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Quantum tunneling constitutes one of the most fundamental processes in na-

ture, and is at the heart of many quantum phenomena. We observe resonantly-

enhanced long-range quantum tunneling in one-dimensional Mott-insulating

Hubbard chains that are suddenly quenched into a tilted configuration. Higher-

order tunneling processes over up to five lattice sites are observed as reso-

nances in the number of doubly occupied sites when the tilt per site is tuned to

integer fractions of the Mott gap. Second- and third-order tunneling is iden-

tified in the transient response after the tilt, from which we extract the char-

acteristic scaling in accordance with perturbation theory and numerical sim-

ulations. This forms a basis for the controlled study of many-body dynamics
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driven by higher-order tunneling, and demonstrates that when some degrees

of freedom are frozen out, phenomena that are driven by small-amplitude tun-

neling terms can still be observed, even when these amplitudes are lower than

the total temperature of the system.

Quantum tunneling is ubiquitous in physics and forms the basis for a multitude of funda-

mental effects (1) related to electronic transport, nuclear motion, light propagation, and super-

fluidity in lattice systems (2). While for weakly interacting particles tunneling at a rate J will

occur as an individual process for each particle, strong interactions change this situation com-

pletely, because the behaviour of each particle is then correlated with the behaviour of other

particles. Such correlated tunneling processes are believed to play an important role, for ex-

ample, in superconductivity of the celebrated cuprate systems (3–5). Second-order tunneling

has been observed in cold atom experiments as driven resonances (6) or directly as a dynamical

process for pairs of strongly interacting particles in arrays of double well potentials (7). That

process results in an effective nearest-neighbor super-exchange interaction (8, 9), which forms

the basis of important forms of quantum magnetism (10), and provides a starting point for the

formation of quantum many-body phases. Such tunneling processes have also recently been

observed for electrons in systems of quantum dots (11).

Higher-order processes involving correlated tunneling across multiple lattice sites can give

rise to longer-range effective interaction terms, and more complex many-body critical phenom-

ena (12). Parallels can been drawn between long-range tunneling processes in tilted lattices and

multi-photon electron-positron creation in strong electric fields, with connections to relativistic

phenomena such as the Sauter-Schwinger effect in tilted Mott insulators (13), and also to long-

distance electron transport in e.g. molecular systems (14, 15). However, while single-particle

tunneling loss via higher band resonances (16) has been demonstrated, it has been difficult

to observe coherent quantum dynamics due to higher-order tunneling processes, because the
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amplitude driving these terms is much smaller than the energy scale of temperatures for cold

atoms.

Here, we directly observe dynamics in a quantum many-body system dominated by second-

and third-order tunneling and identify resonant fourth- and fifth-order tunneling processes. We

study long-range many-body tunneling processes that we resonantly enhance in tilted one-

dimensional (1D) Mott-insulating “Ising” chains of bosons (17–21). Specifically, we perform

a quantum quench to a highly non-equilibrium situation by rapidly tilting a one-atom Mott in-

sulator to an integer fraction U/n of the Mott gap U . We record the probability for atom-pair

formation as a function of time after the quench and find that the rate for pair formation is set

by αn × Jn/(U/n)n−1 for n = 2 and 3 with αn ≈ 36 in accordance with the expected scal-

ing ∝ Jn/Un−1 from perturbation theory. As we discuss in the supplementary material (22),

the quench onto a critical point in the many-body system results in many-body dephasing of

oscillations in the atom-pair number, corresponding to a characteristic growth in many-body

entanglement (23–25) in our numerical simulations.

Our experiment is based on an array of 1D chains of atoms in an optical lattice near zero

temperature (20). We model the system by a single-band Bose-Hubbard (BH) Hamiltonian

(22, 26). For U ≫ J the many-body ground state is a Mott insulator with unit occupation at

commensurate filling (Fig.1 A). This phase is characterized by exponentially localized atoms

and highly suppressed tunneling. In addition, we superimpose a linear gradient potential, which

introduces a site-to-site constant energy shift E. Tilting the initial Mott state quickly to E ≈

U/n initiates resonant tunneling to the n−th neighbor for all sites simultaneously (lower part of

Fig.1 A). For n = 1 one couples to nearest-neighbor dipole states and observes strong coherent

oscillations in the number of doubly occupied sites (doublons) with a characteristic frequency

4J (20). For n > 1 resonant tunnel coupling occurs across n − 1 intermediate lattice sites.

The process involves up to n other particles, giving rise to occupation-dependent n-th-order
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tunneling. Since all particles participate in a tunnel process across n sites, one expects the

build-up of massive correlations in the interacting many-body system.

We prepare an ensemble of 1D Mott insulators (20) starting from a 3D Bose-Einstein con-

densate (BEC) of typically 8.5 × 104 Cs atoms without detectable uncondensed fraction. The

BEC is levitated against gravity by a magnetic field gradient of |∇B| ≈ 31.1G/cm and ini-

tially held in a crossed optical dipole trap (20, 27). We load the sample adiabatically into a

cubic 3D optical lattice generated by laser beams at a wavelength of λl = 1064.5 nm, thereby

creating a singly-occupied 3D Mott insulator for a lattice depth of Vq = 20ER (28) in each

direction (q = x, y, z) with less than 4% residual double occupancy. Here, ER = h̄2k2
l /(2m)

is the photon-recoil energy, with kl = 2π/λl and m the mass of the Cs atom. The optical

lattice results in a residual harmonic confinement of νz = 11.9(2)Hz in the z-direction of grav-

ity. A broad Feshbach resonance allows us to set the atomic scattering length as and thus U

independently of J by means of an offset magnetic field B (20).

Tunneling resonances are observed by quickly tilting the lattice in the z-direction through a

reduction of |∇B| and then lowering Vz to 10ER within 1ms, giving J ≈ 25 Hz (26, 28). All

dynamics is now restricted along 1D Mott chains with an average length of 40 sites (20). The

chains, in total ≈ 2000, are decoupled from each other on the relevant experimental timescales.

We let the systems evolve for a hold time th of up to 200ms in the tilted configuration and

then quickly ramp back Vz to its original value and remove the tilt. The ensemble is char-

acterized by measuring the number of doubly occupied sites Nd through Feshbach molecule

formation with an overall efficiency of 80(3)% (20). Alternatively, we detect the emergence

of momentum-space coherence in time-of-flight (TOF) by quickly turning off all trapping po-

tentials and allowing for 20ms of free levitated expansion at as = 0 (27) before taking an

absorption image.

The experimental result for a specific choice of U = 1077(20)Hz is shown in Fig. 1 B.
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For a hold time of th = 200ms the transient response as discussed below has settled to a

steady-state value. Besides a broad resonance at E = 1095(2)Hz with FWHM = 172(9)Hz,

two narrower resonances at E = 532(1) and 351(1)Hz with FWHM = 44(2) and 27(2)Hz

can be seen. While the broad resonance is the result of resonant tunnel coupling to nearest-

neighbor dipole states at E1 = U (20), the positions of the narrower resonances are consistent

with E2 = U/2 and E3 = U/3 and we hence interpret them to emerge from tunnel processes

extending over a distance of two and three lattice sites, respectively. The reduced widths reflect

the smaller amplitude of the higher-order tunnel processes. We believe that the resonances are

slightly broadened inhomogeneously by the external harmonic confinement. The assignment

of the resonance features to tunneling processes over multiple lattice sites is supported by TOF

images (insets to Fig. 1 B) taken for each resonance En in the course of the transient response.

The images clearly exhibit matter-wave interference patterns, indicating delocalization of the

atoms during the tunnel processes. The integrated line densities are presented in Figs. 1 (C)-

(E). The periodicity of the sinusoidal density modulation, determined to 2h̄kl/n, is in agreement

with spatial coherence of the atomic wave function over a distance of n sites.

We now investigate the transient dynamics following the quantum quench. Fig. 2 A and C

(B and D) show the on-resonance response of Nd and the fringe visibility V in the TOF images

for E1 (E2). The quench to E1 results in large amplitude oscillations for Nd, which decay on a

timescale of a few tens of ms. The dynamics for E2 are highly overdamped and fit to a saturated

growth function of the form ∝ (1 − e−th/τ ) with a characteristic rate 1/τ . Interestingly, on

both resonances Nd relaxes to the same stationary value. The oscillations for E1 at frequency

4J have been topic of our study in Ref. (20). The measured decay rates for the oscillatory

response in Nd are consistent with the width of the resonance in Fig. 1 B. Calculations show

that the decay is due to many-body dephasing, which plays an increased role for larger chain

lengths (20). The oscillatory response at E1 is clearly reflected in the dynamics for V , as each
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local minimum coincides with an extremum for Nd. For E2 a simple three-site BH model

predicts oscillations at frequency ν2 = 4(2
√
2 +

√
2)J2/U (22). In the experiment we find

a single maximum for V before it decays. The dephasing here results from more complicated

dynamics in BH chains longer than three sites. In that case multiple atoms can tunnel, and inter-

particle interactions give rise both to constraints on which atoms can tunnel simultaneously and

to modifications of the tunneling amplitude (22). This results in processes with many competing

frequency components, dephasing the oscillations in the doublon number. While the dephasing

can be enhanced by inhomogeneities, e.g., due to the harmonic confinement, such contributions

are small relative to the intrinsic dephasing in longer chains (22).

We now focus on the scaling of the resonant doublon growth rate 1/τ with J and U for the

resonance E2. Example data sets, shown in Fig. 3 A, clearly demonstrate that 1/τ depends not

only on Vz alone, but also on U when Vz and thereby J is kept constant. In Fig. 3 B we plot the

same data with the time axis rescaled by the energy scale J2/(U/2) for a second-order tunneling

process. Remarkably, the data collapses onto a single curve, demonstrating that indeed second-

order tunneling dominates the transient dynamics following the quench. The experimental data

is supported by numerical simulations for 10-30 site BH chains (22). The numerical data shows

the same rise characteristics and reveals the same scaling collapse, see Fig. 3 C. Next, we

extract values for 1/τ from measurements taken at different combinations of Vz and U and

plot them in Fig. 3 D as a function of J2/(U/2). Our data reveals a linear dependence with

a surprisingly large prefactor α2 = 38(2), which we analyze in two ways. First, we compare

to the frequency of coherent doublon oscillations in the simple three-site model. The role of

many-body dephasing faster than a full second-order tunneling cycle is estimated by assuming

τ as a quarter of the full tunneling period. The value 1/τ ≈ 4× ν2 is indicated by the solid line

in Fig. 3 D. Second, we extract a characteristic growth rate from the numerical data, indicated

by the dashed regions in Figs. 3 (C) and (D), revealing very good quantitative agreement with
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the experiment.

Along the same lines we investigate the dynamical scaling of the resonant response at the

resonance E3 = U/3. The dynamics that we observe for different combinations of J and U

(Fig. 3 E) is qualitatively very similar to the one at E2. The doublon number Nd settles to a

steady-state value over a characteristic time τ . In view of a third-order tunneling process we

rescale the time axis by J3/(U/3)2 (Fig. 3 F). Again we find a striking collapse of the data.

The result of our numerics is shown in Fig. 3 G. Also the numerical data collapses onto a single

curve. Residual oscillations after the initial growth period relate to the finite system size and

the lack of averaging over positions in the trap (22). In Fig. 3 H we plot 1/τ as a function of

J3/(U/3)2. Again the data collapses onto a single line. From the linear fit we obtain a slope of

α3 = 34(2). This is in good agreement with a characteristic growth rate determined from the

numerical data, which we indicate by the dashed region as before. We note that the signature of

the third-order process is not spoiled by the presence of second-order energy shifts (22).

Our data raises the question to what extent one can reverse the many-body dephasing dy-

namics. In Fig. 4 A we show the result of a many-body echo experiment for which we switch

the sign of U and E at the E2 = U/2 resonance in the course of the transient response. A clear,

although only partial reversal in the time evolution for Nd can be seen before Nd raises to the

same steady-state value as before. It would be interesting to test whether the revival could be

improved by also a switching the sign of J . Naively, the second-order process scaling with J2

should not depend on the sign of J . Switching J by means of modulation techniques (30) shall

allow a detailed benchmarking of many-body damping versus the presence of mere inhomoge-

neous broadening in our system.

Finally, in Fig. 4 B we show resonances corresponding to many-body tunneling across four

and five lattice sites. For this data the lattice depth was reduced to Vz = 7ER to speed up

the processes while still assuring that the systems are initially in the Mott-insulating regime.
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With decreasing Vz the resonances at U/2 and U/3 slightly broaden, which we attribute to the

increase of the second- and third-order tunneling rate. The new resonances at U/4 and U/5 are

clearly detectable. We note that these fourth and fifth order tunneling processes greatly benefit

from substantial Bose enhancement (22) and speculate that even higher-order processes should

become accessible when one eliminates residual parabolic energy shifts due to the trapping laser

beams.

Our results underline the utility of cold atoms in optical lattices for the investigation of

fundamental physical processes driven by small-amplitude terms and specifically higher-order

tunneling. By partly freezing the motion in the deep lattice, these sensitive processes can be

observed here despite finite initial temperatures (which lead to defects and missing atoms). This

will motivate further investigation of quantum phases and critical properties near these higher-

order resonances, which are presently unknown, including systems with tilts along multiple

axes (19, 31). Our initial studies of parameter reversals also open the door to the study of

many-body dephasing and echo-type experiments on a quantum many-body system, as well as

investigations into the nature of the many-body dephasing and (apparent) thermalization (32).

Parallels can be drawn with arrays of quantum dots, opening further possibilities to model

electron tunneling over multiple sites (11) by using fermionic atoms.
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Fig. 1. Tunneling resonances in a tilted 1D Mott insulator. (A) Schematic view of the

long-range correlations across n sites for a tilt of E = U/n after the quench from the initial 1D

one-atom Mott insulator (top) to the tilted configuration (bottom). Here, n = 3 for illustration

purposes. (B) Number of doublons Nd as a function of E for th = 200ms after the quench.

Here Vz = 10ER and as = 252(5) a0, giving U = 1.077(20) kHz for Vx,y = 20ER. The solid

lines are Lorentzian (for E = U ) and Gaussian (for E = U/2 and E = U/3) fits to the data to

determine the center positions and widths. The insets show matter-wave interference patterns

obtained in TOF at E1 = U , E2 = U/2, and E3 = U/3 taken after th = 1ms, 9ms, and 28ms,

respectively. (C)-(E) Integrated line densities of the TOF images shown in the insets in (B). The

solid lines are fits according to double slit interference patterns with Gaussian envelopes (29).

Error bars in this and all other figures reflect the one-sigma standard deviation.
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Fig. 2. Comparison of the tunneling dynamics to nearest and second-nearest neigh-

bors. Double occupancy Nd, (A) and (B), and fringe visibility V in the TOF images, (C) and

(D), as a function of hold time th after the quench. Coherent oscillations in Nd at E1 = U in (A)

are contrasted to overdamped dynamics at E2 = U/2 (B) for Vz = 10ER and as = 253(5) a0.

The evolution of Nd is fitted by an exponentially damped sinusoid and a saturated growth, re-

spectively. The solid lines in (C) and (D) are fits to guide the eye based on the modulus of an

algebraically decaying sinusoid.
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Fig. 3. Second- and third-order tunneling dynamics. Dependence of Nd on J and U at

E2 = U/2, (A)-(D), and E3 = U/3, (E)-(H). (A) Double occupancy at E2 for (Vz/ER, as/a0)

= (10, 253(5)) (squares), (12, 253(5)) (triangles), and (10, 400(5)) (circles). (E) Double occu-

pancy at E3 for (Vz/ER, as/a0) = (7, 253(5)) (squares), (9, 253(5)) (triangles), and (9, 175(5))

(circles). The solid lines are fits to the data with saturated growth functions. (B), (F) Collapse of

the data shown in (A) and (E) for rescaled time axes. (C), (G) Result of a numerical simulation

of the resonant response at E2 and E3, respectively. (D), (H) Growth rates 1/τ for E2 and E3,

respectively. In (D) the data for Vz = (8, 9, 10, 12, 14)ER with fixed as = 253 a0 (squares)

and as = (175, 253, 325, 400) a0 with fixed Vz = 10ER (circles) is plotted as a function of

J2/(U/2). The solid line gives the prediction from a three-site BH model (see text). In (H) the

data for Vz = (7, 8, 9, 10)ER with as = 253 a0 (squares) and for as = 175 a0 at Vz = 9ER

and as = 300 a0 at Vz = 7ER (circles) is plotted as a function of J3/(U/3)2. The dashed line

is a linear fit to the experimental data. The shaded areas in (C), (D), (G), and (H) indicate the

spread in the growth rate extracted from the numerical data with fixed steady-state values from

the experiment (22).
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Fig. 4. Many-body echo and higher-order tunneling resonances. (A) Double occupancy

Nd as a function of hold time th at E = U/2 for Vz = 8ER and as = −250(5)a0, giving

U = −994(20)Hz (squares). Partial time reversal of the many-body dynamics (circles) after

switching as to +250(5)a0 and simultaneously reversing E to −E at th = 6ms within 1ms

(grey bar). For the echo data (circles) a typical error bar is given for a data point at th = 16

ms. (B) Nd as a function of E after th = 200ms at Vz = 7ER with U = 959(20)Hz, for

as = 252(5) a0. The arrows indicate the expected positions of the tunneling resonances at

En = U/n. An additional resonance at 2U/3 appears. The inset gives a fine scan of the U/4

and U/5 resonances. The solid line is a fit based on the sum of multiple Gaussians to guide the

eye.
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