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Markovian Approximation of Classical Open Systems
M.Ottobre

Mathematics Department Imperial College London 180 Queen’s Gate London SW7 2AZ

Abstract. We discuss exponential convergence to equilibrium for dissipative Markovian systems generated by hypoelliptic
non-selfadjoint operators and we present a method to determine the exact rate of convergence to equilibrium. The main
example that we will consider is a class of Markovian approximations of the Generalized Langevin equation (GLE).
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INTRODUCTION

The Generalized Langevin Equation (GLE),

q̈(t) =−∂qV (q)−
∫ t

0
dsγ(t− s)q̇(s)+F(t), (1)

is a popular model for a particle immersed in a heat bath and has proven to be a very efficient tool in molecular
dynamics. In (1), q(t) represents the position of the distinguished particle (here q(t) ∈ R just for simplicity, the
equation can be rewritten in R

n), V (q) is a confining potential, γ(t) is a smooth kernel and F(t) is a mean zero
stationary Gaussian process. Noise and memory kernel are related through the fluctuation dissipation principle

E(F(t)F(s)) = β−1γ(t− s), (2)

i.e., the correlation function of the noise is proportional to the memory kernel through a constant β (inverse temperature
of the bath). From now on we set β = 1. For a derivation of the GLE see [14]. The GLE is a stochastic integro-
differential equation and, for an arbitrary choice of the kernel γ(t), it is in general non-Markovian. Though, for some
specific choices of the kernel γ(t), it is equivalent to a Markovian dynamics in an extended state space. If, for example,

we choose γ(t) = λ 2e−|t|, then (1) becomes (see [1]){
q̇ = p
ṗ = −∂qV (q)−λ 2

∫ t
0 dse−(t−s)p(s)+F(t),

(3)

and the fluctuation dissipation theorem yields E(F(t)F(s)) = λ 2e−|t−s|. If we write F(t) = λv(t), with v(t) satisfying

the equation v̇ =−v+
√

2Ẇ , and we define the new process

u(t) =−λ
∫ t

0
e−(t−s)p(s)ds+ v(t), (4)

then (3) becomes ⎧⎨
⎩

q̇ = p
ṗ = −∂qV +λu
u̇ = −λ p−u+

√
2Ẇ .

As observed in [5], the general form of a Markovian system of ODEs which approximates the dynamics (1) reads as
follows :

dq = pdt (5a)

d p = −∂qV (q)dt +Λ ·udt (5b)

du = (−pΛ−Au)dt +C dW(t) , (5c)
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where (q, p) ∈R
2, u and Λ are column vectors of Rd , · denotes Euclidean scalar product, W(t) = (W1(t), . . . ,Wd(t)) is

a d-dimensional Brownian motion and A and C are constant coefficients d×d matrices, related through the fluctuation
dissipation principle, which in the present case reads

A+AT =CCT . (6)

In (5), q and p are the position and momentum of the distinguished particle and the variables (u1, . . . ,ud) describe
the heat bath. The "Markovianization" of (1) was first done by Mori ([10]) by first approximating the Laplace
transform of the memory kernel γ(t), γ̃(ξ ), by a rational function (if and when this is possible) and then imposing
the fluctuation relation, which gives the matrices A and C as well as the vector Λ. If γ(t) itself is a sum of exponentials,
γd(t) = ∑d

i=1 λ 2
i e−αit , t > 0, then γ̃d(ξ ) = ∑d

i=1 λ 2
i /(ξ +αi), so the procedure indicated by Mori is clearly successful

and it corresponds to the case in which A = diag{α1, . . . ,αd} and Λ = (λ1, . . . ,λd)
T , i.e. system (5) reduces to

dq(t) = q(t)dt (7a)

d p(t) = −∂qV (q(t))dt +
d

∑
j=1

λ ju j(t)dt (7b)

du j(t) = −λ j p(t)dt−α ju j(t)dt +
√

2α jdWj , (7c)

for j = 1, . . . ,d, α j > 0 and λ j > 0. The notation for q and p in (5) and (7) should include a subscript d, i.e. qd , pd ,
as the solution will depend on the number of heat bath variables u j; we drop the subscript for notational convenience.
Another typical situation is when the Laplace transform of γ has a continued fraction representation

γ̃(ξ ) =
ε2

1

ξ +θ1 +
ε2

2

ξ+θ2+
. . .

, θi > 0.

In this case the approximation is done by truncating the fraction at step d and then reading off the corresponding
Markovian system of (d +2) SDEs. The matrix A is then tridiagonal,

A =

⎛
⎜⎜⎜⎜⎝

θ1 −ε2

ε2 θ2
. . .

. . .
. . .

θd

⎞
⎟⎟⎟⎟⎠

and Λ = (ε1,0, . . . ,0)
T . It was observed by Eckmann, Pillet and Rey-Bellet (see [15, 2, 3] and references therein)

that when the memory kernel γ(t) has a rational spectral density, then the GLE is equivalent to a finite dimensional
Markovian system. This system is obtained by adding a finite number of additional degrees of freedom which account
for the memory in the system.

RATE OF EXPONENTIAL CONVERGENCE

To simplify matters, let us consider system (7) from now on and set d = 1 and λ = α = 1. Several properties of system
(7), including ergodicity, exponential decay to equilibrium and homogenization, were studied in [11]. We will use the
notation x(t) = (q(t), p(t),u(t)). It can be shown that system (7) is ergodic, i.e. it admits a unique invariant measure
μ(dx) = ρ(x)dx, with

ρ(x) =
1

Z
exp

[
−
(

V (q)+
p2

2
+

u2

2

)]
and Z is a normalization constant. The generator of (7) is then given by

L = p∂q−∂qV ∂p +u∂p− p∂u−u∂u +∂ 2
u . (8)

L is hypoelliptic and hypocoercive ([16]). We will define a Markov process to be hypoelliptic or hypocoercive when
its generator is hypoelliptic or hypocoercive, respectively. We recall that, roughly speaking, an operator L is said to
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be hypoelliptic when, for every distribution f , the sets where f and L f are C∞ functions do coincide. By a physical
point of view, L is hypoelliptic because in system (7) noise acts directly only on the heat bath variables, and is then
transmitted to the position and momentum variables. The theory of hypocoercivity refers to dissipative (and usually)
Markovian evolutions whose generator can be written in the form

−L = B+
r

∑
i=1

A ∗
i Ai,

where A ∗
i denotes the adjoint of Ai in the space L2

ρ := { f ∈ L2 :
∫

f dμ < ∞} and μ is the invariant measure of the

system, with density ρ with respect to the Lebesgue measure. The operator B is assumed to be antisymmetric in L2
ρ ,

whereas ∑r
i=1 A ∗

i Ai is clearly symmetric; hence the dynamics is nicely decomposed into a conservative (deterministic)
part, described by B and a stochastic (dissipative) component, described by ∑r

i=1 A ∗
i Ai. Appropriate bounds on the

successive commutators between the Ai
′s and B together with a Poincaré inequality (see [16, Theorem 24]) guarantee

hypocoercivity, that is, exponential convergence to equilibrium: there exist κ,c> 0 such that

‖ etL h ‖H̃≤ κe−ct ‖ h ‖H̃ ∀h ∈ H̃ and t ≥ 0, (9)

where H̃ is an appropriate Hilbert space, typically the Sobolev space H1 weighted by the invariant measure (modulo
constants). This framework directly applies to the generator L in (8), when we set

A =−∂u and B =−(p∂q−∂qV ∂p +u∂p− p∂u).

However, the theory of hypocoercivity does not offer a systematic way to calculate the rate of exponential convergence
to equilibrium, i.e. the constant c in (9). If c̃ is the (nonzero) eigenvalue of −L with smallest real part, then c is
precisely the real part of c̃. When V (q) = q2/2, in order to calculate c, we regard the operator L by the point of view
of semiclassical analysis, using in particular the singular space theory (SST), [4]. Indeed, L is a quadratic operator, i.e.
a pseudodifferential operator, defined in the Weyl quantization ([6]) by symbols l(x,ξ ), with (x,ξ ) ∈ R

n×R
n, which

are complex-valued quadratic forms (in the example at hand, n= d+2). These operators are differential operators with
simple and fully explicit expression. Indeed, the Weyl quantization of the quadratic symbol xα ξ β , with (α ,β ) ∈ N

2n,
(α +β ) = 2, is the differential operator

xα Dβ
x +Dβ

x xα

2
, Dx = i−1∂x.

(For example, if x j is the j-th coordinate of x, the operator associated with the symbol x jξk is −ix j∂xk + δ{ j=k} 1
2 .) In

this way, the Weyl symbol of L (more precisely of −L −1/2) is the quadratic form

l(q, p,u,χ ,η ,ζ ) =−i(pχ−qη +uη− pζ −uζ )+ζ 2.

Uniquely associated to the quadratic form l there is a matrix, the Hamilton map F , defined through the relation

l
(
(x,ξ );(y,η)

)
= θ

(
(x,ξ ),F(y,η)

)
, (x,ξ ) ∈ R

2n,(y,η) ∈ R
2n, (10)

where l
(
·; ·
)

stands for the polarized form associated to the quadratic form l and θ is the canonical symplectic form

θ
(
(x,ξ ),(y,η)

)
= ξ y− xη , (x,ξ ) ∈ R

2n,(y,η) ∈ R
2n. (11)

In other words, F is the matrix associated to the quadratic form l when we consider the symplectic scalar product
instead of the usual Euclidean one. For any quadratic operator whose symbol has a positive real part, Re l≥ 0, it was
pointed out in [4] the existence of a particular linear vector space S in the phase space R

2n, intrinsically associated to
the symbol l and called singular space, which plays a basic role in the understanding of the properties of non-elliptic
quadratic operators,

S =
2n−1⋂
j=0

Ker
[
Re F(Im F) j]. (12)

In particular, consider an (in general non-elliptic) quadratic operator G whose symbol l has a non-negative real part,
Re l≥ 0, and such that S = 0. Then G is hypoelliptic and its spectrum is an integer combination of the eigenvalues of
the matrix F ([12], [4]):

σ
(
G ) =

{
∑

ν∈σ(F)
−iν∈C+

(
rν +2kν

)
(−iν) : kν ∈ N,

}
(13)
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where rν is the algebraic multiplicity of the eigenvalue ν ∈ σ(F) and C+ = {z ∈ C : Re z > 0}. If H is an operator
(bounded or unbounded) we denoted by σ(H) the spectrum of H. We can apply this machinery to the degenerate
Ornstein-Uhlenbeck (O-U) process (14), where X ∈R

n and B and Σ are (nonzero) constant coefficients n×n matrices
with det(Σ) = 0. Indeed the generator of (14), say H , has quadratic Weyl symbol. Employing the SST we can show
that the spectrum of the hypoelliptic O-U process (14) depends only on the drift matrix B.

Proposition 1. Suppose σ(B)⊂C+. Then the singular space S associated with H is trivial if and only if the process

dX(t) =−BX(t)dt +ΣdW (14)

is hypoelliptic.

Proposition 2. Suppose that the singular space associated with H is zero. Then H is hypoelliptic and its spectrum
depends only on the drift matrix B; in particular

σ(H ) =

{
− ∑

μ∈σ(B)
μkμ , kμ ∈ N

}
. (15)

The proof of the above two propositions as well as more detailed information on the hypoellipticity of (14) can be
found in [13] and references therein. An analogous result to Proposition 2 had been obtained in [9] using different
techniques. Proposition 1 and 2 apply to the Markovian approximations of the GLE, (5), when V (q) is quadratic.
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