
Strathprints Institutional Repository

Wen, Zikai and Dong, Changyu (2014) Efficient protocols for private

record linkage. In: Proceedings of 29th ACM Symposium on Applied

Computing. ACM, New York, pp. 1688-1694. ISBN 9781450324694 ,

http://dx.doi.org/10.1145/2554850.2555001

This version is available at http://strathprints.strath.ac.uk/49094/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/29179921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

Efficient Protocols for Private Record Linkage

Zikai Wen*†

wjb12186@uni.strath.ac.uk
Changyu Dong*

changyu.dong@strath.ac.uk
† College of Information Science and Technology * Dept. of Computer and Information Sciences

Beijing University of Chemical Technology University of Strathclyde
Beijing, China Glasgow, UK

ABSTRACT

Record linkage allows data from different sources to be integrated
to facilitate data mining tasks. However, in many cases, records
have to be linked by personally identifiable information. To prevent
privacy breaches, ideally records should be linked in a private way
such that no information other than the matching result is leaked in
the process. In this paper, we present an exact Private Record Link-
age (PRL) protocol and an approximate PRL protocol. The exact
PRL protocol is based on Oblivious Bloom Intersection, which is
an efficient private set intersection protocol. The approximate PRL
protocol extends the exact PRL protocol by incorporating Locality
Sensitive Hash functions. Both protocols are secure in the semi-
honest model. We also report the evaluation results based on our C
implementation of the protocols. The results show that our proto-
cols are efficient and effective.

1. INTRODUCTION
Data is invaluable to organizations. Everyday, a large amount of

data is generated, collected and stored. By analyzing the data, new
knowledge can be discovered that will lead to improvement in pub-
lic health, productivity for government agencies, and competitive
edge for a commercial enterprise. However, often data is possessed
by different entities separately, therefore needs to be integrated to
facilitate data mining that is not feasible on a single database. To
link two databases, record pairs are compared using a variety of
fields and record comparison functions. The goal is to classify the
record pairs into matches and non-matches.

Linking data may cause privacy concerns. When linking two
databases from different sources, the data usually lacks unique en-
tity identifiers. That means linking is often based on some person-

ally identifiable information. Sharing personal information across
multiple entities may cause a breach of privacy. Legally, it may also
be prohibited by laws and regulations. For example, in the USA the
Health Insurance Portability and Accountability Act (HIPPA) sets
the standard for protecting health data, e.g. what kind of match-
ing and analysis can be conducted with health data, and at what
level of detail health data can be published. Similarly, in Europe,
Data Protection Directive regulates the processing of personal data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03
http://dx.doi.org/10.1145/2554850.2555001 ...$15.00.

Thus it is vital to ensure that whenever databases are linked across
organizations, privacy of individuals is maintained.

Private Record Linkage (PRL) is the process of identifying records
from multiple data sources that refer to the same individual, with-
out revealing more information besides the matched records. More
formally, assuming A and B are the data owners and each holds
a database DA, DB respectively, for each record RA

i ∈ DA and
RB

j ∈ DB , they want to decide whether RA
i
∼= RB

j where ∼= is the
match relation defined by certain record comparison functions. In
the process data privacy must be retained in the sense that no more
information other than the linking result (RA

i
∼= RB

j or RA
i 6∼= RB

j)
should be leaked. PRL has many practical uses. For example, epi-
demiological research often requires correlated demographics data
with diseases to identify possible risk factors or targets for preven-
tive medicine. However in many countries the data is held sep-
arately by different registries, and often privacy concerns arise if
such data is stored and linked at a central location. As a result, in
the past a few years we have seen a lot of research work in this area.

There are three requirements for a PRL protocol:

• Privacy: As one of the goals of PRL is to maintain privacy, it
must not allow additional information to be leaked from the
linking process. The privacy guarantee must stand rigorous
analysis.

• Effective: In case of exact match, the identified matches must
be correct. In case of non-exact match, the quality of the
identified matches must conform certain evaluation criteria.

• Efficient: The database being linked can be very large, there-
fore the protocol needs to be efficient so the linking can be
done in a reasonable amount of time.

Our Contributions: In this paper, we present two novel and effi-
cient PRL protocols. They are based on Oblivious Bloom Intersec-
tion, an efficient and scalable Private Set Intersection protocol. The
first protocol supports exact match. The second protocol is built on
top of the exact match protocol and supports similarity-based ap-
proximate match by incorporating Locality Sensitive Hashing. The
protocols are secure in the semi-honest model. The protocols are
very efficient and have linear complexity. We have built prototypes
of the PRL protocols and evaluated the protocols in terms of effi-
ciency and accuracy. We also compared our protocols with other
protocols and the comparison shows that our protocols are much
more efficient.

2. RELATED WORK
Work in PRL can be classified into two categories, exact PRL

which only matches records when the matching attributes are ex-
actly identical, and approximate PRL which matches two records
if they are very similar. Early work in exact PRL can be traced

back to [8]. The protocol hashes the records and uses the hash
values instead of the records for linking two databases. The proto-
col however is subject to frequency attacks because hash functions
are deterministic. Later exact PRL work includes various protocols
that rely on private set intersection [1, 9, 14, 11, 6, 12].

Approximate PRL usually depends on some sort of similarity
measures. If, according to the chosen similarity measure, the dis-
tance between two record values is less than a certain threshold,
then the two records are considered a match. Many approximate
PRL protocol are three-party protocols, i.e. apart from the two
parties who hold the data, there is also a trusted or semi-trusted
party involved in the protocol. In [5] the two parties hash their at-
tribute values to be compared, then the hash values are sent to a
third party who compares the values blindly and finds values in the
two sets that match. In [19] the two parties embed their values us-
ing the SparseMap method. Then the embedded strings are sent to
a third party who determines the similarity. A third party can make
protocol more efficient. However, in practice a trusted or semi-
trusted third party may not always be available. In a strict two-
party setting, [2] links records by securely computing edit distance
of strings, [18] securely computes TF-IDF (term-frequency, inverse
document frequency), [22] uses phonetic functions and commuta-
tive encryption to link records, and [24] proposed a very efficient
protocol that first converts records into vectors and then securely
computes the distance between each pair of the records. A good
survey of PRL protocols can be found in [23].

Our protocol uses Bloom filters. Previously, a protocol in [20] is
also based on Bloom filters. However, our approach is quite differ-
ent from that in [20]. Firstly, in [20] , each record needs a Bloom
filter to store q-grams of the attribute values to be compared, while
in our protocol, only one Bloom filter is required for the whole
database. Secondly, in [20], a semi-trusted third party is needed,
while in our protocol we do not need a third party. The protocol
in [20] has also been shown to be insecure [15]. Our protocol is
secure in the semi-honest model.

3. THE EXACT PRL PROTOCOL
In this section, we introduce the exact PRL protocol. Here ex-

act means the match relation is defined by an equality relation on
the attribute values being compared. The protocol follows the pri-
vate set intersection approach and is an extension of the Oblivious
Bloom Intersection (OBI) protocol [7].

3.1 Oblivious Bloom Intersection
Oblivious Bloom Intersection (OBI) [7] is an efficient and scal-

able private set intersection protocol. A private set intersection pro-
tocol is a protocol between two parties, A and B. Each party has
a private set as input. The goal of the protocol is that A learns the
intersection of the two input sets, but nothing more about B’s set,
and B learns nothing. A PRL protocol can be built on top of a pri-
vate set intersection protocol directly. However, previous private
set intersection protocols are not efficient enough to be used in real
applications. This situation is changed by the recently proposed
OBI protocol. The OBI protocol adapts a very different approach
for computing set intersections. It is mainly based on efficient hash
operations. Therefore it is significantly faster than previous private
set intersection protocols. In addition, the protocol can also be par-
allelized easily, which means performance can be further improved
by parallelization. The protocol is secure in the semi-honest model
and an enhanced version is secure in the malicious model. We refer
the readers to [7] for more details regarding OBI. In the rest of this
section we will show how to modify OBI and build an exact PRL
protocol on top of it.

3.2 Bloom Filters and Garbled Bloom Filters
The OBI protocol relies on Bloom filters (BF) and garbled Bloom

filters (GBF). Both BF and GBF are probabilistic data structures
that encode set membership and allow queries without false nega-
tive but may have negligible false positive. The two data structures
are both size m arrays that can encode a set S of at most n ele-
ments, and are associated with a set of k independent uniform hash
functions H = {h0, ..., hk−1} such that each hi maps elements to
index numbers over the range [0, m−1] uniformly. The main differ-
ence between the two is that a Bloom filter is a bit array while a gar-
bled Bloom filter is an array of λ-bit strings. We will use the nota-
tion in [7]: we use (m,n, k,H)-Bloom filter to denote a Bloom fil-
ter parameterized by (m,n, k,H), (m,n, k,H,λ)-Garbled Bloom
filter to denote a garbled Bloom filter parameterized by (m,n, k,H, λ),
use BFS or GBFS to denote a Bloom filter or a garbled Bloom fil-
ter that encodes the set S, and use BFS[i] or GBFS [i] to denote
the bit or string at index i in the filter’s array.

The two data structures work in a similar way. For a Bloom filter,
to insert an element x ∈ S into the filter, the element is hashed
using the k hash functions and set BFS [hi(x)] = 1. To check if an
item y is in S, y is hashed by the k hash functions, and all locations
y hashes to are checked. If any of the bits at the locations is 0 , y is
not in S, otherwise y is probably in S. For a garbled Bloom filter, to
insert an element x ∈ S into the filter, x is split into k shares using
an XOR-based secret sharing scheme. The secret sharing scheme
ensures that the element can only be recovered from the shares if
all k shares are available. The element x is hashed using the k

hash functions to get k indexes and the shares of x are stored in the
GBF array by the indexes, one share at each index. To check if an
item y is in S, y is hashed by the k hash functions, and all strings at
locations y hashes to are retrieved back and XORed together. if the
result string is not y , y is not in S, otherwise y is probably in S.

3.3 Modified Garbled Bloom Filter
The idea of the OBI protocol is that A encodes its set into a

Bloom filter and B encodes its set into a garbled Bloom filter, then
they run an oblivious transfer protocol so that A receives a new
garbled Bloom filter that encodes the set intersection and B gets
nothing. The reason why A uses a Bloom filter and B uses a gar-
bled Bloom filter is because if both parties uses Bloom filters then
the protocol is not secure, while if both parties uses garbled Bloom
filters then the protocol cannot produce meaning results.

However this approach cannot be directly used in PRL. The orig-
inal algorithm in [7] for building garbled Bloom filters is not suit-
able and needs to be modified. Loosely speaking, the original al-
gorithm allows A to find a subset of its records that can be linked
to records in B’s database, but A cannot find out for each of the
records in the subset, which record in B’s database is linked to it.
Let us elaborate it: for a database that has n records, we assume
each record Ri has a unique identifier idi and there is a function f

such that xi = f(Ri) is computable and xi can be used for record
matching purpose. For example, xi can be the concatenation of
some attribute values of Ri, or a hash value of Ri (or part of Ri).
We say a record RA

i ∈ DA matches another record RB
j ∈ DB

if xA
i = xB

j . For two databases DA and DB , an exact PRL pro-

tocol should return the following: {(idAi , id
B
j) | xA

i = xB
j }, i.e.

all pairs of record IDs of matching records in the two databases.
If we use OBI without any modification, then A uses the set of all
xA
i to generate a Bloom filter, and B uses the set of all xB

j to gen-
erate a garbled Bloom filter. Then they run the oblivious transfer
protocol so that A obtains a garbled Bloom filter that encodes the
intersection. After that, A can query each xA

i against the intersec-
tion garbled Bloom filter to find out which ones are in the inter-

section. For each xA
i such that the query result is positive, A only

knows it is in the intersection and then there must be some xB
j such

that xA
i = xB

j . In other words, at the end of the protocol, A can

only output {xA
i | xA

i = xB
j }, but not {(idAi , id

B
j) | xA

i = xB
j }.

This is because the garbled Bloom filter generated by the original
algorithm does not allow us to encode any record ID information.
To fix the problem, we modified the algorithm and the new algo-
rithm is shown in Algorithm 1. Accordingly, the query algorithm
is modified and is shown in Algorithm 2.

Algorithm 1: BuildGBF (D, n,m, k,H, λ)

input : A set D, n,m, k, λ, H = {h0, ...hk−1}
output: An (m,n, k, H, λ)-garbled Bloom filter GBFD

1 GBFD= new m-element array of bit strings;
2 for i= 0 to m− 1 do

3 GBFD [i]=NULL; // NULL is the special symbol that means no value

4 end

// encodes (xi, idi) rather than just xi as in the original algorithm

5 for each (xi, idi) ∈ D do

6 emptySlot =−1, finalShare= idi ; // idi is the value to be stored

7 for j=0 to k-1 do

8 z = hj(xi); // get an index by hashing xi

9 if GBFD[z]==NULL then

10 if emptySlot ==−1 then

11 emptySlot=z; // reserve this location for finalShare

12 else

13 GBFD[z]
r
← {0, 1}λ; // generate a new share

14 finalShare=finalShare⊕GBFD [z];

15 end

16 else

17 finalShare=finalShare⊕GBFD [z]; // reuse a share

18 end

19 end

20 GBFS [emptySlot]=finalShare; // store the last share

21 end

22 for i= 0 to m− 1 do

23 if GBFD[i]==NULL then

24 GBFD[i]
r
← {0, 1}λ;

25 end

26 end

Algorithm 1 differs from the original algorithm only in one place:
for each record, we split its identifier idi, rather than xi, into k

shares on the fly and store the shares in GBFD[hj(xi)] (line 5-
21). The intuition is that later the GBF query returns two things:
(1) for each xi whether xi is encoded in the GBF; (2) for each xi

that is encoded in the GBF, the identifier idi of the record Ri such
that xi = f(Ri). Thus when A queries the intersection GBF, for
each xA

i = xB
j , it also gets the identifier idBj of the record from

which xB
j is extracted. Since A knows the identifier of its record

from which xA
i is extracted, now A can output (idAi , id

B
j).

Algorithm 2: QueryGBF (GBFD, x, k,H)

input : A garbled Bloom filter GBFD , an element x, k, H = {h0, ...hk−1}
output: the identifier of Ri for some Ri ∈ D if x = f(Ri) , NULL otherwise

1 recovered = {0}λ;
2 for j=0 to k-1 do

3 z = hj(x);
4 recovered = recovered⊕GBFD [z];

5 end

// We assume that identifiers can be distinguished from random strings.

6 if recovered is an identifier then

7 return recovered;
8 else

9 return NULL;
10 end

3.4 PRL by Oblivious Bloom Intersection
The idea of the protocol is to compute and transfer a GBF that

contains only the matching record identifiers to A in an oblivious
way. The protocol runs as follows:

1. A’s private input is DA, B’s private input is DB . The aux-
iliary inputs include the security parameter λ, the maximum
database size n, the Bloom filter parameters m, k and H =
{h0, ..., hk−1}. The parameter k is set to be the same as the
security parameter λ to make false positive negligible.

2. A generates an (m,n, k,H)-BF that encodes its records in
DA. To do so, A first produces an empty set SA, then A com-
putes for each RA

i ∈ DA, xA
i = f(RA

i) and puts xA
i into

SA. Then A encodes SA into an (m,n, k,H)-BF BFSA .
3. B generates an (m,n, k,H, λ)-GBF that encodes its records

in DB . To do so, B first produces an empty set SB , then
B computes for each RB

i ∈ DB , xB
i = f(RB

i) and puts
(xB

i , id
B
i) intoSB . Then B encodes SB into an (m,n, k,H, λ)-

GBF GBFSB using Algorithm 1.
4. A uses its Bloom filter as the selection string and acts as the

receiver in an OTm
λ protocol. B acts as the sender in the OT

protocol to send m pairs of λ-bit strings (xi,0, xi,1) where
xi,0 is a uniformly random string and xi,1 is GBFSB [i]. For
0 ≤ i ≤ m − 1, if BFSA [i] is 0, then A receives a random
string, if BFSA [i] is 1 it receives GBFSB [i]. The result is
GBFmatch.

5. A finds the matches by querying all elements in SA against
GBFmatch .

At the end of step 4, A receives a new garbled Bloom filter
GBFmatch. This GBF encodes only identifiers of records in DB

that match records in DA. Let’s see why this is the case: for
any matching record pair (RA

i , R
B
j), we have xA

i = xB
j where

xA
i = f(RA

i) and xB
j = f(RB

j). Note that A and B use the same
set of hash functions H when building BFSA and GBFSB and the
hash functions are deterministic. Therefore, because xA

i = xB
j ,

for any hl ∈ H we have zl = hl(x
A
i) = hl(x

B
j). In GBFSB ,

each GBFSB [zl] is a share of idBj and it will be transferred to A

because BFSA [zl] = 1. So all shares of idBj will be preserved

in GBFmatch and by querying GBFmatch, A can recover idBj .

For any non-matching record pair (RA
i , R

B
j), since xA

i 6= xB
j , we

have with a high probability hl(x
A
i) 6= hl(x

B
j), therefore with an

overwhelming probability, at least one share of idBj will not be
transferred to A. Instead, a random string will be transferred. Then
when A queries GBFmatch, idBj cannot be recovered because at
least one share is missing.

This protocol is secure in the semi-honest model [10]. We have
the following theorem:

THEOREM 1. Let f≡ be the exact record linkage function de-

fined as: f≡(DA, DB) = ({(idAi , id
B
j) | xA

i = xB
j },Λ), where Λ

denotes the empty string. If OBI is secure in the semi-honest model,

then the exact PRL protocol in Section 3.4 securely computes f≡ in

the semi-honest model.

As we can see, the only modification we have made to OBI is the
content of the garbled Bloom filter. The modification does not af-
fect the security of OBI, so the proof in [7] still holds. Due to lack
of space, the proof of this theorem (and also the proof of Theorem
2) is omitted and will appear in the full version

4. THE APPROXIMATE PRL PROTOCOL
In this section, we present the approximate PRL protocol. An ap-

proximate PRL protocol matches records based on similarity. This
is useful when the data is not “clean”, i.e. contains variations and
errors such as typos. To design an approximate PRL protocol, the
first challenge is how to compare the similarity of two records. Also
unlike exact PRL protocols that operate on clean data, for which we

usually can assume that any record matches at most one record in
the other database, here we must allow one-to-many matches.

4.1 Q-gram Based String Comparison
In many cases, record matching can be done by comparing field

values as strings. For example, to compare the values in fields such
as name, address, telephone number and date of birth. One widely
accepted string comparison mechanism is to split two input strings
into short sub-strings of length q characters (called q-grams) using
a sliding window approach, then calculate a distance using the q-
gram representation of the strings [21]. The number q is usually
small, e.g. 2 or 3. Q-gram based string comparison has been used
in a few approximate PRL protocols [5, 20].

Given a string, we can construct a set that contains all q-grams of
it. For example, the set for all 2-grams of smith is {sm,mi, it, th}.
Given two q-gram sets of two strings, a popular similarity metric
is the Jaccard distance [16]. For two set S1 and S2, the Jaccard
distance is calculated as:

J(S1, S2) =
|S1∩S2|
|S1∪S2|

The Jaccard distance always lies between 0 and 1.

4.2 Locality Sensitive Hashing
Locality Sensitive Hashing (LSH) [13] is a method to hash data

items such that the hash values will collide with high probability if
the data items are similar, while dissimilar ones do not. It has been
extensively used for similarity search in the information retrieval
community. LSH is based on locality sensitive function families.
Formally, let d1 < d2 be two distances according to some metric
d, and p1, p2 be two probabilities, A family G of functions is said
to be (d1, d2, p1, p2)-sensitive if for every g in G and any x, y, the
following holds:

• If d(x, y) ≤ d1, then the probability that g(x) = g(y) is at
least p1.

• If d(x, y) ≥ d2, then the probability that g(x) = g(y) is at
most p2.

Given a family of (d1, d2, p1, p2)-sensitive functions, we can
compose the functions to obtain a new locality sensitive function
family that is (d1, d2, p

′
1, p

′
2)-sensitive [17]. Usually p′1 > p1 and

p′2 < p2 so false negative and false positive are reduced. For exam-
ple, if we have a family G of (d1, d2, p1, p2)-sensitive functions,
we can obtain a new family G′ of (d1, d2, 1 − (1 − pα1)

β, 1 −
(1 − pα2)

β)-sensitive functions by forming a composite hash fam-
ily from an α-AND-construction followed by a β-OR-construction.
The α-AND-construction results in a composite hash function g̃ =
(g1, g2, . . . , gα) which is the combination of α random functions
from G. We say g̃(x) = g̃(y) if and only if ∀j, gj(x) = gj(y)
where 1 ≤ j ≤ α. The β-OR-construction results in a composite
hash function g′ = (g̃1, g̃2, . . . , g̃β). We say g′(x) = g′(y) if and
only if ∃j, g̃j(x) = g̃j(y) where 1 ≤ j ≤ β. Readers can find
more details about the constructions in [17].

There exist effective locality sensitive families for several dis-
tance measures, e.g. Jaccard distance, Hamming distance, Eu-
clidean Distance and Cosine distance. The locality sensitive family
for Jaccard distance is called MinHash [3]. Let ∆ be the domain
of all possible elements of a set, P be a random permutation on ∆,
P [i] be the element in ith position of P and min be a function that
returns the minimum of a set of numbers. Then MinHash function
of a set S under P is defined as:

hP (S) = min({i | 1 ≤ i ≤ |∆| ∧ P [i] ∈ S})

To compute the MinHash value over a string, we can use the q-gram
set of the string as the input of the MinHash function. The MinHash
family is the set of MinHash functions under different random per-
mutations on ∆. The MinHash family is (d1, d2, 1 − d1, 1 − d2)-
sensitive for 0 ≤ d1 < d2 ≤ 1. In the protocol we will use
LSH obtained from the MinHash function family. To control the
rate of false positives and false negatives, we always use composite
LSH functions that are parameterized by (α, β), which means the
LSH function is composed by an α-AND-construction of MinHash
functions, followed by a β-OR-construction.

4.3 LSH Hashtables
As we said at the beginning of this section, there are two prob-

lems we need to address in building an approximate PRL protocol:
matching by similarity and allowing one-to-many matches. We
solve the problems by first building LSH hashtables and then en-
coding hashtable buckets into a BF or a GBF.

The hashtable structure is quite similar to normal hashtables: it
is an array of buckets, each bucket contains a list of values. Given
a key-value pair, the key is hashed by a LSH function g and then
the value is put into buckets based on the hash result. We want
to achieve the following goal by using the hashtable: for any two
pairs (k1, v1), (k2, v2), if g(k1) = g(k2), then we can find in the
hashtable a bucket that contains both v1 and v2; if g(k1) 6= g(k2),
then we cannot find in the hashtable a bucket that contains both v1
and v2. Because LSH is different from normal hash functions, we
also require each bucket in the hashtable to have a bucket identifier
(bid). The bid is used when assigning values into buckets. The
bucket identifier depends on the LSH function. In our protocol, the
LSH functions we use are composite and the final composition is
through a β-OR-construction, i.e. g = (g′1, g

′
2, . . . , g

′
β) such that

each g′i is an LSH by α-AND-construction. Then the hash value
produced by g is a β-tuple g(x) = (g′1(x), g

′
2(x), . . . , g

′
β(x)), and

the bucket id is the sub-hash value concatenated with the hash index
number, i.e. g′1(x)||1, g′2(x)||2, . . ., g′β(x)||β. For any (k, v) pair,
we can hash k to get β bids g′1(k)||1, g′2(k)||2, . . ., g′β(k)||β, then
v will be put into all β buckets that have the bids. This is because
the collision semantics of the OR-construction requires at least one

value in the β-tuple to be matched. The concatenated index number
prevents collisions caused by equal hash values produced by differ-
ent sub-hash functions, i.e. we do not want v1, v2 to be put in the
same bucket if for example g′1(k1) = g′β(k2) because that does not
mean g(k1) = g(k2).

4.4 Approximate PRL
In the approximate PRL protocol, A and B use a locality sensi-

tive hash function to build hashtables. For each record Ri in their
database, A and B use f(Ri) as the key and put idi in their hashta-
bles. After doing so, B constructs a set SB such that each element
in SB is a tuple (a, b) where a is the bid of a non-empty bucket in
the hashtable, and b is the concatenation of the records identifiers in
the bucket. For example if there are three records RB

i , RB
j , RB

k in a

bucket, then there is an entry (x, idBi ||id
B
j ||idBk) in D such that x is

the bid of the bucket. Then SB is used as input to build the GBFSB

using algorithm 1 1. On the other hand, on A’s side, A builds BFSA

using bids of a non-empty bucket in its own hashtable. Then they
use oblivious transfer so A obtains a GBF that contains the match-
ing record identifiers. A then queries the GBF to find all matching
records. The protocol is as follows:

1. A’s private input is DA, B’s private input is DB . The aux-

1Without loss of generality, we assume that the concatenated iden-
tifiers can be encoded using a λ-bit string.

iliary inputs include the security parameter λ, the maximum
database size n, the Bloom filter parameters m,k and H =
{h0, ..., hk−1}. The parameter k is set to be the same as the
security parameter λ. An LSH function g agreed by the two
parties.

2. A encodes its database records into a LSH hashtable using
the LSH function g. To do so, A computes for each RA

i ∈
DA, xA

i = f(RA
i) and adds (xA

i , id
A
i) into the hashtable as

described in Section 4.3. Similarly, B encodes its database
records into a LSH hashtable using the same LSH function.

3. B constructs a set SB as follows: initially SB is empty, then
for each non-empty bucket in its hashtable, put (a, b) into SB

where a is the bid of this bucket and b is the concatenation
of all values in the buckets. After all buckets in the hashtable
have been processed, B generates GBFSB that encodes SB

using algorithm 1.
4. A generates a BF that encodes the bid of every non-empty

bucket in its hashtable. To do so, A first produces an empty
set SA, then for each bucket in the hashtable, if it is not empty
then its bid is put into SA. Then A encodes SA into BFSA .

5. A uses its Bloom filter as the selection string and acts as the
receiver in an OTm

λ protocol. B acts as the sender in the OT
protocol to send m pair of λ-bit strings (xi,0, xi,1) where
xi,0 is a uniformly random string and xi,1 is GBFSB [i]. For
0 ≤ i ≤ m − 1, if BFSA [i] is 0, then A receives a random
string, if BFSA [i] is 1 it receives GBFSB [i]. The result is
GBFmatch.

6. A finds the matches by querying all elements in SA against
GBFmatch . For each positive query, A can get a list of
record identifiers of records in DB from the query result,
and get a list of record identifiers of records in DA from its
hashtable using the bid being queried. Then A computes the
Cartesian product of the two lists and put the result into the
result set.

The correctness is obvious: in the last step if a query against
GBFmatch is positive, then the buckets in A’s hashtable and B’s
hashtable with the bid being queried are both non-empty. Since A

and B use the same LSH function, records sharing the same bid

implies their LSH values are equal, thus they are similar. Then the
records in the two databases should be linked.

This protocol is also secure in the semi-honest model. The secu-
rity follows directly the security of the OBI protocol. We have the
following theorem:

THEOREM 2. Let g be a LSH function, f≈ be the approximate

record linkage function defined as: f≈(DA, DB) = ({(idAi , id
B
j) |

g(xA
i) = g(xB

j)},Λ). If OBI is secure in the semi-honest model,

then the approximate PRL protocol in Section 4.4 securely com-

putes f≈ in the semi-honest model.

5. EXPERIMENTS AND EVALUATION
In this section, we evaluate our PRL protocols in terms of effi-

ciency and accuracy. The protocols were implemented in C. Our
experimental datasets were created by FEBRL [4], a data genera-
tor that can generate records with realistic characteristics and can
accurately model typographic, phonetic and OCR errors. FEBEL
has been used widely in (non-private) record linkage research. All
records generated in our experiments contain 12 attributes such as
personal identities, full resident information, social security ID and
so on. We use all of those attributes for matching records. The at-
tribute values are treated as strings. We use the concatenation of the
attribute values in the exact PRL protocol. In the approximate PRL

Record Exact Approximate PRL
number PRL (α, β)=(10,16) (α, β)=(16,16) (α, β)=(16,32)

(103) Offline Online Offline Online Offline Online

10 0.49 0.62 3.28 0.86 3.4 1.75 6.60

100 4.6 6.66 34.13 9.30 33.24 18.61 66.55

1000 48 76.08 352.4 101.72 347.88 208.04 672.4

Table 1: Overall Execution Time (Sec)

protocol, for each record we creates a 2-gram set from the strings
as the input to the LSH function. Our experiments were carried out
on two Mac computers: party A ran on a Macbook Pro with a 2.2
GHz quad-core CPU and 16 GB RAM, party B ran on a MacPro
with two 2.4 GHz six-core CPUs and 32 GB RAM.

5.1 Efficiency
In this section we evaluate the efficiency of our protocols. We

first measured the overall execution time of the exact PRL proto-
col. The result is shown in Table 1. We used databases with 10
thousand, 100 thousand and 1 million records in the experiment.
The running time is almost linear in the size of the database. The
performance is quite close to the result reported in [7].

The approximate PRL protocol splits record matching into two
phases: offline and online. In the offline phase, each party inde-
pendently processes its database to create a LSH hashtable as de-
scribed in Section 4.3. Then in the online phase, the hashtable is
used in oblivious Bloom intersection to generate matching pairs.
In the experiment, we varied the size of databases and also param-
eters (α, β) for the LSH function. Then for each combination, we
measure the execution time of the offline and online phases. The re-
sults are shown in Table 1 . The sizes of the databases are 10,000,
100,000 and 1,000,000. Three pairs of (α, β) used are (10,16),
(16,16) and (16,32).

We can see from Table 1 that the total execution time increases
almost linear in the size of the database. This is as expected be-
cause the time complexity of both phases is O(n). From Table
1 we can also see that the choice of (α, β) has impact on perfor-
mance. For example, when (α, β) is (10,16), (16,16) and (16,32),
the total execution time is 404.08, 429.72 and 864.04 seconds re-
spectively on databases with 1 million records. We can also see
from the figure that α affects only offline execution time while β

affects both offline and online execution time. When α = 16, the
offline execution time only slightly higher (about 10%) than when
α = 10. When β = 32, the offline and online execution time
are almost doubled comparing to when β = 16. This is because in-
creasing α and β will increase the cost of LSH, therefore the offline
phase takes longer to finish. Increasing β also results in a bigger
hashtable with more buckets, in turn the sizes of Bloom filter and
garbled Bloom filter become bigger and thus the online phase re-
quires more time.

5.2 Accuracy
For the approximate PRL protocol, another very important eval-

uation criterion is accuracy. The accuracy of our approximate PRL
protocol is assessed by precision and recall. These metrics are
based on the notions of true positive (TP), false positive (FP) and
false negative (FN).

precision =
∑

TP∑
TP+

∑
FP

recall =
∑

TP∑
TP+

∑
FN

A correct match is a TP, a wrong match is an FP, and a missed
match is an FN.

In Figure 1, we show the accuracy measured with different num-
ber of errors and different (α, β). In the experiment, we created

!∀#∃

!∀#%∃

!∀&∃

!∀&%∃

∋∃

!∃ (!!∃)!!∃ ∗!!∃ #!!∃ ∋!!!∃
!∀#∃%&∋()∋∗%+(&,−∋./0(∀−12,3!

(a) 1 Error, (α, β) = (10, 16)

!∀#∃

!∀#%∃

!∀&∃

!∀&%∃

!∀∋∃

!∀∋%∃

(∃

!∃)!!∃ ∗!!∃ +!!∃ &!!∃ (!!!∃
!∀#∃%&∋()∋∗%+(&,−∋./0(∀−12,3!

,−./

4./566∃

(b) 1 Error, (α, β) = (16, 16)

!∀#∃

!∀#%∃

!∀&∃

!∀&%∃

∋∃

!∃ (!!∃)!!∃ ∗!!∃ #!!∃ ∋!!!∃
!∀#∃%&∋()∋∗%+(&,−∋./0(∀−12,3!

+,−./0/12∃

3−.455∃

(c) 1 Error, (α, β) = (16, 32)

!∀#∃

!∀#%∃

!∀&∃

!∀&%∃

∋∃

!∃ (!!∃)!!∃ ∗!!∃ #!!∃ ∋!!!∃
!∀#∃%&∋()∋∗%+(&,−∋./0(∀−12,3!

(d) 2 Errors, (α, β) = (10, 16)

!∀#∃

!∀#%∃

!∀&∃

!∀&%∃

!∀∋∃

!∀∋%∃

(∃

!∃)!!∃ ∗!!∃ +!!∃ &!!∃ (!!!∃
!∀#∃%&∋()∋∗%+(&,−∋./0(∀−12,3!

,−./

4./566∃

(e) 2 Errors, (α, β) = (16, 16)

!∀#∃

!∀#%∃

!∀&∃

!∀&%∃

∋∃

!∃ (!!∃)!!∃ ∗!!∃ #!!∃ ∋!!!∃
!∀#∃%&∋()∋∗%+(&,−∋./0(∀−12,3!

+,−./0/12∃

3−.455∃

(f) 2 Errors, (α, β) = (16, 32)

!∀#∃

!∀#%∃

!∀&∃

!∀&%∃

∋∃

!∃ (!!∃)!!∃ ∗!!∃ #!!∃ ∋!!!∃
!∀#∃%&∋()∋∗%+(&,−∋./0(∀−12,3!

+,−.

3−.455∃

(g) 3 Errors, (α, β) = (10, 16)

!∀#∃

!∀#%∃

!∀&∃

!∀&%∃

!∀∋∃

!∀∋%∃

(∃

!∃)!!∃ ∗!!∃ +!!∃ &!!∃ (!!!∃
!∀#∃%&∋()∋∗%+(&,−∋./0(∀−12,3!

,−./

4./566∃

(h) 3 Errors, (α, β) = (16, 16)

!∀#∃

!∀#%∃

!∀&∃

!∀&%∃

∋∃

!∃ (!!∃)!!∃ ∗!!∃ #!!∃ ∋!!!∃
!∀#∃%&∋()∋∗%+(&,−∋./0(∀−12,3!

+,−./0/12∃

3−.455∃

(i) 3 Errors, (α, β) = (16, 32)

Figure 1: Accuracy with Different numbers of errors and Different (α, β)

!∀#∃

!∀%∃

!∀&∃

!∀∋∃

(∃

!∃ (!∃)!∃ ∗!∃ +!∃ ,!∃ #!∃
!∀#∃∀%&∋(∀)∗+),−∀#.∋/)012 !

(a) (α, β) = (10, 16)

!∀#∃

!∀%∃

!∀&∃

!∀∋∃

(∃

!∃ (!∃)!∃ ∗!∃ +!∃ ,!∃ #!∃
!∀#∃∀%&∋(∀)∗+),−∀#.∋/)012 !

−./0

5/0677∃

(b) (α, β) = (16, 16)

!∀#∃

!∀%∃

!∀&∃

!∀∋∃

(∃

!∃ (!∃)!∃ ∗!∃ +!∃ ,!∃ #!∃
!∀#∃∀%&∋(∀)∗+),−∀#.∋/)012 !

−./012134∃

5/0677∃

(c) (α, β) = (16, 32)

Figure 2: Accuracy with Different Overlap Percentages

several databases with different sizes, then for each database we
created a modified duplicate. Each record from the original database
is copied to the duplicate database with 1, 2 or 3 modifications. The
modifications simulate errors such as typos, insertion, deletion, or
switch of positions. We measure precision and recall with differ-
ent (α, β). The results of experiments with 1 error are show in
Figure 1a, 1b and 1c. We can see the protocol generally performs
well with recall always higher than 0.95 and precision higher than
0.80. We can see from Figure 1a that with a small α, we might get
large amount of false positive if the database size is big. This is be-
cause smaller α means the LSH function is more likely to produce
equal hash values from distinct records. Therefore false positive in-
creases. To deal with it, we can increase α. In our experiments, set
α = 16 would be enough to make false positive almost negligible.
The other results in Figure 1 show that the number of errors has
little effect on precision, but might affect recall. Nevertheless, if
we increase β, then we can get a higher recall. Lower recall means
more false negative. Higher β means the LSH function is more
likely to produce equal hash values from similar records. There-
fore by increasing β we can get a better recall.

In Figure 2, we show the accuracy measured with different num-
ber of overlapping records and different (α, β). In the experiments,
we set the size of databases to 200 thousand. In each of the ex-
periment, we create the duplicate database as follows: we take a
portion of the records in the original database (10%, 25% or 50%),
copy them, with 1 modification, into an empty database, and then
insert new records that are not in the original database until the new
database contains also 200 thousand records. As we can see, when
α is small, the precision is affected by the percentage of overlap.
This is because in case of less overlapped databases, more records

are irrelevant. Therefore the actual number of false positive is more
significant comparing to the number of true positive, which takes
down the precision. With a higher α value, we can get a better
precision.

In summary the accuracy of our approximate protocol may be
affected by multiple factors, but by setting (α, β) properly, we can
ensure the accuracy is within a satisfactory bound.

5.3 Comparison
The performance of our exact PRL is better than all known pro-

tocols. This is mainly due to the efficiency of the OBI protocol.
As reported in [7], the OBI protocol is orders of magnitude faster
than all existing private set intersection protocols. Because cur-
rently the main stream exact PRL protocols are all based on private
set intersection, it is not surprising that our protocol is much faster.
However, it is possible that the other protocols can also use OBI,
thus achieve similar performance as our protocol.

For the approximate PRL protocol, we compared our protocol
performance and accuracy against two most prominent protocols,
namely Vatsalan’s protocol [22] and Yakout’s protocol [24]. In the
comparison, we use the results reported by the authors. The hard-
ware used in their experiments is similar to or better than ours, so
we believe the performance difference caused by hardware should
be small thus can be ignored.

In our experiments, we set security at 80-bit. Both our protocol
and Vatsalan’s protocol have linear (in the size of database) com-
putational complexity. When processing databases with 1 million
records, our protocol needs 429 seconds when (α, β) is (16,16) and
864 seconds when (α, β) is (16,32). For Vatsalan’s protocol, the
time reported by the authors is approximately 100 seconds. How-

ever this time is measured without any encryption. Since the most
costly part of the protocol is the commutative encryption, which
involves public key operations, the actual execution time should
be much longer with encryption. In our experience, an RSA-base
commutative encryption scheme at 80-bit security normally needs
more than an hour to execute 1 million encryption operations. An-
other problem of Vatsalan’s protocol is that the number of the at-
tributes affects performance greatly. The more attributes to be used
in matching, the longer it will take to do the record linking. While
in our protocol, the impact of the number of attributes is negligi-
ble. As for the accuracy, the precision of Vatsalan’s protocol is al-
ways above 0.99. However, the recall is consistently low (less than
0.7). In our experiments, the lowest value of recall we measured is
0.759, which is still better Vatsalan’s best recall value. And as we
discussed, the recall value can be improved by adjusting (α, β).

The computational complexity of Yakout’s protocol is O(n2)
where n is the size of the databases. The security strength of the
protocol is hard to estimate because no detailed analysis was pro-
vided. When the database size is 100 thousand and with the mini-
mal privacy parameter (k = 4), Yakout’s protocol takes about 2.5
minutes, which is 3.5 times ((α, β) = (16,16)) or 1.75 times ((α, β)
= (16,32)) of our protocol. When the database size is 1 million, the
ratios become 28.5 ((α, β) = (16,16)) or 14.1 ((α, β) = (16,32)). In
their paper, the accuracy tests only used small datasets with 1000
and 5000 records. They converts string records to vectors then em-
beds vectors into a metric space. The authors mentioned that if
there is a large variations of records’ length, then this method is not
very accurate and would result in bad matching quality. This is not
a problem in our protocol.

6. CONCLUSION
In this paper, we investigated the PRL problem and proposed an

exact PRL protocol and an approximate PRL protocol. The exact
PRL protocol is an extension of the OBI protocol. The approxi-
mate PRL protocol is built by combining LSH functions with the
exact PRL protocol. We implemented the two protocols and eval-
uated the protocols in terms of efficiency and accuracy. We also
compared our protocols against other PRL protocols and the com-
parison shows our protocols are much more efficient.

In terms of future work, we would like to validate our protocols
with real world data. Another direction would be to implement and
evaluate LSH functions for other similarity metrics and incorporate
them into our approximate PRL protocol.

Acknowledgement Zikai Wen is supported by an undergraduate
research internship from the University of Strathclyde, Changyu
Dong is supported by a science faculty starter grant from the Uni-
versity of Strathclyde. We thank the anonymous reviewers for their
helpful comments.

7. REFERENCES

[1] R. Agrawal, A. V. Evfimievski, and R. Srikant. Information
sharing across private databases. In SIGMOD Conference,
pages 86–97, 2003.

[2] M. J. Atallah, F. Kerschbaum, and W. Du. Secure and private
sequence comparisons. In WPES, pages 39–44, 2003.

[3] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations
(extended abstract). In STOC, pages 327–336, 1998.

[4] P. Christen and A. Pudjijono. Accurate synthetic generation
of realistic personal information. In PAKDD, pages 507–514,
2009.

[5] T. Churches and P. Christen. Some methods for blindfolded
record linkage. BMC Med. Inf. & Decision Making, 4:9,
2004.

[6] E. D. Cristofaro and G. Tsudik. Practical private set
intersection protocols with linear complexity. In Financial

Cryptography, pages 143–159, 2010.

[7] C. Dong, L. Chen, and Z. Wen. When private set intersection
meets big data: An efficient and scalable protocol. In ACM

Conference on Computer and Communications Security,
2013.

[8] L. Dusserre, C. Quantin, and H. Bouzelat. A one way public
key cryptosystem for the linkage of nominal files in
epidemiological studies. Medinfo, 8 Pt 1:644–7, 1995.

[9] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private
matching and set intersection. In EUROCRYPT, pages 1–19,
2004.

[10] O. Goldreich. The Foundations of Cryptography - Volume 2,

Basic Applications. Cambridge University Press, 2004.

[11] C. Hazay and Y. Lindell. Efficient protocols for set
intersection and pattern matching with security against
malicious and covert adversaries. In TCC, pages 155–175,
2008.

[12] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are
garbled circuits better than custom protocols? In NDSS,
2012.

[13] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In STOC,
pages 604–613, 1998.

[14] L. Kissner and D. X. Song. Privacy-preserving set
operations. In CRYPTO, pages 241–257, 2005.

[15] M. Kuzu, M. Kantarcioglu, E. Durham, and B. Malin. A
constraint satisfaction cryptanalysis of bloom filters in
private record linkage. In PETS, pages 226–245, 2011.

[16] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to

Information Retrieval. Cambridge University Press, New
York, NY, USA, 2008.

[17] A. Rajaraman and J. D. Ullman. Mining of massive datasets.
Cambridge University Press, Cambridge.

[18] P. Ravikumar and S. E. Fienberg. A secure protocol for
computing string distance metrics. In In PSDM held at

ICDM, pages 40–46, 2004.

[19] M. Scannapieco, I. Figotin, E. Bertino, and A. K.
Elmagarmid. Privacy preserving schema and data matching.
In SIGMOD Conference, pages 653–664, 2007.

[20] R. Schnell, T. Bachteler, and J. Reiher. Privacy-preserving
record linkage using bloom filters. BMC Medical Informatics

and Decision Making, 9(41), 2009.

[21] E. Ukkonen. Approximate string matching with q-grams and
maximal matches. Theor. Comput. Sci., 92(1):191–211,
1992.

[22] D. Vatsalan, P. Christen, and V. S. Verykios. An efficient
two-party protocol for approximate matching in private
record linkage. In AusDM ’11, pages 125–136, Darlinghurst,
Australia, Australia, 2011. Australian Computer Society, Inc.

[23] D. Vatsalan, P. Christen, and V. S. Verykios. A taxonomy of
privacy-preserving record linkage techniques. Inf. Syst.,
38(6):946–969, 2013.

[24] M. Yakout, M. J. Atallah, and A. K. Elmagarmid. Efficient
and practical approach for private record linkage. J. Data

and Information Quality, 3(3):5, 2012.

