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Abstract. Recently, a new form of quantum memory was proposed. The
storage medium is an ensemble of electron spins, coupled to a stripline cavity
and an ancillary readout system. Theoretical studies suggest that the system
should be capable of storing numerous qubits within the ensemble, and an
experimental proof-of-concept has already been performed. Here, we show that
this minimal architecture is not limited to storage but is in fact capable of
full quantum processing by employing measurement-based entanglement. The
technique appears to be remarkably robust against the anticipated dominant error
types. The key enabling component, namely a readout technology that non-
destructively determines ‘are there n photons in the cavity?’, has already been
realized experimentally.
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1. Introduction

Interactions concerning single spins are usually very weak, which poses a huge challenge
to the feasibility of their manipulation and measurement and hence to their potential for
quantum information processing (QIP). Inspired by earlier work [1, 2], it was suggested in
2009 that electron spin ensembles, on the other hand, could exhibit strong couplings with
a collective field via magnetic dipoles (see figure 1(b)) [3], exploiting the extremely small
mode volumes in stripline cavities. Such strong couplings have also been demonstrated by
independent experimental groups recently [4, 5].

Moreover, it was further proposed that the various spin waves in the ensemble could be used
as independent quantum registers [3], for which a proof-of-principle experiment was carried out
demonstrating the storage and readout of multiple classical excitations [6]. Therefore, the so-
called holographic QIP schemes [7–9] should be possible by selectively coupling modes of
the spin ensemble to the superconducting transmission line cavity [3]. However, promoting a
memory system to a full QIP device is nontrivial because the allowed operations in such a
system are analogous to those in linear optics and thus the provision of entangling gates requires
nonlinearity supplied by other components. One suggestion involves integrating a transmon
Cooper pair box (CPB) [10] into the cavity; moving a memory qubit to the CPB would facilitate
universal qubit operations, as well as the readout procedures [3, 7, 11].

However, CPBs are not ideal for representing qubits owing to their short coherence
times [10]. Therefore, in this paper, we propose a composite system (see figure 1) where
such devices are only used for measurement, but in such a fashion that in addition to simple
readout, entangling projections can also be implemented. We envisage the use of a system that
is both number resolving [12] and non-destructive; recent experimental demonstrations of such
systems have been accomplished [13, 14]. The realization consists of two cavities coupled via a
transmon CPB; measurement of the number of single photons in the storage cavity is achieved
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(a) (b)

Circuit diagram of the integrated device for ensemble QIP. Storage cavity coupled with an
electron spin ensemble.

Figure 1. (a) Circuit diagram of the integrated device for ensemble QIP, with the
figure adapted from [13] (© Nature Publishing Group; for details of physical
implementation on a chip, see [13]). The number of photons in the storage
cavity affects the transmon state, which is indicated by microwave probing the
measurement cavity; (b) physical setup of the storage line cavity coupled with
an ensemble of N = 1011 electron spins (N@C60) doped on substrate, with an
average coupling ḡ ' 2π × 20 Hz. A bias field of 180 mT is required to bring the
spin Larmor precession in resonance with the cavity at a resonance frequency of
2π × 5 GHz [3]. A switchable linear magnetic gradient field for appropriate time
lengths (gradient pulses) is required in order to access the different collective
modes of the ensemble. Figure adapted from [3], with the CPB qubit removed.
Original figure copyright 2009 by the American Physical Society.

via a readout procedure involving the second cavity [13]. In effect, this allows one to ask the
question: are there exactly n photons in the storage cavity? If we wish to subsequently ask
about a different n, we would employ a flux bias to tune the transmon frequency (a nanosecond
timescale process). In the ideal case when no errors are present, if the result is ‘no’, then
any coherent superposition of photon number states other than |n〉 is preserved in the storage
cavity [13], which is coupled to the electron spin ensemble [3]. Appropriate bias field and
magnetic gradient pulses are applied to resonantly accessing particular modes of the ensemble,
as discussed in [3].

In contrast to previous proposals, here the CPB no longer plays the role of gate operations
on the mode qubits nor to store the qubits. After a brief review of the basic physics in the spin
ensemble, we shall show that, by using dual-rail encoding, a universal set of quantum gates can
be implemented for the logical qubits. Any single-qubit rotation can be achieved by applying
appropriate magnetic gradient pulses and adjusting the bias field when necessary. Importantly,
the two-qubit parity projection that we shall now discuss enables general quantum computing
through, for example, the creation of graph states [15].

2. Modelling collective mode–cavity coupling

Suppose the ensemble of N electron spins is in its ground state |0〉 = |0 · · · 0〉 and that the cavity
contains a single microwave photon. If the bias field is such that the spins’ Zeeman splitting is
resonant with the microwave photon, then the ensemble will collectively absorb that photon
on a timescale that is proportional to 1/

√
N . The ensemble state after the photon absorption is
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then given by

|ψ1(0)〉 =
1

√
N

∑
q

gq

ḡ
|01 · · · 1q · · · 0N 〉, (1)

where the sum is over all possible spin-flip (‘1’) positions q in the ensemble (see [3]). Here, gq

is the cavity coupling strength with the qth electron spin in the ensemble, and ḡ is the average
strength. The above state and the state |0〉 together form an effectively closed two-level system
(i.e. a mode qubit) [3]. Now if no parameters are changed, then the quantum of energy will
‘flip-flop’ back and forth between the cavity and the collective state.

However, if we wish to stop the flip-flopping, i.e. decouple the cavity from this memory
mode, then we will temporarily apply a linear gradient in the magnetic field such that each
spin will acquire phase at a different rate. If the gradient pulse causes the field to vary in
the z-direction, and writing the coordinate of the qth spin as zq , then the collective state
becomes [3]

|ψ1(k)〉 =
1

√
N

∑
q

gq

ḡ
eik(ξ)zq |01 · · · 1q · · · 0N 〉. (2)

Here, the parameter k depends on the strength of the gradient and its duration ξ , and
consequently the various terms in equation (2) have developed relative phases with one
another [3]. This prevents the

√
N -enhanced mode–cavity coupling, and a single excitation

is thus stored in the spin ensemble. Indeed, if we were to introduce a new photon into the cavity
at this stage, then that photon will resonantly transfer to the ensemble almost independently of
the presence of the former excitation [3]. After the application of the second gradient pulse, this
procedure can be repeated.

As long as the number of excitations n � N with an upper limit of nmax 6
√

N (since the
coupling enhancement of

√
N − n ∼

√
N is still very large for small n), single excitations can

be independently stored in and read out of different collective modes i by appropriately applying
±ki -pulses with ki = k(ξi) [3]. The superradiant state |ψ1(0)〉 corresponds to the k = 0 mode,
and each time a ki -pulse is applied, it maps the k = 0 mode to the i th mode. Therefore, to access
a particular mode i , a −ki -pulse is applied to map it to the k = 0 mode, which then interacts
with the cavity strongly upon resonance. A ki -pulse is then applied to map the mode back. To
stop the mode–cavity coupling, one can simply tune the bias field such that the cavity is out of
resonance with the ensemble spins [3].

Therefore, the Hamiltonian coupling a particular mode i with the cavity for a single
excitation with energy ε is

H (1)
i = ε (m†

i mi + c†c)+ J (m†
i c + mi c

†)=

(
ε J
J ε

)
(3)

in the basis of |1M0C〉, |0M1C〉. Here, m†
i (c†) and mi (c) are the corresponding mode excitation

(cavity photon) creation and annihilation operators, and J =
√

N ḡ is the effective coupling
strength being ∼2π × 6 MHz for the parameters in figure 1(b). This effective coupling J is
orders of magnitude larger than the decay rates of collective spin excitations and the cavity
decay rate [3]. The corresponding time evolution operator for a single excitation is then

S(1)(t)= e−iεt

(
cos J t −i sin J t

−i sin J t cos J t

)
. (4)
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After a time t = τ := π

2J ' 40 ns, a full swap of a single excitation has occurred between the
cavity and mode i , whereas for t 6 τ only a partial swap operation has taken place.

When two or more excitations n exist between a particular mode i interacting with the
cavity, the coupling strength and thus the time required for an exchange are adjusted by a factor
of

√
n. The cavity–mode Hamiltonian for two excitations is then

H (2)
i =

 2ε
√

2J 0
√

2J 2ε
√

2J

0
√

2J 2ε

 (5)

in the basis of |2M0C〉, |1M1C〉, |0M2C〉, with the corresponding time evolution operator

S(2)(t)= e−2iεt

 cos2 J t −
i

√
2

sin 2J t − sin2 J t
−

i
√

2
sin 2J t cos 2J t −

i
√

2
sin 2J t

− sin2 J t −
i

√
2

sin 2J t cos2 J t

. (6)

Note that a full swap of two excitations still occurs after the same time t = τ as for the single-
excitation case.

For simplicity, from this point on, whenever we say a particular mode i is interacting with
the cavity for some time t , a −(+)ki -pulse is by default applied right before (after) the interaction
which has a duration of t with the bias field necessary for resonance. Note that the time for the
necessary gradient pulses can be shortened by increasing the gradient strength [3].

3. Single-qubit operations in dual-rail encoding

We encode the qubits in the dual-rail representation, where each logical qubit occupies two
collective modes of the spin ensemble (see figure 2). A logical qubit |Q1〉L = α|0〉L +β|1〉L

corresponds to the physical state of modes |M1 M2〉M = α|10〉M +β|01〉M, where the ket notation
denotes the number of excitations in the relevant mode for the physical qubits. Adopting a
dual-rail encoding, of course, doubles the resource cost. However, the capacity of the ensemble
quantum memory is of the order of

√
N ; assuming that N = 1011, this is therefore not a practical

constraint.
An experiment would begin with cooling the spins so that there are a negligible number

of excitations in the ensemble, which is then approximately in the ground state |0〉. For each
logical qubit we then load the cavity with a single photon, and perform a swap gate between
the cavity and the appropriate memory mode to represent |0〉L. A logical qubit |Q〉L of arbitrary
state can then be prepared through an appropriate single-qubit rotation on the Bloch sphere.

Any single-qubit rotation can be formed from a combination of rotations about two
different axes [16]. In figure 2, we show how rotations about the x-axis and the z-axis can
be performed in the dual-rail encoding. Both these rotations involve swap operations between
the memory modes and an initially empty cavity.

3.1. X rotations

Suppose that our logical qubit is initially in the general state |Q1〉 = cos θ

2 |0〉L + eiφ sin θ

2 |1〉L.
We thus start with the initial state ( cos θ

2 |10〉M + eiφ sin θ

2 |01〉M) |0〉C, where C denotes the cavity
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M1 (Q1a)

M2 (Q1b)

Cavity

S(τ) S(t) S(τ)

M1 (Q1a)

M2 (Q1b)
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X-type rotations: X gate when t = τ Z rotations: phase gates

(a) (b)

Figure 2. Single-qubit rotations in two independent directions, whose
combinations constitute any single-qubit operations for the dual-rail encoded
qubits. Note that the cavity is assumed to be empty initially.

state. After the first full swap, the physical state becomes

cos
θ

2
|00〉M|1〉C + eiφ sin

θ

2
|01〉M|0〉C. (7)

To implement a rotation around the x-axis on the Bloch sphere, a partial swap is now performed
between the cavity and mode 2, resulting in the following state:

cos
θ

2
(cos θ ′

|00〉M|1〉C − i sin θ ′
|01〉M|0〉C)+ eiφ sin

θ

2
(cos θ ′

|01〉M|0〉C − i sin θ ′
|00〉M|1〉C) (8)

or equivalently,

a|00〉M|1〉C + b|01〉M|0〉C, (9)

where

a = cos
θ

2
cos θ ′

− ieiφ sin
θ

2
sin θ ′,

b = −i cos
θ

2
sin θ ′ + eiφ sin

θ

2
cos θ ′

and θ ′
= J t . When the second full swap has completed, the empty cavity decouples from the

qubit |Q1〉 = a|0〉L + b|1〉L, ignoring a non-detectable global phase. An X gate is implemented
in this way when t = τ , i.e. when θ ′

=
π

2 .

3.2. Z rotations

To obtain a phase gate, we begin in the same fashion and obtain the state in equation (7).
However, we now exploit the fact that applying a different magnetic bias field does not
affect the phase evolution of the component cos θ

2 |00〉M|1〉C (which still acquires phase at
the same rate ε), since the cavity photon energy is not affected by the magnetic field. On the
other hand, a change δB in the bias field shifts the spin ensemble mode energy to ε + δ(δB),
which results in a phase evolution of e−i(ε+δ)t for the part eiφ sin θ

2 |01〉M|0〉C during the time t .
Ignoring the undetectable global phase e−iεt , after the second full swap the empty cavity again
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M1 (Q1a)

M2 (Q1b)

Cavity

S(τ) S(t1)

M3 (Q2a)

M4 (Q2b)

S(t2) S(t3) S(τ) S(τ) S(t1) S(t2) S(t3) S(τ)

Meas1 Meas2 Meas3 Meas4

Figure 3. The entangling operation for the dual-rail encoded qubits, implemented
by a parity projection. A ‘building block’ consists of all the operations inside the
dashed box, and the parity projection requires two such blocks. Each building
block rules out the possibility of two excitations in the relevant two modes while
preserving coherence between states with different occupation numbers. This
requires two ‘no’ results for each block to the question as to whether there are
two photons in the cavity or not. The initial cavity state is assumed to be empty,
and the interaction times are chosen as follows: t1 =

π

4J ' 20 ns, t2 =
π

2J ' 40 ns
and t3 = 2τ − t1 − t2 =

π

4J ' 20 ns.

decouples from the qubit |Q1〉 = cos θ

2 |0〉L + ei(φ−δt) sin θ

2 |1〉L. The relative phase accumulated
e−iδt manifests itself as a phase gate for the logical qubit, where the phase can be controlled by
the time t and the bias shift δB.

4. The measurement-assisted entangling scheme

Having established how to perform single-qubit operations, we now require an entangling
operation in order to produce a universal set of qubit gates [16]. In this section, we show how
certain types of measurement can facilitate such an entangling scheme (see figure 3). In essence,
we carry out a measurement on the parity of two chosen logical qubits. If the parity is found to
be odd (|01〉L or |10〉L), then we proceed with the protocol. Conversely, if the parity is found
to be even (|00〉L or |11〉L), then we reject the state. This is therefore a probabilistic entangling
operation; however, it is well established that such operations suffice for efficient universal
quantum computing [17]. Our approach can be thought of as a filtering process; we detect the
state |00〉L and reject it, and then similarly, we detect and reject the state |11〉L. Any state that
passes through this process without rejection must be in the odd parity subspace {|01〉L, |10〉L}.
Our protocol therefore consists of two basic blocks of operations, each ruling out the possibility
of having two excitations in the relevant two modes while not destroying the quantum coherence
between contributions to the state with different occupation numbers. As before, the cavity is
emptied before the entangling gate operation, and it is tuned out of resonance with the ensemble
modes during each measurement procedure.

Let us now consider the first block of operations, concerning modes M1 and M3 with the
cavity. For each correctly encoded logical qubit, the two dual-rail modes together only contain
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a single excitation. However, for the M3 mode–cavity interaction there is still the possibility
of exchange of two excitations, originally from different qubits. This two-excitation exchange
is governed by the Hamiltonian H (2) in equation (5), which has three distinct eigenvalues 2ε,
2(ε− J ) and 2(ε + J ), with corresponding eigenvectors

|v0〉MC =
1

√
2
(|20〉 − |02〉),

|v−〉MC =
1
2(|20〉 −

√
2|11〉 + |02〉), (10)

|v+〉MC =
1
2(|20〉 +

√
2|11〉 + |02〉),

respectively. Therefore, if the M3 mode–cavity state after the first full swap is |11〉 =
1

√
2
(|v+〉 −

|v−〉), it evolves to 1
√

2
(|v+〉 + |v−〉)=

1
√

2
(|20〉 + |02〉) for an interaction time t1 =

π

4J ' 20 ns.
Carrying out a measurement designed to detect whether there are two photons in the cavity [13]
then removes the |02〉 component if the measurement result is a ‘no’ outcome. After a further
exchange of t2 =

π

2J ' 40 ns, the part |20〉 evolves to |02〉 which can be ruled out by a second
measurement if the outcome is ‘no’ again. Thus, up to now when successful, we can be certain
that there will be at most one excitation between the modes M1 and M3, after it has been swapped
back from the cavity. So far, we have only considered the two-excitation exchange, while there
is also the exchange of one excitation. In order for the block to perform an identity operation,
i.e. two swaps, on the one-excitation exchange subspace, a further interaction between the mode
M3 and cavity is required for a time of t3 = 2τ − t1 − t2 =

π

4J ' 20 ns, followed by a full swap
between the mode M1 and cavity.

Due to symmetry, the second block of operations has the same effect on modes M2

and M4, ensuring that there is also at most one excitation in between, if successful. Hence,
starting with two correctly encoded qubits |Q1 Q2〉L = (α1|0〉L +β1|1〉L)

⊗
(α2|0〉L +β2|1〉L)

or physically |M1 M2 M3 M4〉 = α1α2|1010〉 +α1β2|1001〉 +β1α2|0110〉 +β1β2|0101〉, successful
implementation of the entangling gate leaves us with the mode state N (α1β2|1001〉 +
β1α2|0110〉) or N (α1β2|0Q11Q2〉L +β1α2|1Q10Q2〉L) in the logical basis, where N is a
normalization constant. This is an odd-parity projection operation, which generates a maximally
entangled Bell state when we start with |+〉Q1|+〉Q2 as the initial state of the logical qubits.
Notably, such parity projections together with single-qubit operations are adequate for universal
QIP [17].

5. Errors

With the above set of universal quantum gates, our integrated device is capable of performing
probabilistic QIP within the electron spin ensemble, in the ideal case when no errors are present.
We shall now consider various error sources, namely collective excitation decay, imprecise
timing in cavity–mode swap, cavity photon leakage and measurement errors.

As mentioned before, the decay rates of the collective spin excitations and that of cavity
photon leakage are orders of magnitude smaller than the collective coupling J [3]. Moreover,
errors resulting from imperfect pulse timings are all linear, and timing precision with a
nanosecond resolution is feasible [3]. Therefore, these errors shall be treated as negligible as
compared to measurement errors [13], which shall be evaluated for the entangling gate in this
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section. We start with the logical qubit state

|+〉Q1|+〉Q2 =
1
2(|1010〉 + |1001〉 + |0110〉 + |0101〉)M1 M2 M3 M4

, (11)

with the cavity being |C〉 = |0〉. There are two types of measurement errors to consider,
corresponding to different incorrect outcomes to the question of whether there are two photons
in the cavity or not [13].

5.1. Type I measurement error

This type of error occurs when the measurement outcome gives a ‘no’ while the cavity is
populated with two photons, and this occurs with an independent probability of η1 for each
measurement. It has an effect on the overall fidelity F of this entangling gate, reducing the
degree of entanglement generated in the final state. With the cavity state |0〉C decoupled from
the modes at the end of the protocol, the final density matrix for the modes |M1 M2 M3 M4〉 in
this case is (see the appendix)

ρ =
1

1 + η1

(
|9+

〉〈9+
| +
η1

2
(σ1 + σ2)

)
, (12)

where

|9+
〉 =

1
√

2
(|1001〉 + |0110〉)−→

1
√

2
(|01〉 + |10〉)Q1 Q2, (13)

σ1 =
1

2

(
(|0020〉 − |2000〉)(〈0020| − 〈2000|)

2
+ |1010〉〈1010|

)
,

σ2 =
1

2

(
(|0002〉 − |0200〉)(〈0002| − 〈0200|)

2
+ |0101〉〈0101|

)
.

(14)

In the ideal case when η1 = 0, the resulting state after the entangling operation is the
maximally entangled state |9+

〉, as expected. For finite η1 errors, the final mixed state ρ
describes that for bipartite quinits Q1 and Q2, where each quinit is a five-level system. Mapping
the different physical states of the dual-rail modes |10〉, |01〉, |20〉, |02〉 and |00〉 to the logical
quinit levels |0〉, |1〉, |2〉, |3〉 and |4〉, respectively, for each Qi , equation (14) becomes

σ1 −→
1

2

(
(|42〉 − |24〉)(〈42| − 〈24|)

2
+ |00〉〈00|

)
Q1 Q2

,

σ2 −→
1

2

(
(|43〉 − |34〉)(〈43| − 〈34|)

2
+ |11〉〈11|

)
Q1 Q2

.

(15)

Although also being entangled in the levels |2〉, |3〉 and |4〉, we shall only be interested in the
entanglement between the two levels |0〉 and |1〉, which span the computational basis space for
conventional QIP tasks. Figure 4(a) plots the fidelity F [18] of the resulting state ρ (as given by
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Figure 4. Plots of the final state ρ after the entangling operation against the
type I error η1 for each measurement, showing: (a) the fidelity F with respect to
|9+

〉〈9+
|; (b) the entanglement of formation EF when the population outside the

computational subspace is simply ignored and projected out.

equation (12)) with the ideal state |9+
〉〈9+

| against the error η1,

F(ρ, |9+
〉〈9+

|)= Tr

(√
√
ρ|9+〉〈9+|

√
ρ

)
=

√
1

1 + η1
, (16)

where |9+
〉 is embedded in the five-level system by filling the levels that lie outside the

computational basis with zero population.
We can see from figure 4(a) that a high fidelity is possible as long as the error η1

remains small; however, this does not automatically guarantee the presence of entanglement
for the bipartite quinits. We therefore apply an entanglement measure to see how the degree
of entanglement changes as η1 increases. The simplest (but questionable) way of doing so
is to apply Wootter’s entanglement of formation EF [19] to the state ρ projected onto the
computational subspace, while ignoring the population in the other levels (see figure 4(b)).
The reason why we consider this metric as incorrect is that artificial entanglement is created
by this projection process. Moreover, even small amounts of population in levels outside the
computational subspace may result in a significant reduction in the degree of entanglement for
the larger system in certain scenarios, as has recently been explored in [20]. Thus, instead of
the entanglement of formation, a more useful measure involving the whole five levels of the
bipartite quinits is needed.

We apply the generalized m-concurrence C2
m measure in d dimensions as defined in [21]

and derived in [22], where m is the number of parties involved and is equal to 2 in this case. In
d dimensions, C2

2 ranges from zero for separable states to 2(d−1)
d for the maximally entangled

generalized Bell states, such as 1
√

d

∑d−1
i=0 |i i〉. Moreover, it reduces to Wootter’s concurrence

squared C2 [19] when d = 2. Figure 5(a) illustrates the two-concurrence (dashed green) of the
final state ρ (as in equation (12)) with d = 5 against the error η1. This is marginally lower than
the projectively implemented Wootter’s concurrence squared (not shown here), for each finite
η1 6= 0. The difference is insignificant, partly due to the fact that the state ρ in equation (12)
is also entangled outside the computational space through the error components σ1 and σ2

(equation (15)). Interestingly, even when η1 = 1, the two-concurrence is still greater than zero,
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Figure 5. (a) Plots of the generalized two-concurrence C2
2 in five dimensions

against the η1 error, for ρ (dashed green), ρ with dephased population outside
the computational subspace (solid blue) and ρ with all population discounted
into the computational subspace (solid red); (b) entanglement of formation EF

plot for the discounted final state ρd(red in (a)) against η1.

although no information is learnt at any of the four measurements. This can be understood
as follows. We have assumed that the phase between the measured state and the rest of the
superposition is lost through the interaction between the system and the measurement apparatus
(see the appendix) [13]. This corruption of phase information affects the subsequent evolution of
the state and effectively causes a leakage of population from the components |00〉Q1 Q2(|11〉Q1 Q2)

in the computational subspace to |42(3)〉Q1 Q2 and |2(3)4〉Q1 Q2 . Entanglement then appears to
exist—and is registered by the two-concurrence—both within and outside the computational
subspace. However, we stress that this apparent entanglement is useless for our purpose due to a
complete lack of information about heralded failures, which prevents the required post-selection
of successful runs of the protocol.

As discussed above, our final state generally contains both useful and ‘spurious’
entanglement. Therefore, we require a new metric for filtering out the latter kind to obtain
a lower bound on the degree of useful entanglement. We shall achieve this by identifying a
suitable theoretical operation that can be applied to the final state. It turns out to be insufficient
to replace all population outside the computational basis with a completely mixed state in these
levels, since the resulting curve (solid blue in figure 5(a)) still does not hit zero as η1 → 1. (In
this case, only the entanglement outside the computational subspace has been removed, but the
entanglement inside it is still present. Since no information has been learnt in the measurement,
this entanglement is of the ‘spurious’ kind, which we want to discount.) A better approach
therefore proceeds as follows. We add any population that has leaked from the levels |00〉Q1 Q2

or |11〉Q1 Q2 back into computational subspace in a way that mixes the resulting state to the
largest possible extent:

ρd =
1

1 + η1

(
|9+

〉〈9+
| +
η1

2
(|00〉〈00| + |11〉〈11|)

)
Q1 Q2

. (17)

The C2
2 curve in five dimensions for this state then coincides with the square of Wootter’s

concurrence C2 for two two-dimensional systems, hitting zero as η1 → 1(solid red in
figure 5(a)). Indeed, this is what we would reasonably expect for maximal error η1 when the
measurement fails to report any useful information. Since only two levels are involved for ρd,
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Figure 6. The probability Pf (a) for a type II error η2 with η1 = 0 (blue) and
η1 = 0.1 (red), respectively, and (b) for a type I error η1 with η2 = 0. In the latter
case, note that in spite of the increase in the probability Pf, the final state is still
degraded as η1 becomes larger.

we can also plot its entanglement of formation against η1 in figure 5(b), which is lower than
that shown in figure 4(b) as expected. We see that in order to achieve a high degree of useful
entanglement as the result of the parity projection operation, η1 has to be small. For example,
EF(ρd)' 0.75 when η1 = 10% which is achievable with current technology [13].

5.2. Type II measurement error

This type of error occurs when a measurement outcome reports a ‘yes’ while there are not
two photons in the cavity, and this happens with an independent probability of η2 for each
measurement. For this kind of error, the entangling procedure is stopped and we have to start
all over since a ‘yes’ is reported. Consequently, this only affects the overall probability that we
reach the end of the protocol without a heralded failure. We found this by considering the overall
probability of passing all four measurement tests, and thus obtain

P f =
7(1 − η2)+ η1

8
.
(6 + η1)(1 − η2)+ η1

7 + η1
.
(5 + 2η1)(1 − η2)+ η1

6 + 2η1
.
(4 + 3η1)(1 − η2)+ η1

5 + 3η1
,

for the entire entangling operation (see figure 6).
In the absence of any error, the probability Pf of reaching the end of the protocol is 50%.

Pf decreases with η2 for fixed η1, and increases with η1 for fixed η2, although the quality of
entanglement is of course reduced in this case. For the 10% error in η1 which gives rise to
an 80% concurrence, a type II error of η2 = 10% [13] results in a probability Pf ' 36.4%, i.e.
roughly a third of the time.

5.3. Cavity photon leakage

Measurement errors are only important during the entangling scheme, while all other errors
also affect the single-qubit gate fidelities. Cavity photon loss is likely the next dominant error
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Figure 7. The modified circuit for the whole integrated device during the
entangling operation, where the number of measurements is halved. Nonetheless,
the circuit still consists of the same blocks of basic operations.

source, whereas timing errors and collective excitation decay can be considered as negligible in
comparison.

For this reason, we shall now briefly discuss an adaptation of our proposed circuit which
can achieve a reduction of the cavity leakage effect. For each measurement procedure, a Control-
NOT (CNOT) gate is first implemented on the transmon, which takes about 50 ns. The CNOT gate
is controlled by the number of photons in the cavity, so in this case the CNOT gate is triggered
whenever there are two photons in the cavity. The measurement cavity is then read out using a
microwave probe, taking a time of about 400 ns [13].

As the probe measurement thus takes a much longer time than the CNOT gates and the swap
operations, we can adapt our earlier circuit to reduce the number of readout steps required in
each block of the entangling operation (see figure 7). This modified block achieves the same
effect as our previous circuit, i.e. it removes all components of the wavefunction with double
excitations in the relevant two modes while not disturbing the remaining components of the
state. For a cavity with a photon decay time of 20

2π ' 3.2µs [13], we expect a photon leakage
of about 15.6% during a 0.5µs operation, but this source of error can be further suppressed by
increasing the Q-factor of the storage cavity in the integrated device.

6. Readout scheme

Full quantum state tomography can be carried out on the logical qubits to determine the dual-rail
mode states. This is achieved through a sequence of swap operations followed by measurements
on the storage cavity. This can also be extended to consider the entangled bipartite quinits as
in equation (12), by measuring the number of photons in the cavity swapped from each mode:
three measurements are then needed for each mode to determine whether there are zero, one or
two photons in the cavity.
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Figure 8. Qubit measurement in two independent bases: (a) with only the solid
circuit, corresponding to measurement in the logical basis of {|0〉Qi , |1〉Qi};
(b) with the full circuit including the dashed gates, corresponding to
measurement in the logical basis of {|+〉Qi , |−〉Qi} for t0 =

τ

2 .

While the above-described full state tomography is straightforward to implement in
principle, the number of measurements required for each run of the circuit might be challenging
in a first experimental demonstration. Therefore, we propose the following alternative as a
simpler verification of the entangling protocol: the aim is to use appropriate measurement
statistics on the final state to reconstruct a density matrix that is consistent with the one given
by equation (17). To achieve this, we start with repeated runs of the solid circuit in figure 8(a),
with each measurement only checking whether there is a single photon in the cavity or not.
An answer of ‘no’ means that there must have been either zero or two photons in the relevant
mode Mi . Our default assumption in this case will be that the mode was in the state |0〉Mi .
Only when we obtain the total combination |0000〉M1 M2 M3 M4 do we assume that there must
have existed two excitations in one of the four modes. However, such states only occur due to
errors in the protocol; they lie outside the computational basis and do not contribute to the final
entangled resource state. As discussed in section 5.1, we account for these errors by adding their
population to the computational subspace in a way that ensures that the quality of the desired
resource is not artificially boosted. Performing many runs of this circuit then allows us to fill
the diagonal entries of the density matrix (in the {|0〉Qi , |1〉Qi} basis) and to compare them with
equation (17).

However, the above procedure alone is not sufficient to distinguish quantum entanglement
from classical correlations. We therefore also carry out repeated runs of the complete circuit
including the dashed gates in figure 8(b), corresponding to measurement in the logical basis of
{|+〉Qi , |−〉Qi} for t0 =

τ

2 . This enables us to obtain the coherences of the density matrix, which
can then once more be compared with equation (17). Note that in measuring the coherences,
population outside the computational basis is no longer relevant and can be directly discarded.
Combining the two similar procedures described above, one can verify whether the entangled
resource at the end of the protocol is consistent with the discounted qubit state ρd for a known
fixed η1 error, up to a certain confidence level.
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7. Conclusion

We have devised a measurement-based entanglement protocol for dual-rail encoded qubits in
an electron spin ensemble, where the collective excitations of the spin ensemble are coupled to
a superconducting resonator linked with a measurement apparatus. A detailed analysis of the
predominant error sources of the integrated device indicates that probabilistic QIP with the spin
ensemble should be feasible with current technology.
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Appendix

In this appendix, we go through the evolution of the total mode–cavity state under the entangling
operation with type I measurement error η1, to derive the final state ρ as in equation (12). Since
there are two excitations in the whole system, the phase evolution e−2iεt is global and ignored at
all times.

The initial total state |M1 M2 M3 M4C〉 of the modes (equation (11)) and the cavity evolves to

1

2

(
−

|00200〉 + |00002〉
√

2
− i

|00011〉 − i|00110〉
√

2
+

|01100〉 − i|01001〉
√

2
+ |01010〉

)
(A.1)

after the first full M1C swap followed by the M3C coupling S(t1). When the first measurement
gives an outcome of ‘no’, we are left with the density matrix

ρ1 =
8

7 + η1

(
7

8
|A1〉〈A1| +

1

8
η1|00002〉〈00002|

)
, (A.2)

where

|A1〉 =

√
2

7

(
−1
√

2
|00200〉 +

−i|00011〉 − |00110〉
√

2
+

|01100〉 − i|01001〉
√

2
+ |01010〉

)
(A.3)

all normalized. Note that here with the setup in [13], we have assumed that the measurement
apparatus interacts with the cavity-ensemble system regardless of its ability to report correct
answers. In so doing, even when η1 = 1 where no information is to be learned from the
measurement result, the state has still changed, namely dephased according to equation (A.2).

The M3C coupling S(t2) is a full swap for both the exchange of one and two excitations.
Conditional on the second measurement giving an answer of ‘no’ as well, the density matrix
becomes

ρ2 =
1

2(3 + η1)
(6|A2〉〈A2| + η1|00002〉〈00002| + η1|00200〉〈00200|), (A.4)
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where

|A2〉 =
1

√
6
((−|00110〉 + i|00011〉)+ (−i|01001〉 − |01100〉)+

√
2|01010〉) (A.5)

all normalized.
The remaining operations in the first block result in the density matrix

1

3 + η1
(3|Af1〉〈Af1| + η1ρ0), (A.6)

where

|Af1〉 =
1

√
3
(|10010〉 − |01100〉 + |01010〉) (A.7)

and

ρ0 =
1

2

(
(|00200〉 − |20000〉)(〈00200| − 〈20000|)

2
+ |10100〉〈10100|

)
, (A.8)

which does not evolve further during the rest of this entangling gate operation since the second
block of operations never accesses the modes M1 and M3. At this point, the cavity is empty and
decoupled from the modes.

Similarly, due to symmetry, upon the completion of the second block of operations on the
modes M2 and M4, the cavity state |0〉C is again decoupled from the modes and we have for the
modes M1 M2 M3 M4 the density matrix (equations (12)–(14))

ρ =
1

1 + η1

(
|9+

〉〈9+
| +
η1

2
(σ1 + σ2)

)
,

where

|9+
〉 =

1
√

2
(−|1001〉 − |0110〉),

σ1 =
1

2

(
(|0020〉 − |2000〉)(〈0020| − 〈2000|)

2
+ |1010〉〈1010|

)
,

σ2 =
1

2

(
(|0002〉 − |0200〉)(〈0002| − 〈0200|)

2
+ |0101〉〈0101|

)
.
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