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Abstract 
 
The gearbox is seen as one of the most important 

assets of a wind turbine, so a major concern is 

how to keep it running smoothly to maximise its 

service time and reduce the cost. However, wind 

turbines are often located at remote locations 

where icing is possible and likely, e.g. high 

altitudes or cold regions. This challenges the wind 

turbine stability and causes a variety of problems. 

Furthermore, rapid expansion of wind energy, 

along with high operation and maintenance costs, 

all lead to the need for a condition monitoring 

system which can offer diagnostics of present 

condition and prognostics of future condition to 

improve the reliability of wind turbine and reduce 

the cost of unscheduled maintenances and 

unexpected failures. The proposed approach is 

demonstrated by using a Bayesian Belief Network 

and Dynamic Bayesian Network under LabVIEW 

and GeNIe respectively. The proposed procedure 

is applied on a wind turbine gearbox model to 

show its feasibility. 

1. Introduction  

The UK government has set a target for 20% of 
electricity generation from renewable sources by 
2020 (Soni and Ozveren 2007). Among all the 
various renewable energy technologies, the 
environmental benefits and cost-competitiveness 
have driven the rapid expansion of wind power as 
a significant green source in recent decades.  
 
Often the best locations for wind turbines are in 
severely exposed locations. Critical to meeting the 
target, large numbers of offshore wind turbines 
are being considered, but the excessive wind 
speeds can cause significant forces on gearbox 
and torsion strain on the tower. The remote site of 
wind turbines, where icing is possible and likely, 
challenges the wind turbine stability and causes a 
variety of problems. Remote sites, harsh weather 
conditions lead to the need for a condition 
monitoring system which can offer the diagnostics 

 
 
of present condition and the prognostics of future 
condtion to improve the reliability of wind turbines 
(Parent and Ilinca 2011). 
 
The gearbox is vital to the operation of the wind 
turbine. As shown in Graph 1, the gearbox is one 
of the most problematic components of the wind 
turbine for many reasons, including high 
maintenance costs and long downtimes. 
Therefore, it is critical that it operates smoothly to 
maximum its service time. Given the high risk 
associated with the gearbox, many methods are 
used to monitor its condition, e.g. lubricant 
condition, external vibration testing and 
contaminants testing. In this paper, the lubrication 
oil of the wind turbine gearbox and icing are 
considered as the on-line condition monitoring 
factors. We use the output of sensors to monitor 
the gearbox condition and analyze the data by 
using statistical methods.  

 
Graph 1: Failure frequency and downtime for wind 
turbine component (Daneshi-Far, Capolino et al. 
2010) 
 
Diagnostic and prognostic methods offer a way to 
assess an asset’s current and future condition. 
Good use of these is meant to reduce 
maintenance costs, operation downtime and 
safety hazards for the high-value assets (Leader 
and Friend 2000). Diagnosis is a post-event 
activity and prognosis is to predict the next failure 
which is also closely related to condition 
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monitoring (Lybeck, Marble et al. 2007; DeOrio, 
Khudia et al. 2011). Here, Bayesian Belief 
Networks (BBN) (Pearl 1988) are applied to 
perform the diagnostics of gearbox condition 
based on the on-line sensors results, while a 
Dynamic Bayesian Network (DBN) (Murphy 2002) 
is used to perform prognosis of the gearbox 
condition. In this work, the diagnostics are 
processed by a LabVIEW model, while GeNIe 
(Druzdel 1999) is used to model a DBN to obtain 
the prognostic modeling of the gearbox condition.   
 
The paper is organized as follows: Section 2 
motivates the problem and offers a review of 
related work in ice-sensing technologies. Section 
3 presents the lubricant oil condition testing and 
LabVIEW implementation. In section 4, the 
prognostics process of gearbox condition are 
investigated. Section 5 considers avenues for 
future work and summarises the findings of the 
paper. 

2. Problem Motivation and Related 
Work in Ice Sensing 

2.1 Reason for ice detector 
The icing of wind turbines causes a variety of 
problems.  
 
Loss of production: Ice on the leading edge of 

the aerofoils reduces the aerodynamic properties 

of the blade and hence cuts down the power 

production (Parent and Ilinca 2011). Studies have 

proven that ice accretion on the blades can lead 

to up to 30% decrease in the lift coefficient and 

50% increase of the drag coefficient (Yan, Fang et 

al. 2010). Apart from the loss of production due to 

the disrupted aerodynamics, improper ice sensors 

in a harsh environment may give false alarms and 

increase the downtime.  

 

Extra loading: The icing event possibly adds 
hundreds of kilograms extra weight to the wind 
turbine blades. Ice accretions considerably 
increase the load because the unbalanced loading 
of the blades can lead to additional drive train 
loads and vibration (Xing, Cui et al. 2012). 
Furthermore, the increased failures of the gearbox 
due to the increased fatigue caused by the 
unbalanced ice loading result in significant 
downtime and incur costly repairs. Extreme loads 
with icing events have been recorded many times 
(Dimitrova, Ibrahim et al. 2011).  Picture 1 shows 
a case of ice accrection on the wind turbines.  
 

        

Picture 1: Icing conditions of wind turbine 
(Dimitrova, Ibrahim et al. 2011) 

 
Safety hazard:  The uncontrolled shedding of ice 
may cause harm and damage to buildings and 
people near the wind turbine (Homola, Nicklasson 
et al. 2006). Previous studies proved that large 
icing accumulation on blades can be thrown to a 
distance of up to 150% the combined height of the 
turbine and the rotor diameter (Parent and Ilinca 
2011). In addition, a safe area is not always 
possible.  

One example is a wind turbine in southern 
Sweden which was stopped for over seven weeks 
during the best operating period because of icing 
(Kolousek 1986). As mentioned above, icing 
causes many problems to wind turbines: 
increased noise, ice throw, extra loading and 
O&M aspects. Icing affects the operation and the 
accuracy of the controller system as well. Also, 
large ice accretions may stop the entire 
anemometer and result in a total stop of the wind 
turbine. So an ice detection mechanism should be 
included in the condition monitoring system. But 
the ice detection is a more complex and extensive 
task due to the factors like temperature, wind 
speed, wind direction, radiation and height etc 
(Yan, Fang et al. 2010). It is known that icing can 
be detected by both direct and indirect methods. 
Direct ways are to detect the direct changes 
caused by the accretion of ice, e.g. thermal 
conductivity, inductance, resistance, mass 
properties. Weather conditions can be used to 
detect the icing indirectly. 
 
2.2 Existing and proposed methods for ice 

detection 
It’s known that there are mainly three types of 
icing conditions:  In-cloud icing including glaze, 
hard rime and soft rime; Precipitation icing 
including wet snow, freezing rain and frost 
(Farzaneh 2008). The air temperature, wind 
speed, the humidity and storm duration are some 
of the factors which affecting the icing and 
deciding the type of ice.  
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2.2.1 Direct detection 
Temperature rise with heat:  By using an 

effective heat-capacity approach, this technology 

can easily calculate the time to reach equilibrium 

given an induced heat. There are already many 

commercial products, one of which is carbon 

nanotube (CNT) Ice Detection of metis design. 

However, this method has trouble of detecting 

very thin layers of ice.  

 
Infrared spectroscopy: This method is optical in 
nature. Firstly, the sensor emits a beam of 
infrared light that hits an extended area. Light is 
partially absorbed by ice or water on that area, 
and light reflected back to the detector is sensed 

(Kobayashi, Karaki et al. 2012). Presence or 
absence of ice or water is then calculated by 
using the optical properties of the retro reflected 
infrared light. It is also found that one of the most 
useful benefits is its ability to detect black ice, 
which often is near invisible to the human eye. 
Furthermore, there are no extra conductors out to 
the blades as all the components can be mounted 
in the hub, as a consequence, there are no 
additional lightning risks  (Kobayashi, Karaki et al. 
2012).  
 
Ultrasound system inside the blade: This 
method has been simulated to measure ice 
accretion on aircraft and shown to detect to an 
accuracy of ± 0.5 mm of ice thickness. The device 
can also be mounted on any ice accreting surface 
of the wind turbine. Ultrasonic pulse-echo ice 
thickness measurements emit a brief compressive 
pulse from the ultrasound transducer. Then the 
pulse travels through the ice, reflected by the ice 
interface, and returns to the ultrasound transducer 
as an echo signal. The ice thickness can be 
calculated by the following equation:  経 噺 系劇椎貸勅【に                          (1) 

where C is the speed of propagation of the pulse-
echo signal in ice and time elapsed is between the 
emission of the pulse from the transducer and the 
return of the echo from the ice interface (Bekker 
and Seliverstov 1996). 
 
Surface acoustic wave sensor: This sensor is a 
class of microelectromechanical systems which 
modulate the surface acoustic waves (Peng, 
Greve et al. 2012). The input electrical signal is 
changed to the corresponding mechanical signal 
which is susceptible to the physical phenomena, 
and acts as a band pass filter in both the radio 
frequency and intermediate frequency sections. It 
has shown that it’s an effective dew point and 
humidity sensor if the surface acoustic wave 
sensor is temperature controlled and exposed to 
the ambient atmosphere (Drafts 2001). The 

respective advantage is that the sensor can detect 
both ice and water as well as distinguish between 
them (Farzaneh 2008). 
 
2.2.2 Indirect detection 
Dew point and temperature: A dew point 
detector is to measure the air temperature as well 
as the relative humidity. It indicates the amount of 
moisture in the air. On many occasions, the 
temperature is below 0°C and the relative 
humidity is above 95% when there is an ice event 
(Parent and Ilinca 2011) (Parent and Ilinca 2011). 
In addition, it has a relatively low cost. The 
disadvantage is that the dew point detector need 
to be mounted on the wind turbine nacelle. 
 
Actual power output vs. predicted from wind 
speed: Power curve analysis is a cornerstone of 
the wind turbine condition monitoring. Power 
generated from the turbine is roughly proportional 
to the cube of the wind speed, so comparisons 
between the normal operation curve and the 
actual power output can provide a hint on icing 
condition. For stall regulated wind turbines, a 50% 
power drop is used as the reference for an icing 
event (Parent and Ilinca 2011). Normally, the 
analysis is used along with other temperature and 
air pressure measurements since it cannot 
provide accurate indication.   
 
Change in blade resonant frequency: The 
method of detecting the resonant frequency is 
based on the fact that ice changes the blade 
natural frequency. The disadvantage is the low 
sensitivity as the blade resonant frequency will not 
change for a thin ice layer.  
 
Another method is detecting increased noise from 
the blades caused by the layer of ice. Also for 
wind turbine application it’s possible to use 
anemometers with and without heating and 
compare the differences of wind speed to detect 
ice.  In addition, a rain detector with a temperature 
sensor and visual detection are also considered 
as potential ways to detect the ice accretion.  
 
In general, many methods are not designed for 
the purpose of detecting ice accretion of wind 
turbines. There are some basic requirements for 
successful ice detection. The blade tip is the most 
probable component to have ice accretion, so it is 
the best position for ice detection. As a 
consequence, lightning protection is needed for 
the sensors which are mounted on the blade tip. 
Therefore, placing the ice sensors on the gearbox 
offers major benefits.In addition, a high sensitivity 
sensor with the ability to detect the ice over a 
large area is required. A common major icing 
event in the UK is in-cloud icing due to super 
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cooled water droplets. If the temperature is below 
0°C and relative ambient humidity is above 95%, 
there is a high possibility of icing events.  And this 
work investigates how combining measurements 
of ambient humidity and ambient temperature can 
be used to detect icing events on the gearbox. 
Additionally, by also monitoring the lubricant oil 
condition it becomes possible to enable diagnosis 
of the overall gearbox condition.  

3. Diagnostics 

3.1 Ice detector and lubricant condition testing 

The ambient humidity and temperature are 
monitored here as the method to detect the icing. 
Previous study shows that lubricant monitoring 
includes: particle counting, identification, viscosity, 
water content, acid content, temperature and oil 
degradation monitoring (Kostandyan and 
Sorensen 2012). In this study, lubricant condition 
is monitored to quantify the oil condition by 
measuring oil particle count and oil temperature. 
The application of LabVIEW provides a vibration 
monitoring and intelligent fault diagnosis system. 
The detailed oil sensors are as follows: 
 
Oil particle counter is used to find out the amount 
of wear present in a lubrication channel. 
Particulate contamination has a negative influence 
on gearbox performance. Particle size is slightly 
larger than the oil film which damages contact 
surfaces and causes extra fatigue. Also, metallic 
contamination will reduce the lubricant oil life time 
by accelerating oil degradation. Iron content is 
used to present the particle contents index.  And 
the oil temperature which may affects oil 
lubrication performance, making the oil more 
acidic and accelerating thermal degradation, is 
monitored here as well.  
 
All the sensors including ice detectors and 
llubricant condition detectors have been installed 
and tested by using LabVIEW on the rig.  
 

 
Picture 2: Physical rig for the lab testing 
 

3.2 BBN diagnostics 
In many cases, diagnostic methods rely on 
undocumented knowledge of a few experts which 
sometimes cost unnecessary down time and 
repair expenses. This is practical but has some 
shortcomings (Kolousek 1986). A more promising 
method is to use an artificial intelligence method 
to address these problems. In this study a BBN is 
applied to the wind turbine gearbox diagnosis 
problem.  
 
BBNs (Pearl 1988) are statistical models used for 
knowledge representation, reasoning under 
uncertainty, taking the form of a directed acyclic 
graph (DAG) in which each node is annotated with 
quantitative probability information among 
variables to learn causes-effect relationship 
among variables. A BBN model normally contains 
several random variables which are divided 
roughly into two classes: evidence and root 
causes. The BBN topology is comprised of nodes 
and links or arrows representing variables and 
assertions of conditional independence 
respectively. If a node has no arcs, the single prior 
distribution of itself needs to be defined. However, 
for the nodes with parent nodes, the construction 
of conditional probability tables (CPT) is needed 
for each possible state of the parent variable. 
 
The LabVIEW BBN diagnostic system is shown in 
Picture 3. Four sensors (oil temperature sensor, 
oil particle count, ambient temperature and 
ambient humidity) are available. There are three 
states for the gearbox condition: good, poor and 
bad. The conditional probability curves for the 
sensors are obtained from expert knowledge. By 
feeding live data into the BBN, the currently state 
of the gearbox is inferred. The probability of ice is 
determined through the ambient temperature and 
ambient humidity.  It is found through test that as 
the temperature gets lower and humidity gets 
higher, the probability of ice increases. Also,  high 
oil temperature and high particle count result in a 
high probability of bad gearbox condition. The 
diagnostics model shows a good agreement with 
the previous assumption.  
 

 
Picture 3: BBN diagnostics network by LabVIEW  
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4. Prognostics 

Prognostics are used to accurately predict the 
remaining useful life of wind turbine gearbox 
(Zhigang 2009). Predicting future condition is 
becoming a useful tool in the optimisation of 
maintenance scheduling. In this work we use 
DBNs (Murphy 2002) to model the prognostic 
problem. While a BBN is a static model 
representing a joint probability distribution at a 
fixed point of time, a DBN can represent 
probability distributions across time. The different 
temporal dependencies are represented by the 
arcs with certain time indices. 
 
An example of DBN, representing the probabilies 
of taking an umbrella depending on whether it is 
raining or not, is presented below (Stuart J. 
Russell 2003). For each day t, the set of evidence 
contains a single variable ”Umbrella” and a single 
unobservable variable, ”Rain”. The dependencies 
reflect that weather today depends on the 
previous day’s weather (Kontkanen, Myllymäki et 
al. 2000). 

 
Graph 2:  An example of a simple DBN 
 

P (Rain) 

True 0.7 

False 0.3 

 

P(Raint) P(Umbrellat) 

Raint-1 true false Raint true false 

true 0.7 0.3 true 0.9 0.2 

false 0.3 0.1 false 0.1 0.8 

Table 1: DBN condition probability tables 
 
GeNIe is a environment for building graphical 
decision models and performing classification and 
inference. In this work, GeNIe is used to study ice 
cycles and gearbox condition cycles over long 
time-periods. In GeNIe, there are two ways to 
determine the predictive distribution: posteriori 
and evidence approach.  
 
The first method uses the training data and a prior 
probabilistic distribution to obtain the predictive 
distribution using the highest posterior probability 
(Kontkanen, Myllymäki et al. 2000). The normal 
approach is to firstly define a model to represent 
the system, use prior beliefs to build the prior 
distribution over the parameters and then observe 
the data to compute the posterior probability 
distribution. The posteriori results then can be 
used to make prediction by finding the highest 

posterior probability or to account for the 
uncertainties of the model (Kontkanen, Myllymäki 
et al. 2000). The posterior distribution can be 
accomplished using Bayes’ Rule to derive values 

prior for the given data, where S is the current 

state of the component and O is the data 
observed:  鶏岫鯨】頚岻 噺 鶏岫頚】鯨岻 茅 鶏岫鯨岻鶏岫頚岻            岫に岻 

The second one involves computing the evidence 
in order to draw the inference to some hypothesis. 
Once all the observed evidence has been 
propagated through the conditional probability 
among the nodes which weights the relationship 
of the network, the state of the nodes can be 
valued. Previous work has proven that the second 
method gives a more accurate predictive 
distribution which is applied here. The DBN shown 
in Graph 3 is concerned with the condition of a 
gearbox over two years using a  monthly time 
step. The probability of ice depends on the 
ambient temperature and ambient humidiy which 
is shown by the arcs. If there is no number with 
the arc, it means the relationship is within the 
same time step. Conversely, a value, x, means 
the time t is influenced by the state at t-x. 
 

 
Graph 3: GeNIe DBN model. Labels on self-arcs 
indicate a number of preceding timesteps. For 
instance, Ambient Temperature is dependent 
upon the previous temperature, and that of 12 
months previous. 
 
An understanding of the unexplained natural 
variability of past climate is an essential pre-
requisite to increase confidence in predictions of 
long-term change (Hulst). Therefore, ice condition 
at the current time is dependent upon this value at 
the previous timestep (1 month), and 12 months 
previous, due to the seasonal pattern of climate 
variation. Ambient temperature and ambient 
humidity work on the same principle. There are 
two states of the ice condition, ICE and NO_ICE. 
The probability of ice (and therefore computing 
the value of ICE) increases with lower ambient 
temperature and higher ambient humidity. The 
behavior of the gearbox condition can be 
identified as: good, poor (partial loss of the normal 
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condition) and bad. Here, the condition of gearbox 
is related to the load which is created by the ice 
accretion. Table 2 is an example of the CPTs of 
the GeNIe model. The conditional probabilities are 
obtained through expert knowledge.  
 

P(ICE)  Self(t-1) ICE NO_ICE 

Ice 0.1  Ice 0.75 0.2 

No_ice 0.9  No_ice 0.25 0.8 

 

Self(t-1) ICE NO_ICE 

Ice 0.75 0.2 

No_ice 0.25 0.8 

 

Self(t-1) ICE NO_ICE 

Self(t-12) ICE NO_ICE ICE NO_ICE 

Ice 0.95 0.1 0.85 0.05 

No_ice 0.05 0.9 0.15 0.95 

Table 2: DBN CPTs for ice condition 

4.1 Case study: without oil evidence  

In order to predict the probability of ice in future 
timesteps/months, training data or evidence is 
needed to improve the understanding of the 
processes. In this case, 12 months evidence of 
ambient temperature and humidity are given 
based on the seasonal pattern. Graph 4 shows 
the prediction of ice, where the top area 
represents the ICE probability and the bottom is 
NO_ICE probability. The inferred year shows a 
clear correlation with the previous year.  
 

 
Graph 4: Ice temporal probability distribution 
 
Graph 5 shows the temporal probability 
distribution of gearbox condition with no oil 
information (that is, oil condition is unobserved) 
and same evidence of ambient temperature as 
Graph 4. In this case, it is clear that the poor and 
bad condition follows the undulation of the 
seasonal pattern of ice due to the absence of 
evidence from the oil. The same trend is achieved 
with longer inferred time, shown in Graph 6 which 
adds confidence to the results.  
 
4.2 Case study: good oil condition 

Here, the potential effects of good oil scenarios on 
gearbox condition are investigated. If there is a 
good oil condition scenario for the first 12 months 
of observations, there is a high probability of good 
gearbox condition at t=12. Beyond this, the 
increase in probability of bad condition 
corresponds to unknown anomalies and follows 
the seasonal pattern again. The gearbox condition 
is modelled as a first-order Markov process, 
wherein the current state depends only upon the 
previous state (rather than the previous n states). 
 

 
Graph 5: Gearbox temporal probability distribution 
 

 
Graph 6: Gearbox bad condition inferred curve 
comparison 
 
The results in Graph 7 and 8 indicate that it takes 
4 or 5 months to recover to the no observation 
condition. By using the Markov assumption, the 
transition probabilities are only related to the 
current state which is fine with most cases but it 
does not map well this model.  
 

Graph 7: Comparison of inferred gearbox 
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condition under various observations of ”good” oil 
condition 
 

 
Graph 8: Gearbox bad condition with good oil 
scenario comparison 
 
4.3 Case study: degrading oil condition 

Degrading oil condition is investigated through a 
case where the first 6 months have good oil 
condition followed by 6 month poor oil condition, 
under the same evidence of ice scenario. As 
mentioned above, the evidence includes only 
sufficient baseline data of good and poor oil 
condition and no fault data. In Graph 9, for the 
inferred year, the data set of the degrading oil 
leading up to bad gearbox condition is achievable. 
This illustrates how the prognostic model 
functions in practice. 
 

 
Graph 9: Gearbox temporal probability distribution  
 

 
Graph 10: Gearbox good condition with 
maintenance scenario comparison 
 
 

4.4 Case study: maintenance 

In this study, a maintenance inspection is 

performed at t=12 which means the oil condition is 

returned to good after the maintenance. As can be 

seen from Graph 10, after the maintenance, the 

probability of the gearbox being in a good state is 

higher than the previous one which proves that 

evidence-based approaches are robust that they 

predict well on the whole. 

5. Conclusions 

This paper has proposed an approach for 
diagnostics and prognostics of the wind turbine 
gearbox condition monitoring. A BBN is applied 
here to provide the online diagnostic condition of 
gearbox. All the sensors have been installed, 
tested and inspected under the LabVIEW 
environment. For prognostics, the GeNIe model 
utilizes a DBN to predict the temporal probabilistic 
distribution of the future condition given the 
evidence of prior condition. The proposed model 
is found to be successful in dealing with prediction 
of the future condition of a wind turbine gearbox 
and can simulate different scenarios. The 
reliability and flexibility have been tested and 
verified. The results show the effectiveness of the 
principle, and show that the both BBNs and DBNs 
are useful for assessing wind turbine 
performance. In future work, for the BBN part, 
once the interface of LabVIEW is connected to the 
physical rig, the real online diagnostic of the 
gearbox condition can apply a decision problem 
as well. The GeNIe model can be extended to 
gain more accuracy by finding how many 
essential pre-requisite time steps are suitable for 
gearbox condition node and improving the 
maintenance case.  
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