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New diagnoses of HIV infection were reported confidentially to the Public Health Laboratory 

Service (PHLS) AIDS Centre under a national voluntary surveillance scheme. Two sets of data 

drawn from the national datasets were made available to us for analysis, the first in 1991, the 

second in 1994, by which time the replication of reports had been reduced. The data used in the 

analyses consisted of the numbers of replications of the reported full date of birth in the 

individual records (one, two, three and so on), for each year of birth. This paper uses a non-

parametric maximum likelihood estimation method for quantifying the amount of replication in 

the data. The estimated amount of replication was 3.37% (95% confidence interval 

(0.98%,11.83%)) in the 1991 and 0.58% (95% confidence interval (0%,2.64%)) in the 1994 

dataset. 
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1. BACKGROUND 

 

Acquired Immune Deficiency Syndrome (AIDS) is a severe, life-threatening 

clinical condition. It was first recognised in 1981 and the virus which causes the 

disease, the Human Immunodeficiency Virus (HIV) was discovered in 1983 [1, 2]. 

HIV is commonly spread by sexual contact, by injecting drug use, from mother to 

child and by blood transfusion. Because the largest proportion (about three quarters) 

of all HIV infections happen through sexual contact, HIV is considered a sexually 

transmitted infection (STI) [3]. It is estimated that a total of 2.7 million people 

globally acquired HIV in 2010, down from 3.1 million in 2001 and that by the end of 

2010 an estimated 34 million people in the world were living with HIV [4]. 

The incubation period from HIV infection to AIDS is usually long and 

variable with a mean of around ten years [1] and with a 95% confidence interval for 

this mean being [8.4,11.2] years [5]. This means that HIV infected individuals may 

remain ignorant of their infection for long periods of time, during which they may 

unknowingly transmit the virus. As HIV is an STI, there is a social stigma attached to 

a diagnosis of HIV or AIDS. These factors make it difficult to obtain both reliable 

estimates of the scale of the epidemic and data suitable for analysis [3]. 
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Since the mid 1990s there have been combinations of antiretroviral drugs 

available which delay the onset of AIDS and increase the lifespan of HIV infected 

individuals, but a cure for the disease is yet to be found. Data on HIV and AIDS cases 

in England, Wales and Northern Ireland used to be collected by the Public Health 

Laboratory Service (PHLS), Colindale, London and for Scotland by the Scottish 

Centre for Infection and Environmental Health (SCIEH), Glasgow. Because of the 

sensitivity concerning knowledge of an individual’s HIV status, the name of the 

patient was not held in the databases. On the other hand, because of the serious social 

and economic cost to both the individual and the nation, it is important that the 

information available on the number of diagnosed HIV infections is as accurate as 

possible [6]. In Section 2 we shall discuss the problem of recognising the extent of 

undetected repeated reporting of the same individual and the previous work of 

Greenhalgh, Doyle and Mortimer which is very relevant to the work presented here. 

 

2. THE REPLICATION PROBLEM AND PREVIOUS WORK  

 

2.1 The replication problem  

A report of all individuals diagnosed as HIV positive was requested by the 

PHLS, usually through the completion of a short form. The name of the individual 

was not recorded on this report but the inclusion of both the date of birth and the 

“Soundex” code (a four character alphanumeric code of the surname) was requested 

[7]. In 1990 only a third of the records on the database held both Soundex code and 

full date of birth and at that time the Soundex code was available for only about half 

the database (Mortimer, 1996, personal communication). Often a local identifier, such 

as a clinic number, which allowed follow up for the missing information, had been 

given instead. Even when one or both of the Soundex code or date of birth were 

available there is still the possibility of mis-recording or transcription errors. It was 

also likely that some individuals were being repeatedly counted in the database due to 

having two or more HIV positive tests reported.    

There are at least two reasons why an individual already diagnosed as HIV 

positive may be tested again. Firstly an individual may be unwilling to believe the 

result and may seek independent confirmation of it by being tested again elsewhere. 

Secondly, an individual who reports to a new GP or a new clinic as HIV positive is 

usually retested before receiving any HIV related treatment. The PHLS did all that it 
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could to eliminate multiple counting of such individuals in the database but it wished 

to be aware of evidence of any multiple counting that still existed. This is not just a 

hypothetical problem; there is at least one example of an individual having five 

independent positive HIV tests reported, and it is known that mistakes in Soundex 

coding and name changes result in records of the same individual remaining 

unmatched despite the presence of a Soundex code on both records.  

The PHLS was interested in a statistical method to test whether individuals 

were being repeatedly counted in the database from the date of birth data available 

and in 1991 sent us relevant information from the database as it stood then. This 

consisted, for each birth year, of the number of birth dates in that year for which there 

was at least one record in the database and the number of records corresponding to 

that birth date in the database. No information on Soundex codes or the lack of them 

for these records was sent to us at that time. The information sent to us in 1991 is 

displayed in Table 1 in Appendix A. If a given birth date occurs twice in the database 

it is not possible to tell from this information whether this multiple recording 

corresponds to one individual recorded twice, or two distinct individuals with the 

same birth date, and birth dates that occur three times or more in the database have a 

greater number of possible similar ambiguities. However from the observed statistical 

distribution of recorded birth dates it is possible to make inferences on whether 

statistically significant replication of individuals is present and to attempt to estimate 

the amount of such replication. Between 1991 and 1994, the PHLS was able to 

improve the quality of their database, both prospectively by ensuring that both date of 

birth and Soundex code were available for as many new cases as possible, and 

retrospectively by obtaining Soundex code or date of birth or both to complete reports 

received previously. This has allowed the elimination from the data of further 

multiple recording of individuals. In 1994 information from the entire database as it 

stood then was sent to us for further statistical analysis. This data is displayed in Table 

2 in Appendix A.  

HIV surveillance systems have of course advanced since 1994. As well as the 

New Diagnoses reporting system described above the Health Protection Agency 

(HPA) and Public Health England (PHE), the successors to the PHLS, have cross-

sectional annual surveys of prevalent diagnosed HIV infections (SOPHID). These 

collect reports of all individuals in a calendar year, including those who move area, 

taking up HIV services offered by the National Health Service (NHS) in England, 
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Wales and Northern Ireland. Neither surveillance system collects names but a 

Soundex code of the surname, sex and date of birth are held as identifiers [8,9]. 

 

2.2 Literature Review 

 

We now give a brief review of work by other authors in the general area of 

this problem.  Larsen [10] discusses estimation of the number of people in a register 

from the number of birth dates when unique identifiers are not available and when 

multiple entries can occur.  A method for estimating the number of registered people 

is presented when dates of birth (day, month and year) are available.  Registration of 

people who are HIV positive is cited as an appropriate example. 

The problem is clearly related to classical occupancy theory, where r balls are 

placed at random in n boxes and the probability of m empty boxes is studied.  Here r 

has a fixed value whereas Larsen is interested in estimating r.  Larsen defines n to be 

the number of consecutive days in a sequence of possible birth dates; r is the number 

of registered people born in the sequence; b is the number of occupied birth dates in 

this sequence; and m=n-b is the number of empty birth dates in this sequence.  Larsen 

chooses the approximate maximum likelihood estimate, 

                                    )/(log),(0̂ mnnnmr e=  

with approximate variance 

                                                    .~)( /

0

nr
nerV

−  

An alternative approach is discussed in which r is taken to be a random variable 

reflecting the stochastic nature of registration. 

Numerical calculation showed a negative bias for the true maximum 

likelihood estimator r̂  and a small positive bias for the approximate maximum 

likelihood estimator 0̂r .  For fixed r the exact maximum likelihood was seen to be 

very near the approximate maximum likelihood estimate, at least for values of n near 

100.  As an example registrations of Chlamydia infections were considered. 

The problem which we are studying can be thought of as related to a record 

linkage problem [11,12].  This addresses the problem of matching two files of 

individual data under conditions of uncertainty.  Individual record linkage involves 

two files: file A and file B with records pertaining to individual cases [13].  Each 

individual file is assumed to contain no duplicate records.  Obviously, one or more 

fields on file A must have equivalent fields on file B.  For example, in order to match 
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on surname and age, both files must contain fields with this information.  The 

objective of the record linkage process is to decide for each pair of records whether it 

is a matched or unmatched pair. 

A linking variable is a single criterion (such as birth date) utilized to establish 

or partially establish record linkage [14]. There are two basic methods for record  

linkage: deterministic linkage, which is effected only when there is an exact match on 

all linking variables, and the more complex probabilistic linkage, which affects 

linkage through evaluation of frequencies for linking variable values. Each time that a 

new set of records is added to the database we are in effect linking two datafiles, the 

old database and the new records [15].  In general probabilistic data linkage methods 

are useful in that they can help us rank agreement between different matching 

variables and they can also be used to incorporate effects such as data transcription 

errors [13].  However they are not very relevant to the problem of assessing residual 

duplication in the dataset supplied to us which had just one linking variable (the date 

of birth), particularly when each value of that linking variable is equally likely. 

The efficiency of probabilistic data linkage can be measured by the positive 

predictive value which is the fraction of linked records which are actually true 

positives. Blakely and Salmond [16] describe a “duplicate method” to calculate this 

statistic when each record can be involved in only one match (for example linking 

population files to death files). Elmagarid, Ipeiritos and Verykios [17] survey methods 

for deterministic and probabilistic record linkage. They describe algorithms for field 

matching. They point out that probabilistic data linkage can be regarded as a Bayesian 

inference problem and describe a likelihood ratio based Bayes decision rule that gives 

minimum error. They also discuss supervised and unsupervised learning to classify 

data linkage and other methods. 

Ades et al. [18] describe how an unlinked anonymous neonatal seroprevalence 

survey was used with electronic record linkage to assess HIV prevalence in the UK. 

In more recent work Rice et al. [9] created a cohort of HIV-diagnosed adults by 

deterministically linking records across the 1998 to 2007 SOPHID database. The 

records were also linked to the New Diagnoses database and to Office for National 

Statistics death records. This was done to examine HIV-service attendance. This is 

related to the problem studied in this paper as the problem of residual duplication may 

still exist in the HIV databases used in Rice et al. which would lead to biased results. 
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Methods to estimate the extent of duplication would therefore be of huge help in 

providing information on potential bias corrections. 

Sometimes it is accepted that the data are imperfect and alternative statistical 

approaches are used to compensate. For example Goubar et al. [19] estimate HIV 

prevalence and proportion diagnosed in England and Wales. They take a Bayesian 

approach with informative priors to synthesise different sources of surveillance 

information, including the SOPHID database, using Markov Chain Monte Carlo 

methods. They find that there are inconsistencies in the data but these can be resolved 

by bias correction. Presanis et al. [20] use this approach to estimate prevalence and 

incidence of HIV amongst men who have sex with men in England and Wales. This is 

also related to the problem discussed here for similar reasons as discussed above in 

relation to the HIV databases of Rice et al. 

The problem considered here is not the design of a data linkage mechanism, 

but rather to assess the efficiency of the data linkage already done in eliminating 

duplicate reports.  Technically our problem is a data linkage one, but there is only one 

linking variable, date of birth, whereas normally there are several.  Deterministic 

linkage would simply match all records with the same birth date, which would 

overlink.  On the other hand there is not enough information contained in the linking 

variable for probabilistic linking to be useful.  Thus classical data linkage techniques 

are not appropriate.  We shall use maximum likelihood methods to estimate the 

percentage overcounting present.    

 

2.3 Previous work  

We briefly summarise the work of Greenhalgh, Doyle and Mortimer which 

shows that replication is present in the datasets. The first of these papers [21] 

examined statistical methods for deciding whether there is a greater amount of 

replication of birth dates in the sample than expected by chance alone. Greenhalgh 

and Doyle [15] discussed a statistical method to detect repeatedly counted individuals 

in the dataset based on the number of matching pairs in the sample. Five of the sixteen 

birth years tested from the 1991 dataset show evidence of more replication than would 

be expected by chance alone, using a 5% level test. 

Finally, Greenhalgh, Doyle and Mortimer [22] outline a partial ranking 

method suitable for small sample sizes. This uses a natural partial ordering on the 

sample space to test whether there are individuals repeatedly counted in the sample. 
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The partial ranking method cannot  be used for larger sample sizes. It is applied to the 

five birth years in the 1991 dataset. One of those five years shows evidence of more 

replication of individuals than would be expected from independent random sampling 

from the population. The results were compared with an alternative maximum 

likelihood based test which reached the same conclusions. Finally, maximum 

likelihood methods were further used to estimate the percentage of underlinking of 

individuals in the sample. 

The above papers by Greenhalgh, Doyle and Mortimer conclude that there is a 

significant amount of replication of individuals in the 1991 dataset. However it is of 

much more practical interest to the public health authorities to quantify the amount of 

replication, which we shall do so here. The Day Report [23] gives an accuracy of 

within 5% when quoting levels of HIV and AIDS incidence so anything smaller than 

this can be ignored in practice. 

 

3. AVAILABLE DATA  

 
In Tables 1 and 2 we have the data which was provided from the PHLS 

database in 1991 and 1994 respectively. The reported HIV positive individuals were 

divided according to their year of birth. In the 1991 dataset, the birth year of those 

individuals included in the dataset ranged from 1929 to 1944. For every given year we 

have a sample of size r. This is the number of records of individuals who were born in 

this year and are included in our data.  

The sample consists of S1 singletons, which represent a single birth date, S2 

doubletons, S3 tripletons and so on up to Sr r-tuples with ∑
=

=
r

i

i riS
1

. An i-tuple is a 

birth date which appears in exactly i records in the dataset. A singleton represents a 

unique birth date. A doubleton represents a birth date repeated twice, i.e. two actual 

records which might or might not correspond to the same individual. Similarly a 

tripleton represents a birth date repeated three times.  The three records having this 

birth date in our dataset which could correspond to one, two or three distinct 

individuals.  A four-tuple represents a birth date repeated four times and so on. If for 

example we consider the year 1939, then r=99, s1=69, s2=13, s3=2 and all other si's are 

zero. The same notation applies also to the 1994 dataset, which is presented in Table 

2. We adopt the usual convention of using a capital letter (such as Si) for a random 
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variable and the corresponding lower case letter si for a realisation of that random 

variable. 

The problem is that there is no direct way of telling whether there is 

replication of individuals in the year in question. This is because for instance a 

tripleton in a year may record three individuals with co-incident birth dates or two 

individuals, with one reported twice and the other with a co-incident birth date with 

that individual or finally a single individual reported three times. Similarly a 

doubleton records either one or two distinct individuals, a four-tuple one, two, three or 

four distinct individuals and so on.  

 

4. THE MAXIMUM LIKELIHOOD METHOD  

 

For a given birth year the sample size of birth records is r and the replication 

vector is SB = (S1, S2, …Sr). Here the subscript B denotes the birth year. We denote a 

typical outcome for SB by sB = (s1, s2, … sr). This means that the collection of r birth 

records contains exactly s1 unique birth dates, s2 birth dates repeated exactly twice, s3 

birth dates repeated exactly three times, ... and sr birth dates repeated exactly r times.  

However some individuals may have more than one birth record in the 

database (due to having more than one HIV positive test result). If we know which 

birth records correspond to which distinct individuals then we can calculate the true 

replication vector TB = (T1, T2, ..., Tr) of birth records corresponding to distinct 

individuals (with no multiple counting of individuals). A typical outcome is denoted 

tB = (t1, t2, ... ,tr). For example if the observed birth record replication vector is 

                            s1 = 10, s2 =5 and s3 =2 

(ten singleton birth records, five doubleton birth records and two tripleton birth 

records) and we know that for two of the five doubleton birth records this doubleton 

actually corresponds to an individual who has had two HIV positive tests and one of 

the tripleton birth records actually corresponds to an individual who has had one HIV 

positive test and a second individual who has had two HIV positive tests, and all other 

birth records correspond to individuals who have had just one test 

                                         t1 =12, t2 = 4 and t3=1. 

 Suppose that n denotes the number of days in a year, that all individuals are 

independent and each day of the year is equally likely to be a birth date. Then 
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Theorem 1 in Appendix B gives the probability of occurrence of the birth record 

replication vector TB where all birth records correspond to distinct individuals. 

As a matter of fact there is a small but statistically significant seasonal 

variation in the birth rate with births being more likely in the summer than the winter. 

It is possible to modify Theorem 1 to take this into account. However our previous 

work on statistical tests for whether replication was present in the dataset found that it 

made no significant difference to the likelihood function [15]. Hence for simplicity 

and because we were not given data on the actual calendar days on which birth dates 

were repeated we ignore it here. Theorem 1 also assumes that individuals in a given 

birth year are sampled randomly without replacement from the population consisting 

of all people born in that birth year. The size of the database is very small compared 

to this population so the fact that individuals are sampled without replacement can be 

ignored. 

If the observed birth record replication vector is sB then there are at most r = 

1s1 +2s2+ ... +rsr distinct individuals (this will be the case if every birth record in the 

observed replication vector corresponds to a distinct individual) and at least ı = 

s1+s2+ ... +sr distinct individuals (this will be the case if every birth date in the 

observed birth record replication vector corresponds to one distinct individual 

repeated an appropriate number of times). So if r
*
 = σ ௜௥௜ୀଵݐ݅  denotes the true number 

of distinct individuals in the observed birth record replication vector then r ≥ r
* ≥ ı. 

We assume that the probability distribution for the number of reported positive HIV 

tests of a random individual recorded on the database is given by the unknown 

probability distribution pi, i = 1,2,3, ... . We write p = (p1,p2,p3, ...). Of course pi ≥ 0 

for i ≥ 1 and σ ௜ஶ௜ୀଵ݌ = 1. 

For each of the possible values of r
* 

we can calculate the likelihood function  

                                                       L(r
*
,p|sB). 

The exact calculation is complicated and detailed in Appendix B. This likelihood 

function is then maximised over r
*
 and p, to give the maximum likelihood estimators כݎ෡  of r

*
, the true number of distinct individuals in the sample, and ࢖ෝ  of p the 

distribution of the number of reported HIV tests that an individual has had.  

Once the maximum likelihood estimates are obtained we are able to calculate 

the percentage of replication in a given birth year. This can be estimated as either 

                                                                 100
௥ି௥כ෢௥כ෢  % 
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where r is the observed sample size and כݎ෡  is the estimated sample size or 

                                                         100 σ (݅ െ ෢௜ୀଶכƸ௜௥݌(1  % 

where p̂ is the estimated distribution of the number of reported HIV tests that an 

individual has had. In practice both of these methods give very similar results so we 

present the results only for the first one. For instance for the birth year 1925 the 

percentages of replication calculated by the two methods are to two decimal places 

6.45% and 6.44% respectively. 

As an example for the birth year 1930 the observed birth record replication 

vector is s1930=(23,1) and r=25. We have two possible values of r
*
 that should be 

examined. The first is if there is no replication present, r
*
=25 and the true replication 

vector of birth records of distinct individuals is t1930=(23,1), and the second is if the 

doubleton is actually a single individual tested twice. In that case if we get rid of the 

replication present we have r
*
=24 and t1930=(24,0). 

In the first case the likelihood is  

                                     P(s1930|p,r
*
=25) = P0p1

25
 

where P0 = P(t1=23, t2=1, t3=t4=t5= ... =t25=0) and in the second case the likelihood is 

                                                 P(s1930|p,r
*
=24) = 24P1p1

23
p2 

where P1 = P(t1=24, t2=t3= ... =t25=0). P0 and P1 can be calculated from Theorem 1. 

 Hence the overall likelihood function is 

                                 L(r
*
,p|s1930) = ቊ ଴ܲ݌ଵଶହ,                 כݎ = 25,

24 ଵܲ݌ଵଶଷ݌ଶ,        כݎ = 24.
                                    (1) 

This needs to be maximised over כݎand p to find the maximum likelihood estimators, כݎ෡  and ࢖ෝ . Once the maximum likelihood estimates are obtained we are able to 

calculate the amount of replication in a given birth year. 

 Suppose that the data observed for that birth year is sB = (s1,s2,...,sr) and that 

there are actually r
*
 distinct individuals in the database for that year. We can then 

calculate the likelihood function 

                                                         L(r
*
,p|sB) 

of the unknown parameters ș = (r
*
,p) given the data sB where p = (p1,p2,p3, ... ) and 

after that obtain the maximum likelihood estimates ࣂ෡ for ș given the observed data. 

To find the maximum likelihood value Lemma 1 [22], presented in Appendix B is 

sometimes useful for simple cases but for more complicated situations numerical 

maximisation is needed. 
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 For example for the birth year 1930 discussed earlier if r
*
=25 the likelihood 

function in (1) is maximised over p at p1=1, p2=p3 ... =p25=0 and if r
*
=24 using 

Lemma 1 it is maximised over p at p1=
ଶଷଶସ, p2=

ଵଶସ, p3=p4= ... =p25=0. The overall 

maximum likelihood is the maximum of these two values. 

             As a second example for birth year 1934 of the 1991 dataset and for r
*
=36 the 

likelihood function 

                             L(r
*
,p|s1934) = 637,086,601 p1

22
p2

14
  

and by using Lemma 1, we find that this is maximised over p at  p1= 0.6111 and p2= 

0.3889 and the rest of the pi 's are zero. In Section 5 we present in detail the results for 

the year 1934 and some of the results for the year 1935 of the 1991 dataset in order to 

show how the maximum likelihood method works. 

 

5. REPLICATION AND OVERCOUNTING   

 

In Section 6 we present the summary results for both datasets. But because it 

is quite difficult to understand how the maximum likelihood method works, we 

present first in detail how we obtained the results for two years. As stated before for i 

≥ 1, pi is defined as the probability that an HIV positive individual who has had at 

least one positive test recorded in the dataset has actually had exactly i positive HIV 

tests recorded. Of course pi ≥ 0  for i ≥ 1 and  ∑
∞

=

=
1

1
i

ip .  

In Tables 3 and 4 (see Appendix A) we present the results for the years 1934 

and 1935 for the 1991 dataset. We give the results for all the possible outcomes for 

the true replication vector tB, for a given value of r
*
, when we eliminate individuals 

repeatedly recorded in the sample, where r
*
 is the true number of individuals in the 

sample (given in column one). The second column contains the true replication vector 

or vectors corresponding to this r
*
 and the third column the likelihood function 

L(r
*
,p|sB) of r

*
 and p given the observed data. Then the following column presents the 

probabilities which maximise the likelihood function (for that value of r
*
). The last 

column has the maximised likelihood function  L(r
*
(sB|(כݎ)ෝ࢖,

  
(given r

*
) . 

For 1934 the observed replication vector is s1934  = (22,14). Hence the true 

number of individuals is somewhere between 36 (if each of the doubletons correspond 

to exactly one distinct individual) and 50 (if each of the doubletons correspond to 
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exactly two distinct individuals). If r
*
=36 then the true replication vector after 

individuals repeatedly counted have been eliminated is (36,0), if  r
*
=37 then the true 

replication vector is (35,1) and so on up to r
*
=50 when the true replication vector is 

(22,14).  

If r
*
=50 then the probability that all 50 individuals have had only one birth 

date recorded is p1
50

. The independent probability that there are 22 singleton birthdays 

and 14 doubleton birthdays is calculated to be 4.26794x10
-9

 with the use of Theorem 

1.  So in that case  

                                 L(r
*
=50,p|s1934) = 4.26794x10

-9
p1

50 
 

which has a maximum value of 4.26794x10
-9

at 0...ˆˆ,1ˆ
321 ==== ppp . 

In the second case of r
*
=49 we get the observed replication vector precisely 

when exactly one individual has had two recorded positive tests and this individual 

has a distinct birthday from everyone else. The rest of the individuals must have had 

exactly one test. So after the elimination of the double counting, the true replication 

vector is (23,13). The probability of 49 randomly chosen individuals giving rise to the 

true replication vector of birth dates is calculated using Theorem 1 to be 3.7929x10
-8

.
 
 

The probability that exactly one out of the 23 singleton birth dates corresponds to an 

individual who has had two recorded HIV tests and everyone else has had exactly one 

is 23p1
48

p2. So the likelihood function is:   

               L(r
*
=49,p|s1934) = 3.7929x10

-8 
x 23 p1

48
p2 = 8.72366x10

-7
 p1

48
p2. 

By Lemma 1, this has a maximum value of 6.61714x10
-9

,
 

when 

0...ˆˆ,0204.0ˆ,9796.0ˆ
4321 ===== pppp . 

In the same way, for r
*
=48, the probability of 48 randomly chosen individuals, 

each counted once giving rise to the replication vector (24,12) is 3.06076x10
-7

. But in 

order to get this replication vector out of the original data, we must have exactly two 

individuals out of the 24 singleton birth dates corresponding to an individual who has 

had two recorded tests and all the other 46 individuals in the sample having had just 

one recorded test. The likelihood is then:  

L(r
*
 =48, p |s1934) = 3.06076x10

-7 

!2

24.23 p1
46

p2
2 

= 8.44771x10
-5

 p1
46

p2
2
.  

The maximum value for this function is 2.07052x10
-8

 when 

0...ˆˆ,0417.0ˆ,9583.0ˆ
4321 ===== pppp . 
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Finally after calculating all the possible outcomes for the true replication 

vector and the respective maximum likelihood functions, we estimate that for the year 

1934 in the 1991 dataset, there were 14 individuals reported exactly twice and the rest 

of the individuals were reported exactly once. So the corresponding true replication 

vector would be t1=36, t2=t3=t4=0, and the maximised likelihood function was 0.0227 

for 03889061110 4321 ===== ...p̂p̂,.p̂,.p̂ .  

For the birth year 1935 the calculations are more complicated because of the 

presence of a four-tuple in the observed data. For example we can see that if the true 

value of r
*
=53, then we have two possible true replication vectors corresponding to 

the same value of r
*
. That means that the maximum likelihood function for r

*
=53 is 

L(r
*
 =53,p |s1935) = 41P(41,4,0,1) x p1

52
p2 + 3P(40,5,1,0) x p1

52
p2 = 0.0750 p1

52
p2, the 

maximised value of which is calculated to be 0.000525, when the estimated 

probabilities are 0...ˆˆ,0189.0ˆ,9811.0ˆ
4321 ===== pppp . Here the notation 

P(t1,t2,t3…, tr) denotes the probability of observing the birth date replication vector tB 

= (t1,t2,t3…, tr) if there are  r
*
= ∑

=

r

i

iit
1

distinct individuals in the sample and each has 

only one recorded HIV test. 

It is obvious from the next cases for the year 1935 that we can have different 

replication vectors corresponding to the same value of r
*
 and even different factors 

corresponding to the same replication vectors or vice versa. Different factors 

corresponding to the same true replication vector occurs for r
*
=47 where both 

p1
41

p2
5
p3   and  p1

42
p2

4
p4  correspond to the true replication vector (45,1,0,0). We 

presented the situation of different replication vectors corresponding to the same 

value of r
* 

for r
*
=53.  

Finally after calculating all the possible outcomes for the true replication 

vector and the respective maximum likelihood functions, we came to the conclusion 

that for 1935, it is most likely that r
*
=51 (and hence there was one person counted 

four times and fifty one people counted exactly once). The true replication vector was 

estimated as (t1,t2,t3,t4) = (41,5,0,0) and the maximised likelihood for this vector was 

0.0288, which occurred when ,9804.0ˆ
1 =p  ,0.0ˆ

2 =p ,0.0ˆ
3 =p ,0196.0ˆ

4 =p

0...ˆˆ
65 === pp . As the number of observations in a year becomes even larger the 

number of combinations that have to be taken into account increases dramatically. 
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6. SUMMARY RESULTS 

 

We used two different programs for these calculations. Two versions were 

written, one in Fortran, one in C. For each possible value of r
*
, the first program 

calculated all the possibilities for the true replication vector TB= (T1, T2, …T11) giving 

the same value for r
*
 and the relative probabilities for those vectors. Then for each 

value of r
*
, the second program calculated the likelihood function L(r

*
,p|sB) using the 

probabilities from the first program, and maximised it with respect to p, calculated the 

maximising value p̂  and the partially maximised likelihood function L(r
*
, p̂ (r

*
)|sB) 

(given r
*
).  Further details of the programs and algorithm used are given in Sfikas 

[24]. 

We present for the 1991 dataset, wherever it is possible, all the possible 

outcomes for the replication vector together with the respective calculated maximum 

likelihood estimators. For this dataset for the birth years 1934-1941, ip̂  was always 

zero for i ≥ 5 so we give only .ˆandˆ,ˆ,ˆ
4321 pppp  For the birth years and 1942-

1944, ip̂  was always zero for i ≥ 7, so we give only .ˆandˆ,ˆ,ˆ,ˆ,ˆ
654321 pppppp  For 

the 1994 dataset it was difficult to give as much detail for the vast majority of birth 

years, due to the large number of HIV positive records in the observed data and the 

large size of the subsequent possible outcomes. So for this dataset we just present  כݎ෡  

and ࢖ෝ(כݎෝ) and the maximised likelihood function L(כݎ෡ sB). As for this dataset ip̂|(ෝכݎ)ෝ࢖,  

was always zero for i ≥ 12 we give only 111021
ˆ and ˆ,...,ˆ,ˆ pppp .  

In Tables 5 and 6 we present the results for the 1991 dataset and in Table 7 the 

results for the 1994 dataset. The first column of Table 5 gives the year of birth and the 

second one all the possible outcomes for the true number r
*
 of distinct individuals in 

the sample born during that year. The third column shows for each possible outcome 

for r the true replication vector (or vectors) that correspond to the specific value of r. 

The fourth column gives the likelihood function for each value of r and p. The 

maximised likelihood function is given in the last column.  For each year we also give 

the values כݎ෡  of  r
*
 and )ˆ,ˆ,ˆ,ˆ( 4321 pppp that maximise the likelihood function. 

We should also mention that for the years 1929-1933 of the 1991 database the 

results were presented in full by Greenhalgh, Doyle and Mortimer [22]. So they are 

briefly summarised in Table 6 together with the results for the birth years 1942-1944 
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which could not be analytically presented in full due to their length. 

In the 1991 dataset we estimated that there was some replication in five out of 

the sixteen birth years for which we had data. The years where replication was 

estimated to be present were: 1931, 1934, 1935, 1943 and 1944. The amount of 

replication that we estimated to be present was 37 records out of 1,097 which is 

equivalent to a 3.37% proportion of replication.  

For the 1994 dataset the results are summarised in Table 7. The first column 

again gives the year of birth of the individuals found HIV positive, the second column 

shows the observed total number of HIV positive records in this birth year and the 

third column the estimated number of distinct individuals by using the maximum 

likelihood method. The replication is the “observed number” r minus the “estimated 

number” כݎ෡ . Column four gives us the probabilities which maximise our likelihood 

estimator. Further details could not be presented due to lack of space.  Finally, the last 

column gives the maximised likelihood estimator (with the estimated כݎ෡  as shown in 

the third column). 

We found that there was replication present in 16 years out of the 64 years 

examined. The amount of replication present in this dataset was 100 records out of a 

sample of 17,272 which is the actual total number of individuals tested according to 

our research after we get rid of the replication present. This gives us a replication of 

0.58% of the total number of distinct individuals present. Thus the replication found 

in the 1994 dataset is less than one fifth of the one found in the 1991 dataset. This can 

be attributed to the fact that the PHLS was able to eliminate much but not all of the 

replication when collecting the 1994 dataset, by improving their methods of 

identifying repeatedly counted individuals.  

 Hence we have obtained a point estimate of the percentage replication in the 

PHLS HIV test data. However point estimates by themselves are of limited value and 

it is more useful to have some indication of the amount of uncertainty associated with 

these estimates. To do this we calculated 95% bootstrap confidence intervals based on 

the percentile method. However because the bootstrap distribution of the estimated 

percentage amount of replication was skew, rather than use the simple percentile 

method we use a more appropriate method which reflected an adjusted version of the 

bootstrap distribution about the estimated value [25]. This is sometimes called the 

centred bootstrap percentile interval. To be more precise for a given birth year with r 
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observed individual records, we estimated כݎ෡ , the number of distinct individuals in the 

sample, as above, and ࢖ෝ(כݎ෡ ), the probability distribution of the number of reported 

HIV tests that an individual has had. Next we took a random bootstrap sample of כݎ෡  

independent individuals whose birth dates were chosen at random and each of whom 

was independently assigned a number of HIV tests according to the distribution ࢖ෝ(כݎ෡ ). Then for this simulated observed replication vector the maximum likelihood 

method was again applied to estimate the amount of replication corresponding to that 

observed replication vector and the percentage replication calculated. This was 

repeated with 100 random bootstrap samples to give a distribution of the amount of 

replication in a sample and a bootstrap confidence interval calculated as follows: 

 Suppose that Ș denotes the true percentage replication in our sample. For each 

bootstrap sample we calculate ηη ˆ−*  where *η is the estimated percentage replication 

in the bootstrap sample and η̂ is the estimated percentage replication. From these we 

find the empirical values įL
 and įU

 such that 2.5% of the adjusted observations lie 

below įL
 and 2.5% lie above įU

. Hence we deduce the 95% bootstrap confidence 

interval for the true percentage replication Ș as 

                   ).ˆ,ˆ( LU δηδη −−  

 The estimated percentage replication for the PHLS 1991 dataset is shown in 

Table 8 together with the associated 95% bootstrap confidence intervals. These were 

calculated using our C program. From this table it is clear that the birth years with the 

wider confidence intervals tend to have relatively high estimated probabilities of an 

individual having two or more HIV tests. Note that the point estimates for the 

percentage replication always lie within the corresponding 95% bootstrap confidence 

interval supporting the validity of the method. From the confidence intervals we 

deduce that a 95% confidence interval for the overall amount of replication in this 

dataset is (0.98%,11.83%). 

 Using the C program, we used the parametric bootstrap method to generate 

95% bootstrap confidence intervals for the 1994 dataset. These are shown in Table 9. 

The birth years with the narrower confidence intervals again tend to have relatively 

low estimated probabilities of an individual having two or more HIV tests and 

relatively high numbers of birth records, thus relatively high numbers of individuals. 

This is what would be expected. Again point estimates for the percentage replication 

always lie within the appropriate 95% bootstrap confidence interval. From these 
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confidence intervals we deduce that a 95% confidence interval for the overall amount 

of replication in this dataset is (0%,2.64%). 

 

7. VALIDATION OF THE METHOD 

 

We take a simple example to test the validity of the method. We take the artificial 

replication vector (9,1) as an example so that nine individuals have had exactly one 

HIV test and one individual has had exactly two HIV tests. We allocate the birth dates 

at random to each individual to construct the observed birth record replication vector 

then use the maximum likelihood method to estimate the amount of replication in this 

vector. The process was repeated 10,000 times with results as shown in Table 10. 

We had to perform the simulation a large number of times to get an accurate 

distribution for the observed birth record replication vector and the program took a 

long time to run. Hence we had to choose a small true number of individuals (10). 

Consequently the resulting bootstrap confidence intervals were quite wide. 

Nonetheless the method is validated quite well. In 87.8% of cases the sample size was 

estimated correctly and in a further 11.7% of cases it was just one out. In the 87.8% of 

cases where the sample size was estimated correctly the probability vector was also 

estimated correctly. 

The 95% bootstrap confidence intervals associated with the observed bootstrap 

replication vector were typically quite large. For example for the replication vector 

(9,1) this was (0%,31.75%) and for (8,0,1) it was (0%,66.67%). Note that the 

simulations to calculate the observed bootstrap replication vector were conditional on 

there being exactly one individual in the dataset who had had exactly two reported 

HIV tests and that the simulations to calculate the 95% bootstrap confidence intervals 

were conditional on both the estimated sample size and the number of reported HIV 

tests that an individual had had following the estimated probability distribution. 

 

8. DISCUSSION 

 

We were given two datasets by the PHLS AIDS Surveillance Centre, 

containing only numbers of repeated birth dates by year of birth for individuals whose 

HIV positive test had been reported. As, for various reasons, many people with HIV 

infection are tested more than once, there was potential for some replication present in 
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these datasets. Our aim was to quantify the replication. A maximum likelihood 

estimation method was used along with the parametric bootstrap method to construct 

the corresponding 95% confidence intervals.  We estimated that the replication 

present in the 1991 dataset was 3.37% (95% confidence interval (0.98%,11.83%)) and 

for the 1994 dataset 0.58% (0%,2.64%). We noted before that we expected the 

replication to be smaller in the 1994 database because both the current and 

retrospective rates of inclusion in records of surname Soundex code had improved by 

that date. This made for more efficient elimination of replicate reports of the same 

individual from the national database than had been possible earlier. This 

improvement must be offset by people presenting for testing under different names, a 

problem that can only increase over time. Of course, the accuracy of the estimation 

process relies on the available information, and in this sense any estimate of 

replication would provide a minimum value for the true replication. Underlinking may 

particularly affect certain subgroups, such as women who are, through marriage, more 

likely than men to change their surname, and thus its Soundex code, and patients of 

foreign origin for whom surname may be less consistently distinguished from 

forename than is the case for those born in the UK. This would tend to distort the 

view of the epidemic in the UK. Female patients and patients from abroad with 

heterosexually acquired HIV may historically have been differentially 

overrepresented in the database due to overlinking, but this differential contribution 

has yet to be estimated. 

In 2011 there were an estimated 6,280 people in the UK newly diagnosed as 

HIV infected [26]. In view of the numbers and problems already described it is 

obvious that there will continue to be underlinking of reports which in fact relate to 

the same individual.   

The work presented here ignores the possible inconsistencies in the recording 

of dates of birth for individuals reported more than once; the presence of these will 

lead to unquantifiable numbers of unrecognised repeat records. Those making the 

reports were fully aware of the importance of  accuracy and double entry was used at 

the PHLS AIDS Surveillance Centre with the aim of minimising such errors. 

A preliminary version of the method used in this paper was used in [22] to 

analyse the amount of replication in five birth years from the 1991 dataset where the 

sample sizes were very small. The current paper very substantially extends this work 

as it analyses the entire 1991 and 1994 datasets where the sample sizes are very 
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substantially increased and the method is much more complex. It also extends the 

work in [22] by calculation of bootstrap confidence intervals for the percentage 

replication. 

Importantly for the 1991 dataset, the years where we found replication by the 

method used here were the same as the ones identified by the matching pairs method 

[15]. The same conclusion is arrived at by two distinct methods, re-inforcing our 

confidence in the results.  
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APPENDIX A. 
 

Year of 

Birth 

r S1 S2 S3 S4 S5 S6 

1929 28 26 1 - - - - 

1930 25 23 1 - - - - 

1931 26 19 2 1 - - - 

  1932* 27 23 2 - - - - 

1933 44 38 3 - - - - 

1934 50 22 14 - - - - 

1935 54 40 5 - 1 - - 

  1936* 52 48 2 - - - - 

1937 68 57 4 1 - - - 

1938 78 66 6 - - - - 

1939 99 67 13 2 - - - 

  1940* 87 71 8 - - - - 

1941 83 63 10 - - - - 

1942 124 86 13 4 - - - 

1943 113 69 17 2 1 - - 

  1944* 176 104 24 6 - - 1 

Table 1. 1991 dataset sent to us by the PHLS AIDS Centre. Birth years are tabulated in 

ascending order and leap years are indicated with an asterisk. 
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Year of 

Birth 

r S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

1901 0 - - - - - - - - - - - 

1902 0 - - - - - - - - - - - 

1903 1 1 - - - - - - - - - - 

 1904* 0 - - - - - - - - - - - 

1905 2 2 - - - - - - - - - - 

1906 0 - - - - - - - - - - - 

1907 0 - - - - - - - - - - - 

 1908* 1 1 - - - - - - - - - - 

1909 0 - - - - - - - - - - - 

1910 0 - - - - - - - - - - - 

1911 2 2 - - - - - - - - - - 

 1912* 4 4 - - - - - - - - - - 

1913 5 5 - - - - - - - - - - 

1914 10 10 - - - - - - - - - - 

1915 5 5 - - - - - - - - - - 

 1916* 4 2 1 - - - - - - - - - 

1917 7 5 1 - - - - - - - - - 

1918 6 6 - - - - - - - - - - 

1919 10 8 1 - - - - - - - - - 

 1920* 6 6 - - - - - - - - - - 

1921 3 3 - - - - - - - - - - 

1922 11 7 2 - - - - - - - - - 

1923 13 13 - - - - - - - - - - 

 1924* 19 17 1 - - - - - - - - - 

1925 33 28 1 1 - - - - - - - - 

1926 20 17 - 1 - - - - - - - - 

1927 24 22 1 - - - - - - - - - 

 1928* 30 26 2 - - - - - - - - - 

1929 41 39 1 - - - - - - - - - 

1930 43 35 4 - - - - - - - - - 

1931 52 37 6 1 - - - - - - - - 

 1932* 59 51 4 - - - - - - - - - 

1933 74 68 3 - - - - - - - - - 

1934 82 60 8 2 - - - - - - - - 

1935 78 59 8 1 - - - - - - - - 

 1936* 95 69 10 2 - - - - - - - - 

1937 118 86 16 - - - - - - - - - 

1938 129 96 12 3 - - - - - - - - 

1939 156 94 25 4 - - - - - - - - 

 1940* 143 106 17 1 - - - - - - - - 

1941 149 105 19 2 - - - - - - - - 

1942 212 101 43 7 1 - - - - - - - 

1943 202 115 28 9 1 - - - - - - - 

 1944* 280 127 49 14 2 1 - - - - - - 

1945 279 118 55 11 2 2 - - - - - - 

1946 320 130 56 18 6 - - - - - - - 

1947 411 133 69 35 6 1 1 - - - - - 

 1948* 392 128 66 27 9 3 - - - - - - 

1949 418 150 66 29 11 1 - - - - - - 

1950 430 131 68 36 10 3 - - - - - - 

1951 444 137 78 33 6 3 1 1 - - - - 

 1952* 515 131 91 41 13 3 2 - - - - - 

1953 485 133 75 35 11 6 1 - 1 1 - - 

1954 591 110 78 53 28 7 2 1 - - - - 

1955 624 88 104 57 24 11 1 - - - - - 

 1956* 648 130 92 61 16 8 3 3 1 - - - 
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Year of 

Birth 

r S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

1957 724 103 99 57 30 15 2 4 1 1 - - 

1958 770 84 107 62 40 15 5 3 - - - - 

1959 798 86 91 75 37 18 4 5 1 - - - 

 1960* 890 87 92 71 37 25 8 7 2 1 - 1 

1961 858 79 96 72 48 19 9 2 2 - - - 

1962 929 68 107 55 47 29 13 4 3 1 1 - 

1963 880 82 80 75 47 25 12 4 - - - - 

 1964* 856 80 87 76 42 18 12 5 - 1 - - 

1965 703 107 92 71 28 9 7 - - - - - 

1966 639 109 96 52 22 15 2 1 - - - - 

1967 508 114 88 38 16 8 - - - - - - 

 1968* 380 123 68 24 11 1 - - - - - - 

1969 294 112 63 12 2 1 - 1 - - - - 

1970 221 107 41 9 - 1 - - - - - - 

1971 125 92 12 3 - - - - - - - - 

 1972* 76 62 7 - - - - - - - - - 

1973 35 31 2 - - - - - - - - - 

Table 2. 1994 dataset sent to us by the PHLS AIDS Centre. Birth years are tabulated in 

ascending order and leap years are indicated with an asterisk. 
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r
*
 True Replication 

Vector t1934 

L(r
*
,p|s1934) )ˆ,ˆ,ˆ,ˆ( 4321 pppp

 
(given r*) 

L(r
*
 (s1934|(כݎ)ෝ࢖,

50 

49 

48 

47 

46 

45 

44 

43 

42 

41 

40 

39 

38 

37 

36 

(22,14) 

(23,13) 

(24,12) 

(25,11) 

(26,10) 

(27, 9) 

(28, 8) 

(29, 7) 

(30, 6) 

(31, 5) 

(32, 4) 

(33, 3) 

(34, 2) 

(35, 1) 

(36, 0) 

         4.26794x10
-9

 p1
50 

8.72366x10
-7

 p1
48

p2 

8.44771x10
-5

 p1
46

p2
2
 

5.13903x10
-3

 p1
44

p2
3
 

0.2195020 p1
42

p2
4
 

6.9668027 p1
40

p2
5
 

169.52553 p1
38

p2
6
 

3,214.3802 p1
36

p2
7
 

47,748.497 p1
34

p2
8
 

553,276.23 p1
32

p2
9
 

4,925,507.9 p1
30

p2
10

 

32,687,461 p1
28

p2
11

 

152,960,558 p1
26

p2
12

 

452,069,665 p1
24

p2
13

 

637,086,601 p1
22

p2
14

 

(1.0,0,0,0) 

(0.9796,0.0204,0,0) 

(0.9583,0.0417,0,0) 

(0.9362,0.0638,0,0) 

         (0.9130,0.0870,0,0) 

         (0.8889,0.1111,0,0) 

(0.8636,0.1364,0,0) 

(0.8372,0.1628,0,0) 

(0.8095,0.1905,0,0) 

        (0.7805,0.2195,0,0) 

            (0.75,0.25,0,0) 

(0.7179,0.2821,0,0) 

(0.6842,0.3158,0,0) 

(0.6486,0.3514,0,0) 

(0.6111,0.3889,0,0) 

4.27x10
-9 

6.62x10
-9 

2.07x10
-8 

7.34x10
-8

 

2.75x10
-7

 

1.06x10
-6

 

4.15x10
-6

 

1.63x10
-5

 

6.27x10
-5

 

2.36x10
-4

 

8.39x10
-4

 

0.002745 

0.007803 

0.017301 

0.022720 

Table 3. Results for year 1934 of the 1991 dataset. The maximum likelihood estimator for the 

true replication vector is given in bold letters. 
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   r

*
 True Replication 

Vector t1935 

L(r
*
,p|s1935) )ˆ,ˆ,ˆ,ˆ( 4321 pppp

 
                (given r*)

 

L(r
*
 (s1935|(כݎ)ෝ࢖,

 

54 

53 

 

52 

 

 

51 

 

 

50 

 

 

49 

 

 

48 

 

 

47 

 

46 

(40,5,0,1) 

(41,4,0,1) 

(40,5,1,0) 

(42,3,0,1) 

(41,4,1,0) 

(40,6,0,0) 

(43,2,0,1) 

(42,3,1,0) 

(41,5,0,0) 

(44,1,0,1) 

(43,2,1,0) 

(42,4,0,0) 

(45,0,0,1) 

(44,1,1,0) 

(43,3,0,0) 

(45,0,1,0) 

(44,2,0,0) 

 

(45,1,0,0) 

 

(46,0,0,0) 

0.000504 p1
54

 

0.074989 p1
52

p2 

 

3.755868 p1
50

p2
2
+ 

0.563380 p1
51

p3 

 

92.27157 p1
48

p2
3
+ 

39.54496 p1
49

p2p3+ 

3.954496 p1
50

p4 

1,226.411 p1
46

p2
4
+ 

1,132.072 p1
47

p2
2
p3+ 

283.0179 p1
48

p2p4 

8,546.151 p1
44

p2
5
+ 

16,528.24 p1
45

p2
3
p3+ 

8,264.122 p1
46

p2
2
p4 

24,623.71 p1
42

p2
6
+ 

123,118.6 p1
43

p2
4
p3+ 

123,118.6 p1
44

p2
3
p4 

374,485.6 p1
41

p2
5
p3+ 

936,214.0 p1
42

p2
4
p4 

2,908,237.5 p1
40

p2
5
p4 

(1.0,0,0,0) 

(0.9811,0.0189,0,0) 

 

(0.981,0, 0.019,0) 

 

 

(0.9804,0,0, 0.0196) 

 

 

(0.96, 0.02,0, 0.02) 

 

 

(0.9385,0.041,0,0.0205) 

 

 

(0.9167, 0.0625,0, 0.0208) 

 

 

(0.8936, 0.0851,0, 0.0213) 

 

(0.8696, 0.1087,0, 0.0217) 

0.000504 

0.000525 

 

0.004024 

 

 

0.028808 

 

 

0.015985 

 

 

0.015424 

 

 

0.013704 

 

 

0.009279 

 

0.003581 

Table 4. Results for year 1935 of the 1991 dataset. The maximum likelihood estimator for the 

true replication vector is given in bold letters. 
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Year 

of 

Birth 

r
*
 True 

Replication 

Vector tB 

         L(r
*
,p|sB) L(r

*
 (sB|(כݎ)ෝ࢖,

 

1934 

 

50 

49 

48 

47 

46 

45 

44 

43 

42 

41 

40 

39 

38 

37 

36 

(22,14) 

(23,13) 

(24,12) 

(25,11) 

(26,10) 

(27, 9) 

(28, 8) 

(29, 7) 

(30, 6) 

(31, 5) 

(32, 4) 

(33, 3) 

(34, 2) 

(35, 1) 

(36, 0) 

4.26794x10
-9

 p1
50 

8.72366x10
-7

 p1
48

p2 

8.4477x10
-5

 p1
46

p2
2
 

5.1390x10
-3

 p1
44

p2
3
 

0.2195020 p1
42

p2
4
 

6.9668027 p1
40

p2
5
 

169.52553 p1
38

p2
6
 

3,214.3802 p1
36

p2
7
 

47,748.497 p1
34

p2
8
 

553,276.23 p1
32

p2
9
 

4,925,507.9 p1
30

p2
10

 

32,687,461 p1
28

p2
11

 

152,960,558 p1
26

p2
12

 

452,069,665 p1
24

p2
13

 

637,086,601 p1
22

p2
14

 

4.27x10
-9 

6.62x10
-9 

2.07x10
-8 

7.34x10
-8

 

2.75x10
-7

 

1.06x10
-6

 

4.15x10
-6

 

1.62x10
-5

 

6.27x10
-5

 

2.35x10
-4

 

8.39x10
-4

 

0.002745 

0.007803 

0.017301 

0.022720 

1934 
           

෡כ࢘ (0.6111,0.3889,0,0) = (ෝ૝࢖,ෝ૜࢖,ෝ૛࢖,ෝ૚࢖ ) ,36=
             

1935 

 

54 

53 

 

52 

 

 

51 

 

 

50 

 

 

49 

 

 

48 

 

 

47 

 

46 

(40,5,0,1) 

(41,4,0,1) 

(40,5,1,0) 

(42,3,0,1) 

(41,4,1,0) 

(40,6,0,0) 

(43,2,0,1) 

(42,3,1,0) 

(41,5,0,0) 

(44,1,0,1) 

(43,2,1,0) 

(42,4,0,0) 

(45,0,0,1) 

(44,1,1,0) 

(43,3,0,0) 

(45,0,1,0) 

(44,2,0,0) 

 

(45,1,0,0) 

 

(46,0,0,0) 

0.000504 p1
54  

 

0.074989 p1
52

p2 

 

3.755868 p 1
50

p2
2
+ 

0.563380 p1
51

p3 

 

92.271572 p1
48

p2
3
+ 

39.54496 p1
49

p2p3+ 

3.954496 p1
50

p4 

1,226.4107 p1
46

p2
4
+ 

1,132.07 p1
47

p2
2
p3+ 

283.0179 p1
48

p2p4 

8,546.1509 p1
44

p2
5
+ 

16,528.24 p1
45

p2
3
p3+ 

8,264.122 p1
46

p2
2
p4 

24,623.712 p1
42

p2
6
+ 

123,118.6 p1
43

p2
4
p3+ 

123,118.55 p1
44

p2
3
p4 

374,485.6 p1
41

p2
5
p3+ 

936,214.0 p1
42

p2
4
p4 

2,908,237.5 p1
40

p2
5
p4 

0.000504 

0.000525 

 

0.004024 

 

 

0.028808 

 

 

0.015985 

 

 

0.015424 

 

 

0.013704 

 

 

0.009279 

 

0.003581 

෡כ࢘              1935  (0.98,0,0,0.02) = (ෝ૝࢖,ෝ૜࢖,ෝ૛࢖,ෝ૚࢖ ) ,51=
1936 52 

51 

50 

(48,2) 

(49,1) 

(50,0) 

0.181447 p1
52

 

5.094471 p1
50

p2 

36.56032 p1
48

p2
2
 

0.181447 

0.037113 

0.008244 

෡כ࢘                  1936  (1,0,0,0) = (ෝ૝࢖,ෝ૜࢖,ෝ૛࢖,ෝ૚࢖ ) ,52=
1937 

 

68 

67 

 

66 

 

65 

 

64 

 

63 

 

62 

(57,4,1) 

(58,3,1) 

(57,5,0) 

(59,2,1) 

(58,4,0) 

(60,1,1) 

(59,3,0) 

(61,0,1) 

(60,2,0) 

(61,1,0) 

 

(62,0,0) 

0.045946 p1
68

 

3.452670 p1
66

p2 

 

96.7337 p1
64

p2
2
+ 

8.061138 p1
65

p3 

1,307.696 p1
62

p2
3
+ 

356.6443 p1
63

p2p3 

8,678.344 p1
60

p2
4
+ 

6,008.085 p1
61

p2
2
p3 

22,843.24 p1
58

p2
5
+ 

45,686.48 p1
59

p2
3
p3 

132,345.7 p1
57

p2
4
p3 

0.045946 

0.019100 

 

0.045276 

 

0.012565 

 

0.005448 

 

0.001769 

 

0.000306 

෡כ࢘ 1937   (1,0,0,0) = (ෝ૝࢖,ෝ૜࢖,ෝ૛࢖,ෝ૚࢖ ) ,68=
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Year 

of 

Birth 

r
*
 True 

Replication 

Vector tB 

         L(r
*
,p|sB) L(r

*
 (sB|(כݎ)ෝ࢖,

 

1938 78 

77 

76 

75 

74 

73 

72 

(66,6) 

(67,5) 

(68,4) 

(69,3) 

(70,2) 

(71,1) 

(72,0) 

0.104460 p1
78

 

5.865815 p1
76

p2 

139.02744 p1
74

p2
2 

1,780.52689 p1
72

p2
3 

12,997.8467 p1
70

p2
4 

51,288.8067 p1
68

p2
5 

85,481.2751 p1
66

p2
6
 

0.104460 

0.028208 

0.013381 

0.006029 

0.002269 

0.000621 

0.000092 

෡כ࢘ 1938   (1,0,0,0) = (ෝ૝࢖,ෝ૜࢖,ෝ૛࢖,ෝ૚࢖ ) ,78=
1939 

 

99 

98 

 

97 

 

 

96 

 

 

95 

 

 

94 

 

 

93 

 

 

92 

 

 

91 

 

 

90 

 

 

89 

 

 

88 

 

 

87 

 

 

86 

 

 

85 

 

 

84 

 

 

83 

 

82 

(67,13,2) 

(68,12,2) 

(67,14,1) 

(69,11,2) 

(68,13,1) 

(67,15,0) 

(70,10,2) 

(69,12,1) 

(68,14,0) 

(71,9,2) 

(70,11,1) 

(69,13,0) 

(72,8,2) 

(71,10,1) 

(70,12,0) 

(73,7,2) 

(72,9,1) 

(71,11,0) 

(74,6,2) 

(73,8,1) 

(72,10,0) 

(75,5,2) 

(74,7,1) 

(73,9,0) 

(76,4,2) 

(75,6,1) 

(74,8,0) 

(77,3,2) 

(76,5,1) 

(75,7,0) 

(78,2,2) 

(77,4,1) 

(76,6,0) 

(79,1,2) 

(78,3,1) 

(77,5,0) 

(80,0,2) 

(79,2,1) 

(78,4,0) 

(80,1,1) 

(79,3,0) 

 

(81,0,1) 

(80,2,0) 

 

(81,1,0) 

 

(82,0,0) 

0.0100108 p1
99

 

1.4025257 p1
97

p2 

 

96.02954 p1
95

p2
2
+ 

1.6495871 p1
96

p3 

 

4,367.806 p1
93

p2
3
+ 

198.6307 p1
94

p2p3 

 

99,506.85 p1
91

p2
4
+ 

11,044.95 p1
92

p2
2
p3 

70.8010 p1
93

p3
2
 

1,999,201 p1
89

p2
5
+ 

377,208 p1
90

p2
3
p3+ 

7,072.65 p1
91

p2p3
2
 

30,410,620 p1
87

p2
6
+ 

8,861,372 p1
88

p2
4
p3+ 

329,555 p1
89

p2
2
p3

2 

357,270,106 p1
85

p2
7
+ 

1.518x10
8 
p1

86
p2

5
p3+ 

9,485,047 p1
87

p2
3
p3

2
 

3.274x10
9 
p1

83
p2

8
+ 

1.957x10
9 
p1

84
p2

6
p3+ 

1.882x10
8 
p1

85
p2

4
p3

2
 

2.344x10
10 

p1
81

p2
9
+ 

1.93x10
10 

p1
82

p2
7
p3+ 

2.717x10
9 
p1

83
p2

5
p3

2
 

1.303x10
11 

p1
79

p2
10

+ 

1.47x10
11 

p1
80

p2
8
p3+ 

2.938x10
10 

p1
81

p2
6
p3

2
 

5.538x10
11 

p1
77

p2
11

+ 

8.57x10
11 

p1
78

p2
9
p3+ 

2.41x10
11 

p1
79

p2
7
p3

2
 

1.749x10
12 

p1
75

p2
12

+ 

3.78x10
12 

p1
76

p2
10

p3+ 

1.50x10
12 

p1
77

p2
8
p3

2
 

3.902x10
12 

p1
73

p2
13

+ 

1.22x10
13 

p1
74

p2
11

p3+ 

6.99x10
12 

p1
75

p2
9
p3

2
 

5.615x10
12 

p1
71

p2
14

+ 

2.73x10
13 

p1
72

p2
12

p3+ 

2.37x10
13 

p1
73

p2
10

p3
2
 

4.276x10
12 

p1
69

p2
15

+ 

3.80x10
13 

p1
70

p2
13

p3+ 

5.56x10
13 

p1
71

p2
11

p3
2
 

2.48x10
13 

p1
68

p2
14

p3+ 

8.05x10
13 

p1
69

p2
12

p3
2
 

5.45x10
13 

p1
67

p2
13

p3
2
 

0.010011 

0.005292 

 

0.006289 

 

 

0.006958 

 

 

0.006239 

 

 

0.006573 

 

 

0.006625 

 

 

0.006321 

 

 

0.005630 

 

 

0.004609 

 

 

0.003415 

 

 

0.002230 

 

 

0.001241 

 

 

0.000600 

 

 

0.000240 

 

 

0.000074 

 

 

0.000015 

 

0.000002 
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Year 

of 

Birth 

r
*
 True 

Replication 

Vector tB 

         L(r
*
,p|sB) L(r

*
 (sB|(כݎ)ෝ࢖,

 

෡כ࢘ 1939   (1,0,0,0) = (ෝ૝࢖,ෝ૜࢖,ෝ૛࢖,ෝ૚࢖ ) ,99=
1940 87 

86 

85 

84 

83 

82 

81 

80 

79 

(71,8) 

(72,7) 

(73,6) 

(74,5) 

(75,4) 

(76,3) 

(77,2) 

(78,1) 

(79,0) 

0.083757 p1
87

 

5.637743 p1
85

p2 

167.9523 p1
83

p2
2 

2,892.732 p1
81

p2
3 

31,510.11 p1
79

p2
4 

222,317.1 p1
77

p2
5 

992,293.6 p1
75

p2
6 

2,562,112 p1
73

p2
7 

2,930,416 p1
71

p2
8
 

0.083757 

0.024258 

0.012886 

0.006926 

0.003434 

0.001475 

0.000510 

0.000126 

0.000017 

෡כ࢘ 1940   (1,0,0,0) = (ෝ૝࢖,ෝ૜࢖,ෝ૛࢖,ෝ૚࢖ ) ,87=
1941 

 
83 
82 

81 

80 

79 

78 

77 

76 

75 

74 

73 

(63,10) 
(64,9) 

(65,8) 

(66,7) 

(67,6) 

(68,5) 

(69,4) 

(70,3) 

(71,2) 

(72,1) 

(73,0) 

0.056044 p1
83

 

4.929215 p1
81

p2 

197.46915 p1
79

p2
2 

4,745.7607 p1
77

p2
3 

75,783.866 p1
75

p2
4 

840,337.56 p1
73

p2
5 

6,553,914.7 p1
71

p2
6 

35,505,437.3 p1
69

p2
7 

127,889,651 p1
67

p2
8 

276,620,586 p1
65

p2
9 

272,882,184 p1
63

p2
10

 

0.056044 
0.022250 

0.016704 

0.013190 

0.010113 

0.007219 

0.004623 

0.002539 

0.001119 

0.000312 

0.000059 

෡כ࢘ 1941   (1,0,0,0) = (ෝ૝࢖,ෝ૜࢖,ෝ૛࢖,ෝ૚࢖ ) ,83=

Table 5. Birth years 1934-1941. Summary results for the 1991 dataset. 
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Year of 

Birth 

Observed 

r 

Estimated כݎ෡  
( 65432

ˆ,ˆ,ˆ,ˆ,ˆ,ˆ pppppp 1 ) 

 

L(כݎ෡  (෢൯|sBכݎෝ൫࢖,

 

1929 28 28 (1,0,0,0,0,0) 0.386 

 1930 25 25 (1,0,0,0,0,0) 0.379 

 1931 26 22 (0.864,0.091,0.045,0,0,0) 0.056 

1932 27 27 (1,0,0,0,0,0) 0.170 

 1933 44 44 (1,0,0,0,0,0) 0.211 

 1942 124 124 (1,0,0,0,0,0) 0.007085 

 1943 113 102 (0.902,0.093,0.005,0,0,0) 0.001600 

 1944 176 171 (0.994,0,0,0,0,0.006) 0.001699 

 
Table 6. Birth years 1929-1933 and 1942-1944. Summary results for the 1991 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 30 

Year 

of 

Birth 

r כݎ෡  ( 1110965432
ˆ,ˆ,ˆ,ˆ,ˆˆ,ˆ,ˆ,ˆ,ˆ,ˆ ppppp,pppppp 871 ) L(כݎ෡  (෢൯|sBכݎෝ൫࢖,

 

1903 1 1 (1,0,0,0,0,0,0,0,0,0,0) 1.0 

1904 0 0 ----------------------- --- 

1905 2 2 (1,0,0,0,0,0,0,0,0,0,0) 0.9973 

1906 0 0 ----------------------- --- 

1907 0 0 ----------------------- --- 

1908 1 1 (1,0,0,0,0,0,0,0,0,0,0) 1.0 

1909 0 0 ----------------------- --- 

1910 0 0 ----------------------- --- 

1911 2 2 (1,0,0,0,0,0,0,0,0,0,0) 0.9973 

1912 4 4 (1,0,0,0,0,0,0,0,0,0,0) 0.9837 

1913 5 5 (1,0,0,0,0,0,0,0,0,0,0) 0.9729 

1914 10 10 (1,0,0,0,0,0,0,0,0,0,0) 0.8831 

1915 5 5 (1,0,0,0,0,0,0,0,0,0,0) 0.9729 

1916 4 3 (0.667,0.333,0,0,0,0,0,0,0,0,0) 0.4408 

1917 7 6 (0.833,0.167,0,0,0,0,0,0,0,0,0) 0.3856 

1918 6 6 (1,0,0,0,0,0,0,0,0,0,0) 0.9596 

1919 10 9 (0.889,0.111,0,0,0,0,0,0,0,0,0) 0.3529 

1920 6 6 (1,0,0,0,0,0,0,0,0,0,0) 0.9597 

1921 3 3 (1,0,0,0,0,0,0,0,0,0,0) 0.9918 

1922 11 9 (0.778,0.222,0,0,0,0,0,0,0,0,0) 0.2771 

1923 13 13 (1,0,0,0,0,0,0,0,0,0,0) 0.8056 

1924 19 19 (1,0,0,0,0,0,0,0,0,0,0) 0.3060 

1925 33 31 (0.968,0,0.032,0,0,0,0,0,0,0,0) 0.1309 

1926 20 18 (0.944,0,0.056,0,0,0,0,0,0,0,0) 0.2472 

1927 24 24 (1,0,0,0,0,0,0,0,0,0,0) 0.3726 

1928 30 30 (1,0,0,0,0,0,0,0,0,0,0) 0.2139 

1929 41 41 (1,0,0,0,0,0,0,0,0,0,0) 0.2444 

1930 43 43 (1,0,0,0,0,0,0,0,0,0,0) 0.1045 

1931 52 47 (0.894,0.106,0,0,0,0,0,0,0,0,0) 0.1852 

1932 59 59 (1,0,0,0,0,0,0,0,0,0,0) 0.1802 

1933 74 74 (1,0,0,0,0,0,0,0,0,0,0) 0.0388 

1934 82 78 (0.974,0,0.026,0,0,0,0,0,0,0,0) 0.0161 

1935 78 78 (1,0,0,0,0,0,0,0,0,0,0) 0.0400 

1936 95 95 (1,0,0,0,0,0,0,0,0,0,0) 0.0203 

1937 118 118 (1,0,0,0,0,0,0,0,0,0,0) 0.0229 

1938 129 129 (1,0,0,0,0,0,0,0,0,0,0) 0.0110 

1939 156 156 (1,0,0,0,0,0,0,0,0,0,0) 0.0086 

1940 143 143 (1,0,0,0,0,0,0,0,0,0,0) 0.0123 

1941 149 149 (1,0,0,0,0,0,0,0,0,0,0) 0.0188 

1942 212 212 (1,0,0,0,0,0,0,0,0,0,0) 4.3x10
-4

 

1943 202 202 (1,0,0,0,0,0,0,0,0,0,0)  0.0021 

1944 280 280 (1,0,0,0,0,0,0,0,0,0,0)  7.3x10
-4

 

1945 279 279 (1,0,0,0,0,0,0,0,0,0,0)  5.5x10
-5

 

1946 320 320 (1,0,0,0,0,0,0,0,0,0,0) 4.4x10
-4

 

1947 411 411 (1,0,0,0,0,0,0,0,0,0,0) 2.9x10
-5

 

1948 392 392 (1,0,0,0,0,0,0,0,0,0,0) 5.2x10
-5

 

1949 418 418 (1,0,0,0,0,0,0,0,0,0,0) 2.1x10
-5

 

1950 430 430 (1,0,0,0,0,0,0,0,0,0,0) 4.2x10
-5

 

1951 444 439 (0.998,0,0,0,0,0.002,0,0,0,0,0) 5.2x10
-6

 

1952 515 515 (1,0,0,0,0,0,0,0,0,0,0) 2.2x10
-5

 

1953 485 469 (0.994,0,0.002,0,0,0,0,0.004,0,0,0) 2.7x10
-7

 

1954 591 591 (1,0,0,0,0,0,0,0,0,0,0)  1.3x10
-7

 

1955 624 624 (1,0,0,0,0,0,0,0,0,0,0) 7.4x10
-8

 

1956 648 632 (0.994,0,0,0,0.006,0,0,0,0,0,0)  2.1x10
-9
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Year 

of 

Birth 

r כݎ෡  ( 1110965432
ˆ,ˆ,ˆ,ˆ,ˆˆ,ˆ,ˆ,ˆ,ˆ,ˆ ppppp,pppppp 871 ) L(כݎ෡  (෢൯|sBכݎෝ൫࢖,

 

1957 724 714 (0.997,0,0,0,0,0.003,0,0,0,0,0) 7.3x10
-9

 

1958 770 770 (1,0,0,0,0,0,0,0,0,0,0)  2.8x10
-7

 

1959 798 798 (1,0,0,0,0,0,0,0,0,0,0)  3.7x10
-8

 

1960 890 877 (0.998,0,0,0.001,0,0,0,0,0,0,0.001)  3.2x10
-11

 

1961 858 858 (1,0,0,0,0,0,0,0,0,0,0)  2.1x10
-7

 

1962 929 917 (0.998,0,0,0,0,0,0.002,0,0,0,0)  7.9x10
-12

 

1963 880 880 (1,0,0,0,0,0,0,0,0,0,0)  3.4x10
-8

 

1964 856 856 (1,0,0,0,0,0,0,0,0,0,0)  5.1x10
-9

 

1965 703 703 (1,0,0,0,0,0,0,0,0,0,0)  4.8x10
-7

 

1966 639 639 (1,0,0,0,0,0,0,0,0,0,0) 6.9x10
-7

 

1967 508 508 (1,0,0,0,0,0,0,0,0,0,0) 2.5x10
-6

 

1968 380 380 (1,0,0,0,0,0,0,0,0,0,0)         3.8x10
-5

 

1969 294 288 (0.997,0,0,0,0,0,0.003,0,0,0,0)         7.9x10
-6

 

1970 221 217 (0.995,0,0,0,0.005,0,0,0,0,0,0)  2.3x10
-4

 

1971 125 125 (1,0,0,0,0,0,0,0,0,0,0) 0.0136 

1972 76 76 (1,0,0,0,0,0,0,0,0,0,0) 0.1115 

1973 35 35 (1,0,0,0,0,0,0,0,0,0,0) 0.2653 

Table 7. Summary results for 1994 dataset. 
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Year of 

Birth 

  Estimated  

 Replication 

  95% Confidence  

         Interval 

1929 0% (0%,12.00%) 

1930 0% (0%,8.69%) 

1931 18.18% (0%,46.38%) 

1932 0% (0%,12.50%) 

1933 0% (0%,7.32%) 

1934 38.89% (28.57%,61.76%) 

1935 5.88% (0%,23.02%) 

1936 0% (0%,4.00%) 

1937 0% (0%,6.25%) 

1938 0% (0%,6.94%) 

1939 0% (0%,8.23%) 

1940 0% (0%,10.21%) 

1941 0% (0%,5.06%) 

1942 0% (0%,5.08%) 

1943 10.78% (0%,20.44%) 

1944 2.09% (0%,10.06%) 

Table 8. Summary results of estimated replication and 95% confidence intervals for 1991 

dataset. 
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Year of 

Birth 

Estimated 

Replication 

95% Confidence  

Interval 

 1903 0% (0%,0%) 

1904 ------ ------ 

1905 0% (0%,0%) 

1906 ------ ------ 

1907 ------ ------ 

1908 0% (0%,0%) 

1909 ------ ------ 

1910 ------ ------ 

1911 0% (0%,0%) 

1912 0% (0%,0%) 

1913 0% (0%,0%) 

1914 0% (0%,0%) 

1915 0% (0%,0%) 

1916 33.33% (0%,66.67%) 

1917 16.67% (0,%50.00%) 

1918 0% (0%,0%) 

1919 11.11% (0%,25.00%) 

1920 0% (0%,0%) 

1921 0% (0%,0%) 

1922 22.22% (0%,55.56%) 

1923 0% (0%,0%) 

1924 0% (0%,11.76%) 

1925 6.45% (0%,19.35%) 

1926 11.11% (0%,33.33%) 

1927 0% (0%,17.29%) 

1928 0% (0%,7.14%) 

1929 0% (0%,10.81%) 

1930 0% (0%,10.47%) 

1931 10.64% (0%,28.26%) 

1932 0% (0%,7.27%) 

1933 0% (0%,7.35%) 

1934 5.13% (0%,17.81%) 

1935 0% (0%,9.95%) 

1936 0% (0%,6.74%) 

1937 0% (0%,4.00%) 

1938 0% (0%,2.38%) 

1939 0% (0%,4.73%) 

1940 0% (0%,4.38%) 

1941 0% (0%,4.20%) 

1942 0% (0%,2.91%) 

1943 0% (0%,3.64%) 

1944 0% (0%,2.19%) 

1945 0% (0%,5.20%) 

1946 0% (0%,2.18%) 

1947 0% (0%,1.46%) 

1948 0% (0%,1.82%) 

1949 0% (0%,1.56%) 

1950 0% (0%,1.86%) 

1951 1.14% (0%,3.54%) 

1952 0% (0%,1.55%) 

1953 3.41% (0%,4.84%) 

1954 0% (0%,1.69%) 

1955 0% (0%,1.28%) 

1956 2.53% (0%,4.04%) 

1957 1.40% (0%,2.17%) 
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Year of 

Birth 

Estimated 

Replication 

95% Confidence  

Interval 

1958 0% (0%,1.17%) 

1959 0% (0%,0.75%) 

1960 1.48% (0%,2.43%) 

1961 0% (0%,0.70%) 

1962 1.31% (0%,1.91%) 

1963 0% (0%,1.48%) 

1964 0% (0%,1.52%) 

1965 0% (0%,1.85%) 

1966 0% (0%,2.22%) 

1967 0% (0%,1.52%) 

1968 0% (0%,2.12%) 

1969 2.08% (0%,4.00%) 

1970 1.84% (0%,7.96%) 

1971 0% (0%,5.98%) 

1972 0% (0%,5.56%) 

1973 0% (0%,9.38%) 

Table 9. Summary results of 95% confidence intervals for 1994 dataset. 
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Observed Bootstrap 

Replication Vector 

Frequency Estimated 

Sample Size 

Estimated Probability 

Vector 

(9,1) 8,779 10 (0.9,0.1) 

(8,0,1) 238 9 (0.889,0,0.111) 

(7,2) 937 9 (0.778,0.222) 

(6,1,1) 21 8 (0.75,0.125,0.125) 

(5,3) 25 8 (0.624,0.376) 

 

Table 10. Validation of the method. 
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APPENDIX B. 

 

 

DISTRIBUTION OF THE REPLICATION VECTOR, MAXIMISATION LEMMA, 

AND CALCULATION OF THE LIKELIHOOD FUNCTION 

 

We have the following theorem and lemma [22]: 

 

THEOREM 1 

 

P(T1=t1,T2=t2, …Tr=tr) = rttt

r nr

r

nttt

n
r

1

)!...()!2()!1(

!

)!(!!...!

!
21

21 τ−
. 

 

Here Ĳ = t1 + t2 + … + tr is the total number of tuples in a given birth year.  

 

PROOF (adapted from [22]) 

 Suppose that there are n days in a year, that all birth records correspond to distinct 

individuals, and that all birth dates are equally likely. The birth record replication vector is t = 

(t1,t2,...,tr). Then the probability of a given ordered sequence of r birth dates occurring is 1/n
r
. 

In total there are ߬ = σ ௜௥௜ୀଵݐ  different birth dates that are distinct. These can be chosen from 

the n days in a year in 

                                                                
)!(!...!!

!

21 τ−nttt

n

r  

ways. This gives rise to ݎ = כݎ = σ ௜௥௜ୀଵݐ݅  birth dates (including repeated birth dates). But 

even when these birth dates have been chosen there will be several ordered sequences of them 

corresponding to the same t. 

 As a simple example consider t1 = 2, t2 = 1 so r = 4. We can choose two singleton 

birth dates b1 and b2 and one doubleton birth date b3 from n=365 days in a year in ଵଶ365.364.363 ways. But several ordered birth date sequences, for example {b1,b2,b3,b3}, 

{b3,b2,b3,b1} and {b3,b3,b1,b2}, give rise to the same sB. Hence there are four birth dates, one 

of which is repeated twice, which can be arranged in 
ସ!ଵ!ଵ!ଶ!

 distinct ordered sequences each 

corresponding to t  the birth record (or birth date) replication vector. 

 In general there are r birth dates, t1 repeated once, t2 repeated twice, t3 repeated three 

times, ... and tr repeated r times which gave rise to  

                                                        
rttt

r

r

)!...()!2()!1(

!
21
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distinct ordered birth date sequences (each of which gives t as the replication vector). 

 Hence the total probability of  t is 

                                            
rttt
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as required. 

 

LEMMA 1 

Suppose that m ≥ 1 and k1, k2, …km are strictly positive real numbers. Then 

mk
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PROOF (adapted from [22]) 

 The problem is equivalent to maximising F(p) =σ ௝݇௠௝ୀଵ ௝݌௘݃݋݈   subject to p1+p2+ 

…+pm=1. Introducing the Lagrange multiplier Ȝ > 0 the Lagrangian is 

                                         σ ௝݇௠௝ୀଵ ௝݌௘݃݋݈  + ൫1െߣ σ ௝௠௝ୀଵ݌ ൯.  

This is maximised over the set A = {pi  ≥ 0, 1 ≤ i ≤ m} at ݌෤௜ =
௞೔ఒ . Choose Ȝ so that σ ෤௝௠௝ୀଵ݌ =

1 so that Ȝ = σ ௝݇௠௝ୀଵ . Then (݌෤ଵ,݌෤ଶ, �෤௠) is feasible and maximises F(p) over A subject to σ݌ ௝௠௝ୀଵ݌ = 1. 

 

CALCULATION OF THE LIKELIHOOD FUNCTION 

Suppose that the observed birth record replication vector of r birth records is s = 

(s1,s2,...,sr) with σ ௜௥௜ୀଵݏ݅  = r whereas due to some individuals being repeated in the dataset the 

true replication vector corresponding to birth dates of distinct individuals is t = (t1,t2, ..., tr) 

with σ ݅௥௜ୀଵ ௜ = rݐ
* ≤ r. 

For i+j ≤ r, i ≥ 1, j ≥ 0 let xi,j denote the number of observed i+j-tuple birth records in 

s that are actually true i-tuple individual records in t. Thus for k = 1,2, ... r 

௞ݐ                                               =  σ ௞,௟௥ି௞௟ୀ଴ݔ  .                                                         (B.1) 

We shall use x to denote the vector (x1,1, ... x1,r-1,x2,1, ... x2,r-2, x3,1, ... xr-1,1). By considering the 

number of k-tuples in s we see that for k = 2,3, ... r, 

௞ݏ                                             ൒ σ ௟,௞ି௟.௞ିଵ௟ୀଵݔ                                                          (B.2) 

 Moreover let fi,j denote the probability that an observed i+j-tuple in s is actually a true 

i-tuple in t. Thus 
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                                                         ௜݂,௝ = σ ஞభ௻೔݌ ஞమ݌ �  ,ஞ೔݌ 

so fi,j is the sum of all products of i p’s whose subscripts sum to i+j. Here  

                         Ȅi = {(ȟ1,ȟ2, ... , ȟi) Ԗ ࢆା௜, ȟk   ≥ 1, 1 ≤ k ≤ i and  σ ௞ߦ = ݅ + ݆௜௞ୀଵ } 

where ࢆା denotes the set of positive integers. 

The fi,j can be defined recursively by 

f1,j = pj+1,                                                                    0 ≤ j ≤ r-1, 

                       fi,j = p1fi-1,j+p2fi-1,j-1+p3fi-1,j-2 + ... +pj+1fi-1,0,                    for i ≥ 2, i+j ≤ r. 

 Suppose that x1 denotes the total number of observed doubletons s2, tripletons s3, 

four-tuples s4, ... and r-tuples sr which correspond to the true singletons t1, x2 denotes the total 

number of observed tripletons s3, four-tuples s4, ... and r-tuples sr which correspond to either 

true singletons t1 or true doubletons t2, x3 denotes the total number of observed four-tuples s4, 

five-tuples s5, ... or r-tuples sr which correspond to either true singletons t1, doubletons t2 or 

tripletons t3, ... and xr-1 denotes the total number of observed r-tuples sr which correspond to 

either true singletons t1, doubletons t2, tripletons t3, ... or (r-1)-tuples tr-1. 

 Then for k = 1,2, ... r-1, 

௞ݔ                                           = σ σ ௞ି௟ାଵ,௝௥ି௞ା௟ିଵ௝ୀ௟௞௟ୀଵݔ ,                                                    (B.3) 

                                             t1 = s1+x1, 

for k = 2,3, ... r-1,                tk = sk+xk–xk-1,                                                                           (B.4) 

and                                       tr = sr –xr-1. 

 Given the observed birth record replication vector s and xi,j, i+j ≤ r, i ≥ 1, j ≥ 1 

satisfying inequalities B.2 then the true replication vector t is uniquely determined by 

equations B.3 and B.4 and will be feasible (i.e. tk  ≥ 0, 1 ≤ k ≤ r). In these circumstances we 

denote the true replication vector by s and x as t(s,x). The values of xi,0, 1 ≤ i ≤ r, will then 

follow from equations B.1. 

 The likelihood for a true replication vector t given x and p is 

(࢖,࢞|(࢞,࢙)࢚)ܲ                                      = ቆς ቆݐ௞!ς ௙ೖ,೗ೣೖ,೗௫ೖ,೗!௥ି௞௟ୀ଴ ቇ௥ିଵ௞ୀଵ ቇܲ(࢚).                          (B.5) 

Here P(t) = P(T1=t1, T2=t2, ... Tr=tr) is given by Theorem 1 (assuming that all individuals are 

distinct). 

 A given x will correspond to r
* 
distinct individuals if and only if 

ݎ                                                     െ כݎ = σ σ ݆௥ି௜௝ୀଵ ௜,௝௥ିଵ௜ୀଵݔ .                                                (B.6)   

Let Xr* denote the set of x satisfying B.2 and B.6. Then the likelihood given r
*
 and p is given 

by 

(࢖,כݎ|࢙)ܲ                                              = σ כ஫௑ೝ࢞ܲ         (B.7)                                      .(࢖,࢞|(࢞,࢙)࢚)

Hence the likelihood function of r
* 
and p given the data is        

                                           L(r
*
,p|s) = P(s|r

*
,p). 
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This is maximised over p for each value of r
*
 separately and then the overall maximum 

calculated.       
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