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Development of Non-Linear Guidance Algorithms for 

Asteroids Close-Proximity Operations 

Roberto Furfaro1, Brian Gaudet2, Daniel R. Wibben3 

The University of Arizona, Tucson, AZ, USA 

and 

Jules Simo4 

The University of Strathclyde, Glasgow, UK 

In this paper, we discuss non-linear methodologies that can be employed to devise real-

time algorithms suitable for guidance and control of spacecrafts during asteroid close- 

proximity operations. Combination of optimal and sliding control theory provide the 

theoretical framework for the development of guidance laws that generates thrust 

commands as function of the estimated spacecraft state. Using a Lyapunov second theorem 

one can design non-linear guidance laws that are proven to be globally stable against 

unknown perturbations with known upper bound. Such algorithms can be employed for 

autonomous targeting of points of the asteroid surface (soft landing , Touch-And-Go (TAG) 

maneuvers). Here, we theoretically derived and tested the Optimal Sliding Guidance (OSG) 

for close-proximity operations. The guidance algorithm has its root in the generalized 

ZEM/ZEV feedback guidance and its mathematical equations are naturally derived by a 

proper definition of a sliding surface as function of Zero-Effort-Miss and Zero-Effort-

Velocity. Thus, the sliding surface allows a natural augmentation of the energy-optimal 

guidance via a sliding mode that ensures global stability for the proposed algorithm. A set of 

Monte Carlo simulations in realistic environment are executed to assess the guidance 

performance in typical operational scenarios found during asteroids close-proximity 

operations. OSG is shown to satisfy stringent requirements for asteroid pinpoint landing and 

sampling accuracy. 

I. Introduction 

ver the past few years, there has been a strong interest in sending robotic spacecrafts to small bodies orbiting 

around the Sun. Such bodies include comets and Near Earth Asteroids (NEAs). Over the past few billions 

years, such objects have been minimally processed and detailed remote mapping and in-situ sampling may provide 

scientists with opportunities to unveil the early history of the solar system1. Aside the extremely valuable 

contribution that NEAs missions would provide to the global understanding of the origin of the Solar System, such 

robotic missions would help characterizing and quantifying the amount of extraterrestrial natural resources2as well 

as quantifying the risk that such objects may collide with planet Earth3. In May 2011, NASA announced the 

selection of OSIRIS REx asteroid sample return mission4as part of the New Frontier 3 program. Launching in 2016, 

the spacecraft is expected to arrive at the 1999 RQ36 “Bennu” asteroid in late 2018. After performing close 

proximity mapping operations for approximately 18 months, the spacecraft will descend toward the surface to 

capture the sample with the goal of returning it safely to Earth by mid-2023. 
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Generally, close-proximity operations around small celestial objects are extremely challenging. Indeed, the 

dynamics of the spacecraft is complicated by a number of factors including 1) irregular shape and mass distribution 

of the object; 2) weak and uncertain gravitational field; and 3) perturbations due to solar radiation pressure. As a 

result, spacecraft trajectories around such bodies are generally complex and non-periodic. Moreover, the stability of 

the motion is guaranteed for a limited set of latitudes5. Furthermore, close orbit operations are characterized by 

general communication time delays, a rapid rotational dynamics (order of hours), and the unknown and changing 

surface properties from illumination variation and surface conditions. In such challenging environment, sustained 

investigations of small bodies require that the spacecraft seamlessly transitions from one state to another to gain 

different vantage observational points. For example, during the course of a small body mission, the spacecraft may 

be required to hover around various points around the asteroid and land repeatedly on different surface locations to 

completely characterize the nature of the small body under investigation. Although current practice involving close-

proximity operations around asteroids require heavy human intervention, autonomous operations, including 

guidance and orbit control, may be at least desirable. 

To successful execute autonomous close-proximity operations around asteroids, the spacecraft must be equipped 

with a properly designed Guidance, Navigation and Control (GNC) subsystem. The latter must be able to a) 

autonomously process information coming from sensors (e.g. optical cameras, LIDAR) to estimate in real-time 

position and velocity relative to the small body, b) process the current spacecraft state to generate an real-time 

acceleration command that drives the spacecraft toward the desired position and c) allocate the commanded 

acceleration signal to the proper thrusters to implement the desired maneuver and achieve the desired target state. 

Integrated navigation and control systems have been recently proposed and studied. Misuet al.6 proposed an 

autonomous rendezvous guidance scheme based on feature extraction and inheritance. The GNC methodology is 

based on fixation-point inheritance, where the spacecraft descend toward the asteroid targeted point by tracking and 

autonomously renewing fixation-points. The proposed system uses optical images coupled with an extended Kalman 

Filter to estimate the state and an ad-hoc, on-off thruster control logic to drive the spacecraft to the target. Shuanget 

al.7 proposed an integrated scheme for close-proximity operations: first an autonomous navigation algorithm based 

on feature tracking technology is devised. Then, two guidance control schemes (i.e. error phase analysis method and 

Proportional-Derivative (PD) plus Pulse-Width Pulsed Frequency (PWPF)) were studied and simulated to verify 

performances. More recently,Bhaskaranet al.8 coupled two independent frameworks that formed the basis of an 

autonomous navigation system for landing on small bodies. The first consisted in a general autonomous navigation 

framework that incorporates trajectory propagation, observables and partials generation as well as maneuver design 

and targeting. The second aspect dealt with shape modeling and landmark tracking scheme which provides vectors 

from the spacecraft to the surface to be used as data by the OBIRON (On-Board Image Registration for Optical 

Navigation) navigation process. 

 Most of the above mentioned papers focused mainly on the navigation aspects of the problem. Indeed, standard 

trajectory reference tracking algorithms have been implemented to verify the ability of the GNC system to drive the 

spacecraft toward the desired state. Nevertheless, advancements in non-linear control theory may be employed to 

generate flexible, yet robust guidance algorithms for close proximity operations. Furfaro et al.9 proposed a non-

linear guidance algorithm for asteroid landing. Based on Higher Order Sliding Control (HOSC10), the algorithm is 

shown to perform well in an uncertain dynamical environment. In this paper, we show how to develop a class of 

guidance algorithms for real-time, close-proximity operations that are energy-optimal yet robust against un-

modelled dynamics and uncertain parameters. We propose the developmentof theOptimal Sliding Guidance (OSG) 

for close proximity operations which can be employed to transition from two different states, including from and to 

the asteroid surface. OSG is based on the generalized ZEM/ZEV (Zero Effort Miss/Zero Effort Velocity) feedback 

guidance11. Rooted in optimal control theory and originally derived by Battin12 and D’souza13 for planetary landing, 

the ZEM/ZEV guidance is demonstrated to be energy-optimal under constant and time-dependent gravitational field 
11. Hawkins et al.14adapted the ZEM/ZEV guidance algorithm to asteroid close-proximity operations showing how to 

theoretical derive the guidance equations. Here, we couple optimal and sliding control theory to show how to 

robustify the ZEM/ZEV feedback guidance by augmenting it via a properly defined sliding control mode. The latter 

yields a guidance algorithm that is globally stable in an uncertain dynamical environment for which an upper bound 

of the perturbing acceleration is known. OSG is naturally derived by defining the sliding surface as function of ZEM 

and ZEV. Lyapunov theory can be effectively employed to demonstrate the guidance global stability. OSG is tested 

in a realistic simulation environment to demonstrate the performance of the algorithm for close proximity operations 

around RQ36 “Bennu” which is the target of the NASA OSIRIS REx Asteroid Sample Return Mission. 
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II. Methodology 

A.  Close-Proximity Spacecraft Dynamical Model 

In formulating the spacecraft guidance problem for close-proximity operations around asteroids, we model the 

spacecraft dynamics near the asteroid using a two-body gravitational model (spacecraft has negligible mass).  The 

equations of motion for the spacecraft in a uniformly rotating, asteroid-fixed Cartesian coordinate frame having the 

origin at the asteroid center of mass are written as follows: 

௅ሶ࢘  ൌ  ௅ (1)࢜

௅ሶ࢜  ൌ ૛࣓ ൈ ௅࢜ ൅ ࣓ ൈ ࣓ ൈ ௅࢘ ൅ ௅ሻ࢘ሺࢍ ൅ ஼ைெெࢇ ൅  (2) ࢖

Here, ࢘௅ ൌ ሾݔǡ ǡݕ ௅࢜ ,ሿ்is the position vector in the body-fixed rotating frameݖ ൌ ሾݒ௫ ǡ ௬ݒ ǡ  ௭ሿ்is the velocityݒ

vector, ࢍሺ࢘௅ሻ ൌ ሾ݃௫ǡ ݃௬ ǡ ݃௭ሿ்is the local gravitational field, ࢇ஼ைெெ ൌ ሾܽ௖௫ ǡ ܽ௖௬ ǡ ܽ௖௭ሿ்is the acceleration command 

and ࢖ ൌ ሾ݌௫ǡ ௬݌ ǡ  ௭ሿ்is the perturbing acceleration, accounting for unmodeled/unknown forces (e.g. gravity field݌

inaccuracies, solar radiation pressure and nth-body perturbations). 

For this analysis, it is assumed that the shape of the asteroid can modeled as a triaxial ellipsoid allowing 

analytical determination of the asteroid gravitational field. The gravitational field can be expressed as a partial 

derivative of the potential field, i.e. ࢍሺࡸ࢘ሻ ൌ ߲ܸ Τࡸ߲࢘ ்
. 

The equations of motion can be explicitly written in their scalar form: 

ሶݔ  ൌ ௫ݒ  (3) 

ሶݕ  ൌ  ௬ (4)ݒ

ሶݖ  ൌ  ௭ (5)ݒ

ሶ௫ݒ  ൌ ௬ݒ߱ʹ ൅ ߱ଶݔ ൅ డ௏డ௫ ൅ ܽ஼௫ ൅ ௫݌  (6) 

ሶ௬ݒ  ൌ െʹ߱ݒ௫ ൅ ߱ଶݕ ൅ డ௏డ௬ ൅ ܽ஼௬ ൅  ௬ (7)݌

ሶ௭ݒ  ൌ డ௏డ௭ ൅ ܽ஼௭ ൅  ௭ (8)݌

The mathematical model described in Eq. (1-8) is employed to derive the guidance equations. In the 

development of the guidance law, the mass of the spacecraft is assumed to be constant. However, in more realistic 

Monte Carlo simulations required to test the performance of the proposed OSG law, the model is upgraded to 

account for mass variation as given by the classical rocket equation: 

 ሶ݉ ൌ െ ԡࢀԡூೞ೛௚೎ (9) 

Where ԡࢀԡ ൌ ඥ ௫ܶଶ ൅ ௬ܶଶ ൅ ௭ܶଶis the magnitude of the overall thrust vector ࢀ ൌ ൣ ௫ܶ ǡ ௬ܶ ǡ ௭ܶ൧ࢀ
, and ݃଴ is the 

gravitational acceleration at sea level. The thrust vector is linked to the acceleration command according to the 

conventional thrust-to-mass ratio ࢇ஼ைெெ ൌ ࢀ ݉Τ  relationship. 
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B. Non-linear Guidance Algorithms Development 

The goal of this paper is to present a set of targeting and real-time guidance algorithms for asteroid close-

proximity operations. Such algorithms are designed by combining some known results from optimal control theory 

as applied to the landing problem10,12and advancements in non-linear sliding control theory15. The sliding control 

approach to targeting requires a geometric understanding of the control problem. The idea of using sliding control 

modes for real-time guidance is rooted into employing “surfaces” to drive the dynamical system to the desired state. 
A sliding surface is defined as a linear combination of the state error and/or its derivative. Whenever the system 

state (position and velocity) is locked on the sliding surface, the dynamical system is tracking the desired reference 

signal with null error.  

Proper development of sliding-based guidance algorithms require the definition of a suitable guidance model 

which is presented next. 

 

1. Guidance model: Zero-Effort Miss (ZEM) and Zero-Effort Velocity (ZEV) errors 

The physical model employed to develop the guidance algorithm is a 3-DOF model similar to the one presented 

in the previous section (see Eq. (1)-(8)). However, the guidance model does not account for a mass variation. The 

equations can be synthetically represented as follows: 

 
ௗௗ௧ ௅࢘ ൌ  ௅ (10)࢜

 
ௗௗ௧ ௟࢜ ൌ ሻݐ௅ሺࢇ ൌ ௅࢘ሺࢍ ǡ ሻݐ ൅  ሻ (11)ݐ஼ைெெሺࢇ

Here, the vectorࢍሺ࢘௅ ǡ ሻݐ ൌ  ૛࣓ ൈ ௅࢜ ൅ ࣓ ൈ ࣓ ൈ ௅࢘ ൅ ߲ܸ Τࡸ߲࢘ ்
 represents all forces acting on the spacecraft 

(except for the thrust) whereas aCOMM is the acceleration command (i.e. thrust-to-mass ratio) that drives the 
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Figure 1.Free-body diagram representing the forces acting on the spacecraft in a body-fixed asteroid reference 

frame 
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spacecraft to the desired state. Eq. (10)-(11) can be integrated starting from knowledge of position and velocity at 

time t to formally determine position and velocity of the spacecraft at a specified final time tf: 

௙൯ݐ௅൫࢜  ൌ ሻݐ௅ሺ࢜ ൅ ׬ ൫ࢍሺ࢘௅ ǡ ߬ሻ ൅ ஼ைெெሺ߬ሻ൯݀߬௧೑௧ࢇ  (12) 

௙൯ݐ௅൫࢘  ൌ ሻݐ௅ሺ࢘ ൅ ௚௢ݐሻݐ௅ሺ࢜ ൅ ׬ ׬ ൫ࢍሺ࢘௅ ǡ ߬Ԣሻ ൅ ஼ைெெሺ߬Ԣሻ൯݀߬ᇱ݀߬௧೑ఛᇱ୲౜୲ࢇ  (13) 

Here tgo = tf – t is the time-to-go, i.e. the time required to reach the desired position (target) with the desired 

velocity. Next, we define the following quantities: 

 

Definition #1: Given the time t, we define the Zero-Effort Miss (ZEM) as the distance (vector) the spacecraft 

will miss the target if no acceleration command (guidance) is generated after t: 

ሻݐሺࡹࡱࢆ  ൌ ௅௙࢘ െ ஼ைெெሺ߬ሻࢇ            ௙൯ǡݐ௅൫࢘ ൌ ૙ǡ ߬ א ǡݐൣ  ௙൧ (14)ݐ

 

Definition #2: Given the time t, we define the Zero-Effort Velocity (ZEV) as the error in velocity at the final 

time, if no acceleration command (guidance) is generated after t, i.e. 

ሻݐሺࢂࡱࢆ  ൌ ௅௙࢜ െ ஼ைெெሺ߬ሻࢇ           ௙൯ǡݐ௅൫࢜ ൌ ૙ǡ ߬ א ǡݐൣ  ௙൧ (15)ݐ

 

Here, ࢘௅௙and ࢜௅௙ are the desired position and velocity at the final time. Both ࡹࡱࢆሺݐሻ and ࢂࡱࢆሺݐሻcan be 

explicitly expressed as functions of the current position, velocity and time-to-go by substituting Eq. (12, 13) with 

aCOMM= 0 into Eq.(14) and Eq.(15): 

ሻݐሺࢂࡱࢆ  ൌ ௅௙࢜ െ ሻݐ௅ሺ࢜ െ ׬ ௅࢘ሺࢍ ǡ ߬ሻ݀߬௧೑௧  (16)       

ሻݐሺࡹࡱࢆ  ൌ ௅௙࢘ െ ሻݐ௅ሺ࢘ െ ௚௢ݐሻݐ௅ሺ࢜ െ ׬ ׬ ௅࢘ሺࢍ ǡ ߬Ԣሻ݀߬ᇱ݀߬௧೑ఛᇱ୲౜୲  (17) 

 

2. Optimal guidance for lunar landing: Basic equations 

The basis of our algorithm development is the ability to generate an optimal guidance law as a function 

of ࡹࡱࢆand ࢂࡱࢆ. Indeed, given the actual spacecraft position and velocity, both quantities can be estimated on-line 

by the numerical integration of the (unperturbed) equations of motion as functions of the time-to-go and the targeted 

conditions. One of the key ingredients is the ability to obtain a closed loop guidance law that minimizes the overall 

guidance effort, i.e. a guidance law thatminimizes the overall acceleration command. The problem can be 

formulated as follows: 

 

Find the ࢇ஼ைெெ as a function of ࡹࡱࢆሺݐሻ and ࢂࡱࢆሺݐሻthat minimizes the following performance index: 

஼ைெெሻࢇሺܬ  ൌ ׬ ஼ைெெሺ߬ሻ݀߬௧೑௧ࢇ஼ைெெሺ߬ሻ்ࢇ  (18) 

Subject to Eq. (11, 12) as physical constraints, with initial conditions (at time t) r(t) and v(t) and final conditions 

(at time tf) rL and vL. 

 

The acceleration command is assumed to be unconstrained, i.e. the thrust generated by the propulsion system is 

unbounded.   The problem can be solved by either applying the Pontryagin Minimum Principle (PMP) to determine 

the necessary conditions for the existence of an optimal solution (Two-Point Boundary Value Problem, TPBVP) or 

by a direct application of calculus of variations (see appendix A).  It is found that the acceleration command is linear 

in time, i.e.: 

ሻݐ஼ைெெሺࢇ  ൌ ݐଵ࡭ െ  ଶ (19)࡭
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The constants A1 and A2 are determined by substituting aCOMM in Eq. (12)-(13). Finally, the optimal acceleration 

command can be expressed as a function of ZEM(t), ZEV(t) and tgo as follows: 

ሻݐ஼ைெெሺࢇ  ൌ ௞ೃ௧೒೚మ ሻݐሺࡹࡱࢆ ൅ ௞ೇ௧೒೚  ሻ (20)ݐሺࢂࡱࢆ

Where kR = 6, and kV = -2 are the optimal guidance gains (details of the derivation are presented in appendix A). 

 

The methodology employed to determine the optimal guidance law as a function of ࡹࡱࢆand ࢂࡱࢆ is very 

similar to the analysis presented by D’Souza13, who derived the optimal acceleration command for a power landing 

descent as a function of error in position (actual position minus target position), velocity (actual velocity minus 

target velocity) and time-to-go. Both formulations do not impose any constraints in term of maximum thrust or 

minimum altitude. Nevertheless, both algorithms are easy to implement and mechanize which may justify the 

attractiveness of the guidance approach.Numerical simulations of the closed-loop trajectories may be analyzed a-

posteriori to verify that both constraints are never violated or that the guidance algorithm works (i.e. guides the 

spacecraft to the target) even in the presence of thrust saturation. 

 

3. Sliding Control Theory 

The sliding control methodology is an elementary approach to robust control15. Intuitively, it is based on the 

observation that it is much easier to control non-linear and uncertain 1st order systems (i.e. described by 1st order 

differential equations) than nth-order systems (i.e. described by nth-order differential equations). Generally, if a 

transformation is found such that an nth-order problem can be replaced by a 1st order problem, it can be shown that, 

for the transformed problem, perfect performance can be in principle achieved in presence of parameter inaccuracy. 

As a drawback, such performance is generally obtained at the price of higher control activity. 

Consider the following single-input nth-order dynamical system: 

 
ௗ೙ௗ௧೙ ݔ ൌ ݂ሺ࢞ሻ ൅ ܾሺ࢞ሻ(21) ݑ 

Here, x is the scalar output, u is the control variable and ࢞ ൌ ǡݔൣ ሶݔ ǡ ǥ Ǥ Ǥ ǡ ࢀሺ௡ሻ൧ݔ
 is the state vector. Both ݂ሺ࢞ሻ, 

which describes the non-linear system dynamics, and the control gain ܾሺ࢞ሻ are not exactly known. Assuming that 

both ݂ሺ࢞ሻ and ܾሺ࢞ሻ have a known upper bound, the sliding control goal is to get the state ࢞ to track the desired state ࢊ࢞ ൌ ௗǡݔൣ ሶௗݔ ǡ ǥ Ǥ Ǥ ǡ ࢀௗሺ௡ሻ൧ݔ
 in presence of model uncertainties.  The time varying sliding surface is introduced as a 

function of the tracking error ࢞෥ ൌ ࢞ െ  :by the following scalar equation ࢊ࢞

ǡ࢞ሺݏ  ሻݐ ൌ ሺ ௗௗ௧ ൅ ෥࢞ሻ௡ିଵߣ ൌ Ͳ (22) 

For example, if n = 2 we obtain: 

ǡ࢞ሺݏ  ሻݐ ൌ ෥ሶ࢞ ൅ ෥࢞ߣ ൌ Ͳ (23) 

Importantly, Ȝ is a strictly positive parameter. With the definitions in Eq. (22) and Eq. (23), the tracking problem 

is reduced to the problem of forcing the dynamical system in Eq. (21) to remain on the time-varying sliding surface. 

Clearly, tracking an n-dimensional vector ࢊ࢞ has been reduced to the problem of keeping the scalar sliding surface 

to zero, i.e. the problem has been reduced to a 1st order stabilization problem in s.  The simplified 1st order 

stabilization problem can be now achieved by selecting a control law such that outside the sliding surface the 

following is satisfied: 

 
ଵଶ ௗௗ௧ ଶݏ ൑ െߟȁݏȁ (24) 

Here, Ș is a strictly positive constant. Eq. (24), also called the “sliding condition”, explicitly states that the 
distance from the sliding surface decreases along all system trajectories. Generally, constructing a control law that 

satisfies the sliding condition is fairly straightforward. For example, using the Lyapunov direct method one can 

select a candidate Lyapunov function as follows: 
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 ܸሺݏሻ ൌ ଵଶ  (25) ݏ்ݏ

With ܸሺͲሻ ൌ Ͳ and ܸሺݏሻ ൐ Ͳfor ݏ ൐ Ͳ. By taking the derivative of Eq. (25), it is easily concluded that the 

sliding condition (Eq. (24)) is satisfied. The control law is generally obtained by substituting the sliding control 

definition, Eq. (23), and the system dynamical equations, Eq. (21), into Eq. (24).  

C. Optimal Sliding Guidance (OSG) Design  

The mathematical expression of the acceleration command is fairly simple and may be attractive for direct 

implementation on the on-board guidance computer. However, the optimal guidance, as derived, does not account 

for unmodeled disturbances which may negatively affect its performance. Here, the overall goal is to integrate a 

non-linear sliding control mode into the optimal guidance law to produce a robust, non-linear guidance algorithm. 

To implement the sliding control approach into the optimal guidance framework and derive the Optimal Sliding 

Guidance (OSG) equations, we begin by defining a sliding surface (vector) as a function of ZEM and ZEV as 

follows: 

࢙  ൌ ࢂࡱࢆ ൅  (26) ࡹࡱࢆሚߣ

Clearly, the surface goes to the null value as ZEM and ZEV both approach zero. Subsequently, the idea is to 

construct the guidance law in such a way that the system is always driven to the sliding surface. Therefore, we 

consider the dynamics of the sliding surface, i.e. take the derivative of Eq.(21) and substitute the expressions for the 

derivative of ZEM and ZEV: 

 
ௗௗ௧ ࢙ ൌ ௗௗ௧ ࢂࡱࢆ ൅ ሚߣ ௗௗ௧ ࡹࡱࢆ ൌ െሺͳ ൅ ஼ைெெࢇ௚௢ሻݐሚߣ  (27) 

 

If the optimal aCOMM,as derived above, is substituted into Eq.(28), we obtain: 

 

 
ௗௗ௧ ࢙ ൌ െ ൤൫ͳ ൅ ௚௢൯ݐሚߣ ௞ೇ௧೒೚ ࢂࡱࢆ ൅ ሺͳ ൅ ௚௢ሻݐሚߣ ௞ೃ௧೒೚మ ൨ࡹࡱࢆ ൌ െܭሺݐሻ൫ࢂࡱࢆ ൅ ൯ࡹࡱࢆሚߣ ൌ െܭሺݐሻ(28) ࢙ 

The following relationships between the parameters can be easily found: 

ሻݐሺܭ  ൌ ሺͳ ൅ ௚௢ሻݐሚߣ ௞ೇ௧೒೚ (29)  

ሻݐሺܭሚߣ  ൌ ሺͳ ൅ ௚௢ሻݐሚߣ ௞ೃ௧೒೚మ  (30) 

ሚߣ  ൌ ௞ೃ௞ೇ௧೒೚ (31) 

The sliding surface behaves as a non-linear first order system and its dynamics depend explicitly on the time-to-

go or ݐி െ  Consequently, the system has the properties to reach the surface in a finite time which occurs exactly .ݐ

when ݐி ൌ  or at the landing point. Thus the surface is reached for the first time at the landing point and chattering ݐ

is avoided (see Appendix B for a detailed analysis of the sliding surface dynamics). The sliding mode is 

incorporated into the optimal guidance law to guarantee that the sliding surface behaves as follows: 

 

 
ௗௗ௧ ࢙ ൌ െܭሺݐሻ࢙ െ ஍௧೒೚  ሻ (32)࢙ሺ݊݃݅ݏ

 

Here, ĭ = const>0. The OSG equations are subsequently determined: 
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ሻݐ஼ைெெሺࢇ  ൌ ௞ೃ௧೒೚మ ሻݐሺࡹࡱࢆ ൅ ௞ೇ௧೒೚ ሻݐሺࢂࡱࢆ െ ஍௧೒೚  ሻ (33)࢙ሺ݊݃݅ݏ

The Lyapunov’s second method is now employed to show that the OSG is globally stable and robust against 

perturbations. Consider the following quadratic function as a candidate Lyapunov function: 

 ܸ ൌ ଵଶ ݏ்ݏ ൌ ଵଶ ൫ࢂࡱࢆ ൅ ࢂࡱࢆ൯்ሺࡹࡱࢆሚߣ ൅  ሻ (34)ࡹࡱࢆሚߣ

Differentiating with respect to time, we obtain: 

 
ௗௗ௧ ܸ ൌ ்࢙ ௗௗ௧ ࢙ ൌ ்࢙ ൬ ௗௗ௧ ࢂࡱࢆ ൅ ௞ೇ௞ೃ௧೒೚ ௗௗ௧  ൰ (35)ࡹࡱࢆ

Inserting the expressions for the derivative of ZEM and ZEV: 

 
ௗௗ௧ ܸ ൌ ்࢙ ௗௗ௧ ࢙ ൌ ்࢙ ቆെࢇ஼ைெெ ൅ ሻݐሺ࢖ െ ௞ೃ௞ೇ ൫ࢇ஼ைெெ െ ሻ൯ቇݐሺ࢖ ൌ  

 ൌ ்࢙  ቆെ ቀ௞ೃା௞ೇ௞ೇ ቁ ஼ைெெࢇ ൅ ቀ௞ೃା௞ೇ௞ೇ ቁ ሻቇݐሺ࢖ ൌ   

 ൌ ்࢙ ൭െ ቀ௞ೃା௞ೇ௞ೇ ቁ ቆ ௞ೃ௧೒೚మ ሻݐሺࡹࡱࢆ ൅ ௞ೇ௧೒೚ ሻݐሺࢂࡱࢆ െ ஍௧೒೚ ሻቇ࢙ሺ݊݃݅ݏ ൅ ቀ௞ೃା௞ೇ௞ೇ ቁ ሻ൱ݐሺ࢖ ൌ 

 ൌ ்࢙ ൭െ ൬௞ೃା௞ೇ௧೒೚ ൰ ቆࢂࡱࢆሺݐሻ ൅ ௞ೃ௞ೇ௧೒೚ ሻቇݐሺࡹࡱࢆ െ ቀ௞ೃା௞ೇ௞ೃ ቁ ቆെ ஍௧೒೚ ሻ࢙ሺ݊݃݅ݏ ൅ ሻቇ൱ݐሺ࢖ ൌ 

 ൌ ൬௞ೃା௞ೇ௧೒೚ ൰ ்࢙࢙ ൅ ቀ௞ೃା௞ೇ௞ೃ ቁ ቆെ ஍௧೒೚ ሻ࢙ሺ݊݃݅ݏ ൅  ሻቇ (36)ݐሺ࢖

Now, substituting kR = 6 and kV = -2 and assuming that ĭ > ||p|| we get: 

 
ௗௗ௧ ܸ ൌ െ ସ௧೒೚ ԡ࢙ԡଶ െ ்࢙ʹ ቆ ஍௧೒೚ ሻ࢙ሺ݊݃݅ݏ ൅ ሻቇݐሺ࢖ ൌ െ ଶ௧೒೚ ൫ʹԡ࢙ԡଶ ൅ Ȱ݊݃݅ݏ்࢙ሺ࢙ሻ ൅ ሻ൯ݐሺ࢖்࢙ ൑ Ͳ (37) 

Therefore, Lyapunov function’s derivative is shown to be negative definite. Moreover, the selected Lyapunov 
function (Eq.(35) is definite positive and radially unbounded. Finally, ܸሺ࢙ሻ is shown to be decrescent (see Appendix 

C). All the above conditions ensure global stability for the proposed OSG (See Appendix C for a formal statement of 

the theorem). 

 

III. Guidance Implementation and Simulations 

A.  OSG Implementation 
Figure 2 shows the schematic of a possible GNC architecture hosting the proposed guidance algorithm. The next 

generation of robotic spacecraft for autonomous close-proximity operations around asteroids will have the ability to 

autonomously perform navigation and guidance functions including landing site selection and obstacle detection and 

avoidance. Position and velocity determination comes from filters capable of processing optical navigation data (e.g. 

camera and LIDAR) to correctly estimate the relative position and velocity of the spacecraft around the asteroid. 

Attitude is determined using a combination of Inertial Measurement Unit (IMU) and Star Trackers. Position and 

velocity are fed to the guidance module which implements the OSG logic to determine the three components of the 

acceleration command with respect to the body-fixed, asteroid-centered reference frame. In the configuration shown 
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in Fig. 2, it is assumed that the guidance and attitude functions are independent. More specifically, it is assumed that 

the only function of the attitude module is to maintain the body-fixed spacecraft reference frame aligned with the 

asteroid-centered frame. In this case, the guidance algorithm can generate three independent acceleration commands 

along the asteroid fixed directions. 

The thrust vector is then quantized and limited to create the commanded thrust T
C

as follows: 

 

஼ሺ݅ሻࢀ ൌ ቐ ௠ܶ௔௫ ஼ሺ݅ሻࢀ  ݂݅                       ൐ ௧ܶ௛௥௘௦௛௢௟ௗͲ    ݂݅ ௧ܶ௛௥௘௦௛௢௟ௗ ൏ ஼ሺ݅ሻࢀ ൏ ௧ܶ௛௥௘௦௛௢௟ௗെ ௠ܶ௔௫ ஼ሺ݅ሻࢀ  ݂݅                       ൏ െ ௧ܶ௛௥௘௦௛௢௟ௗቑ ݅ ݎ݋݂   ൌ ͳǡʹǡ͵    (38) 

 

B.  OSG Performance Analysis 

The OSG algorithm is shown to theoretically guide the spacecraft to any desired state around the asteroid. The 

target state is defined as function of the close proximity operations required to accomplish a specific mission (e.g. 

landing, hovering). To fully test the ability of the algorithm to execute the assigned tasks, a realistic simulation 

environment describing the guided spacecraft dynamics around a selected asteroid of our choice is defined and 

implemented in MATLAB®. The simulation environment describes the 3-D spacecraft motion in an asteroid body-

fixed reference frame (see Eq. (1)-(9)). Moreover, the following modeling assumptions have been considered: 

 

1. The asteroid is assumed to wobble around its axis with a known nutation angle and spin rate. 

2. The asteroid parameters (spin rate, nutation angle, density and dimensions) are assumed to be known. 

3. The spacecraft thrusters have a response to the guidance signal described by a first order dynamicswith a 

known time constant. 

4. Mass flow rate errors are statistical in nature and modeled with a uniform distribution. 

5. Sensor errors are assumed to be described by a Gaussian distribution with a known standard deviation. 

Acceleration Command 

Z-direction

Acceleration Command 

Y-direction

Acceleration Command 

X-direction

Guidance Module

OSG Algorithm

Thrust 

Quantization 

Scheme

Thruster Allocation Logic

Translational Thrusters

Thruster Allocation Logic

Attitude Thrusters

Autonomous Navigation

Attitude Determination

Attitude Control

Thrusters Activation Module

State Estimates:

- Asteroid-Centered Position

- Asteroid-Centered Velocity

Quaternions

Attitude

Command

Pulsed 

Acceleration

Command

Navigation Module

Navigation Sensors:

- Cameras

- LIDAR

- IMU

- Star Tracker

 
Figure 2.Block diagram representing the integration of the OSG algorithm into the spacecraft GNC subsystem 

for asteroid close-proximity operations 
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6. Gravity field is computed assuming the asteroid is described by a tri-axial ellipsoid of known dimensions. 

The known gravity field is perturbed by a Gaussian noise with a 10% standard deviation. 

 

A set of Monte Carlo simulations have been executed to test the performance of the OGS algorithm in close-

proximity operations scenarios typically planned during asteroid exploration missions. More specifically, we 

considered 1) a powered equatorial soft landing, where the spacecraft lands on a specified equatorial site of the 

selected asteroid and 2) a TAG maneuver, where the spacecraft touches the asteroid surface for a very short time. 

TAGs may be generally required to acquire an asteroid sample16.The guided maneuvers are assumed to be executed 

white operating around 1999 RQ36 “Bennu”. Table 1 shows the nominal asteroid parameters describing the 

environment around Bennu. Table 2 shows the spacecraft parameters employed in the Monte Carlo simulations. 

Table 3 show the spacecraft initial conditions (the spacecraft is assumed to be in a terminator orbit) and final 

equatorial target state. 

 

 

1. OSG AsteroidSoft Landing 

In the first set of Monte Carlo tests for the OSG algorithm, we considered a scenario where the spacecraft 

executes a guided autonomous landing in the equatorial region of Bennu. The spacecraft is assumed to leave a 

nominal terminator orbit and autonomously employs OSG to navigate toward the desired state. A waypoint 

navigation approach is employed. More specifically, the spacecraft targets an initial state (waypoint) located at an 

intermediate position between the initial state and final target state. The OSG targets the waypoint first and, once 

achieved it within a specified tolerance switches to the final target as desired target. Table 4 shows the initial, 

intermediate waypoint and final state.    

A set of 1000 Monte Carlo simulations has been executed to analyze the guidance performances. Importantly, 

the spacecraft’s mass is varied randomly between its nominal value and 10% less than this nominal value (uniform 

Table 1: 1999 RQ36 “Bennu” Nominal parameters 

Asteroid Parameter Units Values 

c-semi-axis  m 250 

b-semi-axis  m 287 

a-semi-axis  m 350 

angle between z-axis and angular velocity 90 degrees 

Density   kg/m^3 1400 

Magnitude of angular velocity Radians / s 4.06e-4 

Mean Acceleration due to solar radiation m/s^2 1.11963e-7 

Standard Deviation Acceleration due to solar 

radiation 

m/s^2 3.00000e-8 

 

Table 2: Spacecraft Nominal Parameters 

Spacecraft Parameter Units Values 

Mass Kg 750 

Engine mass flow rate variation Kg/sec 10% 

Engine actuator delay Sec 0.25 

Estimation errors (position and velocity) meters , m/sec 5% 

 

Table 3: Initial and Target States 

Trajectory Parameter Units Values 

Position where spacecraft leaves orbit m (1500, 0, 0) + U(-100,100) 

Velocity where spacecraft leaves orbit m/s (-0.04, -0.047, -0.079) +U(-0.02, 0.02) 

Landing Position m (0, -287,0) 

Landing Velocity m/s (0, 0, 0) 
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distribution). The asteroid’s nutation angle, density, and angular velocity are also varied +/- 10% from their nominal 

values (uniform distribution). The latter reflects possible modeling errors in the measurement of the asteroid’s 
dynamics. To further stress the proposed OSG algorithm we increased the mean and standard deviation of the 

acceleration due to solar radiation pressure to 0.0001 m/s2 and 0.00001 m/s2 respectively. A statistical model that 

accounts for navigation error have been considered (5% standard deviation, 1-sigma, see Table 2). The guidance 

algorithm has been implemented and pulsed with 10 Hz frequency. 

 

Figure 3 shows the results of the OSG-guided Monte Carlo simulations, reporting 3-D trajectories, the landing error 

ellipse (1-sigma) and the statistics associated with the landing errors. OSG is shown to perform very well in spite of 

the uncertain environment. Position and velocity errors are shown to be extremely low, which is an indication of the 

ability of the guidance algorithm to drive the spacecraft to the desired target with pinpoint accuracy. 

 

 

Table 4: Initial and Target States 

Leave Orbit 

Position (m) Velocity (m/s) Time of flight (s) 

(1500, 0, 0) + U(-100,100) (-0.04, -0.047, -0.079) +U(-0.02, 0.02) 4000 

First Waypoint 

Position (m) Velocity (m/s) Time of flight (s) 

(150, -350, 0) (0.05, 0.05, 0.0) 1000 

Landing 

Position (m) Velocity (m/s) Time of flight (s) 

(0, -287, 0) (0, 0, 0) N/A 

 

 
Figure 3.Monte Carlo simulations results. Top Left: 3-D guided trajectories. Top Right: Landing spots and 

landing error ellipse (1-sigma). Bottom: Monte Carlo statistics 
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2. OSG for TAG Maneuvers 

The second set of Monte Carlo simulations has been implemented to simulate an autonomous TAG maneuver 

similar to the one designed for the upcoming NASA OSIRIS REx asteroid sample return mission. Touch-And-Go 

(TAG) maneuvers have been specifically conceived to touch the asteroid surface for a very short time required to 

collect a sample via the acquisition mechanism. Importantly, the trajectory includes a final unpowered terminal 

descent necessary to minimize sample contamination. The OSIRIS REx Flight Dynamics Team designed a set of 

three open-loop maneuvers aiming at satisfying the currently projected landing error requirement (< 25 meters). The 

sequence includes a) an initial burn required to leave the terminator (parking) orbit, b) an intermediate burn 

(checkpoint) at 125m altitude that target a point approximately 30 meters above the desired site with a vertical 

(descent) velocity less than 10 cm/sec and c) a final burn (matchpoint) that matches the asteroid angular velocity and 

initiates the vertical descent toward the asteroid surface. Importantly, thrusters are activated after the sample 

acquisition to escape the asteroid surface. The TAG maneuver sequence is designed on the ground and command 

uploaded after careful testing in a comprehensive simulation environment. Nevertheless, a limited level of autonomy 

is implemented on-board16.Indeed, the on-board GNC LIDAR is activated for asteroid limb detection which 

provides range-to-go information and altitude measurements. Range-to-go and one single altitude sample are fed to 

an algorithm that adjusts burn magnitude, direction and timing to reduce further the TAG error ellipse16. 

 

 

 

 

 

A similar a TAG maneuver scenario around Bennu has been implemented in our simulation environment to test 

the proposed guidance algorithm. In this case OSG is designed to target a set of two waypoints (checkpoint and 

matchpoint) defined to implement a TAG sequence for an equatorial landing. Table 5 shows the initial, intermediate 

and final target states. Importantly, the two intermediate waypoints have been designed such that the waypoint prior 

to the landing is located 30m above the intended sampling site. Once the 30m altitude is achieved, the spacecraft is 

allowed to fall toward the surface in an un-powered fashion. Note that the waypoint is selected to be not exactly 

above the desired landing point but somewhat offset to allow for drift caused by the asteroid’s rotation and the solar 
radiation pressure (estimated via modeling).  

 

 

Table 5: TAG waypoints 

Leave Orbit 

Position (m) Velocity (m/s) Time of flight (s) 

(1500, 0, 0) + U(-100,100) (-0.04, -0.047, -0.079) +U(-0.02, 

0.02) 

4000 

First Waypoint 

Position (m) Velocity (m/s) Time of flight (s) 

(150, -350, 0) (0.0, 0.0, 0.0) 800 

Second Waypoint 

Position (m) Velocity (m/s) Time of flight (s) 

(12, -317, 8) (0.0, 0.0, 0.0) Unconstrained 

Landing 

Position (m) Velocity (m/s) Time of flight (s) 

(0, -287, 0) (0, 0, 0) N/A 
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A set of 1000 Monte Carlo simulations has been executed to analyze the guidance performances. As in the precious 

case, the spacecraft’s mass is varied randomly between its nominal value and 10% less than this nominal value 
(uniform distribution). The asteroid’s nutation angle, density, and angular velocity are also varied +/- 10% from 

their nominal values (uniform distribution). The latter reflects possible modeling errors in the measurement of the 

asteroid’s dynamics. To further stress the proposed OSG algorithm we increased the mean and standard deviation of 

the acceleration due to solar radiation pressure to 0.0001 m/s2 and 0.00001 m/s2 respectively. A statistical model that 

accounts for navigation error have been considered (5% standard deviation, 1-sigma, see Table 2). The guidance 

algorithm has been implemented and pulsed with 1 Hz frequency. Figure 4 shows the 3-D Monte Carlo guided 

trajectories, the sampling error ellipse (1-sigma) and the histograms for the position and velocity errors. Table 6 

reports details of the sampling error statistics. Figure 5 reports selected telemetry data for the case where the engine 

actuator delay time constant is 0s. This is equivalent to viewing the commanded thrust as opposite to the real thrust 

delayed by the time-response of the thruster. 

The results indicate that the proposed OSG algorithm is capable of implementing pinpoint accuracy (<1m, 1-

sigma) way beyond conventional open-loop TAG requirements. 

 

 

 

 

Table 6: TAG sampling statistics 

 

 
Figure 4. Monte Carlo simulations for the TAG maneuver. Top Left: 3-D guided trajectories. Top Right: TAG 

surface sampling spots and TAG error ellipse (1-sigma). Bottom Left: Histogram of the position error norm. 

Bottom Right: Histogram of the velocity error norm 
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IV. Conclusions and Future Efforts 

In this paper, the theoretical development of a class of non-linear guidance algorithm for autonomous asteroid 

close-proximity operations has been discussed. The guidance design approach is based on a combination of optimal 

control theory and sliding control theory, yielding what has been named Optimal Sliding Guidance (OSG). Indeed, 

the generalized ZEM/ZEV feedback guidance is augmented by a sliding mode to ensure global stability. 

Importantly, the guidance law is naturally derived from the definition of an appropriate sliding surface that includes 

a combination of ZEM and ZEV. OSG has been tested in a set of realistic scenarios representing situations typically 

encounters in close-proximity operations around small bodies in general and asteroids in particular. The guidance 

algorithm is shown to perform well in a pulsed mode achieving pinpoint accuracy. Importantly, such class of 

algorithms may be functional to future mission where stringent sampling or landing requirements are required. 

Integration and testing of OSG with navigation algorithms (e.g. optical and LIDAR-based navigation) is currently 

underway. 

 

 

 

V. Appendix 

A.  Derivation of the ZEM/ZEV guidance law from Calculus of Variations 

In this section, we apply optimal control theory to derive the optimal guidance equations (OGL, Eq. (21)). The 

optimal control problem can be formulated as follows: 

 

Find the spacecraft acceleration command aCOMM(t) that minimizes the performance index J 

 
Figure 5.Selected telemetry data for the case where the engine actuator delay time constant is 0s (acceleration 

command) 
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ܬ  ൌ ଵଶ ׬ ܽ஼ைெெ் ሺ߬ሻܽ஼ைெெሺ߬ሻ௧೑௧  (A1) 

Subject to 

 ൜ ሶ࢘ ௅ ൌ ሶ௅ݒ௅࢜ ൌ ܽ௅ ൌ ݃ሺݎ௅ ǡ ሻݐ ൅ ܽ஼ைெெሺݐሻ (A2) 

With boundary conditions described as 

 ൞ ಽ೑࢜൫௧೑൯ୀࡸ࢜ಽ࢜ሺ௧ሻୀࡸ࢜ಽ೑࢘ಽ൫௧೑൯ୀ࢘ಽ࢘ಽሺ௧ሻୀ࢘
 (A3) 

Here, we apply calculus of variations to determine the necessary conditions for an extremal. Define the 

admissible functions as follows: 

 ቐ ǡݐ௅ሺ࢘ ሻߙ ൌ ሻݐ௅ሺ࢘ ൅ ǡݐ௅ሺ࢜ሻݐሺࢎߙ  ሻߙ ൌ ሻݐ௅ሺ࢜  ൅ ሶࢎߙ  ሺݐሻࢇ௅ሺݐǡ ሻߙ ൌ ሻݐ஼ைெெሺࢇ  ൅ ሷࢎߙ  ሺݐሻ (A4) 

Where 

 ൞ࢎሺݐሻ ൌ ௙൯ݐ൫ࢎ ൌ  ૙ࢎሶ ሺݐሻ ൌ ሶࢎ ൫ݐ௙൯ ൌ ૙ࢎሷ ሺݐሻ ൌ ሷࢎ ൫ݐ௙൯ ൌ ૙  (A5) 

The cost function is now a function of Į 

ሻߙሺܬ  ൌ  ଵଶ ׬ ஼ைெெ்ࢇ ሺ߬ሻࢇ஼ைெெሺ߬ሻ݀߬௧೑௧ ൅ ߙ  ׬ ஼ைெெ்ࢇ ሺ߬ሻࢎሷ ሺ߬ሻ݀߬ ൅ ఈమଶ ׬ ሷࢎ ்ሺ߬ሻࢎሷ ሺ߬ሻ݀߬௧೑௧௧೑௧  (A6) 

The necessary condition for J(Į) to be a minimum is written as 

 
ௗ௃ௗఈቚఈୀ଴ ൌ ׬  ஼ைெெ்ࢇ ሺ߬ሻࢎሷ ሺ߬ሻ݀߬ ൌ Ͳ௧೑௧  (A7) 

Integrating by parts twice we obtain: 

׬  ஼ைெெ்ࢇ ஼ைெெ݀߬ࢇ ൌ  െ ௗௗ௧ ஼ைெெ்ࢇ ሺ߬ሻࢎሶ ሺ߬ሻቚ௧௧೑ ൅ ׬ ௗమௗఛమ ஼ைெெ்ࢇ ሺ߬ሻࢎሺ߬ሻ݀߬௧೑௧௧೑௧ ൌ ׬  ௗమௗఛమ ஼ைெெ்ࢇ ሺ߬ሻࢎሺ߬ሻ݀߬௧೑௧  (A8) 

Consequently: 

 
ௗ௃ௗఈ ൌ Ͳ    ൌ൐ ׬ ௗమௗఛమ ஼ைெெ்ࢇ ሺ߬ሻࢎሺ߬ሻ݀߬ ൌ Ͳ௧೑௧  (A9) 

We now use the fundamental lemma of calculus of variations 

 
ௗమௗ௧మ ஼ைெெ்ࢇ ൌ ૙்     ൌ൐ ሻݐ஼ைெெሺࢇ ൌ ݐଵ࡭  െ  ଶ (A10)࡭

To express the acceleration command as a function of ZEM and ZEV, we need to determined ࡭ଵand ࡭ଶ.  Eq. 

(A10) is replaced in Eq. (A3) and the equations of motion are integrated between ݐand ݐ௙: 
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ሻݐ௅ሺ࢜  ൌ ௅೑࢜  െ భଶ࡭  ൫ݐ௙ ൅ ௚௢ݐ൯ݐ ൅ ௚௢ݐଶ࡭ ൅ ׬ ௅࢘ሺࢍ ǡ ߬ሻ݀߬௧೑௧  (A11) 

ሻݐ௅ሺ࢘  ൌ ௅೑࢘  െ ௚௢ݐሻݐ௅ሺ࢜ െ భ଺࡭ ൫ʹݐ ൅ ௚௢ଶݐ௙൯ݐ ൅ మଶ࡭ ௚௢ଶݐ െ ׬ ׬ ௅࢘ሺࢍ ǡ ߬Ԣሻ݀߬ᇱ݀߬௧೑ఛᇱ୲౜୲  (A12) 

Eq. (A11) and Eq. (A12) can be inverted to determine ࡭ଵand ࡭ଶ.  Remembering the definition of ZEM and ZEV 

(Eq. (17-18)) we have: 

ଵ࡭  ൌ െ ଵଶ௧೒೚య ሺࡹࡱࢆ െ ଵଶ  ሻ (A13)ࢂࡱࢆ௚௢ݐ

ଶ࡭  ൌ  െ ଺௧೒೚య ሾ൫ݐ ൅ ࡹࡱࢆ௙൯ݐ െ ଵଷ ݐʹ௚௢൫ݐ ൅  ሿ (A14)ࢂࡱࢆ௙൯ݐ

The OGL, i.e. the optimal acceleration command is determined by replacing Eq. (A13) and Eq. (A14) into Eq. 

(A10): 

ሻݐ஼ைெெሺࢇ ൌ  െ ͳʹݐ௚௢ଷ ൬ࡹࡱࢆ െ ͳʹ ൰ࢂࡱࢆ௚௢ݐ ݐ ൅ ͸ݐ௚௢ଷ ൤൫ݐ ൅ ࡹࡱࢆ௙൯ݐ െ ͳ͵ ݐʹ௚௢൫ݐ ൅ ൨ࢂࡱࢆ௙൯ݐ ൌ  
 ൌ െ ଶ௧೒೚ ࢂࡱࢆ ൅ ଺௧೒೚మ  (A15) ࡹࡱࢆ

Finally, setting ݇௩ ൌ െʹand ݇ோ ൌ ͸, we get: 

ሻݐ஼ைெெሺࢇ  ൌ  ௞ೃ௧೒೚మ ሻݐሺࡹࡱࢆ ൅  ௞ೡ௧೒೚  ሻ (A16)ݐሺࢂࡱࢆ

B.  Sliding Surface Non-linear Dynamics 

Consider a sliding surface with the following non-linear, first-order dynamics (see also Eq.(29)): 

 
ௗௗ௧ ࢙ ൌ െܭሺݐሻ࢙ ൌ െ ସ௧೒೚ ࢙ ൌ െ ସ௧೒೚  (B1) ࢙

By using Eq.(29), Eq.(30) and Eq.(31) and remembering that kR = 6 and kV = -2, Eq.(B1) becomes an explicit 

function of the time-to-go or ݐி െ  :ݐ

 
ௗௗ௧ ࢙ ൌ െ ସ௧೒೚ ࢙ ൌ െ ସ௧ಷି௧  (B2) ࢙

Here, we show that the system reaches the sliding surface in a finite time and exactly when ݐ ൌ  ி. Assume thatݐ

the initial conditions are stated as ሺͲሻ ൌ  :૙ . By applying the separation of variables we obtain࢙

 
ௗ௦೔௦೔ ൌ െ ସௗ௧௧ಷି௧ (B3) 

Where i = 1,2,3 are the components of the sliding surface vector.  Eq.(B3) can be integrated to obtain: 

௜ሻݏሺ݃݋݈  ൌ Ͷ݈݃݋ሺݐி െ ሻݐ ൅  ௜ (B4)ܥ

By imposing the initial conditions and taking the exponential of both sides, the solution becomes: 

ሻݐ௜ሺݏ  ൌ ிݐ௜଴ሺݏ െ  ሻସ (B5)ݐ

ሻݐሺ࢙  ൌ ிݐ૙ሺ࢙ െ  ሻସ (B6)ݐ

The derivative of the sliding surface vector can be computed explicitly: 
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ሶ࢙  ሺݐሻ ൌ Ͷ࢙૙ሺݐி െ  ሻଷ (B7)ݐ

Eq.(B5)-(B7) are analytical expressions for the sliding surface vector and its derivative. Since the exponent of 

the RHS of both Eq.(B6) and Eq.(B7) is greater than zero, the surface will approach zero as ݐ ՜  ி . Moreݐ

specifically, the surface is reached exactly when  ݐ ൌ  . ிݐ

C.  Global Stability Analysis of the OSG 

 

ReferencesTo analyze the global stability of the proposed OSG algorithm, we rely on the following Lyapunov’s 
stability theorem [21]: 

 

Uniform Global Asymptotic Stability for Non-Autonomous Systems: If in the whole state space, there exists a 

function  ܸሺ࢙ǡ  :ሻ with continuous partial derivatives such that the following conditions are satisfiedݐ

1. ܸሺ࢙ǡ  ሻ is positive definiteݐ

2. ሶܸ ሺ࢙ǡ  ሻ is negative definiteݐ

3. ܸሺ࢙ǡ  ሻ is decrescentݐ

4. ܸሺ࢙ǡ  ሻ is radially boundedݐ

Then the origin is uniformly globally asymptotically stable.(For the proof, see Slotine and Li [21] page 107). 

 

In our case, the system reaches the origin in a finite time ݐி and no switching (and consequently no chattering) is 

possible during the motion, i.e. the sliding surface is reached for the first time at the landing point (end of the flight). 

One of the key point is to show that the selected Lyapunov function (Eq.(34)) is decrescent.  Using the analytical 

result obtained in Appendix B, it is possible to obtain an analytical expression for both the selected Lyapunov 

function and its derivative. Inserting Eq.(B6)-(B7) into Eq.(34) and Eq.(37) and ignoring the perturbations, we 

obtain: 

 ܸ ൌ ଵଶ ԡ࢙૙ԡଶሺݐி െ  ሻ଼ (C1)ݐ

ሶܸ ൌ െ Ͷݐி െ ݐ ԡ࢙૙ԡଶሺݐி െ ሻ଼Ȅݐ ிݐʹ െ ݐ Ȱሺȁݏଵ଴ȁ ൅ ȁݏଶ଴ȁ ൅ ȁݏଷ଴ȁሻሺݐி െ ሻସݐ ൌ 

 ൌ െͶԡ࢙૙ԡଶሺݐி െ ሻ଻Ȅݐ ʹȰሺȁݏଵ଴ȁ ൅ ȁݏଶ଴ȁ ൅ ȁݏଷ଴ȁሻሺݐி െ  ሻଷ (C2)ݐ

The Lyapunov function is obviously decrescent with time and goes to zero as ݐ ՜  ி . However, the statementݐ

can be formally proven by finding a uniform function that bounds ሶܸ  : 
 ሶܸ ൌ െͶԡ࢙૙ԡଶሺݐி െ ሻ଻Ȅݐ ʹȰሺȁݏଵ଴ȁ ൅ ȁݏଶ଴ȁ ൅ ȁݏଷ଴ȁሻሺݐி െ ሻଷݐ ൑ െͶԡ࢙૙ԡଶሺݐி െ  ሻ଻ (C3)ݐ

The uniform global asymptotic stability follows with ܹሺ࢙ሻ ൌ Ͷԡ࢙૙ԡଶሺݐி െ  ሻ଻ݐ
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