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The rotational state and structure of minor bodies undergo major disruptions during very close encounters with massive

bodies. This paper proposes the use of tidal interaction during a swing-by to modify or manipulate the spin and possibly

the structure of asteroids, primarily during capture. The possibility of de-spinning, spinning-up or controlled break-up

of a captured asteroid is considered. Three simple planar models are used to study the orbit-attitude interactions: the

coupled dynamics of an ideal mass-point dumbbell, a simplified decoupled rigid body rotation dynamics, and a circular

orbit binary. The evolution of the rotational state and structure of the asteroids is studied for the hypothetical cases of

a single lunar or Earth swing-by prior to capture. The final conditions are shown to be highly dependent on the initial

rotational state, the distance to the swing-by body, and, most importantly, the relative attitude of the asteroid to the

local vertical at pericentre.

I. INTRODUCTION

Recent interest in the capture of asteroids for scien-

tific purposes or exploitation has generated a series of

proposals for asteroid retrieval missions to various target

orbits. A number of these proposals utilise swing-bys of

the Moon or Earth to reduce the asteroid hyperbolic ex-

cess velocity and the associated insertion burns into the

final capture orbit.

NASA’s Asteroid Retrieval Mission, loosely based in

the Keck’s study report [3], foresees using a lunar swing-

by to reduce the capture energy into a lunar Distant Ret-

rograde Orbit as the final destination for the retrieved

asteroid. Strange et al. [16] study capturable asteroids

with this strategy, imposing a lunar swing-by height con-

straint as low as 50 km above the lunar surface. Fol-

lowing a slightly different approach, Sanchez Cuartielles

et al. [11] suggest the use of multiple Earth passes (at

large distances) to reduce the long-term capture costs of

small asteroids. Although they consider only weak inter-

actions far from what we normally refer to as a swing-

by, the possibility of using high altitude Earth gravity

assist may reduce even further the required energy for

capture. More relevantly, the extended lifetime trajecto-

ries of Temporarily Captured Orbiters (TCO) proposed

by Urrutxua et al. [18] do comprise much closer Earth

passes in their weakly captured trajectories.

Given the large mass and inertia of asteroids, and the

usually irregular shape of the smallest bodies in the NEO

family, which represent the best candidates for capture or

TCO lifetime extension with current technology, a close

swing-by of a massive body, be it the Earth or the Moon,

will induce large variations in the rotational state and

possibly the structure of the asteroid. These interactions

may pose serious challenges for the attitude control of

asteroids during capture. Whether they are bagged, at-

tached to a spacecraft or not, large quantities of fuel may

be required to counteract the torque build-up. On the

other hand, if engineered, the disruption events can be

seen as opportunities to modify the spin or structure of

the asteroid at zero or low costs. This paper proposes the

utilisation of the tidal induced torques during a swing-by

for rotational state manipulation, separation of contacts

binaries or even (partial) disintegration of rubble piles.

To this end, the effect of the coupling between attitude

and orbit dynamics for this particular case has been stud-

ied with a series of simple planar models. They provide

insight into the rotational state upheaval and the chance

of break-up of the asteroid during the close approach.

Three different dynamic models (and a combination of

two of them) are considered:

1. A dumbbell of two equal point-masses connected

with a massless rod to demonstrate coupled orbit-

attitude dynamics during close passes
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2. A simplified rigid body (of various shapes) in which

the attitude and rotation evolution is decoupled from

the orbit propagation

3. A binary pair with two small asteroids with com-

mon gravitational attraction and initially rotating

around their barycentre

4. An equal mass contact binary (model 2) with the

possibility of separation as the rotation rate in-

creases into a binary pair (model 3)

In order to observe the dependence with the swing-

by conditions, the well known asteroids 2004 MN4 (also

known as Apophis) and 2006 RH120 are selected as the

test cases for these three simple models. The hyperbolic

excess velocity for the swing-bys is thus selected as that

of their close approaches to Earth on years 2029 and

2028 respectively. Their size, shape, rotational state and

structure are however modified to match the assumptions

of the different models.

II. ROTATION AND STRUCTURE DISRUPTION OF

ASTEROIDS DURING PLANETARY SWING-BYS

The evolution and changes of rotation rate of minor

bodies can be explained through YORP effect, encoun-

ters with planets or larger bodies, and possibly also col-

lisions [10]. Comets have in addition spin changes due

to outgassing. Due to larger time scales for the YORP

effect, fast or abrupt alterations of the rotational state are

mainly caused by a swing-by of a major body of the so-

lar system. They may induce tumbling and place them

in complex rotational states, and they can also cause a

disruption of their structure through tidal torques.

One of the earliest results related to tidal disruption is

the Roche limit [4], defined as the distance below which

forces will disintegrate an orbiting object held together

only by self-gravity. Since the original definition for a

fluid satellite in 1848 by Roche, there has been numer-

ous definitions of such a tidal break-up limit for various

types of internal strength, rigidity and material proper-

ties. Davidsson [5, 6] provides a good overview of previ-

ous analysis and calculates varying Roche limits for ro-

tating asteroids with internal strength, showing that for

very small asteroids the Roche limit decreases consider-

ably.

However, Roche limits normally refer to orbiting satel-

lites. For a single swing-by event, it provides an initial

estimate of the distances below which tidal disruption is

significant, but the outcome of a swing-by depends on

the particular geometry of the encounter and the structure

and characteristics of the body. The effect on the rotation

state of the asteroid can also be felt at much greater dis-

tances than the Roche limit. Scheeres et al. [14] show

that swing-bys radically affect the spin state of asteroids

and can induce asteroids that previously had uniform ro-

tation into a tumbling state. Richardson et al. [9] demon-

strate with a multi-particle model with self-gravity that

for low-velocity encounters at distances less than 3 Earth

radii the structure of a rubble pile can be completely dis-

torted. This may lead to the formation of very elongated

bodies, double-lobed asteroids or contact binaries. Simi-

lar processes may explain crater chains in the Moon and

other solar system bodies.

Doublet and multiple crater impacts have also been

explained by binary asteroids generated by previous en-

counters with Earth, or possibly also a break-up during

the approach [17]. Farinella and Chauvineau [8] studied

such close encounters of binaries with Earth, first with a

linear approximation, and late with a more general hyper-

bolic trajectory. They conclude that disruptions during

these encounters may explain doublet craters, the forma-

tion of contact binaries as one stable outcome, as well as

slow rotators or binaries with wide distances between the

components of the pair. Energy dissipation may play an

important role to achieve stable configurations after the

disruption caused by a swing-by. Fang and Margot [7] ar-

gues that these close encounters can increase or decrease

the semi-major axis of a binary and break tidal locks, and

they may also affect BYORP, shutting it down.

All these effects can be explained by the coupling of

the attitude and orbit of non-symmetric bodies. It is also

the cause of tidally locked satellites, and can be used

for attitude control by gravity gradient. Sincarsin and

Hughes [15] studied this coupling for very large space-

craft, and their conclusions are partly applicable to as-

teroids, if we do not consider deformations or restructur-

ing. In the frame of an asteroid capture mission, they will

need to be taken into account, to avoid undesired rotation

rate changes or break-up, or to be used instead to control

the rotation rate or cause an intended break-up.

III. DYNAMICAL MODELS

This section presents the dynamical models employed

in the paper, and the test cases used to validate them.

All models presented are planar, with the rotational axis

of the asteroid or binary pair perpendicular to the orbital

plane. This is a considerable simplifying assumption, as

it avoids any instance of tumbling, complex rotation or

off-plane forces. However, the tidal torques experienced

by the asteroid or the binary are greatest in the planar

case. It thus still represents a limiting case of interest

where the stronger tidal torques will cause larger varia-

tions in the rotation state.
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Figure 1: Schematic of the dumbbell planar problem definition.

III.I Coupled dynamics of point-mass dumbbell

The simplest of models to study the coupled dynamics

of a non-spherical satellite around a spherical massive

body is an ideal equal mass dumbbell, assuming point-

masses linked with a massless rod of given length L.

The dumbbell rotates along an axis of maximum moment

of inertia, and this axis is assumed perpendicular to the

orbital motion. The coupled orbit-attitude equations of

motion for the planar case of such a dumbbell (modified

from [2] removing the solar radiation pressure and nor-

malizing), are given by:

r̈−rν̇2+

µ

2 (r−
1

2
cos(θ−ν))

[r2−r cos(θ−ν)+ 1

4 ]
3

2

+

µ

2 (r+
1

2
cos(θ−ν))

[r2+r cos(θ−ν)+ 1

4 ]
3

2

= 0

ν̈+ 2ṙν̇

r
+

µ

4r
sin(θ−ν)

[r2+r cos(θ−ν)+ 1

4 ]
3

2

+
µ

4r
sin(θ−ν)

[r2−r cos(θ−ν)+ 1

4 ]
3

2

= 0

θ̈+
µr sin(θ−ν)

[r2−r cos(θ−ν)+ 1

4 ]
3

2

+
µr sin(θ−ν)

[r2+r cos(θ−ν)+ 1

4 ]
3

2

= 0

(1)

where r is the distance from the massive body to the cen-

tre of mass of the dumbbell, ν is the true anomaly or

an equivalent angle between the position vector of the

dumbbell and a reference direction in an inertial frame,

and θ is the angle the dumbbell forms with the same ref-

erence direction. All distances have been normalised by

the length of the dumbbell L , and thus r = r̃/L and

the mass parameter µ = µ̃/L3, where tilde variables rep-

resent fully dimensional variables. Figure 1 shows an

schematic of the dumbbell and the state vector variables

definition for this particular problem.

The equations can be therefore rewritten as:

r̈ − rν̇2 +
µ

2

r1

d1
3 +

µ

2

r2

d2
3 = 0

ν̈ + 2
ṙν̇

r
+

µ

4r
sin(θ − ν)

(

1

d2
3 −

1

d1
3

)

= 0 (2)

θ̈ + µr sin(θ − ν)

(

1

d1
3 −

1

d2
3

)

= 0

in which r1 and r2 are given by:

r1 = r −
1

2
cos (θ − ν); r2 = r +

1

2
cos (θ − ν) (3)

and di is:

di|i=1,2 = ri
2 +

1

4
sin2 (θ − ν) (4)

The three coordinates r, ν and θ are all interdependent,

and rotational energy can be transferred to orbital energy

and vice-versa, as shown in [2]. The different accelera-

tions are a function of the angular difference θ−ν, which

is the angle between the dumbbell and the local verti-

cal. The term prograde rotators will be used throughout

the paper for bodies rotating in the same direction as the

orbital motion (θ̇ > 0). They are more susceptible to

tidal torque disturbances than retrograde rotators, as they

more likely to enter into resonance with the orbit motion.

As a particular example, we select a test case of an as-

teroid composed of 2 constant density spheres of 50 m

radius, separated just 100 m (so in essence a solid dou-

ble sphere contact binary, but modelled as a point-mass

dumbbell). This captured asteroid is assumed to be lo-

cated on a very high eccentricity orbit with an apocentre

radius equal to the mean lunar distance from the Earth,

and a pericentre radius of the order of 2 Earth radii. This

is a relevant case if a lunar swing-by followed by an Earth

close passage is to be used as the first step to capture an

object in an Earth bound orbit. The final rotation rate at

the next apocentre at the quasi-Moon distance is shown

in Fig. 2 for various initial rotation rates θ̇0 as a function

of θ − ν at pericentre. Initial prograde rotation rates are

plotted with solid lines, while retrograde rotation rates

are dashed.

Three horizontal lines mark rotation rates of note. The

highest is the spin rate at which a rotating sphere (with no

internal strength or other cohesive forces between parti-

cles) would start shedding mass at its equator. It is given

by:

θ̇shed = 2
√

πGρ/3 (5)

Figure 2: Final rotation rate for a point-mass dumbbell as a

function of the angle with the local vertical at pericentre.
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Figure 3: Instantaneous angular acceleration and rotational

speed evolution due to tidal torque for a point-mass dumbbell

in a highly elliptical orbit with pericentre at 2 Earth radii.

and it is only a function of the density of the orbiting

body ρ, with G being the gravitational constant. This

shedding limit, also known as rubble pile spin barrier, is

plotted on the previous figure for the case of an average

density of 2.1 g/cm3, which corresponds roughly to a pe-

riod of 2.3 hours. For large rubble pile asteroids, it rep-

resents a maximum spin rate before they start shedding

mass, while for smaller ones, higher spin rates have been

observed, which can be explained either by a monolithic

structure or by cohesive forces that bind them together

and hinder the mass shedding [12, 13]. An additional

useful limit is the rotational speed at which an equal mass

double-sphere contact binary would split if no internal

forces or cohesion are considered. This rotational speed

is exactly half the mass shedding limit (period of approx-

imately 4.6 hours). For contact binaries of different size

the break-up speed without cohesion would lie between

the former two. The third intermediate line is the maxi-

mum true anomaly variation for the orbit, which always

takes place at the pericentre.

It can be observed in Fig. 2 that the spin of fast pro-

grade rotators (of more than one revolution per hour) and

retrograde rotators is not strongly affected by the tidal

torques during a pericentre passage. Slow prograde ro-

tators and non-rotating dumbbells can however be effec-

tively de-spun, or spun up above the binary break-up or

mass shedding limit depending on the configuration at

pericentre. The spin rates acquired can be higher that the

rotation rate at pericentre ν̇p. In general, the dumbbell

is spun up when θ − ν is the range 90 − 180◦ (positive

torque at pericentre), and de-spun for angles in the range

0− 90◦.

A low spin rate at the end of the propagation does

not discard the possibility that any of these limits was

surpassed during the pericentre passage. Fig. 3 presents

the evolution of the torque acceleration and the rotational

state for a particular case with an initial rotation period

of 5.8 hours. As expected, most of the interaction takes

place at pericentre in a bracket of 4 hours around the clos-

est approach. Due to the configuration at the pericentre

with a θ − ν angle of 165◦, the net result is an acceler-

I∗ =
Iyy−Ixx

Izz
= 1

I∗ = 5
8(R/L)2+5

I∗ = 1−(b/a)2

1+(b/a)2

Figure 4: Various rigid body configurations and their associated

moments of inertia ratios

ation in the rotation of the dumbbell. Even though the

final spin state is below the mass shedding limit, this is

surpassed right after pericentre and mass loss could have

occurred.

III.II Decoupled dynamics of a rigid body

The coupling between attitude and orbit in the case of

the dumbbell shown above (or any other rigid body) is

weak [15], with only small perturbations to the in-plane

orbital elements. The predominant effect is thus changes

in the rotational state. As such, the system of equations

can be considered decoupled for characteristics lengths

of the body much smaller than the orbital radius. Then,

the asteroid can be modelled as a rigid body rotating

around the axis of largest moment of inertia (minimum

energy configuration), which is assumed perpendicular

to the orbital plane. As in the previous dumbbell case,

deformations or any type of reconfiguration are ignored.

In addition to solving the traditional decoupled orbital

equations of motion for the centre-of-mass of the rigid

body, the attitude of the asteroid is propagated by inte-

grating the equation for the torque acceleration, which

can be expressed by (adapted from [1]):

θ̈ +
3µ

2r3
Iyy − Ixx

Izz
sin 2(θ − ν) = 0 (6)

where Izz > Iyy > Ixx are the principal moments of in-

ertia of the body. This differential equation depends only

of a “shape” parameter I∗ given by the ratio of the body’s

moments of inertia, and is independent of the size of the

object. For several simple shapes I∗ can be calculated

with the expressions given in Fig. 4. The extreme case

of an ideal “point-mass” dumbbell has a value of 1 (very

elongated object), while a spherical body would result in

a shape factor of zero.

Figure 5 plots the final spin state of a rigid body after

a test case equivalent to a close encounter at 2 Earth radii

as described in the previous section. The “point-mass”

dumbbell shape reproduces almost exactly the results of

the coupled orbit-attitude dumbbell equations. For less

elongated shapes, the smaller shape factor reduces the
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Figure 5: Final rotation rate for rigid solid with point-mass

dumbbell shape (top-left, I∗ = 1), equal spherical masses con-

tact binary (assumed rigidly bound, top-right, I∗ ≈ 0.71), and

two cases of tri-axial ellipsoids with a = 2b and a =
√
2b

(bottom, I∗ = 0.6 and I
∗ ≈ 0.33 respectively)

Figure 6: Comparison of the tidal torque acceleration and rota-

tional speed evolution for three different rigid body shapes.

effect of the gravitational torque on the final rotational

rate. Similar conclusions to section III.I can be drawn:

fast prograde rotators and retrogade rotators are least af-

fected.

Figure 6 compares a particular case (indicated with x

markers in Fig. 5) with an initial rotation rate of half of

the binary break-up spin limit for different rigid body

shapes. The torque and its effects are considerably re-

duced for less elongated, more spherical bodies.

III.III Binary pair

Finally, we consider the case of a binary system per-

forming a swing-by of a massive body, with the grav-

itational attraction between the two components of the

binary modelled (the 1+N body problem with N=2).

The equations of motion for each of the two compo-

nents of the binary pair are given by:

~̈ri = −µ
~ri
ri3

−
2

3
απρG

~ri − ~rj

|~ri − ~rj |
3 (7)
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Figure 7: Final semi-major axis a and eccentricity e for an

equal mass binary pair after a pericentre passage at 5 Earth

radii.

where αi is a function of the ratio of the radii of the bi-

nary pair:

α =
R1

3 +R2
3

L3
(8)

Distances are normalised with a reference length L =

R1+R2, where Ri are the radius of each of the elements

of the binary, assumed spherical. For the case of an equal

mass binary Eq. 7 results in:

~̈ri = −µ
~ri
ri3

−
1

6
πρG

~ri − ~rj

|~ri − ~rj |
3 (9)

As a test case, an equal sized circular binary with a

range of semi-major axes is assumed to perform a close

encounter with Earth at pericentre distances of 2, 5 and

10 Earth radii. The components of the binary are as-

sumed point masses, which implies that no impact is

computed when the normalized distance between the bi-

nary centres is smaller than 1.

Figure 7 plots the semi-major axis and eccentricity of

the binary system after a close encounter for the interme-

diate pericentre case (5 Earth radii). Similar plots have

been generated for cases with both lower and higher peri-

centre radius. For the 2 Earth radii case, mostly retro-

grade rotating binaries with a small initial semi-major

axis survive the close approach without a break-up and

escape. There are a few single cases of geometrical con-

figurations that allow prograde binaries to survive. For

higher pericentres (for example the 5 Earth radii shown

in Fig. 7) some prograde rotating binaries (solid lines)

manage to maintain their binary structure and do not es-

cape from each other. However, the initial semi-major

axis is in most cases small (of the order of 100 m, case

“D”) and they suffer large variations in the binary orbit

eccentricity. It can be observed in Fig. 7 that retrograde

binaries fare better: for initial semi-major axes smaller

than 400 m, the disruption introduced by the gravitational

torque does not manage to break the binary pair. This

limit increases to over 800 m for the case of a pericentre

passage over 10 Earth radii.

Figure 8 shows the semi-major axis and eccentricity

evolution, as well as a binary trajectory plot centred on

IAC-14,C1,2,13 Page 5 of 10



65
th International Astronautical Congress, Toronto, Canada. Copyright c©2014 by Daniel Garcı́a Yárnoz. Published by the IAF, with permission

and released to the IAF to publish in all forms.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t/T

O
rb
.
el
em

 

 

a [km]

e

A

−0.5 0 0.5 1

−0.5

0

0.5

x12 [km]

y
1
2
[k
m
]

A

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t/T

O
rb
.
el
em

 

 

a [km]

e

B

−0.5 0 0.5

−0.5

0

0.5

x12 [km]

y
1
2
[k
m
]

B

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t/T

O
rb
.
el
em

 

 

a [km]

e

C

−0.2 0 0.2

−0.2

−0.1

0

0.1

0.2

x12 [km]

y
1
2
[k
m
]

C

0 0.5 1

0

0.2

0.4

0.6

0.8

1

t/T

O
rb
.
el
em

 

 

a [km]
e

D

−0.1 0 0.1
−0.1

−0.05

0

0.05

0.1

x12 [km]

y
1
2
[k
m
]

D

Figure 8: Binary semi-major axis a and eccentricity e evolution

for an equal mass binary pair during a close approach (left), and

trajectories of one of the components of the binary with respect

to its companion. Initial trajectories are circular (e = 0).

one of the components of the pair, for 4 particular cases

identified with letters in Fig. 7. Case “A” through “C”

correspond to retrograde binaries of decreasing initial

semi-major axis. It is clear that the disruption is smallest

for the closest binary pair “C”, with no apparent change

in a and a small increase in eccentricity. In cases “A” and

“B” the binary pair is technically broken at the pericen-

tre passage (eccentricity larger than 1), but then gravita-

tionally bound together in an elliptical orbit again when

the gravitational torques reduce away from the closest

approach. Case “D” represents one case of a surviving

prograde close binary.

III.IV Equal mass contact binary

This model combines rigid body propagation and the

binary pair model (see III.II and III.III), with switching

events triggered by a limit rotational rate for break-up,

and re-impact of the components.

For the rigid body propagation the shape factor of two

spheres in contact is used. No sliding between boul-

ders, independent boulder rotation, or other type of rela-

tive movement between the two components of the con-

tact binary is considered. If the contact binary rota-

tion speed reaches the binary break-up rotation limit, the

pair splits and propagation continues with the binary pair

model. This implies only self-gravity is considered, with

no cohesion between the components of the contact bi-

nary. Reconfiguration of the binary takes place when the

distance between the two components drops below two

radii. No collision or reconfiguration due to the impact is

computed.

IV. APPLICATION TO CAPTURE

In the event of an asteroid retrieval mission that re-

quires a lunar swing-by (such as [3, 16]), or an Earth

encounter at lower distances than those proposed in [11],

the consequences of the swing-by on the minor body can

be investigated with the above described models. In this

section, both isolated single Earth and lunar swing-bys

are considered, for different pericentre radii. No third

body perturbation is included in the propagation of the

trajectories. Two test cases have been run: a low velocity

swing-by with infinite velocity vinf = 0.6479 km/s, and

a high velocity swing-by with vinf = 5.851 km/s. They

correspond to the hyperbolic excess velocities of the pre-

dicted encounters with Earth of asteroids 2006 RH120

and 2004 MN4 (Apophis) in years 2028 and 2029 (from

JPL’s Small–Body Database Browser1). Candidate aster-

oids for capture are more likely to have low vinf , as as-

teroids with orbits close to that of the Earth will therefore

have modest energy requirements for capture.

IV.I Isolated Earth Swing-by

Figures 9 and 10 plot the maximum rotation rate

changes achievable with an Earth swing-by for the two

swing-by velocities considered, as a function of their ini-

tial rotation rate. Positive variations correspond to the

maximum achievable asteroid spin-up, while negative

variations are the maximum de-spin. The pericentre ra-

dius ranges from two to ten Earth radii.

The dashed diagonal red line represents the mass shed-

ding rotation limit: any point above this line corresponds

to a rotation rate in which mass is being lost at the equa-

tor of the asteroid (assumed spherical) if no cohesion is

taken into account. Similar lines can be plotted for the

binary break-up limit (parallel to the mass shedding half

the distance from the origin of coordinates) and for zero

spin rate (y = −x, again parallel through the origin).

The plots on the right side have been normalised with

respect to the rate of variation of the true anomaly at

1http://ssd.jpl.nasa.gov/sbdb.cgi Last accessed 20/06/2014
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Figure 9: Maximum spin-up and de-spin achievable for a low-

velocity Earth swing-by for various shape factors: point-mass

dumbbell (top), equal mass contact binary (middle) and ellip-

soid with a =
√
2b (bottom). Right plots have been normalised

with the true anomaly rate at pericentre ν̇p.
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Figure 10: Maximum spin-up and de-spin achievable for a

high-velocity Earth swing-by for various shape factors: point-

mass dumbbell (top), equal mass contact binary (middle) and

ellipsoid with a =
√
2b (bottom). Right plots have been nor-

malised with the true anomaly rate at pericentre ν̇p.
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Figure 11: Maximum spin-up and de-spin achievable for a low-

velocity Moon swing-by for various shape factors: point-mass

dumbbell (top), equal mass contact binary (middle) and ellip-

soid with a =
√
2b (bottom). Right plots have been normalised

with the true anomaly rate at pericentre ν̇p.
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Figure 12: Maximum spin-up and de-spin achievable for a

high-velocity Moon swing-by for various shape factors: point-

mass dumbbell (top), equal mass contact binary (middle) and

ellipsoid with a =
√
2b (bottom). Right plots have been nor-

malised with the true anomaly rate at pericentre ν̇p.
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pericentre ν̇p. In the case of the low velocity swing-

by, the maximum rotation rate changes scale with this

value, and the results can be easily generalised to even

higher pericentre radius. For the high velocity swing-

by, the maximum normalised values decrease noticeably

with the pericentre radius.

Several key conclusions can be drawn from these

plots. Consistent with the results for the test cases in sec-

tion III, no rotation rate variation of practical relevance

can be achieved for retrograde asteroids, or for asteroids

rotating initially at speeds higher that three times the true

anomaly variation at pericentre ν̇p. The maximum de-

spin for low positive (prograde) initial spin rates follows

the zero spin rate line for the cases with a high shape fac-

tor. This indicates elongated objects can be completely

de-spun for a certain range of initial rotation rates. Varia-

tions larger than ν̇p can be achieved for elongated shapes.

The maximum spin-up occurs for prograde initial ro-

tation rates close to zero, while the maximum de-spin

is for asteroids initially rotating at speeds close to ν̇p.

These maxima increase with the elongation of the aster-

oid shape, and the location of the rotation for maximum

spin-up moves away from zero with the swing-by speed,

at the same time the initial rotation for maximum de-spin

decreases.

IV.II Isolated Lunar Swing-by

For the lunar swing-by case, we consider pericentre

radii as low as 1800 km (approximately 63 km above the

lunar surface), and up to 8 lunar radii. Figures 11 and

12 show the maximum rotation rate variation for the lu-

nar swing-by cases. Similar conclusions can be drawn,

although the perturbations in the high velocity case are

much smaller than in the Earth swing-by case for a simi-

lar pericentre radius.

Rotation rate changes of the order of the true anomaly

rate at pericentre ν̇p can still be achieved for the low ve-

locity flyby. However, for the lunar swing-by, a slowly

rotating prograde asteroid cannot be completely de-spun:

the maximum de-spin does not follow the y = −x line.

For the high speed swing-by, the maximum spin-up and

de-spin lines appear to be almost symmetric with respect

to the horizontal axis, indicating that there is an initial ro-

tation rate for which the largest change can be achieved

in either direction depending on the geometric configura-

tion at pericentre. The magnitude of the spin-up and de-

spin is much reduced in this case. As a side note, there

are small oscillating variations at higher speeds, indicat-

ing higher order resonances, but the effects are limited.
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Figure 13: Examples of binary disruption: contact binary

break-up, binary pair generation and collapse to contact binary

again, and contact binary surviving the swing-by.

Equal mass contact binary break-up

As a final case study, the possibility of break-up of

a contact binary was analysed for a low velocity lunar

swing-by with a pericentre at two lunar radii. The con-

tact binary is assumed to rotate initially in a prograde

direction at half the binary break-up limit.

The results are again very much dependent on the ge-

ometry at pericentre passage, and thus the initial con-

ditions. Figure 13 presents three examples of different

outcomes. The rotation rates have been scaled with the

binary break-up limit, and the time with the total time

within the lunar sphere of influence tSOI . In the first

case (top figures), the contact binary reaches the break-up

limit, and the distance between the binary pair increases

due to tidal torques until they effectively break apart from

each other. A second case shows a separation into a bi-

nary pair that collapses once again into a contact binary

during the swing-by. The maximum separation between

the two components is larger than 6 times their radius.

Finally, there are cases in which the contact binary sur-

vives the swing-by without breaking apart at any time, as

shown in the bottom plot of Fig.13.
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V. CONCLUSIONS AND FURTHER WORK

Swing-bys during the capture phase of an asteroid re-

trieval mission could be effectively used to de-spin the

asteroid, or spin-up and break-up of rubble piles. Several

recommendations can be formulated from the previous

analysis:

• Assuming a target captured asteroid has been de-

tumbled or de-spun after grappling and bagging

(as in the proposal of the Keck study report [3]),

and no induced rotation during the capture swing-

by phase is desired, introducing a small retrograde

rotation for the asteroid (with periods as large as

25 hours) will effectively avoid undesired spin-up

effects. This requires very little control, which

should be within the capabilities of the retrieval

spacecraft if a complete de-spin was performed af-

ter bagging. Fast rotators (faster than three times the

true anomaly variation at pericentre) are also not af-

fected, but having a controlled fast rotating asteroid

is less likely to be feasible or of practical use.

• Assuming a residual prograde rotation of the aster-

oid at the time of the swing-by that needs to be re-

duced, small modifications in the time of pericen-

tre passage or in the rotational state would allow a

change in the relative attitude of the asteroid at peri-

centre. Tuning this geometry can completely de-

spin the captured asteroid depending on its shape.

This is effective for rotation rates slower or of the

order of the true anomaly variation at pericentre ν̇p.

• On the other hand, if spin-up of the captured aster-

oid is desired for some practical purpose, a similar

strategy can be proposed to increase the rotation rate

of a slowly rotating asteroid to levels of the order of

ν̇p.

• Induced spin-up can be employed ultimately to

break-up a contact binary or rubble pile, for scien-

tific reasons or in the case it would be beneficial for

exploitation.

However, this is only a preliminary analysis and the

models used need to be improved to confirm the re-

sults. A more complex model including the gravita-

tional attraction of the Earth and the Moon should be im-

plemented s appropriate. Most importantly, non-planar

models in which the rotation is not constrained to be per-

pendicular to the orbital plane should also be considered.

These will introduce the possibility of tumbling and com-

plex rotation states, but possibly also the opportunity to

use tidal toques to de-tumble or stabilize the rotation of

an asteroid. Additionally, introducing internal strength

and cohesion will significantly affect the outcome of the

break-up analysis. As a further step, complex models of

asteroid rubble piles, with multiple size and shape mass

concentrations held together by self-gravity and cohesion

could be devised. Finally, as shown in the previous anal-

ysis, the outcomes of a tidal interaction during a swing-

by are very sensible to variations in the geometry of the

encounter, and small errors may cause large deviations in

the final state. Devising control strategies and studying

their feasibility is left here for future work.
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