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ABSTRACT

In the last few decades, the amount of space debris has dramatically increased, and this trend

is expected to continue in the near future. Thus, there is a real risk that two objects in space

orbiting about the Earth might collide. Consequently, an effective method for the detection of

collisions is required in order to systematically prevent the creation of new space debris, or

to study the evolution of the population of space debris after a collision occurs. This research

is focused on objects orbiting in the exosphere – in low Earth orbits (LEOs) – because in

the past decades these have produced the most serious damage. The methodology proposed

in this paper consists of reducing the number of possible pairs of pieces of space debris into

a shortlist of possible pairs at real risk of collision, using a filter sequence. This method is

achieved by the following two procedures. First, an interpolation ephemerides table is built to

compute the state of all the objects at several instants of time. Secondly, using the interpolation

ephemerides table, the number of pairs at risk of collision is reduced by three filters. The first

two filters are based on the geometry of the orbits and try to exclude pairs not undergoing

orbit crossings, while the third filter searches for a time of coincidence. As a result, we have

designed a powerful tool that can be used to avoid collisions between pieces of space debris.

Key words: celestial mechanics – ephemerides – Earth.

1 IN T RO D U C T I O N

Space debris consists of all man-made objects in orbit about the

Earth that no longer serve a useful purpose. These objects can

be non-active satellites, the fragments of satellites, rocket parts, the

remains of explosions or collisions, etc., of all sizes and all chemical

compositions.

The amount of space debris has dramatically increased in the

last few decades; since Sputnik I in 1957 October, more than 7085

satellites have been launched into space for different purposes. Be-

cause of the high number of satellites orbiting the Earth, collisions

between them, or explosions, can occur, either accidentally or on

purpose. For example, let us mention the intentional explosion of

the Fengyun 1C on 2007 January 11 in a test for an antisatellite

missile at an altitude of about 855 km. The first accidental catas-

trophic collision occurred on 2009 February 10, at 16:56 UTC, above

Siberia, between the satellites Cosmos 2251 and Iridium 33 at an

altitude of about 790 km. The destruction of these three intact satel-

lites increased the population of space debris by about 40 per cent

in just 2 yr (Pardini & Anselmo 2011).

Currently, more than 21 000 pieces of space debris larger than

10 cm are known to exist, grouped by the National Aeronautics and

⋆ E-mail: casanov@unizar.es

Space Administration (NASA) in the Two Line Elements (TLE)

catalogue. The estimated population of particles between 1 and

10 cm in diameter is approximately 500 000. The number of parti-

cles smaller than 1 cm exceeds 100 million, according to NASA.

The majority of the population of space debris are in low Earth

orbits (LEOs). Actually, the above-mentioned catastrophic events

occurred at an altitude of approximately 800 km above the Earth’s

surface. Thus, the concentration of space debris in the LEO region

is a real problem for present and future space missions. However,

the concentration of objects in the geostationary orbit (GEO) must

also be considered as a major problem, because of the large number

of satellites orbiting in that region.

The TLE catalogue contains around 21 000 objects, grouping to-

gether active satellites and space debris. However, this catalogue

does not consider the uncertainty of the orbits. In this paper, we

consider a population of about 1000 objects whose preliminary or-

bits have been determined by a new orbit determination method

based on the first integrals of the Kepler problem (Gronchi, Dimare

& Milani 2010). The method provides the initial orbits and their

uncertainty. The optical or radar observations of the population are

computed via a large-scale simulation, reproducing the behaviour

of a data centre for the build-up and maintenance of a complete cat-

alogue of space debris in the upper part of the LEO region (Dimare

et al. 2011). Our main goal in this paper is to provide an effective and

realistic method for the detection of collisions between two objects

C© 2014 The Authors
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of the above-mentioned population. This includes the detection of

collisions between two active satellites or an active satellite and a

piece of space debris, or between two pieces of space debris.

The main problem consists of computing any possible collision

between each pair of objects. If we have N ≈ 21 000 objects, the

number of pairs to be analysed is N(N − 1)/2 ≈ 220 million. This

means that we are dealing with a problem whose computational

complexity is of the order of N2. Thus, the main idea consists of

reducing the number of pairs to be analysed using a filter sequence.

Each filter will significantly reduce the number of possible pairs

undergoing orbit crossing. Consequently, at the end of the filter

sequence, only a shortlist of pairs will be at a real risk of collision.

The theory still largely in use was established by Hoots, Crawford

& Roehrich (1984) and it is based upon three subsequent filters. The

first two filters are geometrical filters. More precisely, given a pair of

objects, the first filter is based on a simple perigee–apogee compu-

tation of both objects, and the second filter is based on the minimum

distance reached in space between the two paths followed by the two

objects. These two filters are based on the mutual geometry of the

orbits, and try to exclude pairs not undergoing orbit crossings. The

third filter is the time filter, which searches for a time of coincidence

when the orbit crossing occurs. In a recent work, Woodburn, Cop-

pola & Stoner (2010) points out the limitation in terms of efficiency

resulting from the approximations of the original formulation in

Hoots et al. (1984). In this paper, the previous filter approach will

be significantly improved by combining geometric methods with

recent mathematical and computational tools, having demonstrated

their effectiveness in other contexts.

Computational complexity of order N is not a problem in the

context of space debris, even if N is quite large. For this reason, for

each of the N elements of the catalogue, we compute an ephemerides

table over the time-span (e.g. 10 d with a time-step of 36 min).

All the ephemerides can be stored in a similar way as the SPICE

kernels used by NASA (Acton 1996). These kernels should store the

ephemerides information in such a way that it can be loaded when

necessary. These kernels will be stored in a binary direct access file

with suitable indexing. In this way, the problem of having access

to the state of any object at any instant of time computed over the

time-span is solved with low computational cost. Thus, it is feasible

to load thousands of these kernels into RAM memory at once.

As we mentioned before, our ephemerides table provides in-

formation about the position and velocity of space debris at fixed

time-steps (time nodes). However, it is possible to compute the orbit

of a piece of space debris at different times by using interpolation

techniques over the data set provided by the ephemerides table. In

this way, we are able to compute, for example, the position of a

piece of space debris each 12 min, reducing the time-step of the

ephemerides table, or each hour, increasing the time-step with re-

spect to the ephemerides table. These interpolations require a low

computational cost. The so-called ephemerides interpolation table is

then obtained. At each time node t of the interpolation ephemerides

table, it is possible to compute an instantaneous geocentric distance

r(t) and its time derivative dr(t)/dt. By using a ‘regula falsi’ al-

gorithm similar to the one described by Milani et al. (2005), it is

possible to compute an approximation for the time t, where the geo-

centric distance r(t) reaches a maximum or minimum distance. At

this point, we know the maximum and minimum distance of each

object to the Earth, and consequently we can apply the first filter to

exclude pairs not undergoing orbit crossings.

The second filter proposed by Hoots et al. (1984) is substantially

improved by including the concept of minimum orbital intersection

distance (MOID), which is commonly used in the literature about

asteroids to denote the distance between two confocal elliptical

trajectories. The MOID can be thought of as the minimum value

reached by the two-variable function distance d, which represents

the Keplerian distance between each pair of points in two confocal

orbits. Then, given the orbits of two objects, it is possible to compute

the MOID and the corresponding mutually closest points. However,

the two orbits might become close at other pairs of points that

correspond to the local minima of the function d. In the case of two

elliptic, confocal and non-overlapping orbits, there are examples

with up to four minimum points (Gronchi 2002). Besides, the MOID

is not differentiable when it vanishes (i.e. when an orbit crossing

occurs). This problem has been widely studied by Gronchi, Tommei

& Milani (2006) and Gronchi & Tommei (2007), in which ‘local

orbit distances with sign’, differentiable in a neighbourhood of most

orbit crossings, have been introduced.

The second filter proposed here is based on the normalized MOID

function. For each pair of objects, it is possible to compute their

normalized MOID at any time of the ephemerides interpolation

table by looking for a close approach between them. If a close

approach occurs, the pair passes the second filter; otherwise, the

pair is excluded from a possible collision.

The third filter, or time filter, considers the pairs of objects that

pass the two previous filters. The main idea of this filter consists of

computing the distance between the objects at each instant of time t

of the ephemerides interpolation table and checking if the distance

at that time is small enough to consider the pair at risk of collision

at that given time.

The only limitation of this filter sequence theory arises from

space debris with poor orbit predictability, which can occur when

there are unannounced manoeuvres or a large effect of drag subject

to unpredictable changes in atmospheric scaleheight. In general,

this is when the orbit determination becomes non-linear or non-

deterministic, in which case it would be necessary to use much more

complicated methods. In this paper, we compute the ephemerides of

each piece of space debris with the dynamical systems developed by

the naXys team, which include the Earth’s gravitational potential,

the luni-solar and planetary gravitational perturbations and the solar

radiation pressure effect (Valk, Lemaı̂tre & Anselmo 2008; Valk,

Lemaı̂tre & Deleflie 2009a; Valk et al. 2009b; Lemaı̂tre, Delsate &

Valk 2009; Delsate et al. 2010; Hubaux et al. 2012; Casanova &

Lemaı̂tre 2014).

The paper is organized as follows. First, we introduce the

ephemerides table and the way we use it in the filter sequence.

Then, we describe the three filters and we apply them to a fictitious

set of 864 objects orbiting the Earth. We analyse the results obtained

and, finally, we conclude and present future work.

2 PRELI MI NARI ES

In this section, we detail the number of objects to be considered here-

after, and we describe the process used to obtain the ephemerides

of these objects and the way we store them by using direct access

files. We also explain how to compute the ephemerides interpolation

table and how to use it in the filter sequence.

2.1 Orbit catalogue

The TLE catalogue developed by NASA contains about 21 000 ob-

jects greater than 10 cm, grouping together active satellites and

space debris. The TLE catalogue does not provide the orbit uncer-

tainty. In this paper, we consider N = 864 objects whose initial

MNRAS 442, 3235–3242 (2014)
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orbital conditions have been determined by a new orbit determi-

nation method, based on the first integrals of the Kepler problem

(Gronchi et al. 2010), which provides the initial location of the satel-

lites and its uncertainty. These 864 objects are in the LEO region,

which means that the semimajor axis a satisfies a ≤ 8600 km.

2.2 Structure of the ephemeris table

The evolution of each of the N = 864 orbits in the catalogue is

computed numerically by a symplectic integration scheme (Hubaux

et al. 2012), which includes in the model the Earth’s gravitational

potential, luni-solar and planetary gravitational perturbations and

direct solar radiation pressure. In particular, we propagate each

object for a time-span of 10 d with a time-step of 36 min. This

means that, for a given object, we have 400 time nodes represented

by tj = (j − 1) × 36 min, with 1 ≤ j ≤ 400, and its corresponding

state vector [r(tj ), ṙ(tj )], which represent the position and velocity

vectors at each time node tj. All these data represent the ephemerides

of the given object.

On many occasions, instead of the position and velocity vectors,

the ephemerides of an object are given by the classical orbital ele-

ments: the semimajor axis a, the eccentricity e, the inclination i, the

right ascension of the ascending node �, the argument of perigee

ω and the mean anomaly M. However, when the eccentricity ap-

proaches zero, the argument of perigee is undefined, and when the

inclination is close to zero, the right ascension of the ascending node

is undefined. To overcome these problems, we use the equinoctial

orbital elements, which are suitable for all eccentricities and inclina-

tions, even for null eccentricities and inclinations. The equinoctial

orbital elements (Broucke & Cefola 1972) are given by

a, p = tan(i/2) sin �,

h = e sin(ω + �), q = tan(i/2) cos �,

k = e cos(ω + �), λ = M + ω + �.

The first five elements give the configuration of the orbit in space,

and the last element is a fast angle variable along the trajectory.

We compute the ephemerides of the 864 objects by using the

equinoctial orbital elements. The innovative part of this work is

that we store the data by using direct access files with suitable

indexing, in a similar way as the SPICE kernels used by NASA

(Acton 1996). Direct access, also called non-sequential or random

access, divides the file associated with the input/output data into

fixed-length records (RECs), and allows the program to read or

write data at any point in the file, directly by a record number.

For clarity, we explain the way we store the ephemerides in our

research. The records are built with seven real numbers: the time

and the six orbital elements. Then, given the object number one,

s = 1, the ephemerides at t1 = 0 are stored in the record number

1 (REC = 1), and the ephemerides at t2 = 36 are stored in the

record number 2 (REC = 2). Analogously, the ephemerides at t3, t4,

. . . , t400 are stored in the record numbers 3, 4, . . . , 400 (REC = 3,

REC = 4, . . . , REC = 400). Now, the ephemerides of the object

number two, s = 2, at t1 = 0 are stored in the record number 401

(REC = 401), and so on. In general, we have an orbit index s (1

≤ s ≤ N = 864) and a time index tj (1 ≤ j ≤ m = 400). By using

direct access methodology, the ephemerides of the orbit s at time tj,

which are the orbital elements of the object s at time tj, are stored

in the record number (s − 1)m + j [REC = (s − 1)m + j]. In this

way, the problem of having access to the ephemerides of all objects

at all time nodes is solved with low computational cost.

A binary ephemerides table of 864 objects propagated for 10 d,

with a time-step of 36 min requires 19.4 Mb of RAM memory.

2.3 Interpolation of the ephemeris table

At this point, we have stored in a direct access file, the ephemerides

of the 864 objects at 400 time nodes. However, 400 time nodes

might not be suitable for some particular research. In some cases,

fewer than 400 time nodes are enough, but in other cases, where

more precision is required, more time nodes are needed. In both

cases, the ephemerides of the objects at the required time nodes are

computed by using a simple linear interpolation technique.

This technique allows us to compute the interpolated ephemerides

of an object at any instant of time t between two time nodes (tj, tj+1)

with 1 ≤ j < 400, simply by linear interpolation, because the first

five equinoctial orbital elements are not angle variables and, conse-

quently, their linear interpolation is elementary. The sixth element is

an angle variable, but it does not provide any information about the

geometry of the orbit, and consequently a linear interpolation for it

is not necessary. Once we have the interpolated ephemerides at time

t, we can compute the required information at that time, for example,

the geocentric distance r(t). This process requires the knowledge of

two time nodes (tj, tj+1) and their corresponding equinoctial orbital

elements, which are stored in the direct access file (ephemerides ta-

ble), and we interpolate at the time required with low computational

cost and low RAM memory. Note that if we have 400 time nodes

and if we interpolate once between each node, we have double the

data with a low computational cost. Thus, the more we interpolate,

the more data we have, but the memory required will always be the

same because we only use the data stored in the ephemeris table,

proving the effectiveness of the direct access files.

3 THREE-FI LTER SEQU ENCE

As mentioned in the introduction, there are about 21 000 catalogued

objects in the TLE catalogue, and consequently the number of pairs

to be analysed is N(N − 1)/2 ≈ 220 million. The idea of reducing

significantly the number of possible pairs undergoing orbit crossing

emerges from the infeasibility of considering all possible pairs.

In this paper, we consider 864 objects, which translate into

372 816 possible pairs to be analysed. However, as a result of the

three-filter sequence, described in this section, these pairs can be

reduced into a shortlist of pairs that will be at real risk of collision.

3.1 Filter I

Filter I is an improvement of the perigee–apogee technique for-

mulated by Hoots et al. (1984), whose theory considers a primary

body, which is the object orbiting the Earth that must be protected,

and every other object, called secondaries, that can collide with the

primary. The main idea consists of a simple perigee–apogee com-

putation of the possible pairs defined by the primary and each of the

secondaries. Then, given a pair, let q denote the largest of the two

perigees and let Q denote the smallest of the two apogees. If q − Q

≥ D, where D represents a threshold distance, then the secondary

does not need to be considered further because a collision cannot

occur.

In a recent reassessment, Woodburn et al. (2010) have pointed

out the limitation of efficiency resulting from the simple perigee–

apogee computation proposed by Hoots et al. (1984). There are

two main problems. First, the perigee and apogee of each pair are

computed using the osculating orbital elements, which are subject

to perturbations, over short and long periods. Then, if filter I uses

the osculating elements, there is a need to control the perturbations

and to study how they influence the computation of the perigee and

MNRAS 442, 3235–3242 (2014)
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apogee. The second problem is that the comparison of the perigee

and apogee of two objects at some fixed time t might lead to a false

positive if one of the two either is an active satellite performing a

manoeuvre or experiences a significant drag. The availability of an

ephemerides table means that we can avoid using the approximation

represented by the osculating elements.

Consider an object with index s (1 ≤ s ≤ 864) in our particular

catalogue. Let Es(tj) represent the equinoctial orbital elements of

the object s at the time node tj with 1 ≤ j ≤ m, where m represents

the number of time nodes. The values of Es(tj) are stored in the

ephemerides table. Then, it is possible to compute the equinoctial

orbital elements at a generic time t in the range t1 ≤ t ≤ tm by

linear interpolation. Thus, it is possible to compute an instantaneous

geocentric distance at time t of the object s,

rs(t) =
q(1 + e)

1 + e cos ϕ
, (1)

where q is the perigee distance and ϕ is the true anomaly at time t.

The main idea of filter I is to replace the calculation of the perigee

and apogee (Hoots et al. 1984) with the calculation of the absolute

minimum and absolute maximum of the function rs(t), respectively.

In order to compute the minimum and maximum of the geocentric

distance at time t, we use the Cartesian coordinates of the position

vector, rs(t) = [x(t), y(t), z(t)] ∈ R
3. Thus, the geocentric distance

and its time derivative at time t are

rs(t) =
√

x(t)2 + y(t)2 + z(t)2, ṙs(t) =
rs(t) · ṙs(t)

rs(t)
, (2)

where ṙs(t) = [ẋ(t), ẏ(t), ż(t)] ∈ R
3 is the Cartesian velocity vec-

tor, and (·) indicates the Euclidean scalar product in R
3.

For each object, we search for the absolute minimum and absolute

maximum of the function rs(t), for t1 ≤ t ≤ tm, where t1 is the

initial epoch corresponding to the initial orbital conditions. For

this purpose, we use a similar algorithm to the one used by Milani

et al. (2005). This algorithm computes the geocentric maximum and

minimum distances, using a simple ‘regula falsi’ algorithm between

the two consecutive time nodes, where the exact t that reaches the

maximum and minimum is located. This problem is equivalent to

finding the values where the derivative function ṙs(t) is zero. Finally,

the absolute minimum and absolute maximum of rs(t) can be set as

min(rs) := min{rs(t), t1 ≤ t ≤ tm}, (3)

max(rs) := max{rs(t), t1 ≤ t ≤ tm}. (4)

The number of times we interpolate the function rs(t) depends on

the number of time nodes suitable for our research, as we mention

in Section 2.3.

We know the minimum and maximum distances of each object

1 ≤ s ≤ N = 864 to the Earth’s centre, denoted by min (rs) and

max (rs), respectively. Thus, we can compare these values for all

possible pairs. Given a pair of objects (a, b) with 1 ≤ a < b ≤

N = 864, we set

q := max{min(ra), min(rb)}, (5)

Q := min{max(ra), max(rb)}. (6)

We say that there is no orbit crossing if the condition |q − Q| > D

is satisfied, where D is a fixed threshold distance, and consequently

the pair must no longer be considered.

The calculation of rmax and rmin has computational complexity of

order N. Therefore, the first filter has a computational complexity

of order N2 because we compare all possible pairs, but each com-

parison is so fast that there is no problem even if N is extremely

large.

3.2 Filter II

Filter II, proposed in this work, is an improvement of the second

filter formulated by Hoots et al. (1984). They developed a geomet-

rical filter based on the relative geometry between the orbit of the

primary object and the orbit of the secondary. The main idea of

this filter is that, given a pair of orbits, the orbital distance, denoted

by dmin, is the minimum value of the distance between all possible

positions assumed by two objects moving along two elliptical or-

bits. The minimum distance is not necessary along the nodal line of

intersection between the two orbital planes. If dmin is always greater

than a threshold distance D, then the pair of objects cannot have a

close encounter of interest.

The iterative method proposed by Hoots et al. (1984) to find the

minimal points, which are the orbital points where the minimum

distances are reached, takes as initial conditions two points close to

the mutual nodes or in their neighbourhood. Although this is true

for objects whose mutual inclination is not small, it has been shown

that the minimum points can be far away from the mutual nodes

(Gronchi 2002). This is one of the reasons why we should improve

the second filter of Hoots et al. (1984). Another reason is that we can

apply novel techniques to compute the orbital minimum distance.

The distance between two Keplerian orbits is commonly used

in the literature about asteroids to discover whether two objects

moving along these orbits can undergo a very close approach or,

indeed, a collision. If the distance is large enough, then there is no

possibility of such an event. However, two confocal Keplerian orbits

might become close at another pairs of points. Thus, it is necessary

to compute not only the absolute minimum (i.e. the MOID) but also

all its local minimal distance values.

The second filter proposed here is based on the definition of the

local minimal distances introduced by Gronchi & Tommei (2007).

By simply changing the sign of the distance maps in suitable subset

of their domain, we obtain the two-orbit configuration spaces, more

regular maps, called distances with sign. For each pair of objects,

it is possible to compute their signed distances at any time in the

interpolation process. If there is a change of sign in one of the local

minimal distances (i.e. an orbit crossing occurs), the pair passes the

second filter; otherwise, the pair is excluded for a possible collision.

Let us explain in detail the second filter. We consider a set

E = (Es1
, Es2

) of 10 elements, composed by two subsets of five

elements each, such that Esj defines the geometric configuration

of the sjth orbit (j = 1, 2). Furthermore, we consider a vector

V = (vs1
, vs2

), such that vsj defines a parameter along the sjth orbit

(j = 1, 2). Because we are working with equinoctial elements, we

can choose Esj = (asj , hsj , ksj , psj , qsj ) for the orbit configuration

(j = 1, 2), and V = (λs1
, λs2

) as the mean longitude vector. In an

inertial reference frame, with the origin at the common focus of the

objects, we denote by Xsj = Xsj (Esj , vsj ) the Cartesian coordinates

of two bodies (j = 1, 2). Then, for each two-orbit configuration E ,

the Keplerian distance function d is defined as the map:

d(E, −) : V → R
+

V �→ d(E, V ) = |Xs1
− Xs2

|. (7)

MNRAS 442, 3235–3242 (2014)
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Here, |·| is the Euclidean norm in R
3 and V = T

2 if both orbits are

bounded, V = S1 × R if only one is bounded, and V = R × R if

they are both unbounded. In our work, we only consider elliptical

orbits, so V is the two-dimensional torus T
2.

The critical points of the function d are computed through those

of d2 to avoid problems of differentiability when it vanishes. They

can be efficiently computed following the computational methods

developed by Gronchi (2005). The minimal points correspond to the

possible close approaches of the two objects. Numerical computa-

tions show that the number of minimal points can be up to four when

the trajectories are non-overlapping conics or two coplanar circles

(Gronchi 2002). Furthermore, if we exclude these exceptional cases,

the number of crossing points are at most two (Gronchi & Tommei

2007).

Generically, there is a finite number of critical points. Let Vh(E) =

[vh
1 (E), vh

2 (E)] be the hth local minimal point of the function d2. Let

X
h
1 (E) = X1[E1, v

h
1 (E)], X

h
2 (E) = X2[E2, v

h
2 (E)] (8)

be the Cartesian coordinates corresponding to the local minimal

points of index h. For every two-orbit configuration E , the local

minimal distance is the map defined as

dh(E) = d[E, Vh(E)] = |X h
1 (E) − X

h
2 (E)|, (9)

which represents the distance between the two points corresponding

to the hth local minimal point.

The orbit distance corresponds to the absolute minimum of the

function d(E, −), and, for every E , it is defined by the map:

dmin(E) = min
h

{dh(E)}. (10)

The functions dh and dmin present three main problems (Gronchi

& Tommei 2007). First, they are singular at orbit crossing (i.e. their

derivatives with respect to the orbital elements are not defined when

they vanish). Secondly, the function dh might become ambiguous

after a bifurcation at a critical point. In particular, it is not guaranteed

that a minimum point does not change its type, and becomes, for

instance, a maximum point, after a bifurcation. Thirdly, the function

dmin might lose its regularity when there is an orbit configuration E

such that, in a neighbourhood of E , we can find two local minimal

distance maps that exchange their role as absolute minimum. In this

case, dmin can lose its regularity even without vanishing (without

orbit crossing).

To overcome the singularity when the distances dh, dmin vanish,

Gronchi & Tommei (2007) have proposed a method to define a

map of new orbital distances by simply changing their sign on a

suitable subset of the domain. The ‘distances with sign’ are regular

in the neighbourhood of most crossing configurations. The method

is quite complicated but it turns out to have a simple geometric

interpretation.

For a given two-orbit configuration E , let τ h
1 , τ h

2 be the tangent

vectors to the orbits at their local minimal points Vh and let τ h
3 be the

cross product of τ h
1 and τ h

2 . Let �h = X
h
2 − X

h
1 be the line joining

the points corresponding to the local minimal points. Then, the local

orbit distance with a sign of index h is given by

d̃h = (τ̂ h
3 · �̂h) dh, (11)

where τ̂ h
3 and �̂h are the corresponding unit vectors. Indeed, τ h

3

and �h are parallel and the sign of d̃h is chosen according to the

orientation of �h (Fig. 1).The minimum distance with sign d̃min

is defined in a similar way. More details about the regularization

method can be found in Gronchi & Tommei (2007).

The new distance maps d̃h and d̃min are generically not singular at

orbit crossing. In this way, we solve the first problem that the non-

Figure 1. Geometric interpretation of d̃h.

regularized functions present. However, d̃h and d̃min are not defined,

with or without orbit crossings, at the two-orbit configurations, such

that τ h
1 and τ h

2 are parallels (tangent configurations).

The functions d̃h might still lose their regularity when a bifurca-

tion occurs. This problem can be overcome by restricting the domain

in the neighbourhood of a non-degenerate two-orbit configuration.

A configuration E is non-degenerate if all the critical points of the

Keplerian distance function are non-degenerate, that is following

the condition

detHV (d2)[E, Vh(E)] 	= 0, (12)

where HV (d2) is the Hessian matrix of d2. If the configuration E∗ is

non-degenerate, then there exists a neighbourhood W of E∗ ∈ R
10

such that no bifurcation occurs and the number of critical points

does not change for every E ∈ W , and each E has the same type of

critical points.

The function d̃min, as the function dmin, might lose its regular-

ity when there is an orbit configuration E in which two distinct

local distances (e.g. d̃1, d̃2) reach the same value, d̃1(E) = d̃2(E),

which corresponds to d̃min(E). Then, in the neighbourhood of E ,

we can have two local minima that exchange their role as absolute

minimum, and d̃min can lose its regularity even without vanish-

ing (without orbit crossing). To overcome this problem, we control

the evolution of the two smallest distance functions, denoted by d̃1

and d̃2.

We can now explain how filter II works. Given a pair of orbits,

if no bifurcation and no tangent configuration occur, we compute,

for each instant of time t1 ≤ t ≤ tm, where m is the number of time

nodes, the functions d̃1(t) and d̃2(t). We only care about these two

functions because the number of crossing points are, at most, two,

as already mentioned. If there is a change of sign at any instant of

time in any of the functions d̃1(t) or d̃2(t), it means that an orbit

crossing is possible, and consequently the pair must be considered

for the next filter. If neither of the distances change their sign, then

there is no orbit crossing and the pair can be disregarded.

3.3 Filter III

Filter III is the time filter, and it is applied to the pairs that have

passed both filter I and filter II, which means that there is an orbit

crossing between the two orbits. Given an index pair (r, s) that

passes filters I and II, we have the configuration E = (Er , Es) and

we can compute for each time t1 ≤ t ≤ tm the position of the piece of

MNRAS 442, 3235–3242 (2014)
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space debris along the orbit. The distance between the two objects

is simply given by

d[E(t), V (t)] = |Xr − Xs |, (13)

where Xr and Xs are the Cartesian coordinates of the two bodies

at time t. If the distance is greater than a threshold distance D, the

collision can be excluded at time t. This procedure is iterated for

any time. The pair can be excluded if there is never a time when the

distance between the objects is less than D. Otherwise, the pair of

objects is at real risk of collision.

4 R ESU LTS

We apply the filter sequence to a population of 864 pieces of space

debris to obtain the pairs of orbits that are at real risk of collision.

Then, we compare filter I described in this paper with the filer

proposed by Hoots et al. (1984). We also analyse the evolution of

the distance function d̃1 of a local minimum point to show the way

an orbit crossing is found. Finally, we present the dependency of

the filter sequence with respect to the time-step considered.

4.1 Application of the filter sequence

In this paper, we consider 864 objects, which translates into 372 816

pairs to be considered for collisions. The orbit evolution of these

objects is computed numerically by a symplectic integration scheme

(Hubaux et al. 2012), considering the Earth’s gravitational potential,

luni-solar and planetary gravitational perturbations and direct solar

radiation pressure. In particular, we propagate each object over a

period of 10 d with a time-step of 36 min (400 time nodes), which

represent the ephemerides of the entire population. The threshold

distance considered is 100 m. In our research, we consider a time-

step of 0.05 d (≈ 1.2 h), and consequently the number of time nodes

we interpolate is around 200.

We apply filter I to the entire population of 864 objects. There

are 218 459 pairs that pass this filter, which will consequently be

analysed with the second filter. Note that filter I excludes 154 357

pairs, which means that 41.4 per cent of the pairs of objects have an

orbit configuration without risk of collision.

Filter II is applied to the 218 459 pairs that passed filter I. We find

that only 49 739 pairs pass filter II, and these will be analysed with

the third filter. In this case, filter II excludes 168 720 pairs, which

represents 77.2 per cent of the pairs considered using the second

filter. There are 323 077 pairs excluded after applying filters I and

II, which represents 86.7 per cent of all possible pairs.

Finally, we apply the third filter, or time filter, to the 49 739 pairs

that have passed filters I and II, which are consequently at tentative

risk of collision. Filter III excludes 49 739 pairs, which represents

100 per cent of the pairs considered, meaning that there is no risk

of collision for any pair of objects.

In conclusion, the filter sequence excludes 372 816 pairs of ob-

jects, which represents 100 per cent of the entire population. This

percentage allows us to confirm the powerful and efficiency of this

filter sequence to determine pairs of objects at real risk of collision.

4.2 Comparison between our filter I and that

of Hoots et al. (1984)

If we use the first filter proposed by Hoots et al. (1984), which con-

sists of a simple comparison of the perigees and apogees of each pair

of orbits, we observe that 240 189 pairs pass the filter, which means

that 132 627 pairs have been excluded. This represents 35.6 per cent

Figure 2. Geocentric distances of a pair of orbits in the catalogue (denoted

by crosses and dots) as a function of time. There is no orbit crossing.

Figure 3. Evolution of the perigee (dashed line) and apogee (dash-dotted

line) for a given couple of orbits as a function of time. There is an orbit

crossing within 1 d of evolution.

of the entire population. Consequently, our filter I detects 21 730

false positives, which passed the first filter proposed by Hoots et al.

(1984). Note that the main problem of the first filter presented by

Hoots et al. (1984) was computing the ephemerides using the oscu-

lating elements. This comparison has been done with our powerful

interpolation ephemerides table instead of the osculating elements,

even though our proposed filter I improves the filter of Hoots et al.

(1984).

For clarity, Fig. 2 illustrates the geocentric distance of two objects,

while Fig. 3 illustrates the evolution of the perigee and apogee of the

same objects. In this particular case, we observe a false positive in

the perigee–apogee criteria because, if we consider the geocentric

distance of the pair of orbits, there is no risk approach, while if we

consider the perigee–apogee criteria there is the possibility of an

orbit crossing. Using these figures, we illustrate the efficiency of

our filter I against that of Hoots et al. (1984).

4.3 Evolution of the distance function in filter II

Filter II uses the signed distance functions d̃1 and d̃2 presented

in equation (11), which represent the distances between two local

MNRAS 442, 3235–3242 (2014)
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Figure 4. Evolution of the function d̃1 with a change of sign in the function,

which implies that there is an orbit crossing.

Figure 5. Evolution of the function d̃1 without a change of sign in the

function, which implies that there is no orbit crossing.

minimal points. If one of the functions presents a change of sign,

there is an orbit crossing; otherwise, there is not. Fig. 4 illustrates

the evolution of the function d̃1 when an orbit crossing occurs,

and consequently when a change of sign in the function is present.

In this case, the first orbit crossing occurs within less than 1 d of

propagation. Fig. 5 illustrates the evolution of the function d̃1 in

a pair of orbits where there is no orbit crossing, and consequently

there is no change of sign in the function d̃1.

4.4 Dependence of filter sequence on time-step

In this section, we apply the filter sequence to the same population

of 864 pieces of space debris, but in this case, we consider a time-

step of 0.008 d (≈12 min). The number of time nodes is now around

1300.

Table 1 shows the number of pairs that pass the subsequent filters

if we apply the filter sequence to the same population with different

time-steps. We observe that the smaller the time-step is, the more

accurate the results are, and consequently we can exclude more pairs

at risk of collision. Note that when the time-step is 0.05, we obtain

Table 1. Pairs to be considered after applying each filter to a population

of 864 pieces of space debris. Two different time-steps are used, and

consequently the number of pairs that pass each filter changes.

dt = 0.05 dt = 0.008

Filter I Filter II Filer III Filter I Filer II Filer III

218 459 49 739 0 216 837 49 739 0

about 1622 false positives when applying filter I, which means that

they are considered at real risk of collision, although they are not,

because if we reduce the time-step, they are excluded. In the second

filter, there are 256 false positives, and in the third filter, there are

no false positives, because in both cases the number of pairs at real

risk of collision is zero.

As can be seen, the more precision we need, the smaller the time-

step needs to be. However, the smaller the time-step is, the more

computational time is required. If we need a first approach, with

certain feasibility, the time-step can be the biggest one. Thus, the

computational time will be substantially reduced.

5 O R B I T U N C E RTA I N T Y

The only limitation of the filter sequence is the poor orbit deter-

mination used to compute the ephemerides table. This poor orbit

determination is a result of unannounced manoeuvres or a large ef-

fect of drag perturbation. However, the uncertainty, so far not taken

into account in this work, is also a problem. The uncertainty is the

error produced when computing the locations of pieces of space

debris in their orbits because of different observational errors. This

means that each piece of space debris is associated with a covariance

matrix indicating the quality of the computed position.

If we include the uncertainty of each object at each time in the

ephemerides table, which is the probability of being exactly in

that point at a given instant of time, we must use it in the filter

sequence. Filter I can be improved by including the uncertainty

in the calculation of the minimum and maximum distances, and

then the method will be more realistic. Filter II can be improved by

including the computation of the uncertainty on the signed distances,

due to the uncertainty on the orbits. The property of differentiability

of these functions at orbit crossing is now fundamental if one wants

to apply a covariance propagation formula, requiring regularity, to

compute a meaningful uncertainty for the distances.

6 C O N C L U S I O N S A N D F U T U R E WO R K

In this paper, we have focused on the avoidance of space debris

collisions. To that end, we have designed a filter sequence that is

able to disregard pairs of orbits that are not at real risk of collision.

In detail, we have based the filter sequence on two procedures.

The first procedure is the storage of the orbital ephemerides in a

similar way as the SPICE kernels used by NASA, which allows easy

access to the data with a low RAM memory. The second procedure

concerns three filters based on the mutual geometry of all pairs of

orbits considered, and the time coincidence between them. We have

applied this filter sequence to a population of 864 pieces of space

debris, and we have compared our filter I with the one presented

by Hoots et al. (1984) to prove the efficiency of our methodology.

We have also analysed the influence of the time-step applied in the

filter sequence, and we have discussed the results obtained.

As future work, we aim to consider some improvements of the

filter sequence. First, there are cases in which the computation

MNRAS 442, 3235–3242 (2014)
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of the minimum distance fails, coinciding with cases where the

tangent vectors are parallel. Secondly, the time required is too long,

and consequently some parallelization techniques can be applied.

Finally, the ephemerides table can be computed more precisely (e.g.

by including the atmospheric drag).

There are two different ways to continue this work. The first way

is to consider more than 864 pieces of space debris (e.g. the approx-

imately 21 000 objects that comprise the TLE catalogue), with their

uncertainties, and to include the uncertainty in the functions of the

filter sequence in order to compute pairs of objects at real risk of

collision. The second way is to consider the TLE catalogue without

orbit uncertainty, and to use the filter sequence proposed in this

work for the entire catalogue of space debris. The increase of the

computational cost can be reduced by applying some parallelization

techniques.
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