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Abstract. Efficient (~1%) electron cyclotron radio emissions are known to originate 

in the X mode from regions of locally depleted plasma in the Earths polar 

magnetosphere. These emissions are commonly referred to as the Auroral Kilometric 

Radiation (AKR). AKR occurs naturally in these polar regions where electrons are 

accelerated by electric fields into the increasing planetary magnetic dipole. Here 

conservation of the magnetic moment converts axial to rotational momentum forming 

a horseshoe distribution in velocity phase space. This distribution is unstable to 

cyclotron emission with radiation emitted in the X-mode. Initial studies were 

conducted in the form of 2D PiC code simulations [1] and a scaled laboratory 

experiment that was constructed to reproduce the mechanism of AKR. As studies 

progressed, 3D PiC code simulations were conducted to enable complete investigation 

of the complex interaction dimensions. A maximum efficiency of 1.25% is predicted 

from these simulations in the same mode and frequency as measured in the 

experiment. This is also consistent with geophysical observations and the predictions 

of theory.   

1.  Introduction 

Electrons precipitating into the Earth�s magnetosphere, Figure 1, are subject to increasing magnetic 

field with decreasing altitude. In the absence of collisions and given that the field increases slowly 

compared to the electron oscillation period, the adiabatic conservation of the magnetic moment comes 

into effect. Electrons entering the Earth�s magnetic dipole structure have a spread in their initial 

velocity. Those electrons having a small initial component of velocity perpendicular to the magnetic 

flux lines experience an increase in their rotational component of velocity as they descend towards the 

atmosphere. The effect of this process is that an initially primarily rectilinear electron beam assumes a 
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[16] with a peak power ~10
9

W, corresponding to an estimated radiation efficiency ~1% of the auroral 

electron precipitation energy [2,3]. The availability of accurate data has resulted in a significant 

research effort to explain the unusually high efficiency of this natural process. This enhanced data 

allows for meaningful comparison with theoretical expectations and has resulted in a number of 

models for the emission mechanisms.  

As the equations describing this instability scale with the cyclotron frequency, it became 

clear that it would be possible for the concept to be tested in a laboratory experiment by increasing the 

magnetic flux density and scaling the resonance into the microwave regime. In conjunction with the 

construction of an experimental reproduction of the AKR source region, 2D PiC simulations were 

conducted. Those simulations have demonstrated the formation of horseshoe distribution in an 

electron-beam subject to significant magnetic compression and subsequent cyclotron maser emission 

within an interaction waveguide. [1,17] Although the experimental results [18] were in good 

agreement with the findings from the 2D PiC simulations, certain aspects of the experimental behavior 

results require 3D computational approaches for reproduction. Specifically 2D simulations cannot 

account for an azimuthal index in the modes propagating in the waveguide, aspects of the 

experimental behavior associated with such modes require 3D simulations. This enhanced numerical 

simulation work will be used to redesign the laboratory experiment in the future. This paper presents 

most recent results from simulations conducted in three dimensions. 

 

2.  3D PiC CODE SIMULATIONS 

 

2.1. Simulation objective  

2D PiC code simulations provide high execution speed and strong numerical stability. However, 2D 

simulations although in good agreement with the experiment, can only allow for generation of 

axisymmetric modes, which means that modes with azimuthal structure cannot be predicted. In 

conducting 3D simulations a more complete interaction regime may be analysed [19]. The 2D 

simulations were conducted for electron beam energies of 75-85keV, magnetic compression factors of 

up to 30 and electron cyclotron frequencies of 4.42GHz and 11.7GHz. At 11.7GHz, beam-wave 

coupling was observed with the TE0,3 mode and an RF output power of 20kW was predicted 

corresponding to an RF conversion efficiency of 1.3%. At 4.42GHz, excitation of the TE0,1 mode was 

observed with an RF output power of 35kW for a cyclotron-wave detuning of 2%. This corresponds to 

an RF conversion efficiency of 2.6%. The RF conversion efficiencies obtained are therefore 

comparable with estimates for the AKR generation efficiency [14]. The 3D simulation geometry, 

Figure 3, illustrates the main interaction waveguide with a predefined electron horseshoe distribution 

injected. The gun geometry is not modeled due to the computational requirements of 3D simulations. 

A uniform axial magnetic field profile was defined from 0-20cm with a linear decrease to  0T from 20-

80cm as an initial condition for the PiC code.  Recent 3D simulations have been used to study the 

excitation of modes in the two resonance regimes, which provides data to compare with experimental 

measurements and illustrate mode competition that 2D simulations were not able to account for.   
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resonance at 4.42GHz, are ongoing to study it dynamics in three dimensions.  From initial results, the 

3D simulations are also proving successful in simulating this resonance regime. Figure 6(b) illustrates 

some of the initial results taken from the simulations, cleary showing the spectral components 

measured in experimental data, a large peak at 4.42GHz and a small second harmonic at 8.5GHz.  

 

 

3.  CONCLUSION AND DISCUSSIONS 

In summary, it has been shown that the 3D PiC codes are useful in simulating the interaction between 

a complex electron beam and electromagnetic radiation. These new simulations have proven accurate 

in identifying the modes and the mode competition that existed in experiment.  The peak powers also 

agree well with those predicted in the experiment and previous simulations.  

     This enhanced picture of the interaction region will prove valuable for further studies to improve 

the understanding of AKR and thus the general field of instability and waves in plasmas [23]. 

Research will continue with simulations being conducted to refine these results investigating the 

sensitivity to the exact form of the electron distribution function. Lastly these results will aid in design 

modifications to the apparatus to experimentally measure the sensitivity to detuning in the laboratory 

experiment for comparison with theoretical predictions.  
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