
Strathprints Institutional Repository

Paul, Greig and Irvine, James (2014) Google's Android setup process

security. In: Wireless World Research Forum meeting 33 (WWRF33),

2014-09-24 - 2014-09-26, University of Surrey. ,

This version is available at http://strathprints.strath.ac.uk/49516/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/29180341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

1

Google’s Android Setup Process Security
Greig Paul, University of Strathclyde, James Irvine, University of Strathclyde

Abstract—Despite considerable research having been carried
out into the security of the open-source Android operating system,
the vast majority of Android devices run software significantly
deviating from the open source core. While many of these changes
are introduced by the original equipment manufacturer (OEM),
almost every Android device available for sale also features a
suite of Google-provided applications and services, which are
not part of the Android Open Source Project (AOSP) code.
These applications are installed with system-level privileges, and
are effectively an extension of the operating system itself. We
monitored the process of setting up an Android device, and have
identified a number of design weaknesses in the implementation of
a number of Google services features which come pre-installed on
virtually every Android device on sale today, which could permit
skilled and capable attackers to carry out persistent attacks
against Android users.

Keywords—Android, security

I. INTRODUCTION

GOOGLE reported in its May 2014 I/O event that there
were more than one billion active users of Android.

Given the near-ubiquity of Android devices, it is worth bearing
in mind that, in addition to the open-source Android operating
system, Google also has its own proprietary software installed
on most Android devices, often referred to as “Google Apps”.

Android devices with access to the Google Play Store are
shipped with this suite of Google-provided applications, in
addition to the core Android operating system. We carried out
an investigation into the security of these applications.

II. NETWORK INTERCEPTION TECHNIQUES

Since almost all of the relevant network traffic pertaining
to the setup and ongoing configuration of Android devices is
encrypted and authenticated using the HTTPS protocol, it was
necessary to configure an Android device such that all inbound
and outbound network connections could be monitored. To
carry out this monitoring, a Wi-Fi network was created, and the
Android device’s network settings were manually configured
to use a Linux computer running the mitmproxy software as
the default network gateway. [1] Mitmproxy generates a new
certificate authority (CA) file, which was manually added to
the system partition of our Android devices, allowing the proxy
to generate certificates believed valid by the operating system.
This meant that, for the purposes of these tests, our interception
CA certificate was considered by the operating system to be no
different in any way to the numerous commercial CAs which
are included in the operating system by default.

III. WEB COMMUNICATIONS SECURITY

HTTPS is a secure communications protocol used by web
browsers and other software, to attempt to ensure that commu-
nications are only established with the legitimate server that

the user is attempting to connect to. HTTPS is widely used in
online commerce and banking, and is commonly recognised
by the ‘padlock’ icon in web browsers.

To establish an HTTPS connection, the destination server
must present a certificate, signed by a Certificate Authority
(CA), starting that the server the user is reaching is genuinely
operated by the owner of that internet domain name. A large
collection of CAs are pre-loaded into mobile devices and
web browsers, and are trusted to only issue certificates to the
legitimate owners of domain names.

With around 150 CAs enabled by default on modern An-
droid devices, and all CAs able to issue trusted certificates for
all domain names, the compromise of any individual CA would
permit the generation of rogue certificates for any domain
name, including valuable targets such as ‘gmail.com’. Such
a rogue certificate can then be used to intercept data which a
user accesses or provides to a service. [2]

To attempt to prevent such attacks from taking place, a tech-
nique known as certificate pinning is used, which ensures that
only certificates from a particular CA will be trusted for a given
server, even if a a valid certificate from another (ordinarily
trusted) CA was used. Certificate pinning is implemented in
the client software which accesses the HTTPS services, and
should contain a record of which domain names will only
accept certain certificates.

Support for certificate pinning was introduced in Android
version 4.2 [3], although Android does not ship with a list of
pre-pinned certificates, even in the most recent Android 4.4
releases, per our findings.

IV. INITIAL PROVISIONING

Every newly configured Android device ships with a clean,
pre-installed version of the operating system, and undergoes an
initial provisioning process when first connected to the internet.
This check-in process, as it is commonly referred to, involves
the Android device establishing a connection to Google’s
provisioning servers over HTTP and requesting provisioning
data, while at the same time sending device information (in-
cluding unique device serial numbers such as the device’s IMEI
number and MAC address). The received provisioning data
configures the Android device, setting a number of system-
only configuration options within a protected database on the
device. [4]

As part of this initial process, a number of URLs are
delivered to, and stored on the device, for the purpose of future
configuration updates. One of these configuration files pertains
to a whitelist of digital certificates for various domain names.
The purpose of this list is to increase user security by ensuring
that connections to secure websites are not being intercepted
due to a man-in-the-middle (MITM) attack, through the com-
promise of a CA.

2

Fig. 1. Android check-in data indicating plain HTTP updates

Fig. 2. GET request over unsecure HTTP for certificate pinning update

The process to update pinned certificates, which is triggered
as part of the Google Services Framework, downloads the
latest pinning data from Google’s servers. While this pinning
update data is versioned and signed, to prevent tampering, the
actual update process is carried out over a plain, unprotected,
HTTP connection, as illustrated in Figure 1.

A. Certificate Pinning Bypass Attack

Since a clean install of Android comes with no certificate
pins pre-installed, the initial check-in process, carried out over
HTTPS, does not benefit from certificate pinning. This means
that in the event of a user’s connection being compromised,
such as in the cases illustrated below, the entire check-in
process may be compromised, including the transmission of
Google’s public key (used for login verification), and the URLs
used to carry out future certificate pinning updates.

Even if a user’s connection was not compromised at the time
of first setup, it is currently possible for a pervasive attacker
to block updates to certificate pinning data on an Android
device, since the actual transfer is carried out over a plain
HTTP connection. Alternatively, such an attacker could replay
an existing version of the pinning data (such that the client
would not be aware of an updated version being available).
This is illustrated in Figure 2. While it is not possible to roll
back the pinning data using this update process, the certificate
pinning list downloaded at present offers users no protection
from rogue certificates - holding a user on the status-quo is
beneficial to an attacker.

B. Present Protection

The certificate pinning data takes the form of a structured
list, detailing the domain name that a pinning record applies to,
and the public key (or keys) which are accepted for signing
certificates on that domain. There is also a third option, for
the enabled state of the pinning entry. Currently, as of August
2014, all of the pinning entries located within the check-in data
are disabled, meaning that no certificate pinning is enforced at
operating system level. This means that, despite many Google
services having certificates listed, none of are actually offering
users any protection from man-in-the-middle attacks.

While these pins are disabled (and users are thus not
protected from fraudulent servers using different CA certifi-
cates), Google are able to receive notifications of any pinning
failures through their remote log uploading process referred
to internally as the dropbox. It is unclear why these certificate

pins are currently disabled. Indeed, we found that there was no
pin (even disabled set for ‘android.clients.google.com’, which
is the hostname used for the Google registration and check-
in process. As such, under the present configuration, no logs
of the setup process being subjected to a man-in-the-middle
attack would be uploaded.

This ability for certificate pins to be disabled is documented,
and previously discovered [3]. That pinning is not in use for
operating system level HTTPS communications does not ap-
pear to have previously been identified. This was demonstrated
by using certificates signed by our own mock CA without
experiencing any errors on the device. As such, we were able
to intercept and monitor the entire registration process, using
such a compromised connection. For the purposes of this work,
our installed CA can be considered to be a regular commercial
CA whose certificate was pre-installed on the device.

C. Going Forward

By way of resolution, we propose that Google should ensure
that all Android devices ship with a pre-installed list of
certificate pins, which would protect the check-in and device
setup process. Additionally, the process of updating certificate
pinning data should be carried out over an HTTPS connection,
to prevent users from having their certificate pinning updates
blocked. A pervasive attacker can block a user from receiving
any pinning updates through simple filtering of unencrypted
packets.

The prospect of the abuse of CA certificates in order to
intercept user traffic is not purely theoretical - there have
been several documented abuses of CAs in recent years,
where users’ so-called secure internet traffic was intercepted
through the use of compromised CA certificates. [5] [2] The
Android operating system remains vulnerable to man-in-the-
middle attacks occurring as a result of CA abuse, and users
are effectively powerless in preventing this.

Certificate pinning is especially important on mobile plat-
forms, such as Android, particularly within the operating
system, where communications with the server are happening
‘behind the scenes’, such that even a determined user is
not able to inspect the details of the connection being used
(like they are able to, using a web browser). Such an out-
of-sight, out-of-mind approach leaves all users vulnerable to
SSL interception attacks, with no practical means for users
to detect a different CA being used to sign a certificate. We
confirmed, by manually adding a new certificate pin for the
check-in server, that certificate pinning prevents the use of an
invalid certificate, when enabled.

V. ACCOUNT REGISTRATION

During the process of setting up an Android device, the
user is invited to either create a new Google account, or log
into an existing one. We discovered that during the process of
registering a new account, the registration process sends the
plaintext contents of the password box, every time its value
changes, to Google’s servers . While this is sent over HTTPS,
the fact we were able to capture this data indicates that an
attacker with access to a rogue CA would be able to capture

3

Fig. 3. Android setup process sending current password being typed to
Google servers

Fig. 4. Android setup process sending the plaintext password to the server

this. These recurring requests are shown in Figure 3, which
was captured during our research, at the password selection
stage of registration.

As is evident from Figure 3, the password data is being
sent to Google’s servers for real-time password strength rating.
Indeed, the server returns a strength rating for the current
contents of the password input box, each time it is updated,
and this is used to update the user interface.

Rather oddly, as shown in Figure 4 the password rating
process also sends the proposed email address of the user
(which may give side information as to a user’s preferred
usernames on other sites), as well as their first and last names
for the account. We can see no reason whatsoever as to why
a simple password security rating process should require such
information, nor why the client-side software should offer it
to the server. The strength of a password is not in any way
related to the identity of the user creating the account, and
transmitting supplementary personally identifying information
here appears entirely unnecessary.

We also see no reason why the act of measuring password
strength should be carried out on a remote server, especially
when it involves users transmitting every keystroke they enter
in the password field to a remote server in real-time. While
client-side validation (where the user’s software is trusted to
verify input, before it is processed) is obviously not suitable
for final validation of submitted values, local password strength
estimation could be used in real-time, with server-side valida-
tion after a password has been selected.

In light of the goal of a password strength meter being to
encourage users to use a stronger password, after they perhaps
entered a weaker one, this appears to be a badly designed
system, which will result in users inadvertently revealing other,
weaker passwords, which they may commonly use. With 55%
of adult internet users in the UK admitting that they “use the
same password for most, if not all, websites” [6], revealing the
plaintext contents of this password entry box, prior to the user
selecting a password, poses a significant risk to users, if their
connection was being intercepted, as previously discussed.

A. Why Plaintext?

Having demonstrated earlier why simply sending data over
HTTPS is not currently sufficient on Android to secure data

Fig. 5. Google login public key received during device check-in process

against a determined and capable attacker, who wishes to
launch a man-in-the-middle attack against a user, we were
unsure why this password data was firstly being send to a
server, and secondly why it was being sent in plaintext. During
further research, we uncovered a public key, sent to the device
during the check-in process, which appears to be intended for
use in encrypting the data used in the login process, as shown
in Figure 5.

Given such a public key is being sent to devices, presumably
to allow for the registration process to be carried out with
additional asymmetric encryption on top of HTTPS, it is
unclear why Google needed to send any such data in plaintext,
without prior encryption. After further investigation of the
actual login process, we identified at least 2 further occasions
where the plaintext password (and other registration data) was
submitted to Google’s servers, simply over HTTPS, during
the account creation process. An encrypted password only
appeared to be used after account creation was complete, in
the login stage of the process.

In any case, it is clear that Google has access to the actual
plaintext password for every user’s account. While sending
an encrypted password means that Google still would have
access to it, this would at least prevent third parties from
carrying out attacks on SSL to gain access to the plaintext
passwords. Given zero-knowledge login protocols have been
publicly disseminated and shared since at least 1989 [7], the
transmission of passwords themselves is less than ideal from
a security perspective.

B. Going Forward

In order to alleviate this issue, we propose that the pass-
word strength meter contained within the registration process
should be entirely locally-based, with the code running on
the phone itself. This would prevent users from inadvertently
divulging passwords they consider using (which may reveal a
methodology in their selection of passwords for other services
to a determined attacker). With the passwords being sent in
plaintext over HTTPS, any man-in-the-middle attacker would
be able to view these passwords in transit (like we were, during
our experiments).

We also propose that Google should make use of their login
public key to encrypt all data transmitted during registration,
and that they should extend their extra encryption to cover
data other than passwords (such as usernames) during the login
process. In the longer term, we propose that one of the many
publicly documented zero-knowledge password exchange pro-
tocols be used for login and registration, such that Google
never places itself in contact with raw user passwords.

4

VI. DEVICE SECURITY

The Android operating system is built around a security
model whereby a device and its data should remain secure,
even when in the posession of an attacker (such as someone
picking up an unattended phone). For example, the Android
Debugging Bridge (ADB) interface requires authentication of
the host PC which initiated the request, and such authentication
prompts can only be accepted by a device which has been
unlocked (using the appropriate PIN or pattern unlock gesture).
In order to prevent an attacker from powering off the device
and using another (compromised) operating system to access
the data, device encryption can be used. This requires the user
to enter a PIN or password at each boot, before the operating
system loads, in order to decrypt the user data partition on the
device.

When device encryption is used on an Android device, the
regular screen lock password or PIN is requested at boot.
A long-standing request exists on Google’s Android Open
Source Project (AOSP) issue tracker, where users request that
two different and separate passwords be permitted - one for
unlocking their screen, and one to decrypt their device. [8]
The rationale behind this request is somewhat clear - an
average user unlocks their phone 150 times per day, according
to research by Kleiner Perkins Caufield Byers. [9] With so
many unlock operations per day, the likelihood that someone
will be able to shoulder-surf a device unlock code increases
significantly.

Convenience is also a significant factor - users will be much
more likely to use a short PIN, which is easy for them to
enter rapidly, since they need to enter it often. In contrast,
any encryption password or key should be longer, such that
it contains greater entropy, making brute force attacks against
the encryption key impractical. By forcing Android users to
use the same PIN or password for unlocking their device, and
decrypting its storage, users are therefore more likely to be
using weak credentials for their device encryption. As detailed
in the enhancement request [8], the underlying technology
supports using different passwords for the lockscreen and
device encryption, and it would appear such restrictions are
not borne out of technical limitation.

A. Device Administrators

Within the Android operating system, device administrator
privileges are used to allow third party, non-core software to
make use of features which would ordinarily be considered as
protected or dangerous. Device administrator privileges can
be used to enforce policies on a device, such as requiring
a PIN or password be used (or placing requirements on the
quality of such passwords), preventing the use of cameras on
a device, requiring the use of device encryption, or changing
the password currently set on a device.

Ordinarily, device administrator privileges are granted man-
ually by users, who are prompted to allow or deny the request,
in a controlled prompt (preventing automated input from
interacting with the prompt, or from any kind of on-screen
overlay being placed over the prompt to alter its appearance).
In the case of the Android Device Manager, however, the

Fig. 6. Google check-in process enabling device manager

device check-in process was able to enable this elevated access,
without prompting the user to review and accept the requested
device administration privileges.

B. Device Administrators at Check-in

During the check-in process, Android devices obtain con-
figuration information from Google’s servers, as discussed
previously. One of these configuration parameters pertains to
the status of the ‘Android Device Manager’ feature, which is
a part of Google’s system application suite, that does not form
part of the open source core of Android. This device manager
service offers the ability to locate and remotely lock or wipe a
lost or stolen Android device, by using the associated Google
account.

From our analysis of the data exchanged during the check-
in process, we found that the Android Device Manager tool
was able to be remotely enabled. On a freshly-reset device,
we verified that Android Device Manager was disabled. After
connecting the device to the internet, we noted that (without
logging into a Google account or similar), the check-in process
had enabled device administrator privileges for Android Device
Manager. The received request for this is shown in Figure 6.

As it is possible for Google to use the check-in process to
remotely enable the device administrator features of Android
Device Manager, and this process completes before a user
may have even logged into their account, the Android Device
Manager feature may pose risks to users during (and after) the
setup process. By default, Android Device Manager allows
devices to be located and remotely locked or wiped. The
process of remote locking, however, is of particular interest,
as it exposes a major limitation of the platform. If a user loses
their device, they can log into their Google account online and
set a lockscreen password, to protect their device in case it is
found. In the event that the device already has such a password,
it is overridden and replaced with the new one. If the device
uses encryption, the data encryption password is also updated
at this time.

As a result, it is possible for the encryption password of
an internet-connected Android device to be remotely changed,
without physical access to the device, with either the coop-
eration of Google (to send such a request from their servers
to the device), or access to the Google account password (to
use the Android Device Manager web interface to issue the
change password request). As the account registration process
may be monitored (and thus compromised) by a pervasive and
determined adversary, as discussed previously, users whose
connections may be monitored should be aware of this risk.

In our research, we configured a freshly-reset device with a
new Google account, and proceeded with the default settings
(i.e. without altering any configuration or Android Device
Manager options), to simulate the actions of a regular user who

5

is unaware of the existence of such features. After enabling
device encryption (to simulate the process of a device being
used in an enterprise environment), we were able to repeat-
edly change the device encryption password, and lockscreen
password, over the internet. Encrypted devices containing
enterprise data are therefore only as secure as Google and its
remote device password reset process.

In the process of our research, we have not identified
any documentation which states that the device encryption
key may be remotely altered, over an authenticated network
connection. The Android source code API documentation for
the resetPassword function does not make reference to the fact
that the encryption password will be altered when using it, but
we have verified that any change (manual or programmatic)
to the device PIN or password will be propogated to the
encryption password.

In light of our previous discoveries, however, we believe
that this poses a significant risk to users - with the disclosure
of plaintext passwords during registration, and the very limited
protection against man-in-the-middle attacks against SSL, we
believe it practical for a determined attacker to subvert the
encryption present on an Android device, either through the
cooperation or coercion of Google, or by obtaining the user’s
own account credentials, and carrying out the remote operation
to change the encryption key. In any case, even without such
information available, due to the significant trade-off between
usability and security, it is likely that the majority of users are
making use of a fairly weak device encryption password, in
order to aid their entering of that password every time they
unlock the device.

VII. SECURITY IN CORE ANDROID?

The above weaknesses in Android have been considered
from the perspective of a user of an Android device which
ships with additional closed-source Google services pre-
installed. A natural reaction may be for concerned users to
consider using Android without such services being installed
on their device. From our research, we have found that the
Android check-in process is not included on devices which
solely run the open source components of Android (distributed
as the Android Open Source Project (AOSP) for developers to
compile themselves) [10]. There is also no Google login or
registration service present, and there is no Android Device
Manager present on such devices.

As such, a device running AOSP, without any Google
services, should not be vulnerable to such attacks. Nonetheless,
such devices are themselves not offered protection by way of
certificate pinning, since Android ships with an empty pinning
list, and requires Google services to update pinning data. As
such, while the core open-source components of the Android
operating system do themselves support the use of certificate
pinning, a user would receive no protection, as they would not
receive any certificate pins over the internet, to be used.

Google’s proprietary Chrome browser features its own cer-
tificate pinning mechanisms, which operate independently of
the system-based pinning, and as such offer users the same
certificate pinning features as users of its desktop browser.

During our research, we found that while the operating system
was accepting of our own certificates (which were injected
onto the system partition, such that they were treated as any
other legitimate CA certificate), the Chrome browser would
correctly detect and prevent use of any HTTPS services which
used certificate pinning. Users of the open source browser
present in AOSP are thus not offered the same level of
protection as those using the closed-source Chrome browser.

Since the operating system certificate handling is used by
the developer-ready webview control, third party applications
which implement their own web browsers or web views are
equally unprotected at present.

VIII. CONCLUSION

We have identified three main weaknesses within near-
universally distributed components of the Android platform,
which do not form part of the core open-source operat-
ing system. The first of these weaknesses pertains to the
currently-inoperative certificate pinning implementation, which
uses Google’s proprietary services framework to download
certificate pin lists over a plain HTTP connection, which is
vulnerable to replay or blocking attacks, to prevent users
from receiving updated certificate pinning data. The current
certificate pinning data does not offer any protection to users,
as enforcement of all certificate pins is currently disabled,
despite the Android 4.4 release notes stating users are protected
from connecting to forged Google servers via pinning.

The second weakness relates to the Google account regis-
tration process, presented to users upon running a new phone.
When registering a new account, the contents of the password
box (as well as their name and username) is sent to Google
over an HTTPS connection, in plaintext, every time a user
alters its contents, apparently for the purpose of verifying
password strength. We remain unsure as to why this is done
server-side, and highlight the risks that this poses for users who
re-use passwords, who may find they try several passwords
before selecting one that is suitably strong, as they would
have disclosed several of their passwords used elsewhere in
the process.

The final weakness pertains to the implementation of An-
droid’s device encryption, which makes it possible for someone
with knowledge of a Google account password (or an attacker
able to socially engineer or compel Google) to reset the device
encryption password, as well as the lockscreen password of
an Android device which runs the Android Device Manager
service (which is able to be remotely enabled using the Google
check-in process). This poses a risk to enterprise users of
devices, who may not be aware of such abilities being enabled
on devices by default by Google.

ACKNOWLEDGMENT

This work was funded by EPSRC Doctoral Training Grant
EP/K503174/1.

REFERENCES

[1] A. Cortesi. mitmproxy: a man-in-the-middle proxy. [Online]. Available:
http://mitmproxy.org

6

[2] (2011, September) Iranians hit in email hack attack. BBC News.
[Online]. Available: http://www.bbc.co.uk/news/technology-14802673

[3] N. Elenkov. (2012, December) Certificate pinning in android 4.2.
[Online]. Available: http://nelenkov.blogspot.co.uk/2012/12/certificate-
pinning-in-android-42.html

[4] L. Øverlier, “Data leakage from android smartphones,” Ph.D. disserta-
tion, Masters thesis, Norwegian Defence Research Establishment (FFI),
2012.

[5] M. Lee. (2013, December) Google catches french govt
spoofing its domain certificates. Google Inc. [Online].
Available: http://www.zdnet.com/google-catches-french-govt-spoofing-
its-domain-certificates-7000024062/

[6] (2013, April) UK adults taking online password security risks.
Ofcom. [Online]. Available: http://media.ofcom.org.uk/news/2013/uk-
adults-taking-online-password-security-risks/

[7] C. I. Jaramillo, G. Richard, S. Sperry, and W. Patterson, “An imple-
mentation of a zero-knowledge protocol for a secure network login
procedure,” in Southeastcon’89. Proceedings. Energy and Information

Technologies in the Southeast., IEEE. IEEE, 1989, pp. 197–201.

[8] (2012, April) Android issue tracker - different passwords for
encryption and screen lock. Google Inc. [Online]. Available:
https://code.google.com/p/android/issues/detail?id=29468

[9] M. Meeker and L. Wu, “Internet trends D11 conference,” 2013.

[10] (2013, September) Welcome to the Android open source project.
Google Inc. [Online]. Available: http://source.android.com/

