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1. Cathodoluminescence hyperspectral imaging 

The luminescence properties of semiconductor materials may be probed by various related 
spectroscopic techniques, which differ in the method by which excess carriers are introduced into 
the material. In electroluminescence and photoluminescence measurements (using direct current 
injection and optical excitation, respectively) far-field diffraction limits the spatial resolution. By 
contrast, the resolution of cathodoluminescence (CL) is limited only by the spatial distribution of 
excess carriers which are generated in the material under a beam of high energy electrons in a 
scanning electron microscope, allowing the nanometer-scale emission properties to be mapped. 

While wavelength-filtered imaging and point-wise spectroscopy are established CL tools, 
extension into the hyperspectral imaging (HSI) mode offers several advantages. By recording a 
spectrum at each pixel in an image scan it becomes possible to spatially map different spectral 
parameters such as peak energies and widths. It also becomes possible—via the application of 
multivariate statistical analysis techniques to the resultant data cube—to simplify analysis by 
automatically identifying the most statistically significant spectral components of the dataset [1]. 

2. Application to nitride nanostructures 

In this work, we demonstrate the use of hyperspectral CL in the evaluation of periodic arrays 
of GaN/InxGa1-xN core-shell nanorods. These were fabricated using a top-down approach, in 
which columns are formed from a GaN template using nano-imprint lithography and ICP 
etching, followed by MOCVD regrowth [2]. The formation of quantum wells (QWs) on the m-
plane sidewall facets offers a route to avoiding the detrimental electric fields associated with 
LEDs grown on the c-plane, while the use of periodic features has the potential to improve light 
extraction and directionality. Figure 1 shows such an array; a CL hyperspectral image was 
measured from this region and the area-averaged spectrum extracted from this dataset is plotted. 
 

 
Figure 1: Secondary electron image of GaN/InGaN core-shell nanorod array, and room temperature CL spectrum 

extracted from the hyperspectral dataset and averaged over all spatial pixels.  
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In order to confirm the formation and uniformity of the sidewall QW, we extract a number of 
images from the single CL dataset, shown in figure 2. The emission is dominated by a peak in the 
3.0–3.3 eV range associated with the QW exciton, and the intensity map is plotted by integrating 
the data over this range. Statistical measures of the variation in the QW peak energy and width 
are generated by evaluating the centroid and standard deviations of the signal over this same 
range, and show a high degree of uniformity, both within a facet and between different nanorods. 
 

0

50000

100000

150000

200000

in
te

g
ra

te
d

 in
te

n
s
ity

  (c
o
u

n
ts

) 3.10

3.11

3.12

3.13

3.14

3.15

c
e

n
tro

id
  (e

V
)

 

0.060

0.062

0.064

0.066

0.068

0.070

s
ta

n
d
a

rd
 d

e
v

ia
tio

n
  (e

V
)

 

0 2 4 6 8 10

distance  (µm)

0

10000

20000

30000

40000

in
te

g
ra

te
d
 in

te
n

s
ity

  (c
o

u
n

ts
)

 

0 2 4 6 8 10

distance  (µm)

0

5000

10000

15000

20000

in
te

g
ra

te
d
 in

te
n

s
ity

  (c
o

u
n

ts
)

 

0 2 4 6 8 10

distance  (µm)

0

500

1000

1500

2000

in
te

g
ra

te
d
 in

te
n

s
ity

  (c
o

u
n

ts
)

 
Figure 2: Maps extracted from a single 200×200×800 pixel CL hyperspectral image of the nanorod array, showing 

(top, left–right) integrated intensity, centroid energy and standard deviation of the 3.0–3.3 eV QW band, and 
(bottom, left–right) intensity of three additional peaks at 2.4–2.6 eV, 2.7–2.9 eV and 3.35–3.45 eV (GaN bandedge). 

 
Further exploiting the richness of this multidimensional dataset, figure 2 also shows the 

intensity of three additional bands: an InGaN-related peak at 2.4 2.6 eV emanating from the 
feature edges; 2.7–2.9 eV luminescence associated with a resonant optical mode within the 
structure (confirmed by the presence of fringes within the associated spectra, not shown); and 
GaN near-bandedge emission—also showing evidence of a cavity mode—at 3.35–3.45 eV. 

We will also describe the treatment of such datasets using other techniques. These include the 
deconvolution of overlapping emission bands using nonlinear least-squares fitting to multiple 
peak profiles, as well as spectral unmixing methods based on multivariate statistical approaches 
such as those based on principal component analysis. 
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