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ABSTRACT

In this paper a novel procedure for damage assessment is suggested which is based on

singular spectrum analysis (SSA). The main feature of the method is that it applies Prin-

cipal Component Analysis (PCA) to the lagged time series, obtained from the measured

structural vibration response. In this study the methodology is developed for the case of

a free decay response. The measured acceleration vectors are transformed into the fre-

quency domain and then used to define a trajectory matrix. The covariance matrix of

the trajectory matrix is decomposed into new variables, the Principal Components (PCs).

They define a new space of linearly correlated variables onto which the dynamics/motion

of the system can be projected. This decomposition is used to uncover oscillation patterns

among other purposes. The method is applied and demonstrated for the case of a simple

2-DoF system. To demonstrate its capabilities for damage diagnosis different levels of

stiffness reduction are introduced. The first two PCs are used to visually demonstrate the

abilities of the methodology. The Mahalanobis distance is used to develop a classifica-

tion system to detect and localize delamination in the 2-DoF system. The results clearly

demonstrate the capabilities of the system to clearly detect and localize damage.

KEYWORDS : Composite Materials, Delamination, Singular Spectrum Analysis,

Statistical Pattern Recognition, Damage assessment

INTRODUCTION

The growth in aerospace and other sectors of engineering placed composite materials at the forefront

of the contemporary research. Modern structures typically require the use of lightweight and strong

materials, which demand high level of performance combined with greater efficiency. Composites

are generally implemented in structures with tremendous engineering requirements and their nature

depends on the material composition. This presents one of the biggest advantages of composites,

they combine the advantageous properties of two or more materials. The design, the analysis and the

production of such materials require a high level of knowledge and expertise in different engineering

areas. However, composites also have some disadvantages, delamination. Damage and delamination

in composite structures affects adversely the system’s performance which makes Structural Health

Monitoring (SHM) a must for such materials and structures. The development of a proper structural

health monitoring system has a crucial importance for such structures because they are impossible to

repair and very difficult to monitor for defects.

Vibration-based Structural Health Monitoring (VSHM) is a methodology which extracts infor-

mation from the vibratory response of the structures. In this particular case it was used to give an

assessment about the presence, localization and severity of the damage in structures [1]. VSHM meth-

ods can be divided in two main groups: model based and non-model based ones. This paper develops

a new non-model based methodology for damaged assessment which uses the time-domain structural

vibration signals in order to model and/or analyse the structural dynamic behaviour and to derive con-

clusions about the structure’s health and integrity. Such methods draw their roots from the structural



non-linear dynamics and they utilise Takens theorem [2] according to which, any dynamic system can

be fully reconstructed in a space made of lagged components of its measured time series. Thus, if

one is able to measure a time dependent variable from a vibrating structure e.g its displacement or

acceleration, the lagged components of this time series can be used to make a new space in which its

behaviour can be analysed and ultimately reconstructed.

In practice most purely data-based methodologies make use of data analysis and utilise different

statistical methods and characteristics. One of those methods is Principal Component Analysis (PCA)

which is utilized for compressing and reducing the dimension of the data. PCA is used as an optimal

linear tool and it have been extensively utilised in structural dynamics for modal analysis [3], reduce-

order modelling [4], model updating of non-linear systems [5] and damage detection [6]. However

PCA assumes that original measured variables are uncorrelated whilst time series elements like accel-

eration or displacement in discrete time are generally correlated. That is why in this paper an extension

of PCA, known as Singular Spectrum Analysis (SSA) is studied [7], which is particularly developed

for non-independent data. SSA can be applied in time and frequency domain [8] where the data is

better organised. SSA can be applied for linear as well as for non-linear vibratory systems [2]. SSA

uses the same procedure as PCA methodologies which project the original data onto a new space with

smaller dimension. This new space is made of the lagged signal components. Differently from tradi-

tional spectrum analysis, SSA is able to uncover rotational periodicities at any frequency. Thus, in a

certain sense it can be applied for the purpose of modal analysis for non-linear vibrating structures [9].

By using a certain number of components, a reconstruction of the original signal can be obtained

with a very high accuracy. The original signal is projected onto the space created by reconstructed

components (RCs) by selecting the first several RCs with the highest variance. PCA can be also used

for classification purposes, thus when there are different categories in the measured data PCA is likely

to facilitate the distinction among these. In this study, SSA and the Mahalanobis distance is combined

to develop a classifier for the purposes of damage detection an localization in a 2-DoF system. The

combination of the two methodologies demonstrates the capabilities of the system to clearly detect

and localize damage.

1. SINGULAR SPECTRUM ANALYSIS FOR DAMAGE ASSESSMENT

In this section SSA is introduced with relation to structural dynamics and damage assessment. The

suggested methodology for damage assessment is derived and explained.

1.1 Methodology

The data collected was made up from the acceleration response measured on a simulated system.

Multiple realisations of the acceleration response were measured and gathered into a vector xi =
(xi

1,x
i
2, ...,x

i
j, ...,x

i
N)

′ where i= 1,2, ...,M is the number of realisations and j = 1,2, ...,N is the number

of components in each signal.

The acceleration response signal corresponding to each realisation was transformed into the fre-

quency domain. In this way the spectral data matrix Z = (z1,z2, ...,zi, ...,zM) was obtained.

The next step is to embed the vibratory responses which define the trajectory of the new space.

A W−dimensional space was created in which the frequency domain vectors were embedded [8].

In this way a vector zi was embedded into (and substituted by) the matrix showed bellow.
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where i = 1,2, ...,M, w = 1,2, ...,W and N′ = N
2

. All the matrices Ži were collected to make a

new matrix defined as Ž = (Ž1, Ž2, ..., Ži, ..., ŽM).
At the next step, the covariance matrix of the matrix Ž was obtained following the Equation

bellow.

CZ =
Ž′Ž

N′
(2)

The eigenvalues λk and the eigenvectors ρk of CZ were obtained according to the following ex-

pression.

CZρk = λkρk (3)

The eigenvalues λk were then ordered in the diagonal matrix ΛΛΛZ in decreasing order and the

matrix EZ contains their corresponding eigenvectors ρk written as columns. The EZ vectors are called

Empirical Orthogonal Functions (EOFs) and they contain the data as a decomposition into orthogonal

basis. The eigenvalues define the partial variance of each eigenvectors, therefore the total sum of all

of these variances gives the total variance of Ž.

E′
ZCZEZ =ΛΛΛZ (4)

The measured data Ž was projected onto the matrix EZ , which yields the corresponding Principal

Components (PCs) matrix A = ŽEZ .

A matrix which contains the projection of the PCs in to the new space was created to reconstruct

the signal. The Reconstructed Components (RCs) were obtained according to the Equation (5). For

a given set of indices K corresponding to a set of PCs, the RCs were obtained by projecting the

corresponding PCs onto the EOFs, as it is shown in the Equation 5.

Rk
m,n =

1

W

W

∑
w=1

Ak
n−wEk

m,w (5)

where k−eigenvectors give the kth RC at n−frequency between n = 1...N′ for each m−channel

(m = 1...M) which was embedded in a w−lagged vectors with the maximum W−length.



1.2 Projection. Clustering effect

The oscillatory responses of the system were decomposed using a certain number of RCs. Each one

contains a certain percentage of variance provided by the EOFs. The projection of the original data

onto the RCs can be modelled as a single point [10]. The points into the new space created by the

orthogonal basis (EOFs) gave the coordinates of the projection of the original data Z in the RCs. The

coordinates characterize the vibratory responses on a point. The information contained within these

projections was utilised as pattern recognition features for the classification purposes. The components

containing more of the variance of the initial signal have more information. Therefore, they contain

most of the information about the changes in the vibratory system. This projection was developed

following the Equation 6.

T = 〈Z,R〉 (6)

where Z is the original frequency signal matrix and the matrix R contains the reconstructed

components.

1.3 Mahalanobis distance

The Mahalanobis distance measures the relative distance from a data set of points, denoted as obser-

vation data, to a common points, denoted as reference data. The Mahalanobis distance considers the

correlation of the data set, therefore it can be perfectly used to multivariate data sets. In this partic-

ular study, the combination of the Mahalanobis distance and SSA methodology was developed. The

projection obtained in §1.2 were used as pattern recognition features for the classification purposes.

The use of the Mahalanobis distance offers the possibility to consider more components from the SSA

decomposition. It can increase the information needed for the correct classification.

The Mahalanobis distance is described by the following Equation 7.

DM(TR) =
√

(TO−µR)T S−1
R
(TO−µR) (7)

where DM(TR) is the Mahalanobis distance to the reference data set TR, TO is the observation

data, µR is the means of the TR and SR is the standard deviation of TR.

2. EXAMPLE APPLICATION: 2DOF NONLINEAR SPRING-MASS-DAMPER SYSTEM.

The evaluation of the methodology was applied in a 2-DoF system with a nonlinear spring connecting

two mass, the schematic system is shown in the Figure 1 and it is described by the Equation 8

Figure 1 : 2-DoF spring-mass damper with non-linear stiffness system

[M]ẍ+[C]ẋ+[K]x+ f(ẋ,x) = 0 (8)



where [M], [C], [K] are constant coefficients mass, damping and stiffness matrices respectively

defined by the Equation (9). The function f(ẋ,x) provides a quadratic coupling between masses and it

is defined by Equation (10).

[M] =

(

m1 0

0 m2

)

[C] =

(

c1 + c2 −c2

−c2 c2 + c3

)

[K] =

(

k1 + k2 −k2

−k2 k2 + k3

)

(9)

f(ẋ,x) =

{

−kn(x2 + x1)
2

kn(x2 + x1)
2

}

(10)

The value of the parameters corresponding to the initial conditions (without any stiffness reduc-

tion) are detailed in the Table 1. These values simulate the system as healthy. An initial velocity

in the m2 was applied to simulate an impulse. The system describe a free-decay response and the

acceleration was recorded by each instant of time.

Table 1 : Baseline values of the system. Parameters considered in the simulation as Healthy system

Parameter Value

x
(1)
0 = x

(2)
0 0 m

ẋ
(1)
0 0 m/s2

ẋ
(2)
0 1 m/s2

k1 = k2 = k3 2000 N/m

kn 10000 N/m

c1 = c2 = c3 6 Nm/s

m1 = m2 5 kg

The 2-DoF system was modified by different levels of stiffness reduction which affect in the

vibratory response of the whole system. The reduction of the stiffness was applied to kn by 10%,20%

and 30%. The acceleration was recorded at any instant of time for each reduction of kn. In this paper

is demonstrated the sensitivity of the methodology and the capability to detected small changes into a

dynamical system. The small changes induced by the reductions in k1 and k2 were easily detected, as it

is shown in [11]. However, the changes in the kn stiffness generated misclassification. This particular

paper analyse the effect of nonlinear quadratic stiffness kn on the vibratory response.

The acceleration was recorded from the free-decay response of the system by the integration

of the Equation (8). The resolution of the signal was obtained using N = 2048 sampled points at a

sampling interval of ∆t = 0.00125s.

Ten realizations were obtained for each system by adding random white Gaussian noise at 20dB

in: Without stiffness reduction (Healthy) , 10% reduction of kn, 20% reduction of kn and 30% reduction

of kn.

SSA was then applied in the ten signals of the Healthy system with a window size of W = 7. The

decomposition and their posterior reconstruction components were obtained to describe a new space

where the data, from the different reductions of kn, was projected following the methodology defined

in §1.2 and §1.3.

3. RESULTS

SSA was applied in the system defined in §2. following the methodology detailed in §1. The eigen-

decomposition of the original data based on the Healthy system is shown in the Figure 2. It is observed

that after the fourth component the variance becomes steady and the information contained into these



components, in terms of variance, does not provide further information, hence they can be ignored.

This judgement can be observed in the Figure 3(a) where the reconstructed signal was built by two

components, and in Figure 3(b) where the reconstructed signal was built by four components. The use

of more components increase the accuracy in the reconstruction of the signal.

Figure 2 : Variance decomposition diagram based on the Healthy system. The graph shows the variance of only

15 components of 80.
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(b) Reconstruction signal using four components

Figure 3 : Comparison between original and reconstructed signal for a Healthy system. The frequency scale has

been limited to 150 Hz for visualization issues. The original scale reaches until 400 Hz.

The projection of the original signal onto the reconstructed components is traduced in a point

onto the coordinates axes in the new space, as it is described in §1.2. A good cluster visualization was

obtained by using only the two first components which contain 67% of variance. It can be observed in

Figure 4.

The combination of SSA and the Mahalanobis distance demonstrates the improvement in the

classification results. The classification is shown in the Figures 5(a), 5(b), 5(c) where is clearly demon-

strated that by increasing the number of components, the classification is improved.
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Figure 4 : Clustering effect in the reduction of kn. Projection onto the two first Reconstructed components, RC1

and RC2.
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(a) Considering the projection onto two RCs
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(b) Considering the projection onto three RCs
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Figure 5 : Confusion matrix of the Mahalanobis distances to each system.



4. CONCLUSIONS

An analytical study consisting of the reduction of stiffness in a 2-DoF system has been conducted to

examine the effectiveness of SSA and Mahalanobis distance for damage detection and classification.

The idea of this study is to apply SSA algorithm to the raw acceleration response for a better data

compress analysis. The SSA algorithm was applied to reduce the dimension of the response of vibra-

tion and extract the only essential features. The data was then projected on the new space based on

the two first reconstructed components of the healthy system, which contain the majority of the vari-

ance. The clustering effect was strongly demonstrated between different categories. Furthermore, the

Mahalanobis distance was applied in the data-compressed obtained by SSA. The classification was

improved using more reconstructed components. To conclude, one can envision that the methodol-

ogy proposed can combine both the SSA data-compress algorithm and Mahalanobis distance towards

damage detection and classification. The methodology guarantees the detection of a small changes

in dynamical systems and it is proposed for detecting the non-linear changes in composite laminated

beams by the behaviour of delamination.
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