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Abstract—At early drug discovery, purified protein-based 

assays are often used to characterise compound potency. As far 

as dose response is concerned, it is often thought that a time-

independent inhibitor is reversible and a time-dependent 

inhibitor is irreversible. Using a simple kinetics model, we 

investigate the legitimacy of this. Our model-based analytical 

analysis and numerical studies reveal that dose response of an 

irreversible inhibitor may appear time-independent under 

certain parametric conditions. Hence, time-independence cannot 

be used as evidence for inhibitor reversibility. Furthermore, we 

also analysed how the synthesis and degradation of a target 

receptor affect drug inhibition in an in vitro cell-based assay 

setting. Indeed, these processes may also influence dose response 

of an irreversible inhibitor in such a way that it appears time-

independent under certain conditions. Hence, time-independent 

dose response in a cell assay also needs careful considerations. It 

is necessary to formulate a suitable model for analysis of protein-

based assay and in vitro cell assay data to ensure a consistent 

understanding. 

Keywords—irreversible inhibition; model of receptor turnover; 

fast drug process; slow drug process; time-scale analysis 

I.  INTRODUCTION  

Drug discovery and development typically involve protein-

based assay, in vitro cell assay, in vivo animal assay and 

clinical trials. These studies are often organised in this 

particular temporal order, in the hope that the results of a 

previous step (e.g. protein-based assay) will help inform the 

design and interpretation of the subsequent experiment (e.g. in 

vitro cell assay).  

A new paradigm that helps enable robust translation of 

each type of study arises in recent years [1]. Known as 

Systems Pharmacology, it employs multi-scale modelling 

approaches to integrate heterogeneous types of data generated 

under diverse experimental conditions spanning different 

temporal and dimensional scales [2]. These models are able to 

reconcile different experimental conditions, such as in vitro 

cell assays and in vivo animal models [3], and to bridge 

preclinical models with clinical trials with an endeavour to 

generate statistically robust predictions that are validated with 

preclinical and clinical data [4].  

While multi-scale modelling has been successfully 

deployed in drug development programmes, its application in 

early drug discovery has been more limited [5]. In fact, there 

is an urgent need to develop Systems Pharmacology so as to 

better bridge protein-based assay and in vitro cell assay [1].  

Cellular kinetics may sometimes not be fully appreciated 

by medicinal chemists who design protein-based assays, and 

this limits its application. For instance, the potency of a 

chemical entity to inhibit an enzyme is often characterised by 

IC50, the chemical concentration that generates half of 

maximal inhibition. For an irreversible inhibitor that 

covalently modifies a purified target enzyme in vitro, the 

chemical reaction tends more complete given a longer drug 

incubation period. Consequently, IC50 usually exhibits 

incubation time-dependent shift, making the inhibitor appear 

more potent at long incubation periods [6, 7]. 

In contrast, a target protein in a living cell undergoes 

synthesis and degradation, which are often regulated via gene 

regulations and cell signalling. These processes typically 

happen within minutes and hours [8]. This may influence 

cellular response to drug inhibition. In other words, shooting a 

moving target in a cell might be different from shooting an 

immobile target in a protein-based assay. In this study, we 

investigate how cellular response is influenced by both drug 

parameters and cell parameters.  

II. A MODEL OF RECEPTOR TURNOVER AND IRREVERSIBLE 

INHIBITION 

A simple model is proposed to recapitulate receptor turnover 

(i.e. synthesis and degradation) and drug inhibition.  
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In process (1), receptor R is synthesized at a constant rate pk , 

and degrades following a first-order kinetics with a rate 

constant dk  For the sake of simplicity, this model does not 

consider feedback mechanism that regulates either synthesis or 

degradation. In process (2), a drug molecule first binds R 

reversibly to comprise an intermediate complex C with 

apparent association and dissociation rates onk  and offk , 

respectively. The complex C then forms a covalent bound 



irreversibly at the second step, in a first-order reaction with a 

rate constant 
ik  ୧ . Based on mass-balance principle, the 

corresponding ordinary differential equations (ODEs) for 

concentrations of R and C are  
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with the following units: nM for R, C; nM/min for pk ; and 

1/min for dk , 
onk , offk  and 

ik . 

In the absence of drug, the receptor has a steady state at 

0 p dR k k  nM. Scaling R and C with 
0R , they become 

dimensionless 0 d pr R R Rk k  , 0 d pc C R C k k  . 

ODEs (3) and (4) are written as 
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This model takes a dimensionless form, when offk  is used to 

scale the time term by offk t  , and to scale reaction rates by

on on offk k  , i i offk k  , and d d offk k  . 
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Note all terms in (7) and (8) are dimensionless, including 

concentration variables r and c, time  ɒ, and parameters 
on , 

i , 
d . The synthesis rate pk  is included in 

d  through 

scaling  0d d off p offk k k k R   . The initial conditions of 

this model are set to be  0 0 1r r   and  0 0 0c c  .  

With this dimensionless model, the analysis of system 
behaviour under different parametric regimes can be discussed 
in a consistent scheme. 

III. FAST DRUG PROCESS RELATIVE TO RECEPTOR 

TURNOVER 

The parametric regimes have been divided into that of fast 
drug process and slow drug process. We first discuss the 
conditions of fast drug binding and dissociation. 

A. Fast Drug Binding and Dissociation Relative to Receptor 

Turnover 

The parametric regime is defined by ݇௢௙௙ ب ݇ௗ ǡ  and ݇௢௡ ب ݇ௗ. In this case, the receptor turnover rate dk  is much 

smaller than the drug binding and dissociation rates ݇௢௡  and ݇௢௙௙.  

•  When ݇௢௙௙ ب ݇ௗ, i.e., ߢௗ ا ͳǡ the period of target coverage 

(characterized by ͳ ݇௢௙௙Τ ) is much shorter than that of 

receptor degradation (characterized by ͳ ݇ௗΤ ), which can 

be due to: i) short target coverage, i.e., ݇௢௙௙ ب ͳ; ii) slow 

receptor degradation, i.e., ݇ௗ ا ͳ; and iii) combination of 

i) and ii). 

Ь When ݇௢௡ ب ݇ௗ , i.e., ߢ௢௡ ب ௗߢ ǡ  a receptor binds a drug 

molecule at a rate much faster than its degradation.  

Under these conditions, the term of 
d  can be ignored, and 

the model is approximated by 
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How small does
dk  have to be in comparison to offk  and 

onk to ensure the validity of this approximation? This is 

examined by the following numerical simulation. Firstly, the 

full model in (7) and (8) are simulated with 1on   ( on offk k

) and 0.001i   (݇௢௙௙ ب ݇௜), when 
610d
  (Fig. 1(a)), and 

410d
  (Fig. 1(b)), respectively. The approximated model 

in (9) is simulated using identical values for 
on  and 

i , as 

shown in Fig. 1(c). All simulations are performed for four 

different incubation time periods, including 10
-3

, 1, 10
3
 and 

10
6
. It can be observed that the responses in Fig. 1(a) are close 

to those in Fig. 1(c), which suggests that when ߢௗ ൑ ͳͲି଺ , 

model (9) provides a good approximation to the full model in 

(7) and (8).  

r r

on
on

 
    (a) Full model at 610d

         (b) Full model at 410d
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(c) Approximate model at 0d    

Fig. 1. Dose response curves predicted for different incubation time, when ݇௢௡ ൌ ͳ and ݇௜ ൌ ͲǤͲͲͳ. Incubation times shown in the figure legend (10-3, 

100, 103, 106) are in ߬. (a) Full model (7) and (8) simulated at 610d
 ; (b) 

Full model simulated at 410d
 ; (c) Simulation from the approximate 

model in (9). In all figures, ݇௢௡ is plotted in log10 scale. 



Denoting  Tr cX , the simplified model in (9) can be 

written as a homogeneous system model,  
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We can use the eigenvalue method to analyse this system. 

Denoting the trace and determinant of matrix A as 
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eigenvalues of A are calculated by  2
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With initial conditions ݎ଴ ൌ ͳ  and ܿ଴ ൌ Ͳ , the analytical 

solutions for (10) are  
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The log10 transformed ratio of the two eigenvalues for 

different pairs of ߢ௢௡ and ߢ௜ is plotted in a heat map (Fig. 2). 

This diagram shows that when both parameters have similar 

values and are above 1, ߣଵ and ߣଶ are close to each other (the 

red area in Fig. 2). In this case, the system has only one time 

scale in this parametric regime. However, if either parameter 

is much larger than 1 or both parameters are much smaller 

than 1, then ȁߣଵȁ ȁߣଶȁΤ ا ͳ (the blue area in Fig. 2), and two 

different time scales exist, including a slow time scale 

characterized by 11   and a fast time scale characterized by 

21   (note T is negative).  
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Fig. 2.    ଵ଴ሺߣଵ ଶΤߣ ሻ plotted as a function of    ଵ଴ሺߢ௢௡ሻ and    ଵ଴ሺߢ௜ሻ. Values 

between -10 and 0 are colour-coded. 

In the following, we will study several special cases within 

this parametric regime. 

B. Fast Drug Dissociation Relative to Covalent Modification 

Under the condition of fast drug process over receptor 

turnover (݇௢௙௙ ب ݇ௗǡ and ݇௢௡ ب ݇ௗ), we further consider the 

regime of ݇௢௙௙ ب ݇௜ ǡ i.e., ߢ௜ ا ͳ . This means the drug 

dissociation is much faster than the covalent modification. 

This corresponds to the lower part of Fig. 2. This condition is 

satisfied if a) an irreversible inhibitor has to overcome a 

relatively large energy barrier to covalently modify the 

receptor, b) drug dissociation is rapid, c) a combination of 

both. The model can be further simplified as 
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In this case, 
d d

d d

r c

 
  . Hence, ȁοȁ ȁܶଶȁΤ ا ͳ. This means ȁߣଵȁ ൎ Ͳ  and ȁߣଵȁ ا ȁߣଶȁ . In this case, two different time 

scales exist, a slow time scale characterized by 
11   and a 

fast time scale characterized by 
21  . The receptor decreases 

in both time scales. 

Denote the scaled incubation times at which two dose 

response curves are measured by ߬ଵǡ ߬ଶǡ  respectively. If 

measurements are taken at incubation times comparable to or 

much longer than the slow time scale, (i.e. ߬ଵǡଶ̱ͳ ȁߣଵȁΤ  or ߬ଵǡଶ ب ͳ ȁߣଵȁΤ ), then dose responses are mainly determined by 

changes at the slow time scale. Time-dependency is evident if ߬ଵ ب ߬ଶ  and vice versa. This indicates that dose response 

curves for different incubation times should be separated. On 

the other hand, for much shorter incubation times, ߬ଵǡଶ ͳا ȁߣଶȁΤ , dose responses are mainly dependent on changes at the 

fast, shorter time scale ͳ ȁߣଶȁΤ . The two dose response curves 

are well separated if ߬ଵ ب ߬ଶ , and vice versa. In contrast, if ͳ ȁߣଶȁΤ ൏ ߬ଵǡଶ ൏ ͳ ȁߣଵȁΤ , then dose responses are determined 

by both time scales. For ͳ ȁߣଶȁΤ ا ߬ଵǡଶ ا ͳ ȁߣଵȁΤ , dose 

response curves are close to each other following one time 

scale.  

For example, suppose ߢ௢௡ ൌ ͳǡ ௜ߢ  ൌ ͲǤͲͲͳ . Then, ܶ ൌ െʹǤͲͲͳ , οൌ ͲǤͲͲͳ ଵߣ , ൌ െͷǤͲ ൈ ͳͲିସ , ଶߣ  ൌ െʹǤͲ ଵݒ . ൎ ሾͳǤͲ ͳሿ୘, ݒଶ ൎ ሾെͳǤͲ ͳሿ୘Ǥ Therefore, the time scales 

are O(3) (ͳ ȁߣଵȁΤ ൌ ʹǤͲ ൈ ͳͲଷ) and O(1) (ͳ ȁߣଶȁΤ ൎ ͲǤͷͲ). The 

analytical solution to the receptor concentration is 

approximately ݎሺ߬ሻ ൌ ͲǤͷሺͳǤͲ݁ିଶǤ଴ఛ ൅ ͳǤͲ݁ି଴Ǥ଴଴଴ହఛሻ  under 

these parameters. 

For ߬ଵ ൌ ͲǤͲͲͳǡ ߬ଶ ൌ ͳ, dose responses are dominated by 

the short time scale O(1). In addition, these incubation times 

are of three orders of magnitude difference. For the same 

input, dose response curves are expected to be separated 

(compare the two curves on the left in Fig. 1(c)). Using similar 

reasoning, dose response curves for ߬ଵ ൌ ͳ ൈ ͳͲଷǡ ߬ଶ ൌ ͳ ൈ



ͳͲ଺ are expected to be separated, as both of them are mainly 

dependent on the fast time scale O(3) (the two curves on the 

right in Fig. 1(c)). For ߬ଵ ൌ ͳǡ ߬ଶ ൌ ͳͲͲͲ, dose response curve 

taken at ͳ ൈ ݇௢௙௙  is mainly determined by the fast time scale ݁ିଶൈଵ , while the one taken at ͳͲͲͲ ൈ ݇௢௙௙  is mainly 

determined by the slow time scale ݁ି଴Ǥ଴଴଴ହൈଵ଴଴଴ . Therefore, 

both dose response curves are close to each other (the two 

curves in the middle of Fig. 1(a)). 

In summary, for an irreversible inhibitor that dissociates 

quickly or has to overcome a large energy barrier to covalently 

modify a receptor, if the receptor undergoes very slow 

synthesis and degradation, two time scales exist for dose 

response. Dose response curves measured at different 

incubation times can be either close to each or widely 

separated, depending on the incubation time relative to the two 

time scales. Therefore, incubation time-independence in dose 

response does not necessarily suggest drug inhibition is 

reversible. 

In practice, if ݇௜ ا ݇௢௙௙  is known beforehand, the drug 

should be incubated for a period of time that is comparable to ͳ ݇௜Τ . Then ߬ଵ and ߬ଶ are more likely to be in the long range, 

say ߬ଵǡଶ ب  ͳͲଷ ൈ ݇௢௙௙ . This leads to time-dependent dose 

responses and avoids confusion of taking the drug as a 

reversible inhibitor. 

C. Fast Drug Binding/Dissociation and Fast Covalent 

Modification Relative to Receptor Turnover 

The parametric regime is classified by: ݇௢௡ ب ݇ௗ ǡ   ݇௢௙௙ ௗ݇ب ǡ , ݇௜ ب ݇ௗ , and ݇௜  ൎ  ݇௢௡ . In this case, both reversible 

binding/dissociation and irreversible modification are faster 

than receptor turnover. The approximate model is the same as 

(9). According to Fig. 2, ߣଵ  and ߣଶ  are close to each other. 

Hence, the system has only one time scale that is 

approximately ܱሺȁߣଵȁିଵሻ (and equally ܱሺȁߣଶȁିଵሻ). Therefore, 

dose response curves measured at different incubation times 

are predicted to be separated from each other (Fig. 3). 
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Fig. 3. Dose response curves predicted for different incubation times. 

Incubation times shown in the figure legend (10-3, 100, 103, 106) are in ߬ , ݇௜ ൌȀ݇ௗ ൌ ͳͲ.  

IV. SLOW DRUG PROCESS RELATIVE TO RECEPTOR 

TURNOVER 

A. Slow Drug Dissociation Relative to Receptor Turnover 

The parametric regime is defined by ݇௢௙௙ ا  ݇ௗ , i.e., ߢௗ ب ͳ . The target coverage rate is much slower than the 

receptor degradation rate, which can be due to: i) long period 

of target coverage; ii) fast receptor degradation; and iii) 

combination of both. This might be biologically relevant when 

receptor homeostasis is tightly regulated at the turnover level. 

The full model in (7) and (8) is used for this condition. 

This is an inhomogeneous system, which cannot be simply 

analysed by eigenvalue methods. To avoid using tedious 

mathematical formulation in the discussion, numerical studies 

are performed to analyse the dose response behaviour. 

Similar to Fig. 2, we have plotted    ଵ଴ሺߣଵ ଶΤߣ ሻ  as a 

function of ߢ௢௡  and ߢ௜  in log10 scales. For ݇௢௙௙ ൌ ݇ௗ , 

separation of time scales happens if either ݇௢௡ ب ݇ௗ  or ݇௜ ب ݇ௗ , with the former leads to more pronounced effects 

(Fig. 4(a)). In contrast, if ݇௢௙௙ ൌ ͲǤͲͲͳ݇ௗ, separation of time 

scales can also happen if both ݇௢௡ ا ݇ௗ and ݇௜ ا ݇ௗ (bottom-

left area in Fig. 4(b)). 
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(b) ݇௢௙௙ ൌ ͲǤͲͲͳ݇ௗ 

Fig. 4.    ଵ଴ሺɉଵ ɉଶΤ ሻ plotted as a function of Ɉ୭୬  and Ɉ୧ . (a) ݇௢௙௙ ൌ ݇ௗǢ (b) ݇௢௙௙ ൌ ͲǤͲͲͳ݇ௗ. Both axes are in log10 scale. Values between -10 and 0 are 

colour-coded. 



To examine whether separation of time scales dictates 

time-dependency in dose response, we need to investigate how 

the factors associated with the exponential functions in 

receptor’s analytical solution compare to each other. Fig. 5 

plots    ଵ଴ሼȁݒଵଵߣଶሺͳ ൅ ଵሻߣ ሾݒଶଵߣଵሺͳ ൅ ଶሻሿΤߣ ȁሽ as a function of ߢ௢௡  and ߢ௜  in log10 scales. Fig. 5(a) shows when ݇௢௙௙ ൌ ݇ௗ , 

the two factors are comparable for the following regimes:  

i) ݇௢௡ ൐ ݇ௗ, ݇௜ ൐ ݇ௗ, ݇௢௡ ൎ ݇௜Ǣ 
ii) ݇௢௡ ൏ ݇ௗ, ݇ௗ ൏ ݇௜ ൏ ͳͲ݇ௗ; 

iii) ݇௜ ൏ ݇ௗ,    ଵ଴ሺ݇௢௡ሻ ൏ െ    ଵ଴ሺ݇௜ሻ. 
Considering both Fig. 4(a) and Fig. 5(a), the only parametric 

regime that allows separation of time scales and also has 

comparable factors in front of exponentially decay factors is: ݇௢௙௙ ൌ ݇ௗ , ݇௜ ൏ ݇ௗ , ݇௢௡ ൐ ݇ௗ ,    ଵ଴ሺ݇௢௡ሻ ൏ െ    ଵ଴ሺ݇௜ሻ . 

This is the region marked by dashed triangles in Fig. 4(a) and 

5(a).  
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(b) ݇௢௙௙ ൌ ͲǤͲͲͳ݇ௗ 

Fig. 5.    ଵ଴ሼȁ ଵଵɉଶሺͳ ൅ ɉଵሻ ሾ ଶଵɉଵሺͳ ൅ ɉଶሻሿΤ ȁሽ plotted as a function of Ɉ୭୬ 

and Ɉ୧ . (a) ݇௢௙௙ ൌ ݇ௗǢ  (b) ݇௢௙௙ ൌ ͲǤͲͲͳ݇ௗ . Both axes are in log10 scale. 

Values between -15 and 10 are colour-coded. 

 

An example is discussed to illustrate these ideas by taking ݇௢௙௙ ൌ ݇ௗ, ݇௜ ا ݇ௗ. This means the receptor degradation is as 

fast as target coverage and the drug overcomes a large energy 

barrier to covalently modify the receptor.  

Suppose ݇௢௡ ൌ ݇ௗǡ ݇௜ ൌ ͲǤͲͲͳ݇ௗ . Under this condition, 

the drug-associated receptor complex continues to rise over 

time before reaching its equilibrium state. Accordingly, 

complex dissociation rate keeps increasing until the new 

equilibrium is reached. Hence, receptor first decreases as a 

result of drug inhibition, then recovers to a point that is just 

below the initial condition due to complex dissociation. 

Apparently, dose response measured before recovery would 

make the drug appear more potent than the actual steady-state 

response (compare dotted curve with other curves in Fig. 6). 

Given the proximity between ȁߣଵȁ  and ȁߣଶȁ , dose response 

measurement taken at an incubation time that is longer than ͳ ȁߣଵȁΤ  are predicted to be close to each other. 

 

r

on
 

Fig. 6. Dose response curves predicted for different incubation time. (a) 
Full model is simulated, assuming ݇௢௙௙ ൌ ݇ௗǡ  ݇௜ ൌ ͲǤͲͲͳ݇ௗǤ Incubation 

times (10-3, 100, 103, 106) are in ߬. 
 

Alternatively, when ݇௢௡ ൌ ͳͲͲͲͲ݇ௗ ǡ ݇௜ ൌ ͲǤͲͲͳ݇ௗ, then, ܶ ൌ െͳͲͲͲʹǤͲͲͳ , οൌ ͳͳǤͲͲͳ ଵߣ , ൎ െͳǤͳ ൈ ͳͲିଷ ଶߣ , ൎെͳǤͲ ൈ ͳͲସ, ݒଵ̱ሾͳǤͲ ൈ ͳͲିସ ͳሿ், ݒଶ̱ሾെͳǤͲ ൈ ͳͲ଴ ͳሿ் Ǥ  ݎሺݐሻ ൌ ͻǤͳ ൈ ͳͲିଶ ͳǤͲ ൈ ͳͲ଴ ൈ ݁ିଵǤ଴ൈଵ଴ర௧ െ ͻǤͳൈ ͳͲିଶ݁ିଵǤଵൈଵ଴షయ௧ 
Because ߣଵ ا  ଶ determinesߣ ଶ, only the fast time scaleߣ

dose response. Therefore, dose response is incubation time-

dependent. 

B. Slow Drug Binding and Fast Covalent Modification 

Relative to Receptor Turnover 

The parametric regime is: ݇௢௡ ا ݇ௗ ا ݇௜, (upper left corner 

of Fig. 2). This speaks about an irreversible inhibitor that 

binds slowly to the receptor but reacts covalently in a fast 

manner, both relative to receptor degradation. The simplified 

model is accordingly 
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Similar to the previous case, two different time scales exist for 

model (12), and the receptor decreases in both time scales.  

V. CONCLUSIONS 

At lead generation and optimisation, it is important to 

understand the Mechanism Of Action (MOA) of a chemical 

compound, as well as the Structure-Activity Relationship 

(SAR), in the hope that ultimately a compound with sufficient 

therapeutic efficacy is taken further for preclinical 

development. Reversibility of a compound is a crucial aspect 

of MOA characterisation, which is often unknown for 

compounds coming out of empirical screening methods.  

Towards this goal, assays have been established to study 

inhibition reversibility [9]. It is generally accepted that 

response to irreversible inhibitors are time-dependent. Hence, 

it is often taken for granted that time-independence indicates 

inhibition reversibility. However, our mathematical analysis 

refutes this. Based on our simulation, for protein-based assays, 

under certain parameter conditions, the dose response curves 

can be very similar to each other (compare the middle curves 

in Fig. 1(C)), given 1000-fold variation in incubation time. In 

practice, these data might not be statistically different and can 

be erroneously taken as evidence of reversible inhibitor. 

Our ensuing analysis showed that active receptor synthesis 

and degradation also have implications in dose response. For 

instance, in Fig. 6, it is shown that when a slowly-dissociating 

irreversible drug is applied to a receptor under fast turnover, 

dose response may be highly similar to each other under a 

variety of incubation periods. Together with the previous 

example, it is inappropriate to conclude a drug is reversible 

given time-independent dose response either based on protein 

assay or in vitro cell assay. 

The main purpose of this analysis is to demonstrate the 

relationship between dose response and parameter values. For 

the sake of simplicity, we only considered a linear model in 

which each reaction follows first-order kinetics. Results 

obtained in this paper are specific to the form of this linear 

model. In addition, we did not consider biological regulation 

over synthesis, degradation and sub-cellular localisation of a 

receptor [8]. In reality, receptor is often regulated under 

different levels, which often necessitates mechanistic 

modelling of a biological pathway to aid in interpretation of in 

vitro cell assays.  

To further translate in vitro results into in vivo knowledge, 

Target Mediated Drug Disposition (TMDD) Models were 

developed to analyse receptor pharmacokinetics (PK) and 

pharmacodynamics (PD) in recent years. In addition to drug 

binding and receptor turnover, these models also consider the 

elimination of all species, to mimic in vivo conditions. They 

can be served as a useful theoretical framework. Model-based 

analysis revealed that the necessary and sufficient condition 

for receptor rebound in a single dose animal experiment is that 

elimination rate of the drug-receptor product being slower than 

the elimination rates of the drug and of the receptor [9]. A 

time-scale analysis was also performed to provide accurate 

approximations of the temporal evolution under the 

assumption of high drug binding affinity [10]. These models 

share some parameters with the in vitro model described in 

this paper. For a drug discovery and development programme, 

the in vitro model should be used to identify parameter values 

from in vitro data. These parameters can be used subsequently 

to help identify the remaining parameter values in the in vivo 

model. This step-wise fitting may reduce uncertainty in 

parameter estimation. In this context, the in vitro model 

described in this paper improves the utility of TMDD models.  
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