
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 130.159.82.136

This content was downloaded on 25/11/2014 at 11:06

Please note that terms and conditions apply.

Quantum probability rule: a generalization of the theorems of Gleason and Busch

View the table of contents for this issue, or go to the journal homepage for more

2014 New J. Phys. 16 043025

(http://iopscience.iop.org/1367-2630/16/4/043025)

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/29181332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/16/4
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Quantum probability rule: a generalization of the
theorems of Gleason and Busch

Stephen M Barnett1, James D Cresser2,3, John Jeffers3 and David T Pegg4
1 School of Physics and Astronomy, University of Glasgow, Kelvin Building, University
Avenue, Glasgow G12 8QQ, UK
2Department of Physics and Astronomy, Faculty of Science, Macquarie University, NSW 2109,
Australia
3 Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
4Centre for Quantum Dynamics, Griffith University, Nathan, Brisbane, QLD 4111, Australia
E-mail: john.jeffers@strath.ac.uk

Received 20 January 2014, revised 5 March 2014
Accepted for publication 21 March 2014
Published 29 April 2014

New Journal of Physics 16 (2014) 043025

doi:10.1088/1367-2630/16/4/043025

Abstract
Buschʼs theorem deriving the standard quantum probability rule can be regarded
as a more general form of Gleasonʼs theorem. Here we show that a further
generalization is possible by reducing the number of quantum postulates used by
Busch. We do not assume that the positive measurement outcome operators are
effects or that they form a probability operator measure. We derive a more
general probability rule from which the standard rule can be obtained from the
normal laws of probability when there is no measurement outcome information
available, without the need for further quantum postulates. Our general prob-
ability rule has prediction–retrodiction symmetry and we show how it may be
applied in quantum communications and in retrodictive quantum theory.

Keywords: quantum probability, quantum information, quantum theory

1. Introduction

In the probabilistic interpretation of quantum measurement we have on one hand the physical
process of preparing a system in some state and then performing a measurement procedure with
the outcomes recorded, allowing probabilities which depend both on the measurement

New Journal of Physics 16 (2014) 043025
1367-2630/14/043025+12$33.00 © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

mailto:john.jeffers@strath.ac.uk
http://dx.doi.org/10.1088/1367-2630/16/4/043025
http://creativecommons.org/licenses/by/3.0/


procedure and on the preparation process to be determined from the records of many
experiments. On the other hand we have the mathematics of Hilbert space entities. To link the
two it is axiomatic that there must be some postulate connecting a Hilbert space entity with
something physical. The standard quantum probability rule that does this has been highly
successful for predicting the outcomes of measurements. This rule could simply be accepted as
the required postulate but it may be possible to obtain a better understanding of quantum theory
if the rule could be deduced from more fundamental quantum postulates. Gleasonʼs theorem
shows, given reasonable assumptions, that quantum probabilities must be expressible as
expectation values of projectors or, more precisely, as the trace of the product of a projector and
a density operator [1]. This fundamental theorem is of central importance in quantum theory but
although it is discussed in some textbooks [2, 3] a derivation of it rarely appears, doubtless
because of the complexity of Gleasonʼs proof.

Busch has provided a remarkable extension of Gleasonʼs theorem [4]. It is remarkable in
three ways: (i) it applies to state spaces of any dimension whereas Gleasonʼs proof only applies
for dimensions greater than two, (ii) it extends Gleasonʼs proof by including generalized
measurements [3, 5–7] as well as projective ones and (iii) it is far simpler than Gleasonʼs
original proof [4].

Busch associates an outcome m from a measurement with an effect Ê, that is a positive
operator less than the identity which can therefore be an element of a probability operator
measure (POM), often also referred to as a positive operator-valued measure. He equates the

measurement outcome probability ( )p m s for a system prepared in some state s with the value

of a function ˆ( )v E which he requires to have the following three properties

⩽ ˆ ⩽ ∀ ˆ

ˆ = ˆ =

ˆ + ˆ + ⋯ = ˆ + ˆ + ⋯

( )
( )
( ) ( ) ( )

( )

( )

( )

v E E

v

v E F v E v F

P1 0 1

P2 I 1 I identity operator

P3 ,

where ˆ ⋯F, are also effects. The sum of the effects in (P3) must not exceed Î. It should be
emphasized that these properties are familiar in the theory of generalized measurements, but are
derived on the basis of quantum theory [5, 6]. Buschʼs aim was, and indeed ours is, rather
different: the intention is to postulate these properties as axioms and to derive quantum
probabilities from them.

It is not difficult to show from the normalization condition for the probabilities of all
possible outcomes combined with (P2) and the additivity condition (P3), that the sum of the
effects must be the identity, that is, the unit operator. Thus the effects representing all possible
outcomes for a system in state s form a POM. Also these conditions are consistent with the

probability ( )p m s given by ˆ( )v E being non-contextual in the sense that it has this value

independently of the particular POM to which Ê belongs, that is, it is independent of the

particular measuring device as long as the outcome is represented by Ê. To see this, let Ê

belong to two different POMs whose remaining elements are ˆ ˆ⋯F F,1 2 and ˆ ˆ ⋯G G,1 2

corresponding to measuring devices f and g respectively. Then from normalization and
additivity we have
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⎛
⎝⎜

⎞
⎠⎟∑ ∑= − ˆ = − ˆ( )( )p m s f v F v F, 1 1 (1)

i
i

i
i

with a corresponding expression for ( )p m s g, . Because the elements of each POM must sum

to the unit operator, ∑ ˆ = ∑ ˆF G
i i j j so =( ) ( )p m s f p m s g, , .

Buschʼs property (P1) is a property of probabilities in general. His quantum postulates, that
is, those that concern Hilbert space operators, lie in (P2), (P3) and the association of a

measurement outcome with an effect operator Ê. In this paper we drop (P2) and weaken the
effect quantum postulate so that it becomes a positive operator quantum postulate. This means
we are not assuming that the operators representing the measurement outcomes are elements of
a POM, which means that we no longer need to assume they are effects. We do, however,
assume they are bounded positive operators and adopt an additivity postulate similar to (P3) but

we no longer limit the sum of measurement outcome operators to be ⩽Î. We find that it is
possible with this reduced number of quantum postulates to derive a probability rule that is

more general than the standard rule ρˆ ˆ( )ETr i . Furthermore we find that we can then deduce the

standard rule from the general rule by the use of normal probability laws.

2. General probability rule

A measurement procedure for the determination of probabilities from a record of many
experiments involving preparation and measurement will include a chosen measurement device
and the method for recording the results obtained from it. For example, two measurement
events, such as a zero and a one photocount event, might be recorded as separate events or as a
single event described as less than two photocounts. As another example, some experiments
might not be recorded because of a post-selection procedure, whereby an experiment is ignored
in the event of a particular measurement outcome. We also include in the measurement
procedure any means by which information can be obtained that affects the possibility of a
recorded event. This can include posterior knowledge. For example if it is known that a photo-
detector will be damaged if subjected to more than a certain number of photons, then an
undamaged detector after the detection event will eliminate the possibility of a recording of a
larger number of photons. For our purposes here it is sufficient to specify a measurement
procedure x mathematically by the set of possible recorded measurement events ⋯{ }m m, ,1 2

that can be obtained from it. We shall not be assuming non-contextuality with respect to the
measurement procedure x of the probability that a recorded measurement event is mi, so we

shall write this probability as ( )p m s x,i to show that it may depend on x as well as the state s.

Our first postulate is that, for a given measurement procedure x, each possible recorded

event mi can be associated with a positive bounded Hilbert space5 operator M̂i, in such a way

that ( )p m s x,i is proportional to some function ˆ( )u Mi of this operator, that is,
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= ˆ( ) ( )( )p m s x Q s x u M, , (2)i i

where the proportionality factor Q s x( , ) is the same for all M̂i of the set of operators

ˆ ˆ ⋯{ }M M, ,1 2 , which we can now use to specify the measurement procedure x. We are not

assuming that Q s x( , ) is independent of the measurement procedure itself or of the particular

state s. We note that any set of positive bounded operators M̂i, to which we refer as
measurement operators, can define mathematically a measurement procedure and that, while
some measurement procedures have reasonably straightforward physical realizations, others
may not.

The function ˆ( )u Mi may in general be a complex number θ ˆ( )( )i w Mexp i i , say, where

ˆ( )w Mi is a positive number. The positivity of ( )p m s x,i for all mi then requires

θ( )Q s x i( , ) exp i to be positive for all θi, which in turn requires θi all to have the same value
which we write as θ. Thus we can, from (2), write our first postulate in the form

= ˆ( ) ( )p m s x N s x w M, ( , ) (3)i i

where N s x( , ) is the positive normalization factor θ( )Q s x i( , ) exp .

Our second postulate is that the positive function ˆ( )w A of any positive bounded operator

is additive, that is,

ˆ + ˆ + ⋯ = ˆ + ˆ + ⋯( ) ( ) ( )w A B w A w B (4)

for all positive bounded operators ˆ ˆ ⋯A B, , .
We use a method similar to that used by Busch to show firstly that this additivity postulate

implies linearity with respect to non-negative rational numbers. From additivity we have, for
positive integers r and n,

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

ˆ
= ˆ = ˆ

⇒ ˆ = ˆ

( ) ( )

( )

nw
rA

n
w rA rw A

r

n
w A w

r

n
A . (5)

We can then use the additivity and positivity of ˆ( )w A in a limiting argument similar to that used

by Busch who showed that α αˆ = ˆ( ) ( )v E v E , where α is real and α⩽ ⩽0 1. In our case we

find that α αˆ = ˆ( ) ( )w A w A where α is any non-negative real number. Combining this result
with additivity we obtain the linearity relation

⎛
⎝⎜

⎞
⎠⎟∑ ∑α αˆ = ˆ( )w M w M . (6)

i
i i

i
i i

We are now in a position to prove our first main result. The measurement operator M̂i is a
positive operator so we can write it in the diagonal form:
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∑λ λ λˆ =
ℓ

ℓ ℓ ℓM , (7)i
i i i

where λℓ{ }i are the eigenstates of M̂i and λ λ λ= ˆ ⩾ℓ ℓ ℓ( )MTr 0i
i

i i are the corresponding

eigenvalues, which are all positive. We should note that the positive operators ˆ{ }Mi will, in

general, be non-commuting and therefore will have distinct eigenvectors. It follows, using our
linearity condition (6) that

∑ λ λ λ λˆ = ˆ
ℓ

ℓ ℓ ℓ ℓ( ) ( )( )w M M wTr . (8)i i
i i i i

The λ λℓ ℓ( )w i i are simply positive numbers, however, and hence we can write

⎡⎣ ⎤⎦〈∑ λ λ λ λˆ = ˆ = ˆ ˆ
ℓ

ℓ ℓ ℓ ℓ( )( ) ( )w M M w M RTr Tr , (9)i i
i i i i

i i

where R̂i is a positive operator, the diagonal elements of which, in the λℓ{ }i basis, are

λ λℓ ℓ( )w i i . Equation (9) gives no such information about the off-diagonal elements of R̂i so

this operator is not completely determined by equation (9) but we can exploit the linearity

relation (6) to show that R̂i must be independent of M̂i as follows. Linearity and equation (9)

require that ˆ + ˆ( ) ( )w M w M1 2 equals ⎡⎣ ⎤⎦ˆ + ˆ ˆ( )M M RTr 1 2 12 so we must be able to write ˆ( )w M1

and ˆ( )w M2 in the form ˆ ˆ( )M RTr 1 12 and ˆ ˆ( )M RTr 2 12 respectively, where the common operator

R̂12 has diagonal elements λ λℓ ℓ( )w 1 1 in the λℓ{ }1 basis and λ λℓ ℓ( )w 2 2 in the λℓ{ }2 basis.

We can combine M̂1 with any other positive bounded operators to form a set defining a

measurement procedure so the common operator R̂ must have diagonal elements λ λℓ ℓ( )w

in any basis λℓ{ } and thus is independent of any particular M̂i. We can then write

ˆ = ˆ ˆ( ) ( )w M M RTr (10)i i

for all M̂i, showing that the probability that a measurement event is mi depends both on the
associated measurement operator and an independent operator, which it is natural to associate

physically with the preparation process. We can show that the common operator R̂ is unique by
using the lemma that two operators having the same diagonal elements in all bases must be
equal. We prove this lemma in the appendix.

To obtain the probability ( )p m s x,i we require the proportionality factor N s x( , ), which

can be found from the normalization condition that the probabilities of all possible outcomes
sum to unity. This yields

=
ˆ ˆ

ˆ ˆ
( )
( )

( )p m s x
M R

XR
,

Tr

Tr
(11)i

i

where ˆ = ∑X M
j j. Dividing the numerator and denominator by ˆ( )RTr yields our general

probability law
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ρ

ρ
=

ˆ ˆ
ˆ ˆ

( )
( )

( )p m s x
M

X
,

Tr

Tr
. (12)i

i

We note that X̂ depends only on the possible recorded measurement outcomes, thereby
characterizing the particular measurement procedure x, leaving the unit-trace positive ρ̂ as a density
operator to characterize the state s. This is the first main result of the paper: if we reduce the number
of Buschʼs quantum postulates by discarding (P2) and, relaxing the assumption that the operator
representing a measurement outcome must be an effect to simply being a positive bounded operator,
we arrive at a probability law that any set of positive operators (with finite eigenvalues) can provide
a set of probabilities and that these probabilities are calculated using (12).

Before proceeding, we give a simple illustration of the meaning of our second postulate,

the additivity postulate. The measurement procedure x only enters into (12) as the sum X̂ .
Consider a particular measuring device with, among other measurement events ⋯m m, ,3 4 , the

events m1 and m2 corresponding to M̂1 and M̂2 if these are recorded separately. If we record these
events together as one event m1 or m2 our additivity postulate implies that the corresponding

measurement operator is ˆ + ˆM M1 2. The sum X̂ is thus the same whether the measurement
procedure involves separately recorded events or a single combined event. As a result of this,

while ( )p m s x,3 depends on whether m4 is a possible recorded event or not, it does not depend

on whether m1 and m2 are recorded together or separately.

3. Standard probability rule

It remains for us to determine the physical meaning of our general probability law. In doing so we
arrive, very naturally, at a Bayesian interpretation. Consider the case where we know that a
number of possible states sk, for which the density operators are ρ̂

k
, have probabilities p

k
of being

the prepared state. The state s based on this knowledge will have a density operator ρ ρˆ = ∑ ˆp
k k k

representing the average or a priori density operator and the probability of the recorded event
being mi will be given by (12). If the state actually prepared was sk, say, then in place of (12) we
would have a different probability

ρ

ρ
=

ˆ ˆ
ˆ ˆ

( )
( )

( )p m s x
M

X
,

Tr

Tr
. (13)i k

i k

k

We should be able to obtain (12) as a sum of these objects, suitably weighted by a probability:

∑

∑

∑

ρ ρ
ρ

ρ

ρ

=

⇒ ˆ ˆ = ˆ ˆ
ˆ ˆ
ˆ ˆ

= ˆ ˆ

( ) ( ) ( )
( )

( )

( ) ( )p m s x p m s x P

M M P
X

X

M p

, ,

Tr Tr
Tr

Tr

Tr . (14)

i
k

i k k

i
k

i k k

k

k
i k k
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For this to hold in general we need only to set

ρ

ρ
=

ˆ ˆ
ˆ ˆ

( )
( )

P
X

X
p

Tr

Tr
. (15)k

k

k

The fact that both the Pk and the p
k
are probabilities means that their ratio is a likelihood [8],

which we can interpret as the likelihood of sk given x:

ρ

ρ
=

ˆ ˆ
ˆ ˆ

( )
( )

( )l s x
X

X

Tr

Tr
. (16)k

k

In order to adopt this interpretation it is necessary to interpret Pk as an a posteriori probability
based on some knowledge relating to the recorded outcome of the measurement. Specifically

this will be knowledge affecting the possibility that some outcomes may occur. As X̂ is the sum
of the operators representing the possible recorded measurement outcomes, its value will
depend on this knowledge. Then Pk will also depend on this knowledge from equation (15). The

simplest example is where the actual outcome itself is known to be mi, say, and then ˆ = ˆX Mi as
no other outcomes are possible any longer. We then find from equation (12) that the a posteriori
probability that the outcome is mi is unity as it must be. Another example is where joint events

( )s m, showing the input state and the consequent measurement outcome are recorded after a
known post-selection procedure has rejected some joint events containing particular
measurement outcomes. This has the effect of reducing the number of possible recorded
outcomes and thus the sum of the operators representing them. In this context Pk is just the
probability that the state in a recorded joint event is sk.

We shall express the a posteriori nature of Pk by writing it as ( )P s xk , that is, the

probability that state sk was prepared in a recorded experiment conditioned on the operator
corresponding to the measurement outcome being limited to one of the reduced number of

terms in the posterior expression for X̂ . This leads us in turn to interpret ( )p m s x,i in
equation (12) as

∑

∑

ρ

ρ

ρ

ρ
=

ˆ ˆ
ˆ ˆ

=
ˆ ˆ
ˆ ˆ

=

( )
( )

( )
( )

( ) ( )

( ) ( )

p m s x
M

X

M

X
P s x

p m s x P s x

,
Tr

Tr

Tr

Tr

, , (17)

i

i

k

i k

k

k

k
i k k

which is consistent with Bayesian probability, confirming our interpretation of ( )P s xk .

If there is no post-selection and no posterior knowledge about measurement results that
can eliminate or reduce the possibility of particular measurement events and thus of the

preparation events that may have produced them, then the a posteriori probability ( )P s xk that

any state sk has occurred must be equal to the a priori probability p
k
that this state occurs. In this

case we have, from equation (15)
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ρ ρˆ ˆ = ˆ ˆ( ) ( )X XTr Tr (18)
k

for all ρ̂
k
. Consider two density operators ρ̂

k
with =k 1, 2 related by a unitary transformation

ρ ρˆ = ˆ ˆ ˆ −
U U

2 1

1
. From equation (18) we then have

ρ ρ ρ ρˆ ˆ ˆ ˆ = ˆ ˆ = ˆ ˆ = ˆ ˆ ˆ ˆ− −( ) ( ) ( ) ( )UX U X X XU UTr Tr Tr Tr . (19)
1

1

1 2 1

1

For this to hold for any ρ̂
1
, X̂ must commute with any Û and must therefore be proportional to

the unit operator, that is ˆ = ˆX K I. Then our general probability rule (12) becomes the standard,
or restricted, probability law

ρ ρ= ˆ ˆ = ˆ ˆ−( ) ( ) ( )p m s K M ETr Tr (20)i i i
1

say, where

∑ ∑ˆ = ˆ = ˆ = ˆ− −E K M K X I. (21)
i

i
i

i
1 1

Êi are therefore effects and form a POM. In Buschʼs notation ( )p m si equals ˆ( )v Ei . Using the

latter expression for the left side of equation (20) and then summing both sides over i gives
condition (P2), which we see is a result of our approach, obtained from our general formula (12)
by the usual rules of probability, rather than being an additional quantum postulate.

4. Applications

It is natural to ask whether there are any applications of our more general probability formula
(12). Here we present three such applications. An obvious, but often overlooked, one is to
measurement probabilities when we have some (incomplete) information about the
measurement outcome. It is often the case in quantum optics experiments, for example, that
we restrict our attention to probabilities given some future event, such as a two-photon cascade
in which the detection of one photon is used to herald the emission of another [9]. In such cases

X̂ will be restricted to only those measurement event operators M̂i that include the heralding
event.

A second example arises in the theory of quantum communications [7]. Here a transmitting
party, Alice, selects from a set of possible states si, with density operators ρ̂

i
and prior selection

probabilities p
i
, and sends a quantum system prepared in this state to a receiving party, Bob.

Bobʼs task is to determine from a measurement, as well as possible, the state prepared by Alice.

As he knows from the measurement that the outcome is mj corresponding to M̂j, say, he knows

that X̂ contains just this single term, that is, his knowledge has eliminated the possibility of all

other terms. He can therefore simply write the sum of the possible terms as ˆ = ˆX Mj and obtain

from (15) the a posteriori, or retrodictive, probability that Alice sent the system in state sk

ρ

ρ
=

ˆ ˆ
ˆ ˆ

( )
( )( )P s m
M p

M

Tr

Tr
. (22)k j

j k k

j
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We note that retrodictive probabilities such as this can also be found by using Bayes’ theorem in

conjunction with the usual expression for the quantum probability ρˆ ˆ( )ETr j [10]. Peres [11] has

described an expression equivalent to equation (22) as the only retrodictive form that can be
legitimately derived from conventional quantum mechanics. However here there is no need to
add a Bayes rule; it is already contained in the general probability law (12) expressed in the
form (15). We note that there is symmetry between the retrodictive form of our probability law
(22) and the predictive form (12) which we write here as

ρ

ρ
=

ˆ ˆ

ˆ ˆ
( )
( )

( )p m s x
M

X
,

Tr

Tr
(23)k j

j k

j

with ρ̂ p
k k

in (22) corresponding to M̂k in (23), M̂j in (22) corresponding to ρ̂
j
in (23) and thus ρ̂ in

(22) corresponding to ˆ = ∑ ˆX M
k k in (23). This allows Bob an alternative and equivalent way to

retrodict by defining a density operator ρ̂
j
for a ‘retrodictive state’ as ˆ ˆ( )M MTrj j , writing M̂k as

ρ̂ p
k k

and writing X̂ as ρ̂ and then substituting into the right side of the predictive formula (23) to
obtain the retrodictive expression (22). In this way the general probability rule (12) can be used
for both prediction and retrodiction without the need to invoke Bayes’ theorem, which is
already effectively contained in the law. If there is a time interval between preparation and
measurement, then Alice would need to allow for evolution of her predictive state in this
interval to calculate the probability of a measurement event and Bob would need to allow for
the retroevolution of the retrodictive state to retrodict a preparation event.

Our final example completes the resolution of a long-standing controversy in retrodictive
quantum theory [12]. In retrodictive quantum theory we assign a retroevolving quantum state
on the basis of a later measurement and can use this to ask questions about, among other
things, initial preparation events. It has been suggested that we can only apply quantum
retrodiction if there is no prior information about the preparation event so the prior initial
density operator has an unbiased form and is proportional to the identity operator [13, 14].
This is a result of attempting to find a retrodictive formula by making the restricted predictive

probability ρˆ ˆ( )ETr i symmetric or causally neutral [15] or by using a time-reversed form of

Gleasonʼs theorem [14]. From the symmetry inherent in our general probability rule, which

reduces to the restricted predictive form when ˆ ∝ ˆX I, it is easy to see from the correspondence

between X̂ and ρ̂ above that our general retrodictive formula will reduce to the restricted

retrodictive form when ρ̂ ∝ Î. To obtain the general, and far more useful, retrodictive
probability formula from causal neutrality of a predictive formula it is necessary to start with
the general predictive form. For this reason it is also inadequate to use a time-reversed form of
Gleasonʼs theorem. Looked at from another view point, retrodicted preparation probabilities
are quite often contextual, depending on what other states could possibly be prepared. For
example if photon number states are being prepared, there is some limit set by the amount of
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energy available or simply by the difficulty in preparing some states6. Thus time-reversed
theorems incorporating non-contextuality are inappropriate for a general treatment.

5. Conclusion

We should note that it is also possible to derive a relationship between Bayes’ theorem,
predictive and retrodictive quantum theory based on an assumed expression for measurement
and preparation probabilities in which preparation and measurement operators appear
symmetrically [17, 18]. Our general probability rule as derived in this paper, however, enables
us to arrive at the correct expression for retrodictive probabilities without postulating a
symmetric form for the probabilities and thus may be regarded as a more fundamental approach
that formally justifies this earlier work.

Busch has relaxed Gleasonʼs postulate that measurement outcomes must be represented by
projectors by allowing measurement outcomes to be represented by effects. In this paper we
have further relaxed this to the postulate that the probability of a measurement outcome for a
particular input state and measurement procedure is proportional to a positive additive function
of a bounded positive operator. By allowing the proportionality constant to depend not just on
the state but also on the measurement procedure, including choice of measurement device, we
are explicitly not assuming non-contextuality in relation to other possible measurement
outcomes. Any set of positive operators (with strictly finite eigenvalues) can represent
measurement outcomes and can be used to calculate the probabilities of these outcomes. The
usually adopted requirement that these operators must sum to the identity is not assumed but
follows from our approach for the case when there is no prior information about the
measurement outcome. This resulting standard, or restricted, probability formula is seen to be a
special case of a more general causally-neutral symmetric formula, which can be used for both
prediction, that is finding probabilities of measurement outcomes, and for retrodiction involving
finding the probabilities of preparation events. When used for prediction, the formula is
applicable even when there is partial knowledge of possible measurement outcomes as may
occur when post-selection is involved or when there is simply incomplete reporting of outcomes
that have occurred. Retrodictive probabilities can, of course, be calculated from the usual
restricted formula by employing Bayes’ theorem but there is no need to invoke Bayes’ theorem
when using the general formula. Important examples of the use of our general formula include
quantum communications, retrodictive quantum theory and where there is prior agreed post-
selection of measurement results.
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6 This type of situation is considered by Dressel and Jordan [16], who use a symmetric formulation of quantum
theory based on quantum instruments (basically corresponding to measurement devices) to derive predictive,
retrodictive and ‘interdictive’ states.



Appendix. Uniqueness lemma

Here we seek to prove that two operators with the same diagonal elements in all bases must be
equal.

Assume that we have two operators R̂ and Q̂ with the same diagonal elements in any basis.
If this is true then for any pair of basis states i and j we have

ˆ = ˆi R i i Q i , (A.1)

ˆ = ˆj R j j Q j . (A.2)

If the diagonal elements are the same in any basis then, for a general superposition of these
states

= +u a i b j , (A.3)

with a and b being any pair of complex amplitudes, we must now also have

ˆ = ˆu R u u Q u . (A.4)

If this is true for all a and b then it must also be true for the coefficients of *ab and *a b in this
expression so that

ˆ = ˆi R j i Q j , (A.5)

ˆ = ˆj R i j Q i . (A.6)

There is nothing special about the states we have chosen and hence we infer that all the matrix
elements of the operators are equal in this basis. If all the matrix elements are equal then the
operators must be identical.
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