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Abstract: This paper scopes to provide a suggestion on the maintenance outline as perceived from the evaluation 
of an extended literature review on marine engineering systems and applications sourced from research and 
industrial studies. The present research contributes in the creation and initial implementation of a probabilistic 
multi-component prognostic Condition Monitoring model for ship machinery and equipment maintenance 
scheduling. Systems involved include engine internal and external components, starting, cooling, and lubrication 
and control monitoring systems. The overall reliability performance of these sub-systems and the entire Main 
Engine’s is suggested. Moreover, this paper will present the components and failure types’ layout arrangement 
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1 Introduction1 

The operational environment of the day-to-day industrial 
applications has more complex and pretentious structure, while 
their business effectiveness and efficiency is influenced by 
factors such as time, financial constraints, technology, 
innovation, quality, reliability, and information management 
(Madu, 2000). Scoping the organization to compete 
successfully, the enhancement of system maintenance and 
reliability are necessary operational attributes while sufficient 
attention has to be paid during the organization’s strategic 
planning. 
 
In this respect, several definitions are provided for both 
maintenance and reliability terms by various authors 
summarizing the notion that maintenance is a set of technical, 
administrative and managerial actions targeting to retain or 
restore the state of a system to function as required. In further 
nowadays, maintenance is encountered as an operational 
method, which can be employed both as a profit generating 
process and a cost reduction budget center through an 
enhanced Operation and Maintenance (O&M) strategy. In this 
respect, a broad exploration of maintenance methodologies 
takes place, concerned with the most known methods and 
techniques scoping to motivate the development of an 
optimized, innovative and applicable maintenance strategy for 
marine engineering systems. 
 
This paper’s initial scope is to recommend a maintenance field 
arrangement method for practices’ classification, 
demonstrating research and presenting a probabilistic risk 
evaluation case study on diesel engines, inspiring further 
research and application development. The paper’s sections are 
distributed between Maintenance Literature Review, 
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Condition Monitoring Technologies/Tools, Condition 
Monitoring Optimization Tools, Multi-component Condition 
Monitoring, Case Study as well as Conclusions and 
Recommendation for inspiration and in further exploration. 
 

2 Maintenance Literature Review 

From business perspective in shipping industry, maintenance 
structure is transformed from budget gain perspective to 
investment for continuous and reliable asset service. Whereas 
from operational viewpoint, it is restructured from reactive to 
proactive actions, involving more control and information of 
the considered machinery or system. This section classifies 
maintenance between strategies, methodologies, well-known 
and applied monitoring technologies and tools by proving the 
importance of maintenance presenting guidelines from 
international safety agents. 
 
2.1 Maintenance Strategies 

An investigation on various sources indicates that 
maintenance strategies are classified differently from 
researchers. For instance, Ahuja and Khamba (2008), Garg 
and Deshmukh (2006) and Dowlatshahi (2008) combine 
maintenance strategies and techniques; conversely Shreve 
(2003) and Arunraj and Maiti (2007) separate them 
presenting maintenance in a timeline form. In contrast, Wang 
(2002) approaches maintenance in the common cited types of 
corrective and preventive strategies. Investigating various 
applications and research methodologies, this paper 
identifies the core of strategies between corrective, 
preventive, predictive and proactive. 
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2.1.1 Corrective Maintenance 
This type of strategy is implemented in plants at the 
beginning of 1940s (Shreve, 2003), and it is described from 
the statement “fix it when it breaks” expressing its reactive 
side (Kobbacy and Murthy, 2008). It is a routine maintenance 
approach focused on component’s replacement after failure. 
Recent research presents a lack of applicability of this 
maintenance strategy due to its inefficient economic and 
performance nature. According to Mobley et al. (2008), the 
main weakness of this strategy is the poor planning and 
incomplete repair, resulting the repair of obvious failures by 
ignoring the root that cause them. Nevertheless, it has to be 
highlighted that this approach is suitable for low in criticality 
equipment that replacement involves easy and inexpensive 
actions and parts, where their failure will not affect the 
performance of operation. 
 
2.1.2 Preventive Maintenance 
The next generation of maintenance strategies identified as 
Preventive Maintenance (PM) is introduced at the beginning 
of 1950s (Shreve, 2003). It is classified as the first time-
driven management program arranged in predefined periods 
scoping to satisfy particular criteria. Hence as stated by 
Márquez (2007), it scopes to reduce the possibility of failure 
due to equipment degradation. 
 
2.1.3 Predictive Maintenance 
The third and most modern generation of maintenance 
strategies introduced into the market by the end of 1960s 
according to Shreve (2003) and middle of 1970s by Arunraj 
and Maiti (2007). The notion of this maintenance strategy is 
the non-destructive testing of a system, determining the 
condition of equipment and subsequently considering the 
maintenance plan. A characteristic definition is given by 
Fedele (2011) supporting that Predictive Maintenance (PdM) 
is on-condition assessment of assets, employing real time 
programming by avoiding unnecessary downtime, 
inspections and reactive failures due to human mistakes. 
 
2.1.4 Proactive Maintenance 
The majority of researchers classify maintenance strategies 
between, corrective, preventive and predictive, presenting 
the timeline of maintenance concepts from a reactive to a 
more proactive case. According to Fedele (2011), PdM is 
oriented on the on-condition-driven concept of maintenance 
providing alert signals through data collection aiming to 
schedule actions. In the meanwhile, he extends PdM by 
presenting proactive maintenance (also known productive), 
considering the pre-alert actions discovered from system’s 
performance malfunctions that may lead to machinery 
deterioration. In further, it analyses the root causes of 
breakdown events, setting the acceptable operational limits 
of the predetermined factors. 
 
2.2 Maintenance Methodologies 

These are identified by Fedele (2011) as maintenance 

policies indicating the entire business attitude. Through 
research, it is discovered that the clustering of them is 
uniform compared to maintenance strategies that researchers 
approach them in various ways. 
 
2.2.1 Reliability Centered Maintenance 
Reliability Centered Maintenance (RCM) is a methodology 
applied at the beginning of 1970s and it has wide 
applicability until nowadays. This maintenance methodology 
is implemented by a commercial airline company pursuing 
reduction of maintenance downtime, expenditures and 
enhancement of flight safety and equipment reliability 
(Deshpande and Modak, 2002). Including the consequences 
factor, Nowlan and Heap (1978) state that RCM employs 
function and risk analysis for prioritization of maintenance 
actions evaluating the corrective maintenance costing against 
the preventive costs considering also the loss of potential life. 
 
2.2.2 Total Productive Maintenance 
The president of the center for Total Productive Maintenance 
(TPM) in Australasia (Kennedy, 2006) presents that it is 
introduced in Japanese car industry in 1970s integrating Total 
Quality Control (TQC), Just-In-Time (JIT) and Total 
Employee Involvement (TEI). Comparing the already 
introduced RCM with TPM, he supports that RCM is 
maintenance improvement strategy, while TPM 
independently implemented cannot improve reliability. 
Describing TPM according to Nakajima (1988) is developed 
concept of Total Quality Management (TQM) oriented on 
zero production defects applied on critical equipment, 
involving highly top management support, sense of 
ownership and responsibility of operators and maintenance 
workers. 
 
2.2.3 Total Quality Management 
This approach has managerial aspects, integrating values, 
techniques and tools for accomplishment of customer 
satisfaction and minimization of resources (where possible), 
scoping continuous improvement of operational processes 
sustaining quality involving management, workforce and 
suppliers (Hellsten and Klefsjö, 2000) and (Powell, 1995). 
As stated by Hipkin and De Cock (2000) the most reported 
interventions are TQM and Business Process Reengineering 
(BPR) due to difficulties of implementation, lack of guidance 
on procedures, inadequate training, difficult measures of 
performance and lack of top management support. 
 
2.2.4 Maintenance Risk Based Methodologies 
First of all, it is necessary to declare risk as the multiplication 
of the probability of failure and its consequence (Hecht and 
An, 2004). This category of methodologies encompasses 
both inspection and maintenance approaches. Thus, the first 
one is defined as Risk Based Inspection (RBI) and identified 
from Classification Societies (DNV, 2002) as assessment 
between qualitative and quantitative features, employing 
numerical values, assessment scales and unit measurement of 
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probability failure and consequence respectively. While, the 
later one according to Arunraj and Maiti (2007) is study of 
all failure modes, considering the risk of those by developing 
maintenance strategy for minimization of occurrence of 
critical incidences. 
 
2.2.5 Asset Management 
Through a literature review directed on the cost benefits of 
maintenance strategies and methodologies, Eti et al. (2006) 
summarizes that maintenance and Asset Management (AM) 
can achieve growth of profile by decreasing running costs 
and increasing capability and availability. Industrial 
contribution on specifying AM (ABB, 2010) proposes the 
basis of an ultimate AM tool, integrating Computerized 
Maintenance Management Systems (CMMS) with real-time 
Condition Monitoring (CM) collecting data from various 
sources achieving alerts on failure detection. 
 
It is essential to highlight that AM is notion of viewing 
business plan and production from a holistic perspective 
aiming the ultimate performance by controlling every 
available asset that may affect this. 
 
2.2.6 Computerized Maintenance Management System 
The need for implementation of automated maintenance 
management systems enhanced by computerized, flexible 
tools for managing critical assets is presented, as equipment 
onboard the ships become more complex and market more 
competitive. 
 
These systems according to Shreve (2003) suggest 
maintenance planning as they assist critical data for 
equipment, workforce and recorded conditions. In addition, 
Fernandez et al. (2003) present the functionality of CMMS 
as gaining information from raw data and enhancing decision 
making by automating existing processes. Various proposed 
CMMS models are presented in literature trying to enhance 
serviceability, accuracy of decision and functionality in 
complex systems. 
 
2.2.7 Condition Based Maintenance 
This is the latest and under continuous development 
methodology. A literature review by Dhillon and Liu (2006) 
focusing on humans’ error impact in applications of 
maintenance highlights that a large amount of human errors 
take place during maintenance operations. Thus, the need for 
computerized condition maintenance methodology appears, 
which will tend to minimize unnecessary human’s 
involvement during acceptable operational machinery 
conditions. 
 
The scope of CBM, fault diagnosis and in extend of prognosis 
is to detect the upcoming failures before even taking place 
aiming to enhance machine’s availability, reliability, 
efficiency and safety, by reducing maintenance costs through 
controlled spare part inventories (Mechefske, 2005). From 

the industrial direction, SKF (2012a) supports that CBM 
aims understanding of risks and predetermination of strategic 
actions, leading to reliability and operational cost reduction. 
 
2.3 Maintenance Guidelines and Regulations 

The main international safety agents lay the foundation for 
uniform standardization of maintenance process are 
summarized between British Standards (BS) and 
International Standards Organization (ISO), International 
Maritime Organization (IMO) and International Association 
of Classification Societies (IACS). 
 
BS and ISO can be defined as agreed frameworks of specified 
activities accomplishing actions that will lead on delivery of 
products and services to customers. A research on recent 
standards especially related to the latest maintenance 
strategies and technologies provides a series of standards that 
classify CM parameters for signal measurement collection 
and analysis. 
 
On the other hand, the crucial role of IMO is to set a 
framework controlling safety issues and specifying 
conditions of security, fire safety, lifesaving appliances, 
navigation lights and radio communication. A comparative 
study by Han (2004) presents the key role of Classification 
Societies with this from IMO, defining that each class is 
member of IACS leading a global network of well qualified 
surveyors’ feedback of technical data and an internationally 
suitable management system. 
 
Concluding the importance of international standards, the 
concept of integrated and unified regulatory framework is 
confirmed in maritime industry and specifically in 
maintenance aspects, while IMO and IACS proposed an 
advanced and specific structured risk analysis process named 
Formal Safety Assessment (FSA) assessing the risk of failure 
in occasions that may lead to catastrophic consequences. 
 

3 Condition Monitoring Technologies/Tools 

As it is already defined, CBM is the latest maintenance 
methodology, which assesses equipment and machinery, 
while they operate. In this extend, Condition Monitoring 
(CM) technology is applied through various tools recording, 
and evaluating measurable parameters, that will be reviewed 
in this section. These measured parameters comprise the 
signal gathering, from which several data processes can be 
considered with respect to equipment functionality. This 
section aims to review the most known CM technologies 
through research applications expanding the notion of CM 
into diagnostics and in further prognostics. 
 

3.1 Vibration Monitoring 

This is the most known and well applied common technique 
as Vibration-Based Maintenance (VBM) offers early 
indication of machinery malfunctions involving parameters 
as rotational speed, loading frequency, environmental 
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conditions and material state (Al-Najjar, 1996). 
 
Typical examples with extended literature of CM involving 
vibration measurements are rotating components such as 
bearings and gears. In system and component levels, VBM 
provides potential in fault detection of electric motors 
combined with electric current; monitoring bearing failures 
as the major cause of malfunctions (Lamim et al., 2007). An 
alternative view on rotating machinery is presented by Sassi 
et al. (2007) simulating the dynamic performance of ball 
bearings in terms of localized surface defects considering 
bearing rotation, load distribution, structure elasticity and oil 
film characteristics. 
 
3.2 Thermography 

Thermography or thermal imaging is CM tool applicable for 
both electrical and mechanical equipment, aiming the 
identification of hot and cold spots providing early signs of 
equipment failure. As claimed by Bagavathiappan et al. 
(2013), Infrared Thermography (IRT) is one of the most 
accepted CM tools. Due to the non-contact function is 
suitable for structural, machinery, electrical and material 
detection malfunctions. The key advantage of IRT compared 
to other CM tools is the real-time representation of pseudo 
color coded image. Presenting machinery defects, Budweg 
(2012) analyses that uncontrolled heat can be generated due 
to reasons as overloading, phase imbalance, power factors, 
corrosion and poor electrical connections and this is a 
warning of loss of energy. Moreover, heat is a parameter that 
can shorten machinery’s lifecycle up to 85%. 
 
3.3 Oil Analysis Monitoring 

Defining oil analysis, Jiang and Yan (2008) state that it is 
achieved through laboratory concentration analysis in 
lubricant, debris analysis, dealing with shape, size, 
composition of wear particles and lubricant degradation 
analysis for physical and chemical characteristics. 
Integrating oil analysis and computerized technologies. 
According to Casale et al. (1993), lubricants’ monitoring is 
the most efficient diagnostic tool as from a small amount of 
fluids is considered the condition of the entire lubricant in 
each machinery. However, the required laboratory analysis 
and specific expertise set this monitoring technique one of 
the most time consuming process. Setting the ground for 
further analysis and presenting the lack on publications in 
performance analysis of steam turbine generators, Beebe 
(2003) promotes the integration of vibration and oil debris 
analysis supporting the enhancement of efficiency and output 
reduction such as deposits on blades and erosion of internal 
clearances. 
 
3.4 Acoustic and Ultrasonic Monitoring 

Temperature, vibration and cylinder drain oil monitoring are 
time and cost consuming techniques due to the installation 
needs on marine diesel engines (Kim and Lee, 2009). The 
applicability and utilization of ultrasonic CM is proved by 
IACS (2004) and IACS (2006) as it is introduced the Unified 
Requirements (UR) and Procedural Requirements (PR) for 
Ultrasonic Thickness Measurements (UTM) execution 
joined part of classification survey procedures. 
 

In practice, Kim and Lee (2009) propose a real-time 
diagnostic system for high speed Acoustic Emission (AE) 
signal analysis assessing wear condition of cylinder lines in 
marine large two-stroke diesel engines. Expanding AE 
applicability, Vervloesem (2013) explores the user-
friendliness and accessibility of ultrasounds on non-
rotational equipment breakdowns that exist onboard of ships 
advancing the ease of manual data collection and the direct 
sourced result. An unknown aspect of this CM tool compared 
to traditional vibration analysis is the ability of performing 
on high and slow speed rotating equipment as low as 0.25 
RPM. 
 
3.5 Monitoring Diagnostics 
Presenting the CM layout, it consists of phases as data 
gathering from the installed sensors (on-line) or off-line 
devices, signal analysis, while leading to decision making. 
The market need for further systematic automation enforced 
the implementation of monitoring diagnostics, a 
methodology which aims to determine and specify the fault 
type. In line with Delvecchio (2012), fault diagnosis is severe 
requiring the determination of type, size, location and time of 
detected faults. 
 
Supporting the importance of fault diagnosis Becker and 
Poste (2006) state that a specific maintenance issue can be 
the replacement of a $5,000 bearing turning into a $250,000 
project concerning cranes, service crew and power loss. A 
typical example (Mortada et al., 2011) of diagnostics, hence 
feature extraction from frequency and time-based signals, 
assesses the performance of a supervised method called 
Logical Analysis of Data (LAD) identifying malfunctions in 
rotating machinery using VBM targeting decision function 
enhancement. An important factor of managing marine 
online data for diagnostics SKF (2012b) is the signal 
categorization to be arranged in load groups for similar trend 
comparison. 
 
3.6 Monitoring Prognostics 
An innovative and newly introduced maintenance concept on 
CM extending diagnostics is this of prognostics. This scopes 
to predict whether a failure will occur and the systems’ 
Remaining Useful Life (RUL). Prognostics have limited 
literature in research, as they are recently established. 
However, different forecasting techniques are already 
developed. 
 
An importance CM maintenance concept is developed, this 
of multi-component modelling. For instance, Niu and Yang 
(2010) propose an intelligent CM prognostics method based 
on data-fusion strategy. The algorithm consists of stages such 
as vibration signal collection and trend feature extraction, 
feature normalization and use in Neural Networks (NN) for 
feature-level fusion, data de-noising and wavelet 
decomposition for reduction of fluctuation and selection of 
trend information. 
 

4 Condition Monitoring Optimization Tools 

In this section, a brief description will follow including 
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maintenance optimization tools, signal processing, and 
failure and risk analysis methods, setting the grounds by 
motivating for further enhancement of efficiency and 
precision of the already published ones. 
 
4.1 Artificial Intelligent Approaches 

According to Fiippetti and Vas (1998), Artificial Intelligence 
(AI) assists equipment degradation assessment, statistic 
failure analysis, prognostics and intelligent diagnosis for CM 
tasks and fault detection. Through research, it is found that 
AI is classified among Artificial Neural Networks (ANNs), 
Expert Systems (ESs), Fuzzy Logic Systems and 
Evolutionary Algorithms (EAs). In further, it is identified the 
need for integration of these, aiming at the improvement of 
performance and failure diagnostic accuracy. An instance of 
integration is presented by Wang and Chen (2011) employing 
for a diagnostic model fuzzy Neural Network and applying 
Wavelet Transform (WT) and Rough Set (RS). 
 
4.2 Signal Processing and Optimization Methods 

One of the most critical phases within the CM algorithm is 
signal processing. This stage assesses the accuracy of the 
failure detection as it consists of signal de-noising processes, 
through which collected data are analyzed and unnecessary 
information is removed, rendering the signal filtering and 
preparation for the upcoming feature extraction (i.e. pattern 
recognition form of dimensionality reduction) process easier 
and more accurate. Wu and Chen (2006) summarize Short-
Time Fourier Transforms (STFT), Wigner-Ville Distributions 
(WVD) and Continuous Wavelet Transforms (CWT) in their 
effort to categorize widely used methods for detection of fault 
conditions and practical fault diagnosis of rotational 
machineries. 
 
4.3 Failure and Risk Analysis Methods 

Deteriorating systems developed for the maritime industry 
consider internal and external to system failures as 
interdependencies occur during operation (Delia and Rafael, 
2008). Literature presents various failure and risk analysis 
methods, where the majority of approaches visualize failure 
occurrence as independent event for each considered 
component of a system. These can be summarized as Fault 
Tree Analysis (FTA), Dynamic FTA (DFTA) taking into 
account time variation, Failure Mode and Effect Analysis 
(FMEA) and Failure Mode Effect and Criticality Analysis 
(FMECA), Markov Analysis (MA) and Bayes’ Theorem 
presenting the Bayesian Belief Networks (BBNs). 
 
The latter one can be defined as probabilistic graphical model 
involving conditional dependencies arranged into Directed 
Acyclic Graphs (DAG) and it is expressed as presented in 
Equation 1 (Bedford and Cooke, 2001): 
 
 皿岫冊】刷岻 噺 皿岫刷】冊岻 茅 皿岫冊岻皿岫刷岻  (1) 

Where P(A) and P(B) are the probabilities of events A and B, 
while A given B and B given A are conditional probabilities. 

5 Multi-component Condition Monitoring 

In this section, a Condition Monitoring (CM) methodology 
will be briefly presented aiming to be applied on critical ship 
machinery and equipment, as developed after the evaluation 
of a literature review on the latest published maintenance 
strategies, methodologies, guidelines and regulations as well 
as CM technologies and tools. 
 
Furthermore, the researchers’ and market’s tendency for 
consideration of operational and failure interdependencies 
among multiple components within the same system is 
highlighted. Hence in this manner, the requirement for 
examining various systems into an integrated CM 
maintenance scheme appear. The existing methodologies 
lack on multiple critical component monitoring consideration 
involving degradation analysis (Heng et al., 2009). 
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Fig. 1 Multi-component Prognostic Condition Monitoring 

Model 

Figure 1 proposes the arrangement of a flexible prognostic 
CM strategy taking into account multiple components of a 
system or multiple systems. Initially, data collection involves 
multiple historical recorded data, expert and/or real-time data. 
The following phase is twin level feature extraction 
arrangement preparing the considered data by filtering and 
de-noising unnecessary information gathered from the 
environment that the machinery operates. The exported 
signal is introduced into the second level of feature extraction 
from which accurate diagnostics will be sourced (feature 
identification). The use of risk and reliability analysis is 
implemented in order to identify critical components for the 
operation and safety as well as risk levels. Feedback is sent 
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from the ‘Risk & Reliability Analysis’ phase back to ‘Data 
Collection’ aiming to store and monitor the reliability 
performance of the system. In further, signals are classified 
under operational conditions and consequences are taken into 
account. In the next stage, prediction tool is planned to be 
introduced for signal/condition forecasting, which will lead 
to decision making for maintenance action hierarchy and 
determination. Moreover at prediction level, feedback is 
considered scoping the system’s performance monitoring and 
accuracy of estimation. As it can be seen from Figure 1, ‘Risk 
& Reliability Analysis’ stage is the core of the proposed 
model structured among predecessor signal preparation 
phases and successor forecasting and decision making 
processes. The following section implements a failure and 
risk analysis tool in first principle design arrangement. 
 

6 Case Study 

The ship Main Engine (M/E) is widely defined in literature 
as the ‘heart’ of the vessel. This statement highlights the 
criticality of this system and its significance for 
implementing a CM tool, ensuring cost efficiency, ultimate 
maintenance planning, ship’s performance and human, 
environmental and asset safety. 
 
In this respect, the following six diesel M/E sub-systems are 
identified: Engine Internal and External Components, 
Starting, Cooling, and Lubrication and Control Monitoring 
systems are considered. In this section, a case study will be 
briefly presented, involving the Engine Internal and External 
Components sub-systems and its comprised components. It 
is decided to be presented these two sub-systems as they 
layout the component core of the entire M/E. 
 
6.1 Data Collection 

Data have been provided in the form of failure rates per 
component involved. At first, the overall failure rate is 
calculated in percentages for each component considered 
independently for the pre-defined failure scenarios that may 
occur on these components. In the next phase the probability 
of occurrence of the involved failure types on each selected 
component is calculated. These manually prepared data are 
stored in notepad (.txt) files and processed via an automated 
coded procedure in JAVA Object-Oriented Programming 
(OOP) language. 
 
However, sensorial 'raw' collected data will be considered in 
future programming stages. Nevertheless, the loading and 
reading phase of the prepared text (notepad) files pursues to 
simulate the final process of user and system interaction 
supplying data collected from online and offline sensors 
while loaded on the proposed model for initiation of the CM 
process in a ‘raw’ format. 
 
6.2 Engine Components Probabilistic Modelling 

This section aims to present a probabilistic model produced 
in Java programming language. For the ‘Risk & Reliability 
Analysis’ stage the Bayes’ Theorem is implemented The 
various probabilities are typically represented employing 
Directed Acyclic Graphs (DAG), where each considered 
probability is presented with a node and its relation with any 
other node using directed arrow. This type of DAG diagram 
in the case of Bayes’ Theorem is defined as Bayesian Belief 
Network (BBN). A typical example of a BBN display is 
shown in Figure 2, where the Main Diesel Engine system and 
related components are linked with the considered events 
(failure types). 
 

 
Fig. 2 Main Diesel Engine Components Probabilistic Case Study Model 
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In Figure 2 is presented a part of the M/E system arrangement. 
Firstly, they are demonstrated with nodes two of the major 
M/E sub-systems, the Engine Internal Components and 
Engine External. The next level of nodes includes the Engine 
Internal Components involving items attached to the main 
engine block as Radial Bearings, Cylinders, Injections, 
Exhaust and Pistons. Whereas the Engine External 
Components consists of components such as Fuel Pump, Fuel 
Filter, Air Inlet and Shaft.  
 
The highest level of nodes in Figure 2 presents failure types 
for the components as defined for the Engine Internal and 
External sub-systems. These failure breakdowns are listed 
among External Leakage Utility, Failure to Start, Internal 
Leakage, Minor In-Service Problems (non-specified from 
source), Structural Deficiency, Overhearing, Noise, Erratic 
Output, External Leakage of Fuel and Vibration. 
 

Consideration of Main System/ 
Sub-systems/ Components

Consideration of Failure Types

Computation and Automation of 
Probabilities of failure

Automated Result Representation 
to User for Component/Sub-

System/Main System
 

Fig. 3 Probabilistic Case Study Programming Stages 

Figure 3 presents the phases accomplished into this case 
study from data collection until results are displayed to user. 
Initially, the main system, sub-systems and components are 
specified. Data are compiled from the OREDA database. 
Automated computation calculations are managed through 
Java coding for individual components, overall sub-system 
and final the entire marine diesel engine. Automated results 
display presents failure rates in percentages for component, 
sub-system and main system levels. 
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 皿掃 噺 崕始┺ 層宋宋 伐 岫讃嗣讃層 茅  讃嗣讃惣岻讃┺               岫讃嗣讃層 茅  讃嗣讃惣岻┹  

 皿挿 噺 崕始┺ 層宋宋 伐 岫讃嗣讃匝 茅  讃嗣讃惣岻讃┺               岫讃嗣讃匝 茅  讃嗣讃惣岻┹  

 皿掻 噺 崕始┺ 層宋宋 伐 岫讃嗣讃層 茅 讃嗣讃匝 茅  讃嗣讃惣岻讃┺               岫讃嗣讃層 茅 讃嗣讃匝 茅  讃嗣讃惣岻┹  

 …  
 皿仕 噺 岫讃嗣讃層 茅  讃嗣讃匝 茅  讃嗣讃惣 茅 ┼ 茅  讃嗣讃暫岻 (2) 

 
While, each component of the Main Engine system is linked 
with a certain number of failure types that varies among 
components, a generic form expressing the failure case 
scenarios is presented in Equation 2. In this expression, P 
denotes the probability of occurrence of the different failure 
scenarios, where w shows the percentage of working 
probability, while f the remaining percentage of failing. As ft 
is indicated the failure type (i.e. noise, vibration, overheating 
etc.) and its subscript f is the probability of failure of break 
down scenarios. 
 

 皿岫算伺仕使岻 噺 布岫布 皿岫讃嗣讃岫餐岻 ┸ 讃嗣讃岫斬岻岻岻暫
餐退層

仕
斬退層  (3) 

 仕 噺 匝暫 (4) 
 
Equation 3 presents the generic expression of the overall 
probability of component, including the summation of all 
possible break down scenarios (m: total amount of failure 
scenarios) and the summation of all considered failure types 
(k: total amount of failure types) as the later presented in 
Figure 2. In addition the relation of m and k is presented in 
Equation 4. 
 
6.4 Results and Discussion 

The entire undertaken study examined the probability of 
failure of Main Engine (M/E) and specified sub-systems and 
components. This case study presented that the Engine 
Internal and External Components are the most critical sub-
systems involved in this study as they performed the highest 
probability of failure. In further, it is presented the 
methodology of the structured model as well as a generic 
formulation of the failure case scenarios for the defined 
failure types per involved component. Table 1 presents the 
overall sub-system and M/E failure probabilities. 
 
Table 1 Sub-System and Main Engine Failure Probabilities 

System Works (%) Fails (%) 

Lubrication System 99.9437 0.0563 
Engine Internal Comp. 98.2491 1.7509 
Engine External Comp. 99.4081 0.5919 
Starting System 99.7152 0.2848 
Control & Monitoring 99.8119 0.1881 
Cooling System 99.4361 0.5639 
Overall Main Engine 99.4126 0.5874 

 
Overall the presented results show the failure percentages of 
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all considered sub-systems such as Lubrication, Engine 
Internal and External, Starting, Control and Monitoring and 
Cooling systems as well as the entire performance of the M/E. 
The outcomes are attributed from failure rates sourced from 
OREDA database. From Table 1 it can be observed that the 
overall system has probability to fail approximately 0.59%. 
This failure rate presents the likelihood of break down in case 
the M/E is considered as one system. 
 
However, in order to increase system’s probabilistic risk 
assessment accuracy, the M/E is separated in six sub-systems. 
The probability of failure for these sub-systems is shown as 
0.0563% for the Lubrication, 1.7509% and 0.5919% for the 
Engine Internal and External Components respectively (Fig. 
2), 0.2848% for the Starting, 0.1881% for the Control and 
Monitoring and 0.5639% for the Cooling system. Hence 
summarizing, the highest failure probability is associated 
with sub-systems such as the Engine and Internal and 
External Components. In other words, the calculated 
outcome provides indication for specific sub-systems that 
present the highest risk for failure during operation. From 
practical viewpoint, the need for operational efficiency is 
highlighted for the sub-systems with lowest reliability 
performance (or highest likelihood to fail). 
 

7 Conclusions and Recommendations 

This paper aimed to initially suggest a maintenance 
classification based on an extended literature review on 
marine engineering systems and applications. This review 
consists of the assessment of under development research as 
well as industrial applications. The maintenance 
classification is structured among strategies, methodologies 
and latest implementation of Condition Monitoring (CM) 
technologies and tools. The importance of maintenance 
introduction into the main business plan is verified from the 
continuous development of unified guidelines and regulatory 
frameworks from international agents and associations. 
Following the above, a key contribution of this paper led to 
the development and initial application of a multi-component 
prognostic CM model. The novel CM model employs the 
BBN tool, while the application for diesel engines, 
incorporating different critical sub-systems such as 
Lubrication, Engine Internal and External Components, 
Starting, Control & Monitoring and Cooling systems as well 
as components is also demonstrated. Java programming with 
regularly occurred failure types is used, providing the overall 
reliability performance of the pre-defined sub-systems as 
well as the entire Main Engine (M/E) system. This 
performance of the main system layouts an overall working 
percentage of 99.4126%. Whereas, a detailed Probabilistic 
Risk Assessment (PRA) on sub-system level indicates the 
Engine Internal and External Component sub-systems as the 
least reliable, performing 1.7509% and 0.5919% likelihood 
of failure respectively. However, the probability of failure for 
these sub-systems is low, indicating reliable operation. 

Comparing the overall system’s performance as one system 
and the overall system’s in sub-system level analysis, it can 
be seen that the detailed assessment of sub-systems provides 
in depth and analytical performance results for the main 
system (M/E). In this respect, further detailed probabilistic 
risk assessment can be researched on component level (i.e. 
cylinders, pistons, bearing etc.) by comparing accuracy of 
results on sub-system level with component. This detailed 
analysis will lead to investigate the source (i.e. component) 
of failure, hence the initiation of sub-systems’ degradation by 
specifying the faulty component. 
 
Concluding, it is essential to propose a motivational view of 
this study by presenting recommendations for further 
research. The already proposed case study examines the 
probabilistic modelling of Main Diesel Engine critical sub-
systems involving a defined number of components and 
failure types. One of the upcoming research plans is to 
develop this model by identifying interconnectivities of 
components as shown in Figure 2 with the ‘dashed’ arrows, 
providing the relation among bearings to pistons, pistons to 
cylinders, fuel filter to fuel pump and shaft to bearings (i.e. 
affecting different sub-systems). This stage aims to simulate 
the relation and effect of failure event leading to chained fails 
of multiple components. In further, this addition scopes to 
enhance the final stage of ‘Decision Making’ by providing 
information and suggestions for maintenance actions on 
detailed component level, as it is planned to take place from 
Figure 1. 
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