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Presented in a three-dimensional structure called a hypercube, hyperspectral imaging suffers from a
large volume of data and high computational cost for data analysis. To overcome such drawbacks, prin-
cipal component analysis (PCA) has been widely applied for feature extraction and dimensionality re-
duction. However, a severe bottleneck is how to compute the PCA covariance matrix efficiently and avoid
computational difficulties, especially when the spatial dimension of the hypercube is large. In this paper,
structured covariance PCA (SC-PCA) is proposed for fast computation of the covariance matrix. In line
with how spectral data is acquired in either the push-broom or tunable filter method, different imple-
mentation schemes of SC-PCA are presented. As the proposed SC-PCA can determine the covariance
matrix from partial covariance matrices in parallel even without prior deduction of the mean vector,
it facilitates real-time data analysis while the hypercube is acquired. This has significantly reduced
the scale of required memory and also allows efficient onsite feature extraction and data reduction to
benefit subsequent tasks in coding and compression, transmission, and analytics of hyperspectral
data. © 2014 Optical Society of America
OCIS codes: (100.4145) Motion, hyperspectral image processing; (100.2960) Image analysis.
http://dx.doi.org/10.1364/AO.53.004440

1. Introduction

Hyperspectral imaging (HSI), through capturing data
from numerous and contiguous spectral bands, has
provided a unique and invaluable solution for a num-
ber of application areas. Due to the large spectral
range covered includingnot only visible light, likenor-
mal imagingdevices, but also (near) infraredandeven
ultraviolet, HSI is able to detect and identify the
minute differences of objects and even their changes
in terms of temperature and moisture. Consequently,

HSI is able to address traditional applications in
remote sensing, mining, agriculture, geology, and
military surveillance aswell asmanynewly emerging
lab-based data analyses. These new applications can
be easily found in security, food quality analysis, and
medical and pharmaceutical fields as well as counter-
feit goods and documents detection [1–6].

In HSI, as shown in Fig. 1, the captured data forms
a three-dimensional (3D) structure, namely a hyper-
cube, including a 2D spatial measurement and a
spectral dimension. As a result, the total data con-
tained can be indexed as HWB, where each of the
symbols refers to the height, width, and bands of the
hypercube, respectively. With the narrow band in
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nanometers for spectral sampling, HSI enables high
discrimination ability in data analysis at the cost
of extremely large data sets and computational
complexity.

Processing and analysis of a hypercube can be a
hard task. When the number of spectral bands ex-
ceeds 100, data processing on the hypercube appears
like video analytics, a really time-consuming and
memory-intensive problem. Moreover, large dimen-
sional data results in the curse-of-dimensionality is-
sue, also known as the Hughes effect [7]. As a result,
it is crucial to effectively reduce the data while main-
taining the analysis performance in this context.
Considering the high spectral resolution used, con-
siderable redundancy exists between neighboring
spectral bands, which enables the potential for data
reduction.

For dimension reduction in HSI, principal compo-
nent analysis (PCA) [8] has been widely applied
[9,10], becoming a reference technique in such a con-
text. However, for the 3D hypercube in Fig. 1, conven-
tional PCA analysis needs to convert the hypercube
into a B ×HW matrix to determine the relevant
covariance matrix. As the second dimension of the
matrix becomes extreme large, usually over 100
kilobytes, it introduces a fundamental difficulty in
calculating the covariance matrix. As a result, the
implementation often crashes due to memory and
computing problems.

In most cases, only a 2D data slice can be captured
as a subspace, in a sequential manner, to form a 3D
data cube. The method of data slicing and subspace
partition is actually determined by the process of
data acquisition, where the time gap between two se-
quential acquisitions can be potentially used for effi-
cient data analysis. Taking into account the HSI
acquisition technologies, the covariance matrix can
be more efficiently computed thanks to nature of
the hypercube. In this paper, four novel implementa-
tion schemes are proposed to calculate the overall
covariance matrix by accumulating a group of partial
covariance matrices, which can be obtained by much
smaller matrices in a real-time manner simultane-
ous to the acquisition process. Theoretical analysis
and experimental results have fully validated the ef-
fectiveness of the proposed approaches, where the
prior mean adjustment of data is not required to
facilitate the real-time implementation.

The remaining part of this paper is organized as
follows. Section 2 introduces some background of
the acquisition techniques used in HSI. In Section 3,
structured covariance PCA (SC-PCA) for efficient

computation of the covariance matrix in PCA is pro-
posed. Experiments and results are presented and
discussed in Section 4. Finally, some concluding re-
marks are summarized in Section 5.

2. Data Acquisition and Conventional PCA in HSI

The 3D hypercube is acquired by means of two most
representative HSI acquisition technologies, namely
sequential scanning and a tunable filter. Once the
hypercube is acquired, conventional PCA can be ap-
plied for dimensionality reduction. Relevant tech-
niques are briefed as follows.

A. Data Acquisition Techniques

There are several methods and proposals for HSI ac-
quisition. They can be generally classified as sequen-
tial, simultaneous, and pseudo-simultaneous [11,12]
depending on the way the acquisition is carried out.
Typical methods for acquiring a hypercube are se-
quential and can be divided into two main groups:
scanning and filter-based methods, the optic schemes
of which are shown in Fig. 2.

On one hand, scanning techniques are those where
partial scenes in the spatial domain along with their
corresponding spectra are obtained. In this case, the
spatially discrete acquisition is repeated several
times until the whole hypercube is generated. In that
sense, the scanning methods include pixel scanning,
where only one pixel is acquired in every step, and
line scanning, also known as push-broom, where sev-
eral pixels forming a row or a column in the spatial
scene are acquired simultaneously per step.

On the other hand, filter-based methods are able to
collect the entire spatial domain at a step but only for
a given wavelength of the total spectrum. Sequential
steps complete the hypercube by adding the spatial
scenes collected for every wavelength. Two different
versions are available in this kind of acquisition, de-
pending on whether the filter used to collect a specific
wavelength is passive or dynamic. While a passive
filter selects particular wavelengths, the dynamic
or tunable filter is ready for a definite range and
is much preferred.

Fig. 1. 3D hypercube in HSI.

Fig. 2. Optic scheme for (a) scanning methods and (b) tunable
filter.
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Therefore, Fig. 3 shows the different acquisition
methods in HSI, where the collection is sequential
and made in terms of pixel, row, column, or band
steps. In following sections, we introduce approaches
that take advantage of the hypercube structure and
its acquisition for efficiently constructing the covari-
ance matrix required in feature extraction and data
reduction techniques such as PCA.

B. Conventional PCA in HSI

PCA, also known as the Karhunen–Loeve transform,
has been widely used in dimensionality reduction
and feature extraction in HSI. Based on the covari-
ance matrix gained from the input data, a large num-
ber of correlated features are transformed into a
smaller set of uncorrelated ones, using orthogonal
projection and truncation in PCA. Accordingly, effi-
cient computation of the covariance matrix in HSI
is one key component for dimensionality reduction
and data analysis.

In conventional PCA, the hypercube is represented
in a matrix form, an image X called the data matrix
(see Fig. 4), where the columns correspond to the
samples (H ×W pixels) and the rows contain the dif-
ferent features (B spectral bands) from each sample.
PCA computation consists of three stages, where the
covariance matrix computation comes in first place
and is the stage on which the present work is focused.

Let us denote xn� �xn1; xn2;…; xnB�
T as the spectral

vector of a pixel in the hypercube, where n ∈ �1; HW�
and B is the number of spectral bands. Then, the
mean spectral vector of all these pixels can be ob-
tained as

x̄ �
1

HW

X

HW

n�1

xn: (1)

Accordingly, all the spectral vectors can be mean-
adjusted by subtracting from this mean spectral
vector as

pn � xn − x̄ n ∈ �1; HW�; (2)

where pn is the obtained mean-adjusted spectral vec-
tor (pixel) used for the covariance matrix calculation.

Let P � � p1 p2 � � � pHW � be a matrix formed by
the mean-adjusted spectral vectors, the covariance
matrix of X, C, can be further obtained as

C � Ef�xn − Efxng��xn − Efxng�
Tg � Efpnp

T
n g � PPT ;

(3)

where P ∈ RB×HW and C ∈ RB×B, with the dividing
term omitted for simplicity.

Conventional PCA suffers two main drawbacks
when applied to HSI. First, it requires the completed
hypercube to obtain the mean vector and mean-
adjusted data matrix P thus it cannot be imple-
mented in real time while the data is acquired.
Second, due to the extremely large dimension of the
matrix P, the calculation of the covariance matrix
usually causes memory and computation problems.
To solve such drawbacks, several SC-PCA appro-
aches are proposed in the next section.

3. Proposed SC-PCA

For efficient computation of the covariance matrix,
four SC-PCA schemes are proposed. By taking ad-
vantage of the 3D hypercube structure and the HSI
acquisition process, sliced data partitions are se-
quentially acquired and accessed to compute partial
covariance matrices even in real time. Since the ma-
trix sizes by which we obtain the partial covariance
matrices are much smaller, this has significantly re-
duced the overall memory requirement in determin-
ing the covariance matrix.

In the real-time case, when the partial covariance
matrices are separately computed without adjusting
by the mean vector, a mean correction stage is re-
quired, where the way the correction matrix can also
be determined in real-time is derived as well. In ad-
dition, the proposed approaches can be easily imple-
mented in parallel with multiple threads for further
improved efficiency.

In Fig. 5, conventional PCA is compared with our
proposed strategies for SC-PCA implementation. In
total, four different schemes are used in SC-PCA, in-
cluding pixel-based, row-based, column-based, and
band-based approaches. For clarity, symbols, nota-
tions, and main equations used in the conventional
PCA and our proposed SC-PCA are summarized in
Table 1 for comparisons. Detailed discussions andFig. 3. Different techniques in acquiring a 3D hypercube.

Fig. 4. Data matrix in conventional PCA.
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comparisons of these approaches are presented as
follows.

A. Pixel-Based SC-PCA Scheme

In the pixel-based scheme, a single spectral pixel pn
coming from the pixel scanning method is employed
to obtain the partial covariance matrix, where n ∈
�1; HW� and pn ∈ RB×1,

C�pixel� �
X

HW

n�1

C
�pixel�
n ; C

�pixel�
n � pnp

T
n : (4)

As can be seen, the covariance matrix C�pixel� is ob-
tained by accumulating a group of partial covariance
matrices C

�pixel�
n , where the matrix to compute the

partial covariance is actually the vector pn whose
dimension is B × 1 in comparison to B ×HW in con-
ventional PCA. However, the number of partial
covariance matrices has increased to HW.

B. Row-Based SC-PCA Scheme

In the row-based scheme, 2D planes are defined along
the row direction of the hypercube, as a particular

case of push-broom or line scanning. Let P
�R�
h ∈

RB×W (partition by row) denote one of these 2Dplanes,

where h ∈ �1; H�. In fact, each 2D image P
�R�
h is ex-

tracted as

P
�R�
h � � ph ph�H � � � ph��W−1�H �B×W : (5)

Consequently, the covariance matrix C�Row� can be
derived as the summation of H partial covariance

matrices obtained from P
�R�
h as follows:

C�Row� �
X

H

h�1

C
�Row�

h ; C
�Row�

h � P
�R�
h �P

�R�
h �

T
; (6)

where the covariance matrix C�Row� ∈ RB×B is ob-
tained by accumulating a group of partial covariance

matricesC�Row�

h . Note that the partial covariance is de-

fined on P
�R�
h , which has a much reduced dimension of

B ×W rather than B ×HW in conventional PCA.

C. Column-Based SC-PCA Scheme

In the column-based scheme, 2D planes are defined
along the column direction of the hypercube, as the
alternative to the row-based approach in the push-

broom scanning method. Let P
�C�
w ∈ RB×H (partition

by column) denote one of these 2D planes, where

w ∈ �1;W�. The 2D image P
�C�
w is extracted as

P
�C�
w � �p1�H�w−1� p2�H�w−1� � � � pH�H�w−1� �B×H :

(7)

Accordingly, the covariance matrix C�Col� can be ob-
tained via summation of W partial covariance matri-

ces obtained from P
�C�
w as follows:

C�Col� �
X

W

w�1

C
�Col�
w ; C

�Col�
w � P

�C�
w �P

�C�
w �

T
; (8)

Fig. 5. Comparison between the conventional PCA and the proposed approaches with SC-PCA from the HSI hypercube in determining
the covariance matrix.

Table 1. Symbols, Notations and Major Equations Used in Conventional PCA and the Proposed SC-PCA

Method Data Matrix/Vector Used Covariance Matrix (Partial) Covariance Matrix (Full)

Conventional PCA P � �p1 p2 � � � pHW � ∈ RB×HW C � PPT ∈ RB×B

Pixel-based SC-PCA pn ∈ RB×1 C
�pixel�
n � pnp

T
n ; n ∈ �1; HW� C�pixel� �

P

HW
n�1

C
�pixel�
n

Row-based SC-PCA P
�R�
h ∈ RB×W C

�Row�

h � P
�R�
h �P

�R�
h �

T
; h ∈ �1;H� C�Row� �

P

H
h�1

C
�Row�

h

Column-based SC-PCA P
�C�
w ∈ RB×H C

�Col�
w � P

�C�
w �P

�C�
w �

T
; w ∈ �1;W� C�Col� �

P

W
w�1

C
�Col�
w

Band-based SC-PCA P
�B�
b ∈ RH×W C�Band��i; j� � vec�P�B�

b�i��vec�P
�B�
b�j��

T
; i; j ∈ �1; B�
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where the partial covariance matrix is sized of B × B.
Again the covariance matrix is obtained by accumu-

lating a group of partial covariance matrices C
�Col�
w ,

where the matrix to compute the partial covariance
has a much reduced dimension of B ×H rather than
B ×HW in conventional PCA.

D. Band-Based SC-PCA Scheme

Different from the abovementioned three SC-PCA
approaches, the band-based SC-PCA scheme is de-
rived from a tunable-filter-based data acquisition
process, where all the spatial information is captured
for a selected wavelength by tuning the optic part of
the system. Let us define 2D planes along the band

direction of a hypercube as P�B�
b ∈ RH×W (partition by

spectral band), where b ∈ �1; B�. The 2D image P
�B�
b

can be represented as

P
�B�
b �

2

6

6

4

p1�b� � � � pH�W−1��1�b�

.

.

.
.
.

.
.
.
.

pH�b� � � � pHW�b�

3

7

7

5

: (9)

Note that the selected data partition P
�B�
b contains

all pixels in only one specified spectral band rather
than the whole spectrum. This fundamental differ-
ence has led to the computation of partial covariance
matrices, an impossible task as implemented in
other SC-PCA approaches. As a result, element-
based covariance matrix computation is employed
as explained below.

For an element in position �i; j� of the final covari-
ance matrix, we have that

C�Band��i; j� � vec�P�B�
b�i��vec�P

�B�
b�j��

T
; (10)

where vec�� transforms the 2D plane P
�B�
b into a vec-

tor in R1×HW , resulting in a scalar value from the
multiplication in Eq. (10). The overall covariance ma-
trix is obtained by progressive inclusion of elements
�i; j� derived from bands i and j, respectively, where
the vectors to compute these elements have a much
reduced dimension of 1 ×HW rather than B ×HW in
conventional PCA.

E. Mean Correction for Real-Time Computation

Note that the proposed schemes can be directly ap-
plied on the whole hypercube when the data acquis-
ition process is completed, which results in a much
reduced memory requirement in determining the
covariance matrix. However, the main idea here is
to apply these approaches during the acquisition
stage for fast computation of the covariance matrix
even without parallel implementation, as suggested
in [13,14].

For simultaneous data acquisition and PCA
processing, sequentially obtained partitions of data
are not mean-adjusted. As a result, instead of using

the partitions pn, P
�R�
h , and P

�C�
w for pixel-, row-, and

column-based schemes, respectively, only the non-
mean-adjusted equivalent partitions, namely xn,

X
�R�
h , and X

�C�
w , can be used in these three real-time

implementation schemes. Note that in the band-
based SC-PCA scheme the initial mean adjustment
in Eq. (2) is feasible as all pixel values from the same
wavelength are available when sequentially col-
lected band by band. As a result, the mean correction
is not needed for band-based SC-PCA.

Taking the pixel-based approach for example, se-
quentially obtained pixels xn are not mean-adjusted
as in the conventional PCA (1,2). Hence a correction
factor M from the mean spectral vector x̄ in Eq. (1)
must be applied:

pnp
T
n � xnx

T
n �M

�pixel�
n M

�pixel�
n � x̄ x̄T − xnx̄

T
− x̄xTn ;

(11)

where M
�pixel�
n ∈ RB×B is made by the corresponding

pixel xn and x̄, and its construction can be easily
understood by thinking in terms of the product of
subtracted values,

pn�i�pn�j� � �xn�i� − x̄�i���xn�j� − x̄�j��

� xn�i�xn�j� � x̄�i�x̄�j� − xn�i�x̄�j� − x̄�i�xn�j�:

(12)

Therefore, for real-time processing, the covariance
matrix obtained by the pixel-based SC-PCA now is

C�pixel� �
X

HW

n�1

xnx
T
n �

X

HW

n�1

M
�pixel�
n : (13)

In the row-based approach, a correction factor M
must be applied again, similar to the pixel-based
case:

P
�R�
h �P

�R�
h �

T
� X

�R�
h �X

�R�
h �

T
�M

�R�
h M

�R�
h

� x̄ x̄T − X
�R�
h �x̄ � � � x̄�TB×W − �x̄ � � � x̄�B×W �X

�R�
h �

T
;

(14)

where M
�R�
h ∈ RB×B is made by the corresponding

partition or subspace X
�R�
h and x̄. Now the covariance

matrix is obtained, again adding the correction factor
at the end of the acquisition:

C�Row� �
X

H

h�1

X
�R�
h �X

�R�
h �

T
�

X

H

h�1

M
�R�
h : (15)

Analogously to the row-based approach, a correction
is added in the column-based case:
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P
�C�
w �P

�C�
w �

T
� X

�C�
w �X

�C�
w �

T
�M

�C�
w M

�C�
w

� x̄ x̄T − X
�C�
w �x̄ � � � x̄�TB×H − �x̄ � � � x̄�B×H �X

�C�
w �

T
;

(16)

where M
�C�
w ∈ RB×B is made by the corresponding

partition or subspace X
�C�
w and x̄. Finally, a similar

expression to the other cases but now using column-
based partitions is achieved:

C�Col� �
X

W

w�1

X
�C�
w �X

�C�
w �

T
�

X

W

w�1

M
�C�
w : (17)

The correction elements in Eqs. (13), (15), and (17)
are in fact equivalent to each other and can be com-
puted in the same way for these three approaches as
a correction matrix CM ∈ RB×B:

CM �
X

HW

n�1

M
�pixel�
n �

X

H

h�1

M
�R�
h �

X

W

w�1

M
�C�
w

�
X

HW

n�1

�x̄ x̄T − xnx̄
T
− x̄xTn �: (18)

In addition, it is unnecessary to wait until the end of
the acquisition process in order to start determining
the correction matrix. Taking the pixel-based SC-
PCA for example; an element �i; j� in the correction
matrix CM can be expressed as

CM�i; j� �
X

HW

n�1

x̄�i�x̄�j� −
X

HW

n�1

xn�i�x̄�j� −
X

HW

n�1

x̄�i�xn�j�

� HW�x̄�i�x̄�j�� − x̄�j�
X

HW

n�1

xn�i� − x̄�i�
X

HW

n�1

xn�j�;

(19)

where the second and third element, multiplying and
dividing by the same factor, can be obtained as

x̄�j�HW
1

HW

X

HW

n�1

xn�i� � x̄�j�HWx̄�i�

x̄�i�HW
1

HW

X

HW

n�1

xn�j� � x̄�i�HWx̄�j�: (20)

Accordingly, we can further define correction matrix
CM as

CM�i; j� � −HWx̄�i�x̄�j�: (21)

And finally, CM can be obtained by

CM�i; j� � −

1

HW

X

HW

n�1

xn�i�
X

HW

n�1

xn�j�: (22)

As a result, elements in the correction matrix can
be obtained by accumulating the values in line with
the process when the data is acquired. Finally, the
covariance matrices in pixel-, row-, and column-
based SC-PCA approaches can be, respectively,
obtained by correction using CM as follows:

C�pixel� �
X

HW

n�1

xnx
T
n � CM

C�Row� �
X

H

h�1

X
�R�
h �X

�R�
h �

T
� CM

C�Col� �
X

W

w�1

X
�C�
w �X

�C�
w �

T
� CM: (23)

F. Equivalency of the Approaches

It is worth noting that these four proposed strategies
are in fact equivalent to the conventional PCA. Below
we will show how the pixel-based SC-PCA scheme is
actually equal to the conventional PCA.

In conventional PCA, the covariance matrix C is
defined by C � PPT ∈ RB×B from Eq. (3). For each
element �i; j�, it can be expressed as

C�i; j� �
X

HW

n�1

pn�i�pn�j�: (24)

On the other hand, in the pixel-based approach, the
partial covariance matrix is determined by

C
�pixel�
n � pnp

T
n

�

2

6

6

4

pn�1�pn�1� � � � pn�1�pn�B�

.

.

.
.
.

.
.
.
.

pn�B�pn�1� � � � pn�B�pn�B�

3

7

7

5

B×B

: (25)

According to Eq. (4), the covariance matrix can be
obtained by accumulating these partial covariance
matrices as

C�pixel��
X

HW

n�1

C
�pixel�
n

�

2

6

6

6

4

P

HW
n�1

pn�1�pn�1� ���
P

HW
n�1

pn�1�pn�B�

.

.

.
.
.

.
.
.
.

P

HW
n�1

pn�B�pn�1� ���
P

HW
n�1

pn�B�pn�B�

3

7

7

7

5

B×B

:

(26)

If we compare Eqs. (24) and (26), it is apparent that
the pixel-based SC-PCA approach generates the
same covariance matrix as conventional PCA does;
hence the two approaches are equivalent to each
other. Similar mechanisms can be also used to prove
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the equivalency of the conventional PCA to other pro-
posed SC-PCA approaches.

4. Experimental Results

The proposed approaches have been implemented
using Matlab, along with the conventional PCA, yet
the achieved results are independent of any specific
programming language. With the extracted principal
components from various PCA schemes, a support
vector machine (SVM) takes them as input vectors
for data classification.Corresponding results are then
compared to validate the effectiveness of these
SC-PCA schemes. Four stages of the experimental
setup, including data description, data conditioning,
feature extraction, and data classification, are dis-
cussed in detail as follows, along with the results.

A. Data Description

The Airborne Visible/InfraRed Imaging Spectrom-
eter (AVIRIS) is a sensor instrument widely used
by HSI researchers for data acquisition, delivering
calibrated images in 224 contiguous bands with spec-
tral wavelengths ranging from 400 to 2500 nm [15].
Another well-known remote sensing instrument is
the Reflective Optics System Imaging Spectrometer
(ROSIS), providing 114 bands with a spectral range
between 430 and 860 nm [16]. Finally HYPERION,
aboard the EO-1 spacecraft, is able to provide scenes
with more than 200 spectral bands in the range 400–
2500 nm from on-orbit missions [17]. Using the above
three sensors, three publicly available data sets with
defined ground truth [18] are used in our experi-
ments for quantitative performance evaluation.

First, the AVIRIS Indian Pines data set, as shown
in Fig. 6, was collected over an agricultural study site
in northwest Indiana in United States. The image is
made of 145 × 145 pixelswith 220 spectral reflectance
bands in the wavelength range 400–2500 nm. This
data set is for land usage evaluation purpose, where
sixteen land cover classes are labeled in the image,
presenting mostly agriculture, forest, and perennial
vegetation.

Second, the ROSIS Pavia University A data set
(Pavia UA, shown in Fig. 7), corresponding to

northern Italy, is a subscene made of 150 × 150 pix-
els, with 114 spectral bands at a geometric resolution
of 1.3 m. A total number of eight classes can be differ-
entiated in its ground truth, corresponding to mead-
ows, asphalt, bare soil, and trees, among others.

Finally, the HYPERION Botswana A data set (see
Fig. 8), a 75 × 300 pixels subscene extracted from the
image taken over the Okavango Delta in Botswana,
is used, providing 242 spectral bands in the range
400–2500 nm. With a 30 m resolution, the ground
truth contains five classes corresponding to different
acacia and mopane land cover types.

B. Data Conditioning

No specific data conditioning has been applied, except
as recommended by others [18] to remove certain
bands affected by severe noise or water absorption.
After this preprocessing, the number of bands for
AVIRIS Indian Pines data set is reduced from 220
to 200. For ROSIS Pavia UA and HYPERION
Botswana A data sets, their number of bands is
reduced from 114 to 103 and from 242 to 145, respec-
tively. These data are then taken as input to the PCA
for feature extraction.

C. Feature Extraction

Taking the spectral data as input, PCA is applied on
such data to extract features for the following

Fig. 6. One band image at a wavelength of 667 nm (left) and the
ground truth maps (right) for the Indian Pines data set.

Fig. 7. One band image at a wavelength of 521 nm (left) and the
ground truth maps (right) for the Pavia UA data set.

Fig. 8. One band image at a wavelength of 671 nm (top) and the
ground truth maps (bottom) for the Botswana A data set.
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classification tasks. Implemented in Matlab, the con-
ventional PCA and the proposed SC-PCA strategies
are employed for feature extraction, respectively.
Therefore, in total five approaches are compared,
which include

– Conventional PCA (PCA)
– Pixel-based SC-PCA (SC-PCA/P)
– Row-based SC-PCA (SC-PCA/R)
– Column-based SC-PCA (SC-PCA/C)
– Band-based SC-PCA (SC-PCA/B).

D. Data Classification

The SVM classifier is implemented using LIBSVM
[19], a publicly available library with interface to
Matlab. Although the classifier supports several ker-
nels including linear, polynomial, and Gaussian ra-
dial basis function (RBF), it is found that the
Gaussian RBF kernel produces particular good re-
sults. Consequently, the RBF kernel is selected in all
our experiments, and this is consistent with findings
from many other researchers [20,21]. To learn the
SVM model, the training ratio is always fixed at a
relatively low value of 30%. The number of PCA re-
duced components is tested on the interval 1–10.

The data sets are randomly split for training and
testing by stratified sampling inside each class in the
ground truth. This is repeated 10 times providing a
total of 10 possible experiments. Two parameters for
the RBF kernel, the penalty C and the gamma γ, are
optimized for every experiment in the training proc-
ess through a grid search. For the five PCA ap-
proaches, the mean classification rate in terms of
overall accuracy and the standard deviation over
the 10 experiments are obtained for performance
evaluation. These are reported in the following.

E. Results and Discussion

First of all, classification rates using features from
the different PCA approaches is compared in Table 2,
where the numbers of principal components used for
classification is 10. As can be seen, the results from
these five PCA approaches are exactly the same.

In Fig. 9, the classification rate under different
numbers of PCA components, 1–10, is compared
for the three data sets. The general behavior is an
increment along with more components, yet it shows
a fast increase for the Pavia UA and the Botswana A
data sets when the number of PCA components
changes from 1 to 2. For the Indian Pines data set,
the increment is modest for the first 3 or 4 PCA com-
ponents. When the number of PCA components is 5

and over, the increment is small and becomes quite
stable when the number reaches 10. All the classifi-
cation rates shown can be achieved by any of our pro-
posed schemes with no difference, proving therefore
their mathematical equivalency.

In Table 3, memory requirements for the five
approaches over the three different data sets are
compared, where the data format used in Matlab
is double (float), that is, 8 bytes for each data value.
Conventional PCA in a Matlab environment needs
massive contiguous memory in calculating the
covariance matrix, yet the proposed approaches have
significantly reduced this requirement. In fact, as
shown in Table 3, the ratio of memory reduction in
the pixel-, row-, column-, and band-based schemes
is HW, H, W, and B, respectively.

Regarding the computational complexity, the num-
ber of multiplications and additions needed for the
five approaches are given in Table 4 for comparison.

Table 2. Means and Standard Deviations of the Classification Rate

(%) for the Three Data Sets with 10 Principal Components

Method Indian Pines Pavia UA Botswana A

PCA 80.24� 0.31 96.93� 0.20 94.34� 1.67
SC-PCA/P 80.24� 0.31 96.93� 0.20 94.34� 1.67
SC-PCA/R 80.24� 0.31 96.93� 0.20 94.34� 1.67
SC-PCA/C 80.24� 0.31 96.93� 0.20 94.34� 1.67
SC-PCA/B 80.24� 0.31 96.93� 0.20 94.34� 1.67

Fig. 9. Classification rate (%) using 1–10 components extracted
for the three data sets.

Table 3. Matrix Sizes and Memory Requirements (kB) in the Covariance

Matrix Computation for the Three Data Sets

Method Matrices Size Indian Pines Pavia UA Botswana A

PCA B ×HW 33,640 18,540 26,100
SC-PCA/P B × 1 1.6 0.83 1.2
SC-PCA/R B ×W 232 124 348
SC-PCA/C B ×H 232 124 87
SC-PCA/B 1 ×HW 168 180 180

Table 4. Number of Multiplications and Additions in the Covariance

Matrix Computation for Conventional PCA and the SC-PCA Schemes

When Applied on the Whole Hypercube

Method Multiplications Additions

PCA B� B2HW B�2HW − 1� � B2�HW − 1� � 0

SC-PCA/P B� B2HW B�2HW − 1� � 0� B2�HW − 1�

SC-PCA/R B� B2HW B�2HW − 1� � B2H�W − 1� � B2�H − 1�

SC-PCA/C B� B2HW B�2HW − 1� � B2�H − 1�W � B2�W − 1�

SC-PCA/B B� B2HW B�2HW − 1� � B2�HW − 1� � 0
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The multiplications contain two parts: the first is for
the mean-adjustment implementation, while the sec-
ond is for the covariance matrix construction. On the
other hand, the additions needed contain three parts:
the first for the mean adjustment, the second for
calculating the partial covariance matrices, and the
third for their summation. Not surprisingly, the
number of required multiplications and additions
is exactly the same, yet these operations are differ-
ently distributed.

In the following, the numbers of multiplications
and additions needed for real-time covariance com-
putation in the four SC-PCA approaches are com-
pared. In Table 5, the computational complexity in
each loop is shown. As can be seen, SC-PCA/P has
the minimum required computations in each loop,
yet it takes HW sequential scans to complete the
acquisition process. In contrast, the other three
SC-PCA approaches have more computations in each
loop, yet the overall number of sequential scans is
much reduced. The total computational cost in com-
puting the covariance matrix for all the SC-PCA
approaches is almost the same.

Also a comparison based on the running time is
employed to assess the efficiency of different schemes
used. As shown in Fig. 10, though the band-based
approach is the most efficient among the group of
four approaches, pixel-, row-, and column-based

schemes only need a few extra milliseconds to
complete the covariance matrix computation, dra-
matically reducing the time consumed by the conven-
tional PCA. This has clearly proven that all the
proposed SC-PCA approaches outperform the con-
ventional PCA in terms of significantly improved
efficiency.

Finally, it is worth noting that based on the sym-
metry of the covariance matrix, its computational
cost can be further reduced approximately from B2

to B�B� 1�∕2 as explained in [13]. However, for sim-
plicity this point as well as the potential for parallel
implementation or calibration error is not considered
in this paper.

5. Conclusions

No matter how the HSI data is acquired, conven-
tional PCA can only be implemented offline as it re-
quires the mean vector and the covariance matrix to
be first obtained from the fully completed hypercube.
As a result, it also suffers from a large amount of
memory needed in computing the covariance matrix.
In line with the way the hypercube is acquired, four
different SC-PCA schemes are proposed to determine
the covariance matrix in a real-time manner while
the data is acquired. Theoretical analysis and exper-
imental results have verified the equivalency of the
SC-PCA approaches to the conventional PCA. Conse-
quently, the proposed approaches have great poten-
tial to facilitate the subsequent data processing and
analytics in terms of much improved efficiency and
significantly reduced memory requirement. Never-
theless, a much reduced memory requirement can
also be achieved in efficient computation of the
covariance matrix when implementing the proposed
schemes on the completed hypercube. In addition, as
the partial covariance matrices can be separately
computed, parallel implementation can be intro-
duced to further improve the computational effi-
ciency. Future work will focus on optimization of
other feature extraction algorithms, such as singular
spectrum analysis, folded PCA, and non-PCA-based
approaches [22–24].
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