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Plasma-induced nonlinear optical phenomena in gas-filled
hollow-core PCFs

Fabio Biancalana and Mohammed F. Saleh

Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen, Germany

Abstract. By using a new theoretical framework based on equations for the electric field envelope, we provide a complete
theoretical explanation of several plasma-induced nonlinear optical phenomena, including the soliton self-frequency blueshift,
recently observed experimentally in a gas-filled hollow-core PCF.
Keywords: Solitons, plasma physics, photonic crystal fibers, modulational instability, supercontinuum
PACS: 42.65.Re, 42.81.Dp, 42.65.Ky

Hollow-core photonic crystal fibre (HC-PCF) [1] with
a kagomé-lattice cladding has recently been shown to be
optimal for the investigation of broadband light-matter
interactions between intense optical pulses and gaseous
media. These fibers typically show transmission bands
covering the visible and near-IR parts of the spectrum
with relatively low loss and low group velocity disper-
sion (GVD), absence of surface modes, and high confine-
ment of light in the core. Filled with a noble gas, they
have recently been used in high-harmonic [2] and effi-
cient deep UV generation from fs pump pulses at 800 nm
[3]. It has been previously shown that the Raman thresh-
old can be drastically reduced in a HC-PCF filled with
a Raman-active gas (such as H2) [4]. The system can
be used for detailed experimental studies of, e.g., self-
similar solutions of the sine-Gordon equation [5] and
backward stimulated Raman scattering [6, 4]. The con-
cept of soliton self-frequency blue-shift was introduced
and predicted in [7]. A soliton blue-shift has been re-
cently observed in tapered solid-core photonic crystal
fibers where the zero-dispersion wavelength varies along
the fiber [8]. In conventional bandgap-guiding gas-filled
HC-PCFs, which have narrow bands of transmission, a
limited ionization-induced blue-shift of guided ultrashort
pulses has been reported [9]. In a recent groundbreak-
ing experiment, ultrafast nonlinear dynamics in the ion-
ization regime has been studied experimentally in Ar-
filled kagomé-style HC-PCF [10]. The reasons for the
success of kagomé HC-PCF in these applications are:
(i) a group velocity dispersion (GVD) that is remarkably
small [|β2| < 10 fs2/cm ≡ 1 ps2/km from 400 to 1000
nm, see Fig. 1(a)] in comparison to solid-core fibers; (ii)
the gas and waveguide contributions to the GVD can be
balanced by varying the pressure, unlike in large-bore
capillary-based systems where the normal dispersion of
the gas dominates over the waveguide dispersion, see
also Fig. 1(a). Photoionization in gases is traditionally
modeled by using the full electric field of the pulse [11].

In this work, based on Ref. [12], we have first developed
a newmodel to study pulse propagation in gas-filled HC-
PCFs in terms of the complex envelope of the pulse. By
using this model, we show analytically for the first time
that intra-pulse photoionization leads to a soliton self-
frequency blue-shift.
Photoionization can take place by either tunneling

or multiphoton processes. These regimes are character-
ized by the Keldysh parameter pK [11]. In the tunneling
regime (pK� 1) the time-averaged ionization rateW (I)
is given by [13]

W (I) = d (IH/I)1/4 exp[−b(IH/I)1/2], (1)

where d ≡ 4δ0 [3/π ]1/2 [UI/UH ]7/4, b≡ 2/3 [UI/UH ]3/2,
δ0= 4.1×1016 Hz is the characteristic atomic frequency,
UI is the ionization energy of the gas (∼ 15.76 eV for
argon),UH ≈ 13.6 eV is the ionization energy of hydro-
gen, IH = 3.6× 1016 W/cm2 and I is the laser pulse in-
tensity. For values of I in the range of 100 TW/cm2, the
Keldysh parameter is pK � 1 for noble gases. However,
experiments show that tunneling models provide excel-
lent agreement with the experimentalmeasurements even
for pK ≈ 1. As shown in Fig. 1(b), Eq. (1) predicts an
ionization rate that is exponential-like for pulse intensi-
ties above a threshold value. Loss due to absorption of
photons in the plasma is proportional to the ionization
rate. Hence, any pulse with I � Ith will have its inten-
sity strongly driven back to near the threshold value, re-
sulting in a drastically reduced ionization loss. This al-
lows us to use the first-order Taylor series to linearize
the tunneling model just above I = Ith, where the opti-
cal pulses can survive for relatively long time without
appreciable attenuation. Expanding Eq. (1) in its linear
regime around an arbitrary point a = Ia/IH , results in
W ≈ σ̃ ΔIΘ(ΔI), where ΔI ≡ I − Ith, σ̃ = d e−x (2x−
1)/[4a5/4 IH ], Ith = aIH(2x− 5)/(2x− 1) is the thresh-
old intensity, x = b/

√
a, and a is chosen to reproduce
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FIGURE 1. (a) GVD of an Ar-filled HC-PCF for gas pressures between 1 and 9 bar. All subsequent calculations in this work
assume 5 bar pressure. Inset: cross-section of a broadband-guiding HC-PCF with a kagomé-lattice cladding and a core diameter
30 μm. Typical experimental transmission losses for the fundamental mode are 1 dB/m for at 800 nm. (b) Comparison of the
dependence of the Ar ionization rate on the pulse intensity using the full model of Eq. (1) and the linearized model. (c,d)
Respectively temporal and spectral evolution of an energetic pulse propagating in the Ar-filled HC-PCF. The temporal profile
of the input pulse is N sechτ , with N = 8. The panels show the ejection of two fundamental solitons that continuously blue-shift
until ionization loss reduces their intensities below the threshold value. Contour plots in this work are given in a logarithmic scale.

the physically observed threshold intensity in the fiber
of Fig. 1(a), a ∼= 2× 10−3. The purpose of the Heavi-
side function Θ is to set the ionization rate to zero be-
low the threshold intensity. As shown in Fig. 1(b), the
linearized model underestimates the ionization rate and
thus the ionization loss, in comparison to the full model.
This leads to a similar qualitative behavior between the
two models even for I > Ith, since the ionization rate and
the ionization loss are the key factors in the photoioniza-
tion process.
One can prove from first principles that propagation

of light in a HC-PCF filled with an ionized Raman-
active gas can be then described by the following coupled
equations [12]:[
i∂z+ D̂(i∂t)+ γKR(t)⊗|Ψ(t)|2− ω2p

2k0c2
+ iα

]
Ψ = 0

∂tne = [σ̃/Aeff] [nT− ne]Δ|Ψ|2Θ
(
Δ|Ψ|2)

,

(2)
where Ψ(z, t) is the electric field envelope, z is the lon-
gitudinal coordinate along the fiber, t is the time in a
reference frame moving with the pulse group velocity,
D̂(i∂t) ≡ ∑m≥2βm(i∂t )m/m! is the full dispersion opera-
tor, βm is the m-th order dispersion coefficient calculated
at an arbitrary reference frequency ω0, γK is the Kerr
nonlinear coefficient of the gas, R(t) = (1− ρ)δ (t) +
ρ h(t) is the normalized Kerr and Raman response func-
tion of the gas, δ (t) is the Dirac delta function, ρ is the
relative strength of the non-instantaneous Raman non-
linearity, h(t) is the causal Raman response function of
the gas, the symbol ⊗ denotes the time convolution, c

is the speed of light, k0 = ω0/c, ω0 is the pulse cen-
tral frequency, ωp = [e2ne/(ε0me)]1/2 is the plasma fre-
quency associated with an electron density ne(t), e and
me are the electron charge and mass, and ε0 is the vac-
uum permittivity,α =α1+α2 is the total loss coefficient,
α1 is the fiber loss, α2 = (AeffUI)/(2|Ψ|2)∂t ne is the
ionization-induced loss term, Aeff is the effective mode
area, Δ|Ψ|2 = |Ψ|2− |Ψ|2th, |Ψ|2 = IAeff, |Ψ|2th = IthAeff,
and nT is the total number density of ionizable atoms
in the fiber, associated with the maximum plasma fre-
quency ωT ≡ [e2nT/(ε0me)]1/2. In these coupled equa-
tions, the recombination process is neglected since the
pulse duration (of the order of tens of fs) is always shorter
than the recombination time. If |Ψ|2 is measured in W,
σ̃/cAeff ≡ γI has the dimensions of W−1m−1. This is
the nonlinearity associated with plasma formation in the
fiber. According to recent experimental measurements,
γK depends linearly on the gas pressure. These coupled
equations (2) are the most important contribution of the
present work.
In order to extract useful analytical information from

Eqs. (2), further simplifications are necessary. For pulses
with maximum intensities just above the ionization
threshold (which we dub floating pulses), the ionization
loss is not large and can be neglected to a first approx-
imation. For such pulses, only a small portion of en-
ergy above the threshold intensity contributes to the cre-
ation of free electrons. Furthermore, for floating pulses
one can remove the Θ-function from the equations, pro-
vided that the cross-section σ̃ is replaced by a properly
reduced σ̃ ′ that takes into account the overestimation of
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the ionization rate. Introducing the following rescalings
and redefinitions: ξ ≡ z/z0, τ ≡ t/t0, Ψ0 ≡ [γKz0]−1/2,
ψ ≡ Ψ/Ψ0, r(τ) ≡ R(t)t0, φ ≡ 1

2k0z0 [ωp/ω0]2, φT ≡
1
2k0z0 [ωT/ω0]2, and σ ≡ σ̃ ′ t0/[AeffγK z0], where z0 ≡
t20/|β2(ω0)| is the second-order dispersion length at the
reference frequencyω0, and t0 is the input pulse duration.
Hence, the two coupled equations for floating pulses can
be replaced by[

i∂ξ + D̂(i∂τ )+ r(τ)⊗|ψ(τ)|2−φ
]

ψ = 0
∂τ φ = σ(φT−φ)|ψ |2 . (3)

The effect of the Raman and ionization perturbations
on the soliton dynamics in HC-PCFs can be studied us-
ing Eqs. (3). The second equation can be solved analyti-
cally, φ(τ) = φT

{
1− e−σ

∫ τ
−∞ |ψ(τ ′)|2dτ ′

}
, with the initial

condition φ(−∞) = 0, corresponding to the absence of
any plasma before the pulse arrives. For a small ion-
ization cross-section, φ(τ) � η

∫ τ
−∞ |ψ(τ ′)|2dτ ′, where

η ≡ σφT. Moreover, in the long-pulse limit |ψ(τ −
τ ′)|2 � |ψ(τ)|2− τ ′∂τ |ψ(τ)|2. This allows the two cou-
pled equations to be reduced to a single partial integro-
differential equation:

i∂ξ ψ+D̂(i∂τ )ψ+ |ψ |2ψ−τRψ∂τ |ψ |2−ηψ
∫ τ

−∞
|ψ |2dτ ′= 0

(4)
where τR ≡

∫ ∞
0 τ ′ r(τ ′)dτ ′. This equation shows clearly

that the effect of ionization is exactly opposite to that
of the Raman effect: the fourth term in Eq. (4) in-
volves a derivative of the field intensity, while the fifth
term involves an integral of the same quantity. One can
then conjecture that the last term will lead to a soliton
self-frequency blue-shift due to ionization, instead of a
red-shift due to Raman self-scattering [14]. This clearly
shows that, in the range of validity of perturbation the-
ory (i.e., for floating solitons), photoionization leads to
a soliton self-frequency blue-shift [12]. This blue-shift is
accompanied by a constant acceleration of the pulse in
the time domain – opposite to the Raman effect, which
produces pulse deceleration [14]. This blue-shift (distinct
from the effects discussed in Ref. [7]) is limited only by
ionization loss, which slowly decreases the pulse inten-
sity until it falls below the threshold value.
In the presence of ionization-induced losses above

the threshold intensity, Eqs. (2) must be numerically
solved to study the full dynamics of floating pulses.
Figures 1(c,d) show the temporal and spectral evolu-
tion of a high-order input soliton, closely following the
results reported in [10]. When the intensity of the en-
ergetic pulse exceeds the threshold value as a result
of self-compression, a fundamental soliton is ejected
from the main pulse and continues to blue-shift until
ionization loss reduces its amplitude below the thresh-
old value. At longer distances, another compression oc-

curs and a second soliton is generated. The use of a
kagomé-style HC-PCF is essential to observe the soliton
blue-shift, since conventional photonic-bandgap fibers
have much stronger dispersion variations, which would
quickly destabilize any possible solitary wave as in [9].
In conclusion, a direct photoionization process can act

on solitons by constantly blue-shifting their central fre-
quencies when the intensity of solitons is slightly above
the photoionization threshold, thus representing the ex-
act counterpart of the Raman self-frequency red-shift.
This spectral transformation is limited only by the ion-
ization losses. The new theoretical model, presented by
Eqs. (2), is suitable for analytical calculations, and has
led us to predict a number of other new phenomena such
as long-range non-local correlation forces, and spectral
transformation between red- and blue-shift in Raman-
active gases, which we shall present at the conference.
Our results reveal new physics and offer novel oppor-
tunities for the manipulation and control of the soliton
dynamics inside these versatile optical waveguides.
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