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Phase modulation induced by target micromotions introduces

sidebands in the radar spectral signature returns. Time-frequency

distributions facilitate the representation of such modulations in a

micro-Doppler signature that is useful in the characterization and

classification of targets. Reliable micro-Doppler signature

classification requires the use of robust features that are capable of

uniquely describing the micromotion. Moreover, future applications

of micro-Doppler classification will require meaningful

representation of the observed target by using a limited set of values.

In this paper, the application of the pseudo-Zernike moments for

micro-Doppler classification is introduced. Specifically, the proposed

algorithm consists of the extraction of the pseudo-Zernike moments

from the cadence velocity diagram (CVD). The use of

pseudo-Zernike moments allows invariant features to be obtained
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that are able to discriminate the content of two-dimensional matrices

with a small number of coefficients. The analysis has been conducted

both on simulated and on real radar data, demonstrating the

effectiveness of the proposed approach for classification purposes.

I. INTRODUCTION

Moving targets illuminated by a radar system
introduce frequency modulations caused by the
time-varying delay that occurs between the target and the
sensor. The main bulk translation of the target, towards or
away from the sensor, induces a frequency shift of the
echo as a result of the well-known Doppler effect.
However, the target may contain parts that have additional
movements with respect to the target main motion. These
movements can contribute with frequency modulations
around the main Doppler shift and they are commonly
referred to as micro-Doppler modulations. It is important
to underline that, in the open literature, an unambiguous
definition of micro-Doppler effect is not present (see for
instance [1–3, 5]); consequently, within this paper we
prefer to associate to the term micro-Doppler all the
frequency modulations due to small displacement,
rotation, or vibration of secondary parts of the object. The
analysis of radar micro-Doppler was introduced by Chen
in [4] and widely treated in [5], demonstrating the
potential of micro-Doppler information for target
classification and micromotion analysis. Over the last
decade, the analysis of micro-Doppler signatures has been
investigated for different families of radar systems [7],
demonstrating the effectiveness of models and potential of
such information source.

Micro-Doppler can be regarded as a unique signature
of the target that provides additional information that is
complementary to existing methods for target recognition.
Specific applications include the recognition of space, air,
and ground targets. Recently, novel technologies and
techniques have opened a wider set of applications for
micro-Doppler signatures, such as passive radar and
acoustic micro-Doppler [8, 9]. For example,
micro-Doppler signatures can be used for human
identification under different weather conditions. In
particular, specific components of micro-Doppler gait
signature can be related to parts of the body for
identification purposes [10]. Furthermore, in [11] a novel
technique for human signatures decomposition into the
responses of different body parts has been proposed.
Despite the quasi-complete knowledge of the phenomenon
and its representation [6], an open problem related to the
exploitation of micro-Doppler signatures is the realization
of a reliable, robust, and efficient procedure to classify
targets on different observation conditions. Different
approaches have been applied to classify micro-Doppler
signatures, for example in [12] and [3] a template-based
approach with interesting results was introduced, while in
[13] and [14] a combination of information extracted from
the cadence velocity diagram (CVD) of the received data
were used with the aim to remove acquisition dependence
in the micro-Doppler feature. In [15] a mean frequency
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profile (MFP) based approach has been presented
achieving good results with low complexity.

In this paper, we present a novel micro-Doppler
signature extraction method that is based on the use of
pseudo-Zernike moments [16]. The family of geometric
moments represented by Hu [17], Zernike [18], and
pseudo-Zernike [16], has been widely used in image
processing for pattern recognition and image
reconstruction [19–21]. These moments can provide
potentially useful properties such as position, scale, and
rotational invariance. Zernike moments, unlike Hu
moments, are obtained using a set of orthogonal
polynomials, namely Zernike polynomials that comprise
independent moments. This is an important property as
independent moments allow us to obtain more information
considering the same number of coefficients.
Pseudo-Zernike moments, introduced by Bhatia in [16],
improve Zernike moments by reducing the noise
sensitivity compared with Zernike moments and
increasing the number of moments available for a given
order of the polynomial. Consequently, the
pseudo-Zernike moments were selected as features to
discriminate different micro-Doppler signatures, in the
novel approach described in this paper.

The use of the pseudo-Zernike moments allows the
introduction of important characteristics in the
representation of a micro-Doppler signature, in order to fit
different requirements. In particular translational
invariance allows the unique identification of targets with
different main Doppler shifts but belonging to the same
class. The scale invariance allows us to provide features
invariant with respect to variations of the aspect angle,
making the algorithm applicable in a multistatic scenario
without the requirement of a multistatic training dataset.
The scale invariance can be also exploited to use a
database acquired at a carrier frequency in an automatic
target recognition (ATR) working with a slightly different
one. Another advantage of the scale invariance for this
specific problem is the capability of mitigating physical
differences between targets of the same class (e.g. two
people walking, a tall and a short one that would introduce
different micro-Doppler shift that might lead to wrong
classification). Moreover, in the proposed algorithm the
pseudo-Zernike polynomials are computed starting from
the CVD, thus introducing the advantage of robustness
with respect to the initial phase of the micromotion and
the opportunity to introduce the scene invariance by
removing the zero periodicity component before
computing the pseudo-Zernike moments.

The remainder of the paper is organized as follows.
Section II introduces the pseudo-Zernike moments theory,
and describes the novel feature extraction algorithm. The
effectiveness of the proposed approach is demonstrated in
Section III, where simulated data are used to justify the
choice of the pseudo-Zernike moments, and in Section IV
where accurate classification results on real Ku and X
band data are presented. Section IV concludes the
paper.

II. PSEUDO-ZERNIKE MOMENTS BASED FEATURES

In this section, a novel feature for radar micro-Doppler
classification is introduced. The approach is based on the
use of pseudo-Zernike moments [16], in order to obtain
reliable feature vectors with relatively small dimension
and low computational complexity. The novel feature
benefits the specific properties of the pseudo-Zernike
moments such as invariance with respect to translation and
rotation. Moreover, the scale invariance can be included if
required by the specific applications.

In the next subsections, the theory defining the
pseudo-Zernike moments is introduced, followed by the
novel feature extraction algorithm.

A. Pseudo-Zernike Moments

Let f(x, y) be a nonnegative real defined image, i.e.,
f(x, y) ≥ 0. The moments of f(x,y) of order (or degree)
n + l are defined as the projection of the function f(x,y)
on the monomials xn yl, by the integral [17]

Mn,l =

∫∫

R2

xny lf (x, y)dxdy. (1)

Notice that the low order moments share important
properties that allow us to characterize an image. More
specifically, the zero order moment defined as

M0,0 =

∫∫

R2

f (x, y)dxdy, (2)

and the first order moments, given by

M1,0 =

∫∫

R2

xf (x, y)dxdy (3)

and

M0,1 =

∫∫

R2

yf (x, y)dxdy, (4)

are useful to represent the position of the image centroid
[18], whose coordinates within the image can be
computed as

Cx = M1,0/M0,0 and Cy = M0,1/M0,0. (5)

The moments described by (1)–(4) are not orthogonal
because of the dependence on the family of monomials
{xn yl}, which in general do not share orthogonality
properties.

Zernike polynomials are a set of orthogonal functions,
with simple rotation properties [16, 18], that can be
written in the form

Vn,l (x, y) = Vn,l (ρ cos θ, ρ sin θ ) = Rn,l (ρ) ej lθ , (6)

where j is the imaginary unit, x = ρ cos θ , y = ρ sin θ , l is
an integer, whereas Rn,l(ρ) is a polynomial (called radial
polynomial) in ρ of degree n, with n not smaller than l.
These functions form a complete basis and satisfy, on the
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Fig. 1. Pseudo-Zernike polynomials for orders 0 to 3.

unit circle (i.e., for x2 + y2 ≤ 1), the orthogonality
relation [16]

∫∫

x2+y2≤1

V ∗
n,l (x, y) Vm,k (x, y) dxdy =

π

n + 1
δmnδkl, (7)

where the symbol (·)∗ indicates the complex conjugate
operator, and δmn is the Kronecker delta function, i.e.,

δmn =

{
1 if m = n

0 if m �= n
.

As highlighted in [16], the radial polynomials Rn,l(ρ)
exhibit the following explicit expressions

Rn,l(ρ) =

(n−|l|)/2∑

k=0

(−1)k
(n − k)!

k!
(

n+|l|

2
− k

)
!
(

n−|l|

2
− k

)
!
ρn−2k,

(8)
where n ≥ 0 and l are integers such that n – |l| is even and
n ≥ |l|. Finally, the complex Zernike moments (obtained
by projecting f(x,y) on the Zernike polynomials) are
defined as

ζn,l =
n + 1

π

∫∫

x2+y2≤1

V ∗
n,l (ρ(x, y), θ(x, y)) f (x, y)dxdy

= ζ ∗
n,−l . (9)

In a similar manner, in place of polynomials in x and y, as
given in (6), it is also possible to consider polynomials in

x, y, and ρ =
√

x2 + y2 [16]. In such a case, the
polynomials of order n can be written in the following
form

Wn,l (x, y, ρ) = Wn,l (ρ cos θ, ρ sin θ, ρ) = Sn,l (ρ) ej lθ ,

(10)
where n ≥ 0 and l are integers such that n ≥ |l|. For a more
clear understanding, Fig. 1 shows the pseudo-Zernike
polynomials Wn,l (θ , ρ) with order from n = 0 to n = 3.

Exploiting expression (10), the pseudo-Zernike
moments are defined as

ψn,l =
n + 1

π

2π∫

0

1∫

0

W ∗
n,l (ρ, θ ) f (ρ cos θ, ρ sin θ)ρdρdθ,

(11)
where the radial polynomials [16] are now expressed as

Sn,l(ρ)=

n−|l|∑

k=0

(−1)k
(2n + 1 − k)!

k! (n+|l|+1−k)! (n−|l|−k)!
ρn−k.

(12)
Notice that the number of linearly independent
pseudo-Zernike polynomials of degree ≤ n is (n + 1)2,
whereas for the Zernike polynomials, it is only
1
2
(n + 1)(n + 2). Hence, having fixed the degree of the

polynomial, the number of pseudo-Zernike moments (or
coefficients) is much greater than that of Zernike. This is
an important property of the pseudo-Zernike moments, as
at parity of order much more information is provided
using the pseudo-Zernike moments. Indeed, to obtain the
same degree of information, a higher order of Zernike
moments, with respect to pseudo-Zernike, is required,
which reflects in a higher noise sensitivity. For each fixed
order Table I shows the corresponding Zernike and
pseudo-Zernike moments. Clearly the moments of a
certain order contain all the moments of the lowest orders.

An important characteristic of Zernike and
pseudo-Zernike moments is the simple rotational
transformation property, as a result of the fact that
computing the moments only requires a phase factor on
the rotation of axes [16, 18]. The latter is due to the fact
that the polynomials can be written in the forms (6) and
(10), respectively (the corresponding proof is available in
[16]). This property is important as the moments will be
rotationally invariant when their modulus is used.
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TABLE I
Zernike and Pseudo-Zernike Moments for Different Polynomial Orders

Order Zernike Moments Pseudo-Zernike Moments

1 ζ 0,0; ζ 1,1; ζ 1,–1ζ 1,–1 ψ0,0; ψ1,0; ψ1,1; ψ1,–1ψ1,–1

2 ζ 0,0; ζ 1,1; ζ 1,–1; ζ 2,0; ζ 2,2; ζ 2,–2 ψ0,0; ψ1,0; ψ1,1; ψ1,–1; ψ2,0; ψ2,1; ψ2,–1; ψ2,2; ψ2,–2

3 ζ 0,0; ζ 1,1; ζ 1,–1; ζ 2,0; ζ 2,2; ζ 2,–2; ζ 3,1; ζ 3,–1; ζ 3,3; ζ 3,–3 ψ0,0; ψ1,0; ψ1,1; ψ1,–1; ψ2,0; ψ2,1; ψ2,–1; ψ2,2; ψ2,–1; ψ3,0; ψ3,1;
ψ3,–1; ψ3,2; ψ3,–2; ψ3,3; ψ3,–3

4 ζ 0,0; ζ 1,1; ζ 1,–1; ζ 2,0; ζ 2,2; ζ 2,–2; ζ 3,1; ζ 3,–1; ζ 3,3; ζ 3,–3; ζ 4,0;
ζ 4,2; ζ 4,–2; ζ 4,4; ζ 4,–4

ψ0,0; ψ1,0; ψ1,1; ψ1,–1; ψ2,0; ψ2,1; ψ2,–1; ψ2,2; ψ2,–1; ψ3,0; ψ3,1;
ψ3,–1; ψ3,2; ψ3,–2; ψ3,3; ψ3,–3; ψ4,0; ψ4,1; ψ4,–1; ψ4,2; ψ4,–2; ψ4,3;

ψ4,–3; ψ4,4; ψ4,–4

5 ζ 0,0; ζ 1,1; ζ 1,–1; ζ 2,0; ζ 2,2; ζ 2,–2; ζ 3,1; ζ 3,–1; ζ 3,3; ζ 3,–3; ζ 4,0;
ζ 4,2; ζ 4,–2; ζ 4,4; ζ 4,–4; ζ 5,0; ζ 5,1; ζ 5,–1; ζ 5,3; ζ 5,–3; ζ 5,5; ζ 5,–5

ψ0,0; ψ1,0; ψ1,1; ψ1,–1; ψ2,0; ψ2,1; ψ2,–1; ψ2,2; ψ2,–1; ψ3,0; ψ3,1;
ψ3,–1; ψ3,2; ψ3,–2 ; ψ3,3; ψ3,–3; ψ4,0; ψ4,1; ψ4,–1; ψ4,2; ψ4,–2; ψ4,3;
ψ4,–3; ψ4,4; ψ4,–4; ψ5,0; ψ5,1; ψ5,–1; ψ5,2; ψ5,–2; ψ5,3; ψ5,–3; ψ5,4;

ψ5,–4; ψ5,5; ζ 5,–5

6 ζ 0,0; ζ 1,1; ζ 1,–1; ζ 2,0; ζ 2,2; ζ 2,–2; ζ 3,1; ζ 3,–1; ζ 3,3; ζ 3,–3; ζ 4,0;
ζ 4,2; ζ 4,–2; ζ 4,4; ζ 4,–4; ζ 5,0; ζ 5,1; ζ 5,–1; ζ 5,3; ζ 5,–3; ζ 5,5; ζ 5,–5;

ζ 6,0; ζ 6,2; ζ 6,–2; ζ 6,4; ζ 6,–4; ζ 6,6, ζ 6,–6

ψ0,0; ψ1,0; ψ1,1; ψ1,–1; ψ2,0; ψ2,1; ψ2,–1; ψ2,2; ψ2,–1; ψ3,0; ψ3,1;
ψ3,–1; ψ3,2; ψ3,–2; ψ3,3; ψ3,–3; ψ4,0; ψ4,1; ψ4,–1; ψ4,2; ψ4,–2; ψ4,3;
ψ4,–3; ψ4,4; ψ4,–4; ψ5,0; ψ5,1; ψ5,–1; ζ 5,2; ζ 5,–2; ζ 5,3; ζ 5,–3; ζ 5,4;

ζ 5,–4; ζ 5,5; ψ5,–5; ψ6,0; ψ6,1; ψ6,–1; ψ6,2; ψ6,–2; ψ6,3; ψ6,–3; ψ6,4;
ψ6,–4; ψ6,5; ψ6,–5; ψ6,6; ψ6,–6

...
...

...

Fig. 2. Block scheme of proposed feature extraction algorithm.

B. Feature Extraction Algorithm

The proposed micro-Doppler feature extraction
algorithm is shown in Fig. 2. It involves a few steps that
lead to low computational complexity. The starting point
is the signal s(n), n = 0, . . ., N – 1, containing
micro-Doppler components, with N the number of signal
samples. Its expression can be modeled as the
superposition of the returns from the different components
introducing micromotion [14]

s(n)=

I∑

i=1

γi exp

{
−j

4π

λ
(vin+αi cos(2πθin+φi)+βi)

}
,

(13)
where I is the total number of scatterers, γ i is the
amplitude related to the scatterer electromagnetic

reflectivity, vi is the bulk motion velocity, αi is the
micromotion spatial displacement, θ i is the micromotion
frequency, φi is the initial phase of the micromotion (e.g.
the initial position of a swinging arm), and β i is the initial
phase relative to the target range. The first step is to
convert s(n) into a zero mean and unit variance signal s̃(n).

The spectrogram of the signal s̃(n) is computed

χ(ν, k)=

∣∣∣∣∣

N−1∑

n=0

s̃(n)h∗(n−k)e−j2πνn/N

∣∣∣∣∣

2

, k=0, . . . , K−1,

(14)
where v is the normalized frequency and h(·) is the
smoothing window. The choice of the spectrogram, rather
than other time-frequency distributions, is motivated by its
robustness with respect to interference terms present in the
so-called energy distributions [22]. An example of the
spectrogram of s(n) for a running human observed with a
16 GHz carrier frequency radar [23–25] is shown in
Fig. 3(a). The CVD, introduced in [13, 26] to extract
micro-Doppler features, is defined as the Fourier
transform of the spectrogram along each frequency bin.
An example of the CVD obtained from the spectrogram in
Fig. 3(a) is shown in Fig. 3(b). The CVD provides a
measure of how often the different velocities repeat (i.e.,
cadence frequencies) [13]. Hence, from the CVD useful
information can be extracted such as the period of each of
the components and their maximum micro-Doppler shifts.
Specifically, all the components with a specific cadence
are visible along the cadence frequency axis, while their
micro-Doppler shift amplitude is visible along the
normalized frequency axis. The CVD is computed as a
second step of the proposed algorithm indicated in Fig. 2

�(ν, ε) =

∣∣∣∣∣

K−1∑

k=0

χ(ν, k)e−j2πkε/K

∣∣∣∣∣ , (15)
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Fig. 3. Spectrogram (a) and CVD (b) from returns relative to running man. Observation time is 4 s.

where ε is the cadence frequency.
The third step of the algorithm is the projection of the

CVD onto basis constituted by the pseudo-Zernike
polynomials. They depend on the CVD size only and can
be precomputed through (12) and used to populate a
look-up table. As the pseudo-Zernike polynomials are
defined on the unit circle the CVD dimension is scaled,
before the coefficient is computed, to avoid information
loss. Applying (11) to �(v, ε), the pseudo-Zernike
expansion is obtained as

ψn,l =
n + 1

π

2π∫

0

1∫

0

W ∗
n,l (ρ, θ) �(ρ cos θ, ρ sin θ)ρdρdθ.

(16)
The output of this stage is the set of (n + 1)2 magnitudes
of the pseudo-Zernike coefficients; the modulus is used in
order to ensure rotational invariance of the coefficients.
Hence, the feature vector results are

F =
[
|ψ0,0|, . . . , |ψN,−N |

]
. (17)

Finally, the feature vector F is normalized using the
following linear rescaling

F̃ =
F − μF

σF

, (18)

where μF and σ F are the mean and standard deviation of
the feature vector. These values are then used to populate
the micro-Doppler feature to be used as input to a
classifier.

The last step of the algorithm, clearly, consists of the
classification procedure. In particular, the classification
has been performed using a K-nearest neighbour (KNN)
classifier, to assign each element to a class, for simulated
data. Moreover, on real radar data, the classification of
extracted feature vectors is performed using a support
vector machine (SVM) classifier with a radial basis
function (RBF) kernel, employing a cross-validation grid
search for selection of cost function and kernel

parameters. The one-against-all approach [27] was used to
perform multiclass classification.1

III. EXPERIMENTAL RESULTS ON SIMULATED RADAR
DATA

To study the behaviour of the proposed classification
algorithm based on pseudo-Zernike moments, and to
experimentally validate the choice of this kind of
approach, a dataset of simulated observations is considered
first. Specifically, the returns from helicopter rotor blades
have been simulated [6, 28, 29]. However, more
sophisticated and accurate models can be found in [30].
The time domain signature of rotor blades [6] is defined as

s(t) =

∣∣∣∣L̃ exp

{
−j

4π

λ
[R0 + z0 sin β]

}

×

NB−1∑

k=0

sinc (�k(t)) exp {−j�k(t)}

∣∣∣∣∣ , (19)

where L̃ is the scattering coefficient of the blade (for
simplicity we consider it equal to the dimensionless length
of the blade L [5]), λ is the radar operative wavelength, R0

is the distance from the radar to the origin of the reference
coordinates, z0 is the z-coordinate of the scattering center,
β is the radar observed elevation angle, NB is the number
of blades, sinc(x) = sin(x)/x, and �k(t) is the phase
function given by

�k(t) =
4π

λ

L

2
cos β cos (�t + φ0 + k2π/N ) ,

k = 0, . . . , NB − 1, (20)

with � the angular rotation rate and φ0 the initial rotation
angle.

Notice that the returns from helicopter rotor blades
could not perfectly match with the definition of
micro-Doppler, because of the corresponding high

1The objective of the analysis on simulated data is to show the
performance of the pseudo-Zernike based features against the Zernike
based ones, for this reason a simple KNN classifier was preferred.
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Doppler shift. Consequently, terms like macro-Doppler
could sound better than micro-Doppler for this case study.
Nevertheless, we prefer to let the scientific community
choose the more appropriate terminology.

In particular, 4 classes have been provided, each
comprises 100 observations of helicopter rotor blade
returns simulated using (19). Here, the parameters
representing the simulated classes for a total of 400
observations are reported.

Class 1. Helicopter with NB = 2 blades, L = 4 m main
blade length, and � = 10π rad/s angular rotation
rate.

Class 2. Helicopter with NB = 2 blades, L = 6 m main
blade length, and � = 6π rad/s angular rotation
rate.

Class 3. Helicopter with NB = 3 blades, L = 4 m main
blade length, and � = 10π rad/s angular rotation
rate.

Class 4. Helicopter with NB = 3 blades, L = 6 m main
blade length, and � = 6π rad/s angular rotation
rate.

The other parameters, needed to compute (19) that are
used to simulate the helicopter data, are range resolution
Rr = 0.5 m, signal duration T = 1 s, number of time
samples nt = 10240, radar operative frequency f0 =

5 GHz, blade wide W = 1 m, one end (root) of blade L1 =

0.5 m, other end (tip) of blade L2 = L + L1 m, rotor
center location (0,0,0), and radar location (500,0,500).

To obtain the 100 observations for each class, once the
spectrogram is computed, additive zero-mean Gaussian
noise has been added to it. Specifically, the spectrograms
have been computed considering a number of points for
the discrete Fourier transform (DFT) computation NDFT =

256, a Hamming window of length M = 128, and with
50% overlap (notice that for the computation of the
spectrogram the overlap and save method was utilized
[31]). Fig. 4 shows an example of a spectrogram obtained
for each class and with a signal-to-noise power ratio
(SNR) of 5 dB. As the figure shows, the 4 classes exhibit a
different time-frequency response, representing a good
test case for the proposed algorithm. Again, in Fig. 5, an
example of spectrogram for each class is given with an
SNR = –5 dB.

The analyses have been conducted considering 70% of
data for training, while the other 30% are used for testing.
In order to statistically characterize the classifier and its
performance, a Monte Carlo approach has been applied,
using different selections of the training and test sets of the
data chosen randomly for each class. To estimate the
classifier performance, 50 different experimental cases
have been performed, evaluating the average correct
classification (defined as the number of correct classified
observations over their total number). The simulations
have been performed comparing the proposed algorithm
based on pseudo-Zernike moments with the one that uses
the Zernike moments.
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Fig. 4. Examples of spectrogram (with SNR = 5 dB) for 4 classes of
returns from helicopter rotor blades. Figures on top refer to class 1 and 2,

respectively, figures on bottom refer to class 3 and 4.
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Fig. 5. Examples of spectrogram (with SNR = –5 dB) for 4 classes of
returns from helicopter rotor blades. Figures on top refer to class 1 and 2

respectively, figures on bottom refer to class 3 and 4.

Fig. 6 reports the scatter plots related to the 8th order
moments of index 9 versus index 24, for all the data of the
4 classes. Note that both the Zernike and pseudo-Zernike
moments have been considered. Following the rule given
in Table I, it is easy to see that the above-mentioned 9th
and 24th moments are ζ 3,3 and ζ 6,–2 for Zernike, and ψ2,–2

and ψ4,4 for pseudo-Zernike, respectively.2 The scatter
plots demonstrate that for SNR = 0 dB, both Zernike and
pseudo-Zernike moments give a certain degree of
separation within the classes. However for SNR = –5 dB
the Zernike moments present a less evident separability
between the elements of different classes. This behaviour
is also confirmed by the results illustrated in Fig. 7, where
the average correct classification is plotted versus the
moments order both for Zernike (dot-dashed curves) and

2Notice that the moments as reported in scatter plots can assume both
positive or negative values because of the normalization (18) applied on
the feature vector. For simplicity, the authors refer to them again as the
Zernike or pseudo-Zernike moments.
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Fig. 6. Scatter plot of 9th vs 24th moments of 4 helicopter rotor blades classes, for different SNR values. Figures on top refer to Zernike, figures on
bottom refer to pseudo-Zernike moments both of order 8.
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on pseudo-Zernike moments, dot-dashed lines refer to algorithm based

on Zernike moments.

pseudo-Zernike (solid curves) moments based algorithms.
It is clear that, as expected, an increment in the SNR leads
to higher performance; moreover, higher moments orders
ensure higher percentages of correct classification, thanks
to the availability of more coefficients. Finally, the curves
show the different performance between Zernike and
pseudo-Zernike moments based algorithms. For instance,
in the case of SNR = –5 dB the 7th order pseudo-Zernike
moments based algorithm reaches a correct classification

of 99.08%, while the Zernike one needs to be of order 8 to
ensure the same level of correct classification. Thus,
having fixed the moments order, the pseudo-Zernike
framework assures a higher level of correct classification
than the Zernike counterpart. Consequently, as conclusion
to this analysis, it can be claimed that the use of
pseudo-Zernike moments is preferred to that of Zernike,
due to their higher level of independent information at
parity of order.

IV. EXPERIMENTAL RESULTS ON REAL RADAR DATA

In this section the performance of the proposed
classification algorithm is assessed using real radar data.
Two different dataset are used, namely, 1) the former is a
Ku band radar dataset obtained in a real controlled
scenario (Subsection IV-A), and 2) the latter is an X band
radar dataset acquired in a more realistic environment with
the target area at more than 4 km range from the radar
(Subsection IV-B), both of them with an unknown level of
SCR (signal-to-clutter power ratio). Moreover, this second
dataset represents a good test-bench for the proposed
feature due to its uncontrolled and realistic nature.

A. Experimental Results on Ku Band Radar Data

To analyze the performance of the proposed algorithm,
the correct classification has been considered as a figure of
merit. The algorithm has been tested on real Ku band radar
data, with short range within radar and target (100 –
1000 m) [23–25]. The analysis has been conducted on an
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entire 4 s time observation window and on shorter time
windows (2, 1, and 0.5 s), extracted from the beginning of
the 4 s sequence. In this way, it is possible to test the
algorithm with respect to the variation of the available
observation time.

Attention has been focused on 5 different classes of
data, included in the same class the case of a target
moving toward and away from the radar location. A
summary of the classes and acquisitions is reported below
for a total of 362 acquisitions.

Class 1. Person running toward/away from the radar
(284 s - 71 samples).

Class 2. Person walking toward/away from the radar
(396 s - 99 samples).

Class 3. Person crawling (72 s - 18 samples).
Class 4. Group of people running toward/away from

the radar (200 s - 50 samples).
Class 5. Group of people walking toward/away from

the radar (496 s - 124 samples).

As used previously, from all the available samples,
70% are used for training, while the other 30% are used
for testing. In order to statistically characterize the
classifier and its performance, a Monte Carlo approach has
been applied, using different selections of the training and
test sets of the data chosen randomly for each class. To
estimate the classifier performance, 50 different
experimental cases have been evaluated, reporting the
mean and standard deviation (or degree of reliability). The
spectrogram is computed using NDFT = 512 points for the
DFT computation, and a Hamming window of length M =

256, with 50% overlap. Notice that the choice of the
number of DFT points depends on the acquisition system
[i.e., pulse repetition frequency (PRF) and the expected
time dynamic of the targets (e.g. humans, animals rather
than helicopters)].

Fig. 8 shows the scatter plot representing the 5th order
pseudo-Zernike moments ψ3,–2 vs ψ4,–3 for all the
available data. The figure shows how the objects form a
quite well-defined cluster for each class that,
consequently, facilitates the separation (or classification)
of the different objects. The result shown in Fig. 8 is
confirmed by the entire analysis performed on the

considered dataset. Fig. 9 shows the average correct
classification versus the pseudo-Zernike moments order
for different durations of the signal, and with the
corresponding degree of reliability. The average correct
classification values are also summarized in Table II.

Analyzing the result of Fig. 9 and Table II, it is clear
that performances increase with the pseudo-Zernike
moments order. In particular, it is sufficient to consider the
pseudo-Zernike moments of order 5 (36 coefficients) to
achieve 95% correct classification. Furthermore, as
expected, as the acquisition time of the considered signals
reduces, the classification performance experiences a
reduction due to the reduced amount of micro-Doppler
information contained in the analyzed signal [see
Figs. 9(a) to 9(d)]. Finally, for comparison purposes, the
20-components MFP based classifier suggested in [15]
and the time-frequency distribution - direction features
(TFD-DF) technique proposed in [14] are considered. As
the curves of Fig. 9 show, the proposed classification
algorithm can achieve better performance than the MFP
based, if a sufficiently high moments order is chosen. The
TFD-DF classifier outperforms the pseudo-Zernike based
one if a 0.5 s signal length is considered; however, as the
duration of the signals increases, the proposed algorithm
achieves a higher probability of correct classification than
the TFD-DF.

B. Experimental Results on X Band Radar Data

For a more complete analysis, the classification
algorithm proposed in Section II-B was also applied to X
band radar data of moving humans and animals. The
dataset was generated during a single test using a Selex ES
PicoSAR system operating in DMTI (dismount moving
target indicator) mode (with a carrier frequency of
9.2 GHz and PRF of 2 kHz) [32]. The radar was used to
target a fixed scene from a ground-based platform; in this
specific scenario the SCR is low due to the extension of
the observed area. Humans and/or horses were then
introduced to the scene to act as targets. Data were
collected for targets performing each of the following 6
classes of motion.

Class 1. Horse with rider walking (fast).
Class 2. Horse with rider walking (medium).
Class 3. Horse and human both present.
Class 4. Human walking (fast).
Class 5. Human walking (medium).
Class 6. Human walking (slow).

The dataset consists of 7 observations for each
micro-Doppler signature class, where the duration of each
observation is 2 s. Moreover, the analysis has been
conducted on the dataset obtained splitting the 2 s length
signal in two different signals of length 1 s; in this case, a
number of 14 observations for each class was obtained.
Finally, the last analysis has considered 0.5 s length
signals, i.e., 28 observations for each class. Notice that the

424 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 51, NO. 1 JANUARY 2015



Fig. 9. Correct classification (%) versus pseudo-Zernike moments order. Solid line represents average correct classification (over 50 runs) with its
corresponding degree of reliability, dashed curve is related to MFP based classifier proposed in [15], dot-dashed curve refers to TFD-DF classifier

given in [14]. Subplots refer to different signal lengths (i.e., 4, 2, 1, 0.5 s, respectively).

TABLE II
Average Correct Classification (%) for Different Observation Time Windows and Pseudo-Zernike Moment Orders

Pseudo-Zernike Moments Order

Observation Length [s] 1 2 3 4 5 6 7 8 9 10

4 62.8 81.8 88.8 93.5 95.2 95.3 95.3 95.7 95.9 95.8
2 59.7 82.4 87.4 90.8 91.8 93.3 94.6 94.8 95.7 95.8
1 57.6 80.4 82.7 85.7 86.8 88.4 90.6 91.0 90.8 90.8

0.5 54.3 75.9 79.9 80.9 81.7 83.1 86.2 86.2 85.7 86.1

Note: The analysis has been conducted on real Ku band radar data.

class number 3 (namely horse and human both present)
represents an exception to this analysis because there are
28, 56, and 112 observations for duration of the signal 2,
1, and 0.5 s, respectively.

As already done both for simulated data and real Ku
band radar data, 70% of the available data has been used
for training, and the remainder 30% for testing. Again, a
50 trials Monte Carlo approach3 has been used to
statistically characterize the proposed classification
algorithm, evaluating the average correct classification and
the corresponding standard deviation for each moments
order and for several spectrogram configurations.
Specifically, the analysis has been performed considering
different settings for the spectrogram computation, to
evaluate the impact of the dependency of the algorithm on
the spectrogram from which the CVD and, consequently,
the pseudo-Zernike moments are computed. In Table III, 4

3Notice that the number of Monte Carlo trials is clearly limited by the
number of available real data.

TABLE III
Spectrogram Configurations Used for the Analyses on X Band Radar

Data

Configuration Type NDFT M Overlap

a 256 256 88%
b 256 256 72%
c 256 512 70%
d 256 256 50%

combinations of the number of DFT points NDFT,
Hamming window length M, and the signal’s overlap are
summarized.

In Fig. 10, the average correct classification is given
versus the pseudo-Zernike moments order for different
durations of the signal (also summarized in Tables IV and
V), and with the corresponding degree of reliability.

The curves of Fig. 10 and the values of Tables IV and
V show that for very low moments order the performances
are poor, but the latter strongly increase for higher
pseudo-Zernike moments order. In particular, for a signal
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given in [14]. Figures from top to bottom refer to different signal lengths (i.e., 0.5, 1, 2 s, respectively). Three figures on left are obtained from
spectrograms (a), (b), and (c) of Table III, figures on right refer to spectrogram configuration (d) of Table III.

TABLE IV
Average Correct Classification (%) for Different Observation Time Windows and Pseudo-Zernike Moment Orders

Pseudo-Zernike Moments Order

Observation Length [s] 1 2 3 4 5 6 7 8 9 10

0.5 58.9 65.4 72.3 77.5 80.8 84.4 85.8 85.5 85.1 84.0
1 49.1 68.1 78.1 78.7 82.0 83.6 84.7 85.8 85.6 84.9
2 59.8 76.2 88.8 87.8 90.4 90.0 87.2 86.0 83.8 83.1

Note: The analysis has been conducted on real X band radar data and with the spectrogram configurations (a)-(c) of Table III.

TABLE V
Average Correct Classification (%) for Different Observation Time Windows and Pseudo-Zernike Moment Orders

Pseudo-Zernike Moments Order

Observation Length [s] 1 2 3 4 5 6 7 8 9 10

0.5 46.9 61.7 67.2 72.8 75.7 80.1 80.1 81.0 81.4 80.9
1 46.7 63.0 72.1 76.2 78.1 80.0 82.4 84.4 83.9 82.9
2 52.4 72.4 81.4 81.5 84.2 84.1 84.3 81.5 79.3 77.2

Note: The analysis has been conducted on real X band radar data and with the spectrogram configurations (d) of Table III.

of duration 2 s and with the spectrogram configuration (c)
of Table III, the maximum value of correct classification
(90.4%) is attained with the 5th order of pseudo-Zernike
moments. Thus, the analysis conducted on Ku band radar
data is confirmed in the case of X band data, even if in this
case the scenario utilized to acquire data is more realistic:
long range, lack of clutter mitigation, and longer
wavelength are the main reasons of loss in overall
performances. Again, the classification algorithm based on
pseudo-Zernike moments has been compared with the

20-components MFP based algorithm proposed in [15]
and with the TFD-DF technique proposed in [14]. The
results confirm the fact that the proposed algorithm can
reach the same performance or can outperform the MFP
one. However, in some cases the latter can achieve better
performance than the pseudo-Zernike based algorithm
(see the first subplot on the right of Fig. 10) if a different
setting to compute the spectrogram is considered. For this
specific scenario the TFD-DF algorithm is not able to
provide good performance.
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V. CONCLUSIONS

In this paper a novel approach for micro-Doppler
feature extraction has been presented. The proposed
algorithm exploits the properties of the pseudo-Zernike
moments to extract robust features with a limited number
of values. The moments are applied to the CVD of the
micro-Doppler signature in order to minimize the feature
acquisition dependence. Moreover the invariant properties
of the novel feature, together with the opportunity to
extract a desired accuracy from the data, open to many
ATR applications.

Simulated data have been used to motivate the
selection of the pseudo-Zernike moments rather than the
Zernike ones, besides showing good results also with
uncontrolled SCR. Moreover, the novel features have been
tested on real micro-Doppler data in Ku and X bands,
producing high classification accuracy. The proposed
approach introduces interesting elements of robustness
with respect to unwanted dependencies in micro-Doppler
signatures, such as translational and scale independence.
These properties make the pseudo-Zernike based
micro-Doppler feature potentially applicable in different
scenarios, e.g. multistatic micro-Doppler ATR. Future
work will involve the development of a strategy for the
selection of the best order of the pseudo-Zernike moments
to be used.
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