seen in Section 5.2.



The model may not appropriately derive the cost sav-
ing from a SHM system for the tower. The cost
benefits for SHM systems are normally defined by
reduction of risk and reduction of the structural in-
tegrity management efforts [26]. Further develop-
ment of the model would achieve this distinction and
may show a better ROI for tower monitoring sys-
tems. Additionally, the model fails to examine some
of the additional benefits of these systems such as
ice detection and importantly reduction in insurance
premiums. Insurance premiums can be reduced by
a significant amount over the lifetime by the use of
CM/SHM systems and by avoiding scheduled main-
tenance that is stipulated by the insurer if no CM is
present.

7 Conclusions

A model has been produced that examines the ef-
fects of condition monitoring and structural health
monitoring systems on the operation and mainte-
nance costs of an offshore wind farm. A cost study of
commercially available real time operating CM/SHM
systems has been completed and the results used in
the model. CM/SHM systems were added to various
subsystems of a wind turbine and in some cases,
multiple CM systems were used on the same sub-
system to increase the chance of fault detection.

It was found that adding additional CM systems to
the drive train, gearbox and generator increased the
chance of fault detection but this had little effect on
the O&M costs due to the expense of the additional
monitoring systems. The addition of a SHM system
to monitor the tower also has little effect on the O&M
cost. Blade monitoring systems increased O&M sav-
ings by 95% over using just a drive train CM system.

The detection rate of the system had significant im-
pact on the possible O&M savings if the cost for the
system did not increase. As the detection rate for a
monitoring system for the blades, drive train, tower
and grout increased from 60% to 99% then the life-
time levelised savings increased by 32%.
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