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2 

 

1 Introduction 25 

The production and consumption of wild game birds has become a major industry 26 

in the UK. Since the beginning of the 21st century, the wild game sector has 27 

evolved from what has been viewed, historically, as a minority sport to a food 28 

production industry in its own right (ADAS, 2005). Promotion by celebrity chefs, 29 

better marketing and increasing use of farmers’ markets, independent butchers 30 

and mail order supplies have meant that more people can now access, and are 31 

buying and eating, wild game than ever before. Concurrently, the low-fat, healthy-32 

eating properties of game-bird meat and its free-range, ‘natural’ reputation have 33 

made it popular with today’s consumers both at home and when eating out. 34 

Wild game birds, like other livestock species, are known to carry pathogens that 35 

can adversely affect the health of humans. Unlike farmed animals, the habitat and 36 

dietary and migration habits of game birds can influence their role in the 37 

international spread of zoonotic infection (Abulreesh, 2007; Hubalek, 2004; 38 

Kobayashi, et al., 2007). Although their relatively low population density and more 39 

mature age at slaughter mitigate against high-level carriage of foodborne bacterial 40 

pathogens, birds carrying pathogenic bacteria in their intestines can pose a direct 41 

risk of human infection via consumption of undercooked meat and can also 42 

disseminate pathogens into the food processing environment (EFSA, 2012a).  43 

The slaughter process for game meat is less controlled than for farmed livestock 44 

species, such as pigs, poultry and cattle, where commercial production is governed 45 

by stringent food hygiene regulations. The microbiological condition of shot game 46 

birds can be compromised by the conditions of primary production. Location of 47 

shot within the carcass, evisceration, handling hygiene and maintenance of the 48 
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cold chain can all affect the spread and proliferation of contaminating organisms 49 

within game meat (Mead & Scott, 1997). Removal of the viscera is normal practice 50 

in the processing of game birds and current EC regulations (853/2004 Annex 111) 51 

state that evisceration must be carried out, or completed, without undue delay 52 

upon arrival of the birds at the game-handling establishment, unless the 53 

competent authority permits otherwise. Exemptions following specific requests 54 

from Approved Game Handling Establishments (AGHE) can, and do, occur at the 55 

discretion of the Food Standards Agency (FSA). Private and domestic consumption 56 

are also exempt from this regulatory stipulation. 57 

Traditionally, small game birds, such as woodcock and snipe, have been cooked 58 

with the intestines intact and the viscera are often ingested as part of the final 59 

dish. The viscera of birds infected with a pathogen may contain numbers capable 60 

of causing human illness. Consumption of the uneviscerated bird could, therefore, 61 

expose the consumer to a higher risk of infection than that posed by an 62 

eviscerated bird. This risk depends primarily on the cooking step and whether it is 63 

sufficient to reduce pathogen numbers to below the level required for an 64 

infectious dose for the consumer. With farmed livestock, the process of 65 

commercial evisceration is known to be a risk for cross-contamination of carcasses 66 

with pathogens and to  individuals carrying out the evisceration (EFSA, 2010). It is 67 

not uncommon, however, for consumers to eviscerate wild game birds themselves, 68 

presenting a significant risk of intestinal rupture and consequent spillage of 69 

contents onto the carcass and the operator’s hands during this process (Mead & 70 

Scott, 1997). Consequently, other food products within the game handling 71 

environment may become contaminated with any pathogens present. 72 
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EC regulations exist for all game supplied for human consumption, e.g. Regulation 73 

(EC) No 172/2004, for general food law requirements, Regulation (EC) No 852/2004 74 

for general hygiene requirements for food businesses and Regulation (EC) No 75 

853/2004 for additional hygiene rules regarding businesses producing food of 76 

animal origin. Hygiene guidelines are also provided by the FSA (FSA, 2008) but 77 

there has been no formal assessment of the potential risks to UK consumers from 78 

production and consumption of uneviscerated small game birds compared to 79 

eviscerated birds. Hence, there has been no formal consideration of what, if any, 80 

modifications to hygiene regulations might be required to control the risks to 81 

public health from the production and consumption of uneviscerated birds. 82 

In this paper we discuss a qualitative risk assessment for the microbiological risks 83 

to the consumer from the production and consumption of a number of species of 84 

small game birds, both ‘in the home’ and ‘outside the home’. The scope of this 85 

risk assessment was to consider only the risk to the consumer and not to other 86 

people involved in the production/processing of the birds. However, if the 87 

consumer is directly involved in production/processing, then this is also 88 

considered; for home consumption, the consumer can have a more active role in 89 

preparation of the bird, possibly even shooting it themselves, and being involved in 90 

dressing and cooking the bird. A simple risk ranking exercise is then carried out to 91 

compare the relative risks between the outputs of the risk assessment. 92 

2 Materials and Methods 93 

 94 

2.1 Risk assessment scope and approach 95 
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The assessment considered zoonotic microbiological hazards present in 9 different 96 

species of small wild game birds (snipe, woodpigeon, woodcock, mallard, teal, 97 

widgeon, grey partridge, red-legged partridge and quail). The term ‘wild birds’ 98 

included birds that have been hatched/reared under controlled conditions before 99 

being released into the wild, in accordance with the definition in Regulation (EC) 100 

No 853/2004. ‘Farmed birds’ refer to those that remain on a commercial poultry 101 

farm until slaughter which, in this instance, includes only quail. Whilst quail are 102 

regarded as farmed birds, and not game, from the point of view of production, it is 103 

possible that they could be regarded as game by the consumer and therefore 104 

treated as such when it comes to preparation and cooking, including preparing the 105 

bird effilé (partial evisceration where the heart, liver, lungs, gizzard, crop and 106 

kidneys are not removed from the carcass) and cooking only until the flesh is 107 

‘pink’. To be considered ‘wild’, game birds must have been killed by hunting if 108 

they are to be supplied for human consumption.  109 

The main outputs of the risk assessment were an overall evaluation of the 110 

consumer risk from handling and consumption of the wild game species. These 111 

outputs were then used to compare the qualitative levels of risk to public health 112 

between consumption of eviscerated and uneviscerated small game birds for all 113 

the hazards/game bird combinations. Absolute risk estimates are generally subject 114 

to large uncertainty in qualitative risk assessments such as this one, due to large 115 

data gaps; the strength is in the subsequent comparison between the different 116 

factors, such as hazards, bird species and the eviscerated vs. uneviscerated state.  117 

The risk assessment followed the Codex framework of hazard identification, hazard 118 

characterisation, exposure assessment and risk characterisation (CAC, 1999). For 119 
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each potential hazard/bird combination, the four steps were assessed qualitatively 120 

using the definitions (EFSA, 2006) in Table 1. These were then combined to give 121 

overall estimates of risk.  122 

TABLE 1 HERE 123 

At an early stage in the risk assessment it was acknowledged that the lack of 124 

published literature concerning the wild game sector would require information to 125 

be sourced from elsewhere. Therefore, throughout the assessment, expert opinion 126 

was sought as a substitute where published data were lacking. Experts were 127 

selected from a list of industry bodies, and individual experts involved in the wild 128 

game sector drawn up in collaboration with the Scottish FSA. Full references to 129 

personal communications with acknowledged experts can be found in the final 130 

report (Horigan, et al., 2013) 131 

2.2 Hazard Identification 132 

A comprehensive list of the major microbiological hazards potentially present in 133 

game birds was developed according to literature evidence and expert opinion. 134 

The full list of the 87 hazards considered is given in the final report to the Scottish 135 

FSA (Horigan, et al., 2013). Using a combination of literature review and expert 136 

opinion, hazards were shortlisted by considering those that current knowledge 137 

suggests could be of public health concern due to the production and/or 138 

consumption of wild game birds (not including occupational hazards) in the UK. 139 

The hazards shortlisted were: Salmonella spp., Escherichia coli (verotoxigenic), E. 140 

coli (antimicrobial resistant), Campylobacter spp., Toxoplasma gondii and Listeria 141 
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monocytogenes. Chlamydophila psittaci was also included as an example of a 142 

contact/inhalation pathogen which may have different associated risks. 143 

2.3 Hazard profiles 144 

The remaining elements of the Codex framework (hazard characterisation, 145 

exposure assessment and risk characterisation) were applied in ‘Hazard Profiles’ 146 

(Bassett & McClure, 2008).These profiles considered an assessment of the 147 

prevalence and microbiological load of the identified hazards in both eviscerated 148 

and uneviscerated wild game birds throughout the processing chain, taking into 149 

account the relative consumption of individual species of bird, evaluation of the 150 

dose response and severity of any adverse effects associated with infection for 151 

each specific pathogen. This process is outlined in Fig. 1. 152 

FIGURE 1 HERE 153 

Fig. 2 shows the detailed framework outlining the different potential pathways 154 

from the shot game bird to the consumer along the processing chain. 155 

FIGURE 2 HERE 156 

Within each stage, the figure shows the risk factors to be considered and those 157 

elements that can affect the pathogen prevalence/concentration; for example, 158 

maintenance of the cold chain, process hygiene, skill of processor and duration of 159 

each stage. These factors are subdivided according to their effect on the exposure 160 

of consumers of game birds, either by increasing pathogen load or their potential 161 

for cross-contamination. Data were collected for each pathogen/bird species 162 

combination, for each stage of the risk assessment. These data include information 163 

on the survival, growth and cross-contamination capability of the pathogen at each 164 
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stage and were used to assess the likelihood and degree of any change in 165 

prevalence and concentration of the pathogen during each stage of the pathway in 166 

the medium in question (i.e. live bird, carcass or meat product). Whilst an 167 

extensive literature review was carried out, a shortage of published data on the 168 

processing of wild game birds meant that, for many stages, it was necessary to 169 

supplement the data with expert opinion. At the end of each stage we estimate 170 

two qualitative scores: for the prevalence and concentration of the pathogen. For 171 

the prevalence score we combined the prevalence score at the end of the previous 172 

stage with the information on the risk of a change in prevalence during the current 173 

stage. A similar method is followed for the concentration score. There are many 174 

different methods in the literature for combining qualitative scores in a risk 175 

assessment, such as the methods used in a previous risk assessment on wild game 176 

(Coburn, Snary, Kelly, & Wooldridge, 2005), and the ‘risk matrix’ approach (Gale, 177 

et al., 2010). The latter approach relies on the scores being treated like 178 

probabilities so they can be ‘multiplied’ together with the resulting probability 179 

being equal to or lower than the lowest probability. For this risk assessment we 180 

predominantly follow the methodology employed by Coburn (Coburn, et al., 2005), 181 

but adapt as necessary when our framework differs. 182 

The number of birds consumed was based upon the number of birds shot or 183 

slaughtered (Table 2). The number of birds consumed uneviscerated was difficult 184 

to quantify, but expert opinion considered that the only species consumed in this 185 

manner were woodcock and snipe; estimates suggest that approximately 10% are 186 

eaten uneviscerated (BASC, 2013). 187 

TABLE 2 HERE 188 



9 

 

The consequence of exposure of consumers of game birds to the relevant 189 

pathogens was calculated in terms of both severity and duration of effects. Whilst 190 

infectious-dose (dose-response) data are useful for characterising foodborne 191 

hazards, data for C. psittaci, T. gondii and E. coli (antimicrobial resistant) were 192 

non-existent. Conversely, although data were available for Salmonella spp., 193 

Campylobacter spp. and verotoxigenic E. coli, the unknown pathogenicity of 194 

strains found in game birds with regard to human infection should be noted. Not all 195 

strains found in wild game birds have been identified in humans and not all are 196 

likely to cause serious clinical symptoms in people, e.g. pigeon-adapted strains of 197 

S. Typhimurium DT2 and DT99 (Rabsch, et al., 2002). 198 

It is also possible that people regularly involved in game bird production or 199 

consumption may acquire some immunity to pathogens for which regular exposure 200 

occurs (Havelaar, et al., 2009). 201 

The wild game bird industry has a complex structure involving a variety of 202 

distribution pathways under different regulatory controls and inspection remits. In 203 

addition, the regulations themselves are complex and allow for exemptions and 204 

variable interpretation affecting both the holding times and the temperature 205 

control within the risk framework (Fig. 2). Compounding this complexity is a lack 206 

of knowledge on the actual numbers of birds entering the pathway and the 207 

subsequent numbers that go down individual pathway routes. Furthermore, the 208 

pathogens considered in this risk assessment are generally asymptomatic in the live 209 

bird, and do not cause visible pathology, making them impossible to detect 210 

visually. They are also not usually subject to routine surveillance activities, where 211 

tests are performed on a batch of birds or carcasses to determine if a particular 212 

pathogen is present. 213 
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Whilst some data are available on the prevalence of pathogens in game birds 214 

(Table 3), no reliable data on pathogenic load was available. Thus, estimates of 215 

initial pathogen concentrations are based on the qualitative data for prevalence 216 

and given the same qualitative score. This is based on the assumption that within-217 

group prevalence and mean numbers of organisms carried are normally related. 218 

TABLE 3 HERE 219 

3 Results 220 

 221 

3.1 Hazard profiles 222 

The scores for prevalence and concentration of each individual pathogen 223 

throughout the framework were evaluated as illustrated in Figures 3 & 4 using 224 

Campylobacter as an example. The remaining pathogen scores, along with more 225 

detailed evidence and references can be found in the full report to the Scottish 226 

FSA (Horigan, et al., 2013). 227 

FIGURE 3 HERE 228 

FIGURE 4 HERE 229 

Qualitative values for each stage were assessed as described in Materials & 230 

Methods. The individual risk to a consumer of game birds, if a contaminated 231 

product was encountered, could often be quite high, as the evidence suggested 232 

that for most pathogen/species combinations, there was occasionally a risk of the 233 

pathogen concentration, immediately prior to cooking, being high enough in some 234 
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products to cause human infection. A factor that has influenced the risks 235 

presented here is the assumption that there is a greater tendency to serve game 236 

undercooked or ‘pink’ outside the home than when cooked by the consumer in the 237 

home environment. This assumption is based on a combination of expert opinion 238 

which considered that restaurants and catering establishments were more likely to 239 

serve game birds undercooked. Consumers cooking game birds within the home, 240 

however, were thought to mainly use methods, such as roasting and casserole 241 

cooking, which would be more likely to ensure a thoroughly heated product. 242 

Taking into account the different levels of consumption of individual species of 243 

bird, and the dose response and severity of infection for each specific pathogen, 244 

the overall risks for each pathogen/species combination suggest that there is an 245 

increased risk to the consumer of some eviscerated wild bird species from 246 

Campylobacter spp. and T. gondii compared to the other pathogens considered 247 

(Figs 5 & 6). The risk to the consumer of uneviscerated wild game bird species was 248 

very low/ very low-low for all pathogen/species combinations. 249 

FIGURE 5 HERE 250 

FIGURE 6 HERE 251 

An increased risk of infection from these pathogens was observed for mallard, red-252 

legged partridge, quail, widgeon and woodpigeon. It is interesting to note that the 253 

first three species include a high proportion of farm–reared birds, whilst 254 

woodpigeon may have a close association with human activities in rural and 255 

suburban areas. The higher risk scores are likely to be skewed towards these 256 

species because of the high number of birds consumed in these categories and the 257 

higher prevalence of pathogens associated with them (see Table 3), although it is 258 

difficult to determine whether this is due to an increased number of studies on 259 
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farmed birds, because of their economic importance, or whether it reflects a true 260 

difference in prevalence. 261 

 262 

3.2 Campylobacter 263 

 264 

A Low-Medium risk is associated with Campylobacter spp. in eviscerated 265 

woodpigeon and mallard consumed outside the home. These birds have a medium 266 

initial prevalence of Campylobacter spp., are eaten in large numbers and are more 267 

likely to be served undercooked outside the home, thereby not ensuring complete 268 

thermal inactivation of the bacteria at the time of consumption. The issue of 269 

undercooking is important when considering the fact that shot perforation of the 270 

gut can lead to microbial contamination of muscle tissue that would otherwise 271 

remain sterile (El-Ghareeb, Smulders, Morshdy, Winkelmayer, & Paulsen, 2009). 272 

Campylobacter has a low infectious dose in humans (Teunis, et al., 2005) and it is 273 

possible that the combination of muscle contamination and undercooking could 274 

result in a level of Campylobacter contamination high enough to cause infection in 275 

the game bird consumer.  276 

For woodcock and snipe, the risk associated with Campylobacter spp. in 277 

eviscerated birds consumed both in and outside the home was considered to be 278 

Very Low-Low. Woodcock and snipe are wild, solitary birds and numbers consumed 279 

are small compared to those of woodpigeon, mallard and red-legged partridge. It is 280 

likely that these two species would have less exposure to pathogens than farm-281 

reared birds as they are considered to have little, if any, contact with humans or 282 

their environment (GWCT, 2013). 283 
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Outside the home, the overall risk of human infection with Campylobacter spp. 284 

from uneviscerated snipe and woodcock was considered to be Very Low-Low. The 285 

predilection for undercooking outside the home, combined with the low infectious 286 

dose of Campylobacter spp. and the known tendency of snipe and woodcock to be 287 

consumed uneviscerated increase the risk to the individual from Very Low to Very 288 

Low-Low. 289 

 290 

3.3 T. gondii 291 

The risk of human infection with T. gondii from eviscerated mallard and red-legged 292 

partridge was assessed as Low. This was a considered risk because of the high 293 

number of potentially infected birds consumed and the tendency to cook the meat 294 

until it is only ‘pink’, which could result in tissue cysts retaining their viability 295 

after cooking. Although the dose response characteristics of T. gondii are 296 

unknown, the severity of infection in humans and longevity of symptoms is such 297 

that the risk to game bird consumers is considered to be Low in these two avian 298 

species. 299 

 300 

3.4 Eviscerated vs. Uneviscerated birds 301 

Generally it was considered that, for all pathogens except T. gondii, removal of 302 

the viscera provided the greatest reduction in pathogen numbers. However, cross-303 

contamination during plucking and evisceration, and the ability of many bacterial 304 

organisms to multiply in a time and temperature dependant manner could increase 305 

the prevalence of pathogenic bacteria at these processing stages (Chiarini, Tyler, 306 

Farber, Pagotto, & Destro, 2009; Christensen, 2001). The extent of cross-307 
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contamination and, therefore, the increase in pathogen prevalence from this cause 308 

will depend on the efficiency of the evisceration technique. Conditions under 309 

which carcasses are eviscerated in the processing plant and the home have 310 

different implications for the risk of cross-contamination. Commercially, game 311 

birds are eviscerated manually and operatives will normally be trained to minimise 312 

gut rupture and spillage of contents by removing the viscera with care. However, 313 

the equipment and procedures used are not designed to prevent all microbial 314 

cross-contamination and are unlikely to do so. The high throughput of birds in a 315 

commercial operation will increase the risk of cross contamination despite the skill 316 

of the workforce employed. Thus, any hazardous organisms present, even at a 317 

relatively low prevalence, may spread among the batch of carcasses being 318 

processed, but the expectation is that they would be largely destroyed during 319 

subsequent cooking (Geoff Mead personal communication). It has been asserted 320 

that uneviscerated poultry could have better microbial characteristics and 321 

extended shelf life than eviscerated poultry (Mulder, 2004) and the muscle tissue 322 

of uneviscerated game birds and poultry stored at refrigerated temperatures has 323 

been shown to remain sterile for several days (Mead, Chamberalin, & Borland, 324 

1973). Thus, levels of cross-contamination resulting from the processing of an 325 

uneviscerated game bird are likely to be lower than those from birds undergoing 326 

the evisceration process. 327 

 328 

Domestic evisceration usually involves only one or two carcasses at a time so the 329 

chance of one of the birds being positive for a foodborne zoonosis is low compared 330 

to commercial scale processing. The risk of gut rupture and spread of 331 

microorganisms depends upon the prevalence of pathogens, the skill of the 332 
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individual concerned and the care taken. In a small-scale study (Mead & Scott, 333 

1997), home evisceration led invariably to rupture of the gut and, again, food 334 

safety depends mainly on the adequacy of the cooking process. In the domestic 335 

situation, the principal hazard is in spreading microbes to other foods, during and 336 

after the evisceration process. 337 

 338 

Since cooking of game is the main control factor, any differences in handling 339 

procedures during carcass preparation should be less important, provided that the 340 

meat is cooked adequately 341 

 342 

Overall it was considered that for uneviscerated birds, other than snipe and 343 

woodcock, the risk of human infection for all pathogens is Very Low, including the 344 

risk from Listeria monocytogenes, the only bacterial pathogen considered that is 345 

capable of multiplying at refrigeration temperatures.  346 

  347 

4 Discussion 348 

 349 

The overall risks to consumers of game birds in the UK for the majority of the 350 

pathogens/avian species considered in this assessment were Very Low. This was 351 

primarily due to a low frequency of consumption of certain game bird species in 352 

the UK population, low prevalence of pathogens in the species studied and 353 

effective cooking to reduce the pathogen load before consumption. The 354 

assessment considers that a product could reach the cooking stage with a 355 

relatively high pathogen load, due to a series of unfortunate ‘rare events’. For 356 

example, a bird with a high initial concentration of a pathogen has its gut 357 
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perforated by shot and muscle tissue becomes contaminated; it is then hung for 358 

long enough to allow growth of the pathogen within the muscle, or human error 359 

leads to inadequate implementation of control measures, such as storing the bird 360 

at room temperature. In these cases, there is a risk of human infection due to 361 

inadequate cooking or cross-contamination of the kitchen environment and other 362 

cooked or ready-to-eat foods. 363 

 364 

The evidence suggested that there was, overall, no greater risk associated with the 365 

consumption of uneviscerated game birds than with eviscerated birds. In some 366 

pathogen/species combinations, the assessment even suggested that the risk from 367 

eviscerated game birds may be slightly higher. This was due to the risk of cross-368 

contamination during the evisceration process outweighing the reduction in 369 

pathogenic organisms due to removal of the viscera. Additionally, there was 370 

evidence that the cooking of uneviscerated birds was more likely to remove 371 

microbiological hazards due to the method of cooking (uneviscerated birds tend to 372 

be thoroughly roasted). By contrast, eviscerated birds are often served ‘rare’, a 373 

practice thought to be less common for uneviscerated birds. 374 

 375 

We were unable to find evidence for human consumption of uneviscerated birds 376 

other than woodcock and snipe in the UK. Nevertheless, it could not be stated with 377 

certainty that other species of wild game bird were never consumed 378 

uneviscerated. There is anecdotal evidence of consuming squab (baby pigeon) and 379 

quail, either uneviscerated or effilé. If the viscera are not completely removed 380 

until after/during cooking, then there is still the possibility of cross-contamination 381 

up to this point, even if the viscera themselves are not actually consumed. We 382 
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estimated the frequency of uneviscerated preparation/consumption of these birds 383 

to be Negligible-Very Low. If there is now, or in the future, an increased frequency 384 

of consumption of these birds, then the overall risk should be re-examined.  385 

 386 

The assessed risks from the game handling routes that are covered here can only 387 

be as accurate as the data used to inform them. The wild game industry is not as 388 

regulated as other farmed livestock industries and suitable data are deficient in 389 

some areas. In general, a satisfactory level of expert knowledge was available to 390 

assess the risks. We have highlighted the following areas in which data were 391 

deficient and have therefore introduced uncertainty into the risk estimate: 392 

 Limited studies on prevalence of pathogens in game birds in the UK, in 393 

particular woodcock and snipe.  394 

 Concentrations of pathogens in live game birds  395 

 Numbers of birds following each distribution pathway  396 

 Frequency of consumption of wild game in and outside the home  397 

 Frequency of consumption of uneviscerated bird species  398 

 Probability/magnitude of cross-contamination during processing  399 

 Survival/growth behaviour of pathogens during the framework pathway 400 

stages, taking temperature and duration into consideration.  401 

 Data on pathogenicity of Salmonella and Campylobacter strains found in 402 

wild birds, especially with regard to species-specific serotypes.  403 

The results of this risk assessment suggest that, while large outbreaks of zoonotic 404 

infection among consumers due to wild game consumption are unlikely, sporadic, 405 

infectious events may occur due to combinations of ‘rare-event, hygiene-related 406 

errors’ in the field-to-fork chain and/or inadequate cooking of the game bird in or 407 
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outside the home. However, the data gaps identified increase the level of 408 

uncertainty surrounding the results. It is widely acknowledged that the game bird 409 

sector is a growing industry and it is possible that production of farm-reared birds 410 

may become further intensified to cope with the increased demand for those birds 411 

that will be released for shooting and human consumption. The intensification of 412 

game bird production could lead to changes in the levels of risk presented by 413 

zoonotic pathogens to human health. It is therefore recommended that the 414 

conclusions of this assessment are periodically revisited to assess whether 415 

improved data are available to update the assessment or significant changes have 416 

occurred that would affect the findings. 417 
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Tables 441 

Table 1: Definitions of qualitative scores (EFSA, 2006) 442 

Term Definition 
Negligible So rare that it does not merit to be considered 
Very Low Unlikely to occur 
Low Rare, but may occur occasionally 
Medium Occurs regularly 
High Occurs very regularly 
Very High Is almost certain to occur 
 443 

 444 

 445 

Table 2: Numbers of individual bird species shot/slaughtered 446 

Number of 
birds 
shot/slaugh
tered 

Snipe Woodcock Woodpigeon Mallard Teal Widgeon Grey 
Partridge 

Red 
legged 

Partridge 

Quail 

Estimated 
range 

25,000 
-

30,000
1
 

100,000 -

225,000
2
 

3,600,000 -

7,000,000
3
 

873,000 - 

1,350,000
4
 

48500 
- 

75000
5
 

48500 -

75000
5
 

200,000 - 

300,000
6
 

2,400,000
7
 864,2

37 8 

Qualitative 
estimate 

Low Medium Very High High Low Low Medium Very High High 

1 Andrew Hoodless pers. comm. quoted in (Consultants, 1997; Henderson, 1993)  
447 

2 (Consultants, 1997; International, 2013; PACEC, 2006)  
448 

3 (Consultants, 1997; PACEC, 2006)  
449 

4 (Consultants, 1997; PACEC, 2006)  
450 

5 Expert opinions suggests that Teal and Widgeon each make up a maximum of 5% of total ducks shot 
451 

6&7 (PACEC, 2006) 
452 

 8 AHVLA Poultry Register 2011 data 
453 

Table 3: Prevalence of pathogens in individual bird species 454 

 455 

Pathogen Snipe Woodcock Woodpigeo
n 

Mallard Teal Widgeo
n 

Grey 
Partridg

e 

Red 
legged 

Partridge 

Quail 
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Salmonella 

Low 
prevalenc
e based 

on expert 
opinion  

0% (n=1) 
(Kobayash

i, et al., 
2007); 
3.5% 

(n=28) 
(SAGIR, 

2012) 

0.6% - 
4.5% 

(Kinjo, 
Morishige, 
Minamoto, 
& Fukushi, 

1983a); 
(Pennycott, 

1994) 20 
reports  

(AHVLA, 
2011) 

0.2% - 
4% 

(Mitchel
l & 

Ridgwel
l, 

1971); 
(Fallaca

ra, 
Monah

an, 
Morishit

a, & 
Wack, 
2001) 

0.2% - 
3.4% 

(Mitchel
l & 

Ridgwel
l, 

1971); 
(Fallaca

ra, et 
al., 

2001)  

0% 
(Mitchell 

& 
Ridgwell
, 1971); 
(Kobaya
shi, et 

al., 
2007) 

0%-
0.5% 

(Beer & 
Durrling
, 1989) 

0.5%-1% 
(Beer & 
Durrling, 
1989) 1 
incident 

2010 
(AHVLA, 

2011)  

No 
incidents 
2008/9 

(AHVLA, 
2011) 

     
Campyloba
cter 

Present 
(Workma

n, 
Mathison, 
& Lavoie, 

2005)  

present 
(Waldenst
rom, et al., 

2002)  

12.5% - 
86.4% 
(Kinjo, 

Morishige, 
Minamoto, 
& Fukushi, 

1983b); 
(Itoh, Saito, 
Yanagawa, 

Sakai, & 
Ohashi, 
1982); 

(Vazquez, 
et al., 2010)  

21.6% - 
73% 

(Hartog
, Wilde, 
& Boer, 
1983); 

(Colles, 
Ali, 

Sheppa
rd, 

McCart
hy, & 

Maiden, 
2011)  

60% 
(Gargiul
o, et al., 
2011)  

21.6% - 
73% 

(Hughes
, et al., 
2009)  

49% 
(Dipinet
o, et al., 
2009)  

23% 
((Diaz-

Sanchez, 
Mateo 

Moriones
, Casas, 
& Hoefle, 

2012) 

commercial 
quails are 

not 
tested;20% 

cloacal 
swab 

(McCrea, et 
al., 2006) 

     E. coli 
(verotoxige
nic) 

Low 
prevalenc
e based 

on expert 
opinion 

Low 
prevalenc
e based 

on expert 
opinion 

12.5% 
(VTEC) 
0.34% 
O157 

(Dell'Omo, 
et al., 1998)  

Low 
prevale

nce 
based 

on 
expert 
opinion 

Low 
prevale

nce 
based 

on 
expert 
opinion 

Low 
prevalen

ce 
based 

on 
expert 
opinion 

Low 
prevale

nce 
based 

on 
expert 
opinion 

Low 
prevalen
ce based 
on expert 
opinion 

Low 
prevalence 
based on 

expert 
opinion 

     E. coli 
(antimicrobi
al resistant) 

Low 
prevalenc
e based 

on expert 
opinion 

Low 
prevalenc
e based 

on expert 
opinion 

1.5%-3% 
(Radimersk

y, et al., 
2010);  

(Duan, et 
al., 2006)  

Presen
ce of 
ESBL 
(Ivan 

Literak, 
et al., 
2010) 
6% 

(Tauso
va, et 
al., 

2012) 

Low 
prevale

nce 
based 

on 
expert 
opinion 

Low 
prevalen

ce 
based 

on 
expert 
opinion 

~6% 
based 

on data 
for wild 

red-
legged 
partridg

es 

6%wild, 
45%farm
ed (Diaz-
Sanchez, 

et al., 
2012) 

Isolated 
from 

Japanese 
quail with 

colibacillosi
s (Roy, 

Purushotha
man, 

Koteeswara
n, & Dhillon, 
2006); 8.9% 
(da Costa 
Abreu, et 
al., 2010) 

     
Chlamydop
hila psittaci 

Present in 
other 

members 
of the 

Scolopaci
dae 

family  
(Kaleta & 
Taday, 
2003)  

Present in 
other 

members 
of the 

Scolopaci
dae family  
(Kaleta & 
Taday, 
2003) 

47% 
(Bracewell 
& Bevan, 

1986) 
59.7% 

(Vazquez, 
et al., 2010)  

23% 
(Brace
well & 
Bevan, 
1986) 
75% 

(Evans, 
Chalme

rs, 
Woolco

ck, 
Farmer, 

& 
Taylor-
Robins

on, 
1983)  

23% 
(Brace
well & 
Bevan, 
1986)  

23% 
(Bracew

ell & 
Bevan, 
1986) 

Antibod
ies 

present 
by 

ELISA 
(Ziedler

, 
Hlinak, 
Raetz, 

Werner, 
& 

Ebner, 
1995) 

100% 
morbidity 
in farmed 
Chukar 

partridge 
(Erbeck 
& Nunn, 
1999)  

100% 
morbidity in 

farmed 
quail 

(Erbeck & 
Nunn, 
1999) 

Experiment
al infection 

(Batta, 
Asrani, 
Katoch, 

Sharma, & 
Joshi, 
1999) 

     
Toxoplasm
a gondii 

Possibility  
of 

infection 
from 

earthwor
ms (Ruiz 

& 
Frenkel, 

Possibility  
of 

infection 
from 

earthworm
s (Ruiz & 
Frenkel, 
1980); 

9% - 12% 
(Cong, et 

al., 2012) ; 
(I. Literak, 
Hejlicek, 
Nezval, & 

Folk, 1992)  

11.5% - 
14% 

(Cong, 
et al., 
2012); 

(I. 
Literak, 
et al., 

11.5% - 
14% 

(Cong, 
et al., 

2012);0
% (I. 

Literak, 
et al., 

11.5% - 
14% 

(Cong, 
et al., 
2012)  

Antibodi
es 

present 

18.7% 
(I. 

Literak, 
et al., 
1992)  

Experime
ntal 

infection 
(Sedlak, 
Literak, 
Vitula, & 
Benaak, 
2000); 

25% 
(Shaapan, 
Khalil, & 
Nadia, 
2011) 
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1980); 
(Bettiol, 

Obendorf, 
Nowarko
wski, & 

Goldsmid, 
2000)  

(Bettiol, et 
al., 2000) 

1992) 1992) (Murao, 
et al., 
2008)  

(Martinez
-

Carrasco
, et al., 
2004)  

     Listeria 
monocytog
enes 

Common 
in healthy 
wild birds 
(Hellstro

m, 
Kiviniemi, 
Autio, & 

Korkeala, 
2008)  

Common 
in healthy 
wild birds 
(Hellstrom

, et al., 
2008) 

0.9% - 
3.4% faecal 
presence 
(Weber, 
Potel, & 

Schafersch
midt, 1995) 

25% 
(Hellstrom, 
et al., 2008) 

Commo
n in 

healthy 
wild 
birds 

(Hellstr
om, et 

al., 
2008)  

Commo
n in 

healthy 
wild 
birds 

(Hellstr
om, et 

al., 
2008)  

Commo
n in 

healthy 
wild 
birds 

(Hellstro
m, et al., 

2008)  

Present 
(Weis & 
Seelige
r, 1975) 

Evidence 
of 

outbreak 
of clinical 
listeriosis 
(AHVLA, 
2011a)  

Susceptible 
to 

experiment
al infection 
(Nikuradze, 

1970) 

 456 

 457 

 458 
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