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Abstract. In certain plasmas, non-thermal electron distributions can produce instabilities. 

These instabilities may be useful or potentially disruptive. Therefore the study of these 

instabilities is of importance in a variety of fields including fusion science and astrophysics. 

Following on from previous work conducted at the University of Strathclyde on the cyclotron 

resonance maser instability that was relevant to astrophysical radiowave generation, further 

instabilities are being investigated. Particular instabilities of interest are the anomalous Doppler 

instability which can occur in magnetic confinement fusion plasmas and the two-stream 

instability that is of importance in fast-ignition inertial confinement fusion. To this end, 

computational simulations have been undertaken to investigate the behaviour of both the 

anomalous Doppler and two-stream instabilities with the goal of designing an experiment to 

observe these behaviours in a laboratory. 

1.  Introduction 

Previous work at the University of Strathclyde has focused on the investigation of auroral kilometric 

radiation, which utilises the cyclotron resonance maser instability[1-4]. This instability involves the 

transverse bunching of electrons orbiting in an imposed magnetic field which in turn results in the 

donation of energy to a growing wave within the system. An experiment has been constructed to 

investigate instabilities driven by particles accelerated along magnetic field lines[5-9]. Following on 

from this experiment, modifications to the system can be made to study other types of instability. Of 

primary interest are the anomalous Doppler instability and the two-stream instability, both of 

relevance to fusion science. 

The anomalous Doppler instability can occur in magnetic confinement fusion plasmas. When a 

plasma has been subject to radio frequency heating, such as in a Tokamak, it is possible to develop a 

large population of electrons which propagate along an applied magnetic field with a high kinetic 

energy. These non-thermal electrons can surrender their excess energy by collisions with other 

particles in the plasma, or by coupling to an electromagnetic wave whose energy may then be 

dissipated in the bulk plasma. One wave coupling regime which may arise between streams of 

electrons and transverse slow EM waves in the plasma is the anomalous Doppler effect[10-14]. Here 
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electrons interact with the field components of the wave resulting in an increase of gyrational energy 

but with a greater loss of translational energy, amplifying the field of the slow wave. 

The two-stream instability occurs when two or more charged particle streams flow through one 

another, resulting in a growing longitudinal wave[15]. This is of importance to fast-ignition inertial 

confinement fusion where a high power laser pulse is used to accelerate electrons into a compressed 

deuterium-tritium fuel pellet. As the electrons stream through the fuel pellet, collisions between the 

particles heat the fuel to induce fusion. However, to improve the efficiency of the process the two-

stream instability may be coupled to an ion-acoustic wave that may also heat the fuel[16]. 

The investigation of the dynamics of both these processes shall be conducted initially by 

computational simulations followed by controlled laboratory experiments. 

2.  Physical Principles 

2.1.  Anomalous Doppler 

The electron beam initially has nearly all of its momentum along the axis of the waveguide with little 

transverse momentum. Electrons then experience a force due to a wave travelling in phase 

synchronism. This force results in acceleration of the electrons in the radial direction where they do 

work on the wave's E field. Providing the beam drift velocity exceeds the wave velocity, the pumping 

of the translational to rotational energy (by the ⊥× Bv z  force) exceeds the dissipation of rotational 

energy by the E field. These requirements may be satisfied by a Doppler upshifted negative cyclotron 

harmonic of an electron beam drifting in a fixed magnetic field in the presence of a medium which 

decreases the wave phase velocity, as illustrated in figure 1. This is known as the anomalous Doppler 

resonance, where electrons are retarded along the axis of propagation, with energy conserved by the 

growth of the rotational and wave energy, figure 2. Energy extraction in this way can be efficient as no 

bunching is required before beam energy is extracted. 

 

 

 

Figure 1. Dispersion showing negative beam 

harmonic intercepting with a wave in a 

dielectric loaded waveguide and an unloaded 

waveguide cutoff  

 
Figure 2. Relaxation of electron energy by 

anomalous Doppler resonance 
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2.2.  Two-stream 

The two-stream instability occurs when there is an interpenetration of two beams, for example an 

electron beam flowing through an ion beam, or another electron beam. The cause of this instability can 

be thought of as originating from a point source disturbance within a two-beam plasma. If a density 

fluctuation arises from this disturbance in one stream of particles, then the electric field will initiate a 

plasma oscillation at that location. However, these fields can modulate the electron densities of the 

second stream and the drift of these density modulations through each other can result in energy 

exchange. This leads to growth of the energy associated with the electric fields feeding from the 

energy of the initial particle streams. Using a linear theory, the dispersion relation for this mechanism 

for two co-propagating beams is shown in figure 3. 

 

Figure 3. Dispersion relation of the two-stream instability for two co-propagating beams showing (a) 

the real components (spatial wave-vector) (b) the imaginary components (temporal growth rate) 

3.  Numerical simulations 

3.1.  Anomalous Doppler instability simulations 

These preliminary simulations (figure 4) make use of a slow wave structure formed of a dielectric 

loaded waveguide with a small central aperture that allows the passage of an electron beam in place of 

a full plasma calculation.  This configuration allows the negative cyclotron harmonic of an electron 

beam to interact with the TE11 mode in the waveguide, producing a condition where the anomalous 

Doppler resonance can occur providing vz>vph. In this simulation, the electron beam with energy 

100kV is drifting in a B-field of 0.12T in anomalous Doppler resonance with the TE11 mode at 

4.6GHz. 

Simulations are being conducted with the 3D FDTD Particle-in-Cell code MAGIC.  Electrons are 

confined by a magnetic field to pass through the centre of a waveguide lined with dielectric.  In the 

region of the dielectric the electron beam is in phase synchronism with the TE11 mode (as in figure 1).  

Energy is transferred from the beam to the wave in the interaction region where the magnetic field is 

uniform and then where the magnetic field decreases the beam is dumped on the waveguide sidewall. 
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Figure 4. Geometrical illustration of MAGIC simulation showing electrons drifting through a 

dielectric-lined waveguide 

3.2.  Two-stream instability simulations 

To compare with linear theory, the 2D FDTD Particle-in-Cell code OOPIC Pro was used to create a 

simple simulation of two co-propagating electron beams at differing velocities. This simplified 

simulation was undertaken to analyse the features of the two-stream instability without the 

complication of a background plasma. The beams are of identical radii with one propagating at a 

velocity of 0.4c and the other at 0.32c. Neither beam has any initial thermal velocity. The beams are 

contained in a waveguide of circular cross section with a radius of 32mm and are allowed to propagate 

over a distance of 1.02m. Both beams have the same current of 12A. In order to keep the beams 

superimposed on each other, a confining magnetic field of 0.1T has been used. From linear theory 

both the spatial growth length and temporal growth length match the observed behaviour. Further 

simulations in which one of the beams is replaced with a background plasma are being undertaken. 

This demonstrates that the presence of a confining B-field does not inhibit the two-stream instability 

making an experiment to observe this instability easier to design. Therefore it is possible to utilise a 

Penning trap type of plasma column[17]. 

 

 

Figure 5. z-momentum of two co-propagating electron beams at 0.4c and 0.32c 
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4.  Summary 

Initial calculations for the anomalous Doppler resonance have revealed a rich spectrum of 

behaviour, including the observation of a radiation signal at the correct frequency for the anomalous 

Doppler resonance. 

The data gathered from the simplified 2D simulation of the two-steam instability for two co-

propagating beams will allow for greater understanding of future simulations of the beam-plasma type 

two-stream instability. 

Following from the results of these and ongoing simulations, an experimental setup to investigate 

both types of instability is being developed. 
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