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We study theoretically the propagation of relatively long pulses with ionizing intensities in a hollow-

core photonic crystal fiber filled with a Raman-inactive noble gas. Because of photoionization, an

extremely asymmetric self-phase modulation and a new kind of ‘‘universal’’ plasma-induced modula-

tional instability appear in both normal and anomalous dispersion regions. We also show that it is possible

to spontaneously generate a plasma-induced continuum of blueshifting solitons, opening up new

possibilities for pushing supercontinuum generation towards shorter and shorter wavelengths.

DOI: 10.1103/PhysRevLett.109.113902 PACS numbers: 42.65.Tg, 42.81.Dp, 52.35.Sb

Introduction —Hollow-core photonic crystal fibers
(HC-PCFs) have extended the fields of linear and nonlinear
fiber optics well beyond the interaction of light with solid
media [1]. The feasibility of designing and fabricating
various HC-PCF structures allows distinct special nonlin-
ear and dispersive properties of these fibers [2]. For in-
stance, kagome HC-PCFs typically show high confinement
of light in the core with relatively low loss and low group
velocity dispersion (GVD) in the visible and near-IR [2–4].
Recently, these fibers, filled with noble (Raman-free)
gases, have been used in a series of groundbreaking experi-
ments. Few-�J femtosecond-scale pulses were launched
into argon-filled cm-long HC-PCFs, leading to the obser-
vation of a unique photoionization-induced soliton self-
frequency blueshift [5]. These experiments are accurately
described by a unidirectional pulse propagation equation
(UPPE) based on the full electric field [6,7], which is
complemented by sophisticated tunneling and multiphoton
ionization models [8]. The UPPE model can, however, be
reduced to a simple pair of coupled equations for the
envelope of the electric field and the ionization fraction
[9,10], and remarkable qualitative agreement with the full
model and with experiments was obtained.

The well-known Raman self-frequency redshift in solid-
core fibers acts on a soliton by continuously shifting its
central frequency toward longer wavelengths via inelastic
scattering with optical phonons provided by the medium,
leading to a decrease of the soliton energy, while the
photon number remains constant [11–13]. In contrast, the
photoionization-induced self-frequency blueshift acts on a
soliton by continuously increasing its central frequency via
energy received from the created plasma. In order for this
action to take place spontaneously, without violating the
second law of thermodynamics, a reduction in the photon
number, or in other words an ionization-induced loss, must
take place [5,9,10].

In this Letter, we show theoretically that when the gas
is excited by relatively long pulses at ionizing intensities,

new kinds of self-phase modulation (SPM) and modula-
tional instability (MI) emerge during propagation. More-
over, once the initial stage of instability is over, a
‘‘shower’’ of hundreds of solitons, each undergoing an
ionization-induced self-frequency blueshift, pushes the
supercontinuum spectrum towards shorter and shorter
wavelengths. Such a blueshifting plasma-induced contin-
uum has some similarities with the redshifting Raman-
induced continuum driven by the Raman self-frequency
shift in conventional solid-core fibers [14–16], although
the underlying physical processes are dramatically
different.
Governing equations.—The propagation of light in a

HC-PCF filled with an ionizable Raman-inactive gas can
be modeled by the following pair of normalized coupled
equations [9,10]:

i@�c þ D̂ði@�Þc þ jc j2c ��c þ i�c ¼ 0; (1)

@�� ¼ �ð�T ��Þ�jc j2�ð�jc j2Þ � r�2; (2)

where c is the electric field envelope, � is a quantity
proportional to the number of electrons created by the
photoionization process, � is the normalized longitudinal
coordinate along the fiber, � is time in a reference frame

moving with the input pulse group velocity, D̂ði@�Þ is
the full GVD operator, � ¼ �ð�T ��Þ½1� jc j2th=jc j2��
ð�jc j2Þ is the ionization-induced loss, � is a normalization
factor (see also Refs. [9,10,17] for extensive details), � is
the Heaviside step function, �jc j2 � jc j2 � jc j2th, jc j2th
is the normalized ionization threshold intensity, � and
�T are constants that can be determined through the
tunneling ionization equation rate [9,10], and r is a coef-
ficient regulating the recombination between free elec-
trons and ions, which is a two-particle process and hence
depends on �2.
Equations (1) and (2) yield excellent qualitative agree-

ment with experiments using ultrashort input pulses [5],

PRL 109, 113902 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 SEPTEMBER 2012

0031-9007=12=109(11)=113902(5) 113902-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.113902


accurately predicting the dynamics of soliton formation
and the plasma-induced soliton self-frequency blueshift
[9,10]. At the core of the model is the assumption that
the dynamics are dominated by tunneling photoionization,
and that the ionization rate can be described by a linear
function corrected by a Heaviside function that takes into
account the threshold intensity [3,9,10]. Although the rela-
tively long pulses considered here are expected to drive
some multiphoton ionization, comparisons of Eqs. (1) and
(2) to UPPE simulations using the more general Yudin-
Ivanov ionization model [8]—which we present at the end
of this Letter—show excellent agreement.

Plasma-induced asymmetric self-phase modulation—
Ionization-induced SPM can be studied by simplifying
Eqs. (1) and (2) for the case of weak dispersion and long
input pulse durations t0. In this situation (natural for
kagome-PCFs since the GVD is very small), the nonline-
arity initially dominates over the GVD, since the ‘‘soliton
number’’ N (i.e., the input pulse energy) is large [17], and
the second term in Eq. (1) can be safely neglected in the
very initial stage of propagation. In kagome-PCFs, input
energies such that N > 100 are realistically achievable
for pulses with >0:5 ps duration. Neglecting also the
recombination process, Eq. (2) can be written as �ð�Þ ¼
�Tf1 � exp½��

R
�
�1 �jc ð�0Þj2�ð�jc ð�0Þj2Þd�0�g. For

small values of �, Eqs. (1) and (2) can be reduced to a
single integro-differential equation,

i@�c þ jc j2c � �c
Z �

�1
�jc ð�0Þj2�ð�jc ð�0Þj2Þd�0

þ i�c ¼ 0; (3)

where � ¼ ��T . By temporarily ignoring the losses
(which do not change the qualitative picture that we are
going to describe, but only saturate the SPM spectrum after
a certain distance), Eq. (3) can be solved by substituting
c ð�; �Þ ¼ Vð�; �Þ exp½i’NLð�; �Þ� [17], where V and ’NL

are the amplitude and the nonlinear phase of the pulse.
Separating the real and the imaginary parts, and perform-
ing the integrations results in Vð�; �Þ ¼ c ð0; �Þ,
’NLð�;�Þ¼�½jVj2�R

�
�1�jVð�0Þj2�ð�jVð�0Þj2Þd�0� and

�jVj2 ¼ jVj2 � jc j2th. We will show below that such a

nonlinear phase can induce strong spectrally asymmetric
SPM at a rate that is large compared to the background
Kerr nonlinearity. To this end we compute the mean fre-
quency h�i, and the variance ð��Þ2 ¼ h�2i � h�i2
[17,18], where h�ki ¼ R

�kj�j2d�=
R j�j2d�, � ¼

F ½c �, and the symbol F represents the Fourier transform.
In the case of an input Gaussian pulse, c ð0; �Þ ¼

expð��2=2�20Þ, the above parameters can be determined

in closed forms. We find

h�i ¼ 1
2�� ½

ffiffiffi
2

p
erfð ffiffiffi

2
p

T Þ � 2jc j2therfðT Þ�; (4)

ð��Þ2 ¼ 1

18�20
ð9þ 4

ffiffiffi
3

p
�2 � 3�2�2�20f½3 erf2ð

ffiffiffi
2

p
T Þ

� 2
ffiffiffi
3

p
erfð ffiffiffi

3
p

T Þ� þ 6jc j2th ½erfðT Þ � 1�
� ½jc j2th erfðT Þ � ffiffiffi

2
p

erfð ffiffiffi
2

p
T Þ�gÞ; (5)

where erf is the error function,T ¼T=�0, and�T���T
is the regime within which the pulse intensity exceeds the
threshold intensity.
Panels (a) and (b) in Fig. 1 depict the spatial dependence

of the mean frequency and the standard deviation, re-
spectively, for different values of �, i.e., for different
free-electron densities generated in the fiber. For experi-
mentally feasible situations, � ranges approximately be-
tween 1 and 10 for noble gases. In Fig. 1(a), for � ¼ 0,
which corresponds to the absence of ionization, the mean
frequency is always zero during propagation due to the
well-known symmetric spectral broadening characteristic
of conventional SPM [17]. As � increases (i.e., when the
plasma starts to build up inside the fiber), the mean fre-
quency moves linearly towards the blueside of the spec-
trum due to the ionization-induced phase modulation. This
induces a strong and extremely spectrally asymmetric
SPM, imbalanced toward the blue part of the spectrum,
which is unique to the kind of gas-filled PCF waveguides
studied in this Letter. This effect should be distinguished
from the slight spectral asymmetry induced in the SPM by
perturbations such as self-steepening, stimulated Raman
scattering, and odd-order dispersion, which typically pro-
duce small blueshifted pedestals, whereas almost all the
input energy goes into the red part of the spectrum [17,19].
Looking at Fig. 1(b), we find that the ionization-induced
SPM broadens the spectrum significantly faster than the
Kerr-based SPM. The spectral broadening process is
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FIG. 1 (color online). Spatial dependence of (a) the mean
frequency h�i and (b) the frequency standard deviation �� of
a Gaussian pulse expð��2=2�20Þ with �0 ¼ 2. The temporal

position T at which the pulse intensity can initiate photoioniza-
tion is assumed to be equal to �0. ��0 is the spectral width
at � ¼ 0.

PRL 109, 113902 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 SEPTEMBER 2012

113902-2



limited by unavoidable ionization and fiber losses, just as
in Kerr-related SPM.

Plasma-induced modulational instability—After the
very initial SPM stage (described above) is over, the inter-
play between nonlinear and dispersive effects can lead to
an instability that modulates the temporal profile of the
pulse, creating new spectral sidebands referred to as MI in
Refs. [20–22]. For instance, during the propagation of a
continuous wave (cw) signal in an anomalously dispersive
Kerr medium, perturbations to the amplitude of the car-
rier wave can trigger the generation of spectral sidebands,
leading to the eventual breakup of the cw signal into a train
of pulses [17,20,21]. MI due to the photoionization non-
linearity described by Eqs. (1) and (2) can be investigated
using the standard approach presented in Refs. [17,20].
The steady state solutions of Eqs. (1) and (2), which are
time independent, are found by inserting c ¼ c 0e

ik0� and
� ¼ �0, where c 0 is the amplitude of a cw, with a prop-
agation constant k0, and �0 corresponds to the amount
of plasma generated by this wave. These constants can
be determined by setting the time derivatives to zero.
Perturbing these steady state solutions and substituting
back into Eqs. (1) and (2), one obtains the linearized
equations

i@�aþ s

2
@2�aþ c 2

0ðaþ a�Þ � uc 0 ¼ 0; (6)

@�u ¼ �Fuþ gðaþ a�Þ; (7)

where a and u are perturbations added to the amplitudes
c 0 and �0; s is the sign of the second-order dispersion
(þ 1 � anomalous dispersion, �1 � normal dispersion),
higher-order dispersion coefficients are neglected,
F ¼ �ðc 2

0 � jc j2thÞ�ðc 2
0 � jc j2thÞ þ 2r�0, and g ¼

�ð�T � �Þc 0. Substituting a ¼ a1e
i# þ a2e

�i#�
, u ¼

u0e
i# þ u�0e

�i#�
, and # ¼ �����, a set of three equa-

tions for a1, a
�
2, and u0 can be found. Expressing u0 in

terms of a1 and a�2, we find

m11 m12

m21 m22

� �
a1
a�2

� �
¼ 0; (8)

where m11 ¼ ��� s�2=2þ c 2
0 þ gc 0=ð�Fþ i�Þ,

m12 ¼ c 2
0 þ gc 0=ð�Fþ i�Þ, m21 ¼ �m12, and m22 ¼

�m11 � 2�. These equations have nontrivial solutions
when

� ¼ �j�j
2

�
�2 � 4s

�
c 2

0 �
gc 0ðFþ i�Þ
F2 þ�2

��
1=2

; (9)

which are the complex eigenvalues of the problem. Note
that in this analysis � is kept to be a real-valued positive
quantity since it represents the number of electrons gen-
erated via photoionization.

Perturbations can only be amplified during propagation
for frequencies which have nonreal values of propagation
constant �. In the absence of higher-order dispersion,

Kerr-induced MI (e.g., in solid-core optical fibers or in
HC-PCFs when excited with intensities below the ioniza-
tion threshold for the gas) occurs only in the anomalous
dispersion regime [17]. However, photoionization induces
an unusual ‘‘universal’’ MI that can exist in both normal
and anomalous dispersion regimes, and for any frequency,
even when there is no higher-order dispersion. This uni-
versal MI arises because the ionization contribution to the
destabilization of the background wave gc 0=ð�Fþ i�Þ
is always complex and frequency dependent, in contrast to
when only the Kerr effect is present (g ¼ 0). The spectral
dependence of the gain, which is defined as 2Imf�g for
different peak powers, is shown in Fig. 2 for (a) anomalous
and (b) normal dispersion regimes, where the physical
powers are normalized to the threshold ionization power
Pth, i.e., jc j2th ¼ 1. When the normalized input power

c 2
0 � jc j2th, the usual Kerr-related MI sidebands are seen,

existing uniquely in the anomalous regime. However, when
c 2

0 > jc j2th, plasma-induced MI causes the sidelobes to be

unbounded and to have slowly decaying tails. A similar
situation occurs in the normal regime, where the gain is
slightly lower due to the absence of the Kerr contribution.
For this case there are no instabilities below the threshold
power since no plasma is generated.
Numerical simulations —To validate the analysis based

on the simplified model given by Eqs. (1) and (2), and also
to provide further insight into the dynamics of plasma-
induced MI, UPPE simulations were performed [6]. The
ionization rate was calculated using the Yudin-Ivanov
model [8], which accurately describes both quasistatic
tunneling and multiphoton ionization along with the

FIG. 2 (color online). MI spectral gain profile versus normal-
ized input peak power in (a) anomalous and (b) normal disper-
sion regimes with equal magnitude of GVD. For the anomalous
regime, a cw with 	 ¼ 1064 nm is launched into a kagome
HC-PCF, core diameter 20 �m, filled with argon gas, the pres-
sure of 1 bar, which gives 
2 ’ �2:8 ps2=km. In this fiber, Pth ’
105 MW at room temperature. All subsequent calculations in
this Letter are based on this fiber. For the normal regime
simulation, we assume hypothetically a gas-filled fiber with a

2 of the same magnitude as in (a) but with a positive sign.
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transition between these regimes [8,23], and has been
shown to agreewell with experimental measurements [3,5].

Figures 3(a) and 3(b) show the temporal and spectral
evolution of a Gaussian pulse at 1064 nm with duration
1.18 ps and peak power 200 MW through an Ar-filled
HC-PCF. The pump pulse has a soliton number N ’ 102,
and its peak corresponds to a Keldysh parameter of
� ¼ 0:785, and for most of the pulse � < 5. This corre-
sponds to the nonadiabatic tunneling regime [8]. The first
stage of propagation shows asymmetric spectral broaden-
ing toward the blue due to ionization-induced SPM as
described above—see Fig. 3(b) and inset. Immediately
after the SPM stage, dispersion starts to play a role, and
due to the combined Kerr and plasma-induced MIs, broad
and slowly decaying sidelobes are generated and amplified
quickly—see the oscillations in the time domain in
Fig. 3(a). In the third and final stage in the propagation,
strongly blueshifted solitons are emitted. For comparison,
Fig. 3(c) shows propagation without ionization. In this
case, weak sidelobes due to Kerr driven MI are visible,
and there is no evidence of spectral asymmetry. In presence
of ionization, the strong SPM process hides the instability
bands in the frequency domain, as shown in Fig. 3(b).

However, the instability is clearly visible in the time do-
main; see Fig. 3(a) after z ¼ 20 cm. Figure 3(d) shows the
spectral propagation obtained by solving the coupled equa-
tions (1) and (2). All of the qualitative features of the UPPE
simulations are reproduced, validating this model and the
subsequent analysis discussed in this Letter.
Further insight into the dynamics can be obtained from

Fig. 4, which shows the evolution of the cross-frequency-
resolved optical gating spectrograms of the pulse at dif-
ferent positions along the fiber. The pulse is initially
asymmetrically chirped to high frequencies at its center
[Fig. 4(b)] due to the higher plasma density created at the
highest intensities. This is the plasma-induced SPM chirp
described above. At the same time, two plasma-induced
MI sidebands appear in the pulse spectrum [Fig. 4(c)], as
discussed above. Plasma-induced MI facilitates the forma-
tion of many solitons. In less than half a meter of propa-
gation, the initial pulse disintegrates into a ‘‘shower’’ of
solitons, see Figs. 4(d), each undergoing a strong self-
frequency blueshift induced by intrapulse photoionization,
as described in detail in Refs. [9,10].
Conclusions—In this Letter, we have investigated

analytically and numerically the propagation of intense
and relatively long pulses in an Ar-filled kagome-style
HC-PCF. Several surprising results have emerged, such as
strongly asymmetric SPM, which could be studied analyti-
cally with the envelope equations (1) and (2), a universal
type of plasma-induced MI, existing in both anomalous
and normal dispersion for all frequencies and exhibiting
long tails in the gain spectra, and the final disintegration of

FIG. 3 (color online). Temporal (a) and spectral (b) intensity
evolution of a long Gaussian pulse propagating in an Ar-filled
HC-PCF, calculated using a UPPE. (c) The corresponding spec-
tral intensity evolution in absence of ionization. (d) The spectral
intensity evolution obtained by solving the coupled equations (1)
and (2).

FIG. 4 (color online). Cross-frequency-resolved optical gating
spectrograms for the propagation through an Ar-filled HC-PCF.
The simulation parameters are the same as in Fig. 3. The
reference pulse is a Gaussian with FWHM 50 fs. (a) Input pulse.
(b) SPM frequency chirping. (c) Modulational instability.
(d) Soliton disintegration into multiple blueshifting solitons.
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the pulse into a multitude of blueshifting solitons, which
form a plasma-induced continuum. All these regimes are
realistically accessible in experiments. These theoretical
results further highlight the stimulating new possibilities
opened up by accessing the ionization regime in hollow-
core photonic crystal fibers.
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