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ABSTRACT

A fundamental aspect in the hardware-software design of

modern radar systems, for example MIMO or Low Proba-

bility of Intercept Radar, is to operate in electromagnetically

crowded environments. Proper radar waveform design is

central to effective solutions in such systems. In this paper

cross-interference and waveform reuse for a set of waveform

libraries based on the fractional Fourier transform are pre-

sented and analysed. The results demonstrate the potential

of the novel libraries in increasing the number of available

waveforms and for stealth transmissions.

Index Terms— MIMO Radar, Waveform Design, Frac-

tional Fourier Transform, Electronic Countermeasures

1. INTRODUCTION

In the modern battlefield scenario radar systems typically

operate in a congested electromagnetic environment and with

severe constraints in terms of interference mitigation, fre-

quency occupancy, security and performance. Coexistence of

different systems for different applications, high accuracy in

target detection, tracking and recognition, low probability of

intercept, jamming and MIMO radar are all examples where

a hostile environment, from an electromagnetic point of view,

can cause dramatic consequences to the overall performance.

In this scenario the selection of the most suitable waveform

can play an important role. Fixed and adaptive radar wave-

form design has been widely investigated [1, 2], providing

waveforms that can suit different applications. However each

of them presents a trade-off between characteristics such as

range resolution versus side lobe levels. The ability to form

novel libraries of waveforms that are able to maintain the

same or higher level of performance is of interest to the radar

community and other related disciplines.[3].

In this paper the use of fractional Fourier Transform (FrFT)

based phase coded waveforms is introduced to generate new

families of waveform libraries.

The FrFT is a generalization of the Fourier transform and
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has already been applied in radar signal processing [4] and

OFDM modulation [5] demonstrating the potential of this

signal processing tool for various applications [6]. In our

approach for the generation of novel radar waveform libraries

the FrFT is applied to the waveforms (e.g. the code se-

quence). In this paper we analyse cross-interference and

waveform reuse for the novel libraries of waveforms.

The remainder of the paper is organized as follows. Section 2

introduces the fractional Fourier transform, while in Section

3 the novel modulation approach and the signal model for the

phase coded libraries are introduced. The analyses of cross-

interference and waveform reuse are presented in Section 4,

while Section 5 concludes the paper.

2. FRACTIONAL FOURIER TRANSFORM

Fourier transformation (FT) maps a one-dimensional time

signal x(t) into a one-dimensional frequency function X(f),
the signal spectrum. The Fourier transform operator can be

visualized as a change in representation of the signal cor-

responding to a counter clockwise rotation of the axis by

an angle π/2 in the time-frequency plane. Although the

Fourier transform provides the spectral content of the signal,

it fails to indicate the time location of the spectral compo-

nents, which is of great importance when non-stationary or

time-variant signals are considered. In order to describe and

analyse such signals, time-frequency representations (TFRs)

are used. A TFR maps a one-dimensional time signal into a

two-dimensional function of time and frequency. The frac-

tional Fourier transform belongs to the class of linear TFRs

and was firstly introduced by 1980 by Namias [7]. After-

wards it was rediscovered in optics [8, 9] and introduced to

the signal processing community by Almeida in 1994 [10].

The fractional Fourier transform, can be considered as a ro-

tation by an arbitrary angle in the time-frequency plane or a

decomposition of the signal in terms of chirps. It also called

rotational Fourier transform or angular Fourier transform [11]

and it serves as an orthonormal signal representation for chirp

signals. The fractional Fourier transform is computed using

the angle of rotation in the time-frequency plane as the frac-

tional power of the ordinary Fourier transform. Letting x(u)
be an arbitrary signal of length U , its ath-order discrete FrFT



is defined as [6]:

Xa[u] =

U/2
∑

u′=−U/2

Ka[u, u′]x[u′] (1)

where a is the fractional transformation order (corresponding

to a rotation angle θ = aπ
2

with a ∈ R) and Ka[u, u′] is the

FrFT kernel and is defined as [6]:

Ka[u, u′] =















A0 exp {jπ[(u2 + u′2) cot θ − 2uu′ csc θ]}
if θ is not a multiple of π
δ[u − u′] if θ is a multiple of 2π
δ[u + u′] if θ + π is a multiple of 2π

(2)

where A0 = ej θ
2√

j sin θ
and j =

√
−1.

Equation (2) shows that for angles that are not multiples of

π, the computation of the FrFT corresponds to the following

steps:

1-A product by a chirp;

2-A Fourier transform (scaled by csc θ);

3-Another product by a chirp;

4-A product by a complex amplitude factor.

In summary, the FrFT is an invertible linear transform, con-

tinuous in the angle θ, which satisfies the basic conditions for

it to be meaningful as a rotation in the time-frequency plane.

3. FRFT BASED WAVEFORMS

In this section the new approach to obtain novel libraries of

waveforms is introduced. The Fractional Fourier Transform

introduced in Section 2 can be applied to common wave-

forms, such as phase modulated waveforms with different

codes (e.g. Barker or P4 codes).

Let s(n) be the canonical waveform (e.g. the traditional

Barker 13 code) from which the Fractional Fourier trans-

form library elements, Sai
(u) i = 1, ..., L are obtained, by

applying (1). Thus we define a fractional waveform library

as:

S = [Sa1
[u], Sa2

[u], . . . , SaL
[u]] (3)

where ai ∈ [0, 1] , and L represents the total number of wave-

forms populating the library. Note that for ai = 0 the canoni-

cal waveform is obtained. The value of L depends on different

aspects such as the original waveform used, waveform reuse,

orthogonality requirements and applications.

In order to obtain the analytical representation of each ele-

ment of the library, the cardinality of the waveform Ω (the

number of chips used) and the number of samples per chip r
must be introduced, from which the total digital signal length

N = r × Ω is obtained. Defining c = [c1, c2, . . . , cN ] as the

vector containing the amplitudes of N samples of the wave-

form before the modulation (e.g. ±1 values), s[n] can be writ-

ten as:

s[n] =

N
∑

k=1

ckδ[n − k] (4)

The FrFT can now be applied to (4), and using the properties

reported in [10]

Sa[u] =

N
∑

k=1

ckFrFTa[δ[n − k]] =

√

1 − j cot θ

2π

N
∑

k=1

ckej k2+u2

2
cot θ−juk csc θ (5)

From (5) the lth-element of S is the sum of N chirped func-

tions weighted by the original waveform sequence and with

modulation rate depending on a and k. An important remark

is that the number of chirped components depends on N , thus

by fixing the code cardinality Ω (e.g. the Barker 13 code),

different waveforms can be obtained changing the chip sam-

pling rate r.

4. WAVEFORM REUSE ANALYSIS

In this section the performance of the novel waveform li-

braries are analysed numerically in order to determine or-

thogonality properties between waveforms generated with the

same c and different fractional order a. The analysis has been

conducted for three values of r = [50, 100, 200]. In the anal-

ysis four code sequences have been selected to populate c,

Barker 13, Costas 7, Frank 16 and P4 25 [1].

In order to analyse the orthogonality properties of the library

we assume that two waveforms Sa(u), with the same c and

different values of a, are orthogonal if their cross-correlation

is below the side-lobe level of the original sequence c. The

side-lobe levels used in the analysis are reported in Table 1.

In Figs. 1, 2 and 3, the SLL-thresholded maxima of the cross-

Sequence SLL [dBs]

Barker 13 -22.28

Costas 7 -13.65

Frank 16 -21.07

P4 25 -22.22

Table 1. Side Lobe Levels used as thresholds in the orthogo-

nality analysis.

correlations between the waveforms with different a and the

same c are reported for the three choices of r. In all the

analysed case the number of pairs of waveforms with cross-

correlation below the threshold increases as r increases. This

effect is due to the fact that for higher values of r the num-

ber of chirped components in (5) increases; the mismatching

between waveforms of the same libraries modulated with dif-

ferent fractional orders becomes stronger leading to a higher



Sequence r = 50 r = 100 r = 200
Barker 13 0.77 0.40 0.22

Costas 7 0.25 0.14 0.08

Frank 16 0.28 0.15 0.08

P4 25 0.49 0.22 0.12

Table 2. Fractional order reuse interval for different values of

r.

reuse factor. This framework can be implemented in a dig-

ital arbitrary waveform generator (AWG) present in modern

radar systems, moreover the effect of the higher samples per

chip rate r can be addressed using high speed D/A converters

in order to obtain the same time duration of the signal. Wave-

forms obtained with Costas and P4 codes show good perfor-

mance in terms of orthogonality with r = 50 as indicated in

Fig. 1-b and Fig. 1-d, while higher values of r are required to

achieve similar performance with Barker or Frank codes, as

indicated in Fig. 2 and Fig. 3. A notable result is the level

of cross-correlation achievable, which in some cases is below

−35 dB.
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Fig. 1. SLL-thresholded maxima of the cross-correlations

between the waveforms with different a and the same c for

r = 50. The cases above the thresholds are shown in black.

In Figs. 4, 5 and 6 the reuse interval (measured in frac-

tional order - see below) quantified for each fractional order

for the orthogonality matrices shown in Figs. 1, 2 and 3 are

reported. The reuse intervals are estimated by selecting the

first fractional order below the threshold for each value of a.

These results show that the reuse interval becomes smaller

for r increasing, meaning that the library S is composed of

a higher number of orthogonal waveforms for r increasing.

Costas and P4 codes are seen to provide higher reuse levels

than Frank and Barker codes. In Table 2 the maxima (worst
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Fig. 2. SLL-thresholded maxima of the cross-correlations

between the waveforms with different a and the same c for

r = 100. The cases above the thresholds are shown in black.
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Fig. 3. SLL-thresholded maxima of the cross-correlations

between the waveforms with different a and the same c for

r = 200. The cases above the thresholds are shown in black.

case) of the reuse intervals are summarized, showing that in

some cases (reuse interval of 0.08) more than 10 orthogonal

waveforms can be obtained for a given code sequence.

5. CONCLUSIONS

This paper presented novel radar waveform libraries based on

the use of the fractional Fourier transform modulation. The

orthogonality and reuse properties of these waveforms was
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Fig. 4. Reuse Interval for the waveforms with different a and

the same c for r = 50.
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Fig. 5. Reuse Interval for the waveforms with different a and

the same c for r = 100.
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Fig. 6. Reuse Interval for the waveforms with different a and

the same c for r = 200.

analysed. The novel libraries show a good level of orthogo-

nality and reuse allowing possible applications in co-located

and distributed MIMO radar, pulse agile radar and in elec-

tronic countermeasure such as Low Probability of Intercept

Radar. For example a LPI Radar can use an arbitrary wave-

form provided by the novel libraries increasing its covertness

due lack of knowledge from the interceptor of fractional order

used by the transmitter.
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