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Sensors that harness exclusively quantum phenomena (such as entanglement) can achieve superior performance
compared to those employing only classical principles. Recently, a technique based on postselected, weakly
performed measurements has emerged as a method of overcoming technical noise in the detection and estimation
of small interaction parameters, particularly in optical systems. The question of which other types of noise may be
combated remains open. We here analyze whether the effect can overcome decoherence in a typical field-sensing
scenario. Benchmarking a weak, postselected measurement strategy against a strong, direct strategy, we conclude
that no advantage is achievable, and that even a small amount of decoherence proves catastrophic to the weak-value
amplification technique.
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I. INTRODUCTION

The prospect of enhancing the sensitivity of nanoscale de-
tectors has recently emerged in light of a greater understanding
of fundamental aspects of quantum theory [1]. In particular, the
appropriate application of entangled states can offer sensing
performance at the Heisenberg limit, far superior to the stan-
dard quantum limit imposed on separable states [1–4]. Another
feature of quantum physics not reproducible classically is an
effect known as weak-value amplification: in this work we
analyze its impact on the field of quantum metrology.

In a seminal paper of 1988, Aharonov, Albert, and Vaidman
(AAV) presented a curious quantum mechanical thought ex-
periment giving rise to a quantity the authors called “the weak
value of a quantum variable” [5]. AAV defined the quantity

Aw := 〈ψf |A|ψi〉/〈ψf |ψi〉,
generalizing the usual expectation value 〈A〉 = 〈ψi |A|ψi〉.
Obtaining Aw involves (i) initializing a quantum system
of interest (henceforth “system”) into the state |ψi〉;
(ii) coupling the system weakly to an ancillary measuring
device (henceforth “meter”) through the system operator A;
let the coupling strength be parametrized through a constant
G ∈ [0,1]; (iii) postselecting the system into a definite final
state |ψf 〉. The meter can then be interrogated at full strength to
reveal something about the system. A surprising interference
effect arises when postselection and weak measurement are
combined; i.e., G < 1 is chosen such that the deflection
induced in the meter is much less than its inherent uncertainty,
and when the pre- and postselected states are close to
orthogonal, 〈ψf |ψi〉 → 0, one may extract weak values Aw
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much larger than max(〈A〉) through appropriate measurements
of the meter. AAV’s expression for Aw has a limited range
of validity [6]: however, exact treatments reveal that the
qualitative effect persists outside this range [7–9]. Weak values
have been obtained experimentally; see, e.g., Refs. [10,11].

In this article, we shall concentrate on technological
applications inspired by AAV’s work: the use of the larger-
than-usual deflection of the meter for increasing the sensitivity
of a suitably designed detector. Although the idea of weak-
value amplification (WVA) is mentioned in Ref. [5], its true
utility has only recently begun to transpire. AAV considered an
amplification of the deflection imparted to a beam of spin-1/2
particles passing a Stern-Gerlach magnetic field gradient. A
year later, Duck et al. described an analogous experiment
involving the displacement of a coherent light beam by a
birefringent crystal [6]. In both cases the internal state of each
element of the beam ensemble is preselected, coupled weakly
to its spatial wave function and finally postselected; leaving the
meter (the element’s spatial wave function) in a characteristi-
cally broad distribution peaked around Aw . Ordinarily (without
postselection), the shift in the meter wave function could well
be too slight to detect, due to the finite spatial resolution or mis-
alignment of the detection apparatus. Such imperfections can
be thought of as classical randomness occurring after the wave
function has collapsed, and are known as examples of technical
noise. This type of noise does not affect the quantum state prior
to measurement, but obscures the results after measurement.
It can be mitigated by the increased deflection achieved by
postselecting the beam into an unlikely internal state.

In 2008, a tiny lateral displacement of a light beam was
promoted to a detectable shift in this way, revealing for
the first time the spin Hall effect of light by improving the
signal’s ratio to technical noise by a factor of 104 [12]. In
another experiment, a similar amplification was used to boost
the angular deflection of light in a Sagnac interferometer
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[13]. These examples suggest that, if one is limited by
technical noise (such as finite detector resolution or imperfect
initialization of the meter [14]), the weak-value interference
phenomenon can be a useful tool to detect tiny shifts which
are hard to resolve by other means.

Experimental setups are typically afflicted by varying types
and magnitudes of noise. If many types of noise are present,
one is motivated to overcome the noise that is acting as a
limiting factor. While a larger shift in the meter wave function
is clearly beneficial when technical noise is the dominant
source of error, other types of noise may not be overcome
so easily with the WVA technique. Shot noise, the intrinsic
uncertainty associated with pure-state quantum mechanics,
may not be defeated [15], although it has been shown that
the weak-value technique can match the sensitivity of direct
sensing strategies when shot noise dominates, bringing the
aforementioned benefits (viz., suppression of technical noise),
as it were, “at no extra cost” [16]. What has remained
unexplored is whether this remains true when a third type of
noise (other than shot noise and technical noise) is considered.
Decoherence is a type of noise associated with mixed-state
quantum mechanics that arises when a system interacts with an
unknown environment [17]. It randomly affects the dynamics
of the quantum state prior to measurement and imposes limits
on the sensitivity of parameter estimation schemes [18,19].
Can the WVA effect inspire new detectors which resolve
small parameter shifts more quickly than standard techniques,
thereby defeating decoherence?

The approach taken in this article is different from the
preceding examples in the following sense: instead of in-
vestigating and amplifying a preexisting weak interaction
between two quantum degrees of freedom (the process of
estimating an interaction parameter [20]), we are interested
in the amplification of an arbitrary phase shift caused by a
classical field on a first quantum system by coupling it (with
arbitrary strength) to a second. We call this the process of
estimating a phase parameter. The decoherence of the first
system then presents the dominant noise in the problem.
We do not consider technical noise, allowing ourselves ideal
measurement and control of the quantum system but not its
environment. In assessing the performance of WVA, we shall
not be satisfied merely with anomalously large expectation
values (as intimated by the weak value), but rather demand
that the particular statistical model associated with it exhibits
a higher informational content than is otherwise possible.

The remainder of this article is organized as follows: In
Secs. II and III we introduce a canonical phase estimation
problem and apply the Fisher information functional to ascer-
tain the performance of what we call the “direct strategy.” In
Sec. IV we explore the possibility of using weak measurements
alone, combining this in Sec. V with postselection, allowing
us to evaluate the performance of the “WVA strategy.” We
summarize our conclusions in Sec. VI.

II. SPIN-BASED SENSING OF A MAGNETIC FIELD

The paradigmatic example of a phase parameter estimation
problem is a spin-1/2 particle in a strong magnetic field B

along the z direction. The strong magnetic field leads to a
Zeeman splitting of the spin’s energy levels, allowing it to be

modeled as a quantum two-level system commonly referred
to as a qubit. If the Bloch vector describing the quantum state
of the qubit is initialized in the equatorial plane (i.e., into
a state unbiased with respect to the “up” |0〉 and “down”
|1〉 eigenstates) it will precess around the z axis at a rate
proportional to the strength of B. On moving into a frame that
rotates with this evolution, small deviations δB in the magnetic
field strength are seen as slower evolutions of the Bloch vector
around the z axis. In this frame, and in the computational
{|0〉,|1〉} basis, the evolution of the spin is described by

2ρ11(t) = 1, 2ρ12(t) = −ie−igδBt�(t); (1)

ρ is the two-dimensional density matrix of the spin, and g

is its gyromagnetic ratio which we set to unity without loss
of generality. As usual, completeness demands ρ22 = 1 − ρ11

and ρ21 = ρ∗
12. We take �(t) ∈ [0,1] to be a real, non-negative

function (assumed to be independent of δB) which describes
the attenuation of the off-diagonal terms. By choosing this
function appropriately one can model, for example, pure
dephasing [�(t) = e−�t ] or 1/f -noise-type decay [�(t) =
e−�t2

] with a characteristic rate � [21]. The dependence on
t is important but sometimes suppressed in our notation. δB

is an unknown quantity and is the subject of the parameter
estimation problem. While for clarity we describe the tangible
example of field sensing with a spin, our results apply to many
other phase estimation scenarios.

The density matrix, through exposure to the magnetic field,
acquires an increasing amount of information about δB as
time progresses. However, the buildup of useful information is
in competition with injurious dephasing mechanisms, which
invariably wash out all information after a sufficiently long
time. To estimate the value of the parameter δB, one exploits
the causal influence of δB on the statistics of outcomes when
measuring the spin after an appropriately chosen exposure
time. Statistical inferences about δB may then be made if one
has access to many identical preparations of the density matrix.

III. QUANTUM FISHER INFORMATION

Previous studies have commonly assessed the WVA ap-
proach (for the purpose of estimating an interaction parameter
in the presence of technical noise) using the signal-to-noise
ratio, or the ratio of meter deflection to detector resolution
[13,14,16,22–26]. By contrast, the Fisher information [27–30]
is used in parameter estimation when one does not wish to
make assumptions about specific measurement limitations; it
can be thought of as a measure of how much information
about a given parameter (in this case δB) is obtainable
from a particular statistical model: the family of probability
distributions generated by the density matrix ρ when it is
measured. In the context of weak-value amplification the
Fisher information was previously employed in Ref. [20], and
Hofmann has argued for a formal connection between the
Fisher information and AAV’s weak value [31]. The Fisher
information is defined as

F :=
∑

k

1

p(k|δB)
[∂δBp(k|δB)]2,

where ∂δB denotes the partial derivative with respect to the
parameter that is to be estimated (δB) and p(k|δB) is the
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conditional probability of getting outcome k given the value
of δB. The parameter indexes a continuum of differing
probability distributions over measurement outcomes, the
outcomes in this context being, e.g., “spin up” or “spin down”
with the probabilities given by the generalized Born rule

p(k|δB) = Tr[ρ�k],

where �k is the positive operator-valued measure (POVM)
element associated with outcome k. The maximum-likelihood
estimation procedure involves examining these probabilities
and guessing a value of δB that would generate the observed
frequencies with the greatest probability, inverting the statistics
in a Bayesian sense [32]. The Fisher information is then
inversely proportional to the variance in the estimate of δB,
and provides a good indication of the performance of any given
statistical model. It is clear that the choice of measurement
(POVM) will affect the Fisher information.

Fixing the POVM to a sharp measurement in the σx :=
|0〉〈1| + |1〉〈0| basis, one finds for a spin in a field

Fd = t2 cos2(tδB)�2

1 − �2 sin2(tδB)
. (2)

Here, the subscript “d” is used to denote quantities pertaining
to a direct sensing of δB, i.e., through the density matrix
described by Eq. (1). This expression exhibits oscillations
over time as the angle between the quantum state and the
measurement basis varies from pessimal (when the measure-
ment basis is parallel to the final state, tδB = [n + 1/2]π ) to
optimal (when the measurement basis is perpendicular to the
final state, tδB = nπ ).

To eliminate the dependence on the measurement choice
one can deploy the optimal POVM: since the estimation pro-
cedure involves many samples of the probability distribution,
some of them may be used to adaptively update the POVM
after an initial guess, causing it to rapidly converge on an
optimum [33]. A quantity that captures the maximum F in a
variation over all POVMs is the quantum Fisher information
(QFI), defined as

H := 2
∑

nm

|〈m|∂δBρ|n〉|2
pn + pm

. (3)

The above sum includes only terms for which pn + pm �=
0 and where n,m index the basis states in the spectral
decomposition of ρ, ρ = ∑

i pi |i〉〈i| [34]. In our case

Hd = �2t2, (4)

which is, notably, independent of the parameter δB. The
oscillations in time have disappeared, and this leaves only an
envelope with turning points which can be found by solving
�̇t2 = −�. For example, when � = e−�t the maximum of H

occurs at t∗ = 1/�.
According to the Cramer-Rao bound [35], the minimum

variance of the parameter δB is given by 1/(NH ) where
N is the number of trials. A larger value of H thus entails
a smaller minimum variance, which is obtained efficiently
through maximum-likelihood estimation [30]. The canonical
measure of the utility of a detector is the measurement
sensitivity S, which is the minimum uncertainty achievable
in the parameter in a fixed amount of sensing time, allowing

for the estimation procedure to be stopped (e.g., after t∗),
reset, and repeated an arbitrary number of times within the
fixed duration. Novel approaches to quantum metrology must
show an improvement in S (which depends on H ) to claim an
advantage over established techniques. The aforementioned
entanglement-enhanced sensors have been shown to have
a lower (read superior) sensitivity [1–3,36,37] by virtue
of achieving a square-root improvement over the standard
approach given the same resources.

IV. ARBITRARY-STRENGTH ANCILLA MEASUREMENT

An ancillary spin can be used as part of the measurement
process, often bringing some advantage—for example, in
the preamplification of a crystal-defect-based magnetic field
sensor [38]. Consider an ancillary qubit (the meter) initialized
in the x-y plane, coupled to the system qubit so that one has
control over the joint system. We envisage a measurement
operation which effects the following unitary transformation
on the system and meter:

M(G) = �+ ⊗ I + �− ⊗ exp(iGπσz/2). (5)

�± are projectors onto the ±1 eigenstates of a traceless “con-
trol observable” (of the system) that lies in the plane, �+ −
�− = cos �σy + sin �σx . The choice of σz := |1〉〈1| − |0〉〈0|
as a meter observable in the second term is chosen because
the ancilla is initialized in plane [39]. This setup allows
the measurement strength to be varied independently of the
initial state of the meter, and hence captured by G alone:
the measurement is strong when G = 1 and gets weaker as
G → 0. After tracing out the system spin, one finds that the
QFI of the meter spin is

Hanc = �2t2 sin2(Gπ/2) sin2(� − tδB)

1 − �2 cos2(� − tδB)
. (6)

The subscript “anc” denotes quantities pertaining to an indirect
sensing protocol, involving the use of an ancilla spin coupled
to the system spin with arbitrary measurement strength.
Assuming the experimenter has control over the measurement
operation, it is clear that she arranges � = tδB + π/2 for best
results (which corresponds to the control observable being
unbiased with respect to the system state), whence

Hanc → �2t2 sin2(Gπ/2). (7)

This matches the performance of the direct strategy when the
measurement corresponds to a full controlled π rotation, G =
1. The WVA scheme would seem to sacrifice performance by
operating near to G = 0 (where the dependence of Hanc on G is
roughly quadratic); however, we shall see that the postselection
step of the protocol leads to an amplification which mitigates
this apparent loss of information.

V. POSTSELECTED STRATEGY

Now we introduce postselection into the protocol. The
system spin is allowed to pick up phase in the weak field as
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usual. After a given time the measurement M is triggered:
this entangles the system spin with the meter, which is
initialized into the −1 eigenstate of σy , η(0) = |i−〉〈i−|. The
system spin is then measured, and only if it is found in
a certain postselection state |ψf 〉 = (|0〉 + eiθ |1〉)/√2, the
ancillary spin is interrogated in the usual manner (using an
adaptive maximum-likelihood-estimation procedure). In the
most general case the angle between pre- and postselection
can be varied independently of the measurement control angle
(as sketched in Fig. 1). The density matrix of the meter after
the measurement interaction and postselection will be given

by [40]

η(t) ∝ 〈ψf |sM[ρ(t) ⊗ η(0)]M†|ψf 〉s ,
with the proportionality constant fixed by normalization.
Under these operations, the evolution of the meter is confined
to the x-y plane, which is optimal for phase estimation [41].
The full evolution of η is given in Appendix A, but here
we specialize, without loss of generality, to θ = � + π/2
(corresponding to a postselection state that is unbiased with
respect to the control observable [42]). Thus we obtain, after
normalizing, the simplified expression

η11(t) = 1

2
, η12(t) = e− 1

2 iπG
[
� sin

(
Gπ

2

)
sin(θ − tδB) + i

(
cos

(
Gπ

2

) + � cos(θ − tδB)
)]

2� cos
(

Gπ
2

)
cos(θ − tδB) + 2

. (8)

Of course, η22 = 1 − η11 and η21 = η∗
12. Calculating the QFI

can be difficult for arbitrary density matrices, but we found
that applying Eq. (3) to a general qubit state in the equatorial
plane leads to

H = (y2 − 1)x̂2 − 2xyx̂ŷ + (x2 − 1)ŷ2

x2 + y2 − 1
, (9)

where x + iy = 2η12(t) and the caret denotes the partial
derivative with respect to δB. One straightforwardly obtains,
taking the real and imaginary parts of (8),

Hwva = Hd sin2(Gπ/2)A. (10)

SYSTEM

postselectionmeasurement control

direct
strategy

WVA
strategy

measurement strength
METER

FIG. 1. (Color online) A schematic for two different approaches
to parameter estimation using spins; the view is into the equatorial
plane of the Bloch sphere. A direct strategy relies only on interro-
gations of the system spin, which picks up a field-dependent phase
exp(itδB) over time. A WVA strategy makes use of an ancillary
spin in the hope of gaining an advantage. The latter technique
involves coupling the first spin with a second meter spin with variable
strength, and then interrogating the meter spin only if the system
spin is successfully postselected into a certain final state. Such a
postselection can be achieved by the use of projective measurements
in an appropriate basis given by θ , and is known to lead to a larger
than expected deflection of the meter spin if the coupling G is weak.
Note that while δB is an unknown quantity of interest, θ, �, and G

are tunable by the experimenter in the WVA strategy (their meanings
are explained in the main text).

The subscript “wva” denotes the use of an indirect sensing
strategy through the density matrix (8); but note that we
have treated the measurement strength entirely generally. The
expression admits the following interpretation: The first term
is the bare information available through direct techniques;
the second term represents the cost of having a finite-strength
measurement, and is present with and without postselection.
The final term

A = [1 + �(t) cos(Gπ/2) cos(θ − tδB)]−2 (11)

is due to the weak-value amplification effect: it becomes large
when both θ − tδB is close to an odd integer multiple of π

and cos(Gπ/2) ≈ 1, i.e., for a weak measurement strength
and almost orthogonal pre- and postselection. The upper two
panels of Fig. 2 demonstrate that in this regime Hwva > Hd,
and the WVA strategy would seem to outperform the direct
one. However, the much reduced postselection probability

q = Tr[(|ψf 〉〈ψf | ⊗ I)Mρ(t)M†]

must be taken into account, evaluating to q = 1/(2
√

A). Note
that q is nonzero when pre- and postselection are orthogonal
due to the backaction of the weak measurement [7]. Once the
probability is properly accounted for,

qHwva = �2t2 sin2(Gπ/2)

2[1 + � cos(Gπ/2) cos(θ − tδB)]
. (12)

A fair comparison between the efficiency of the weak-value
approach and the direct approach can be made by considering
the ratio of the two strategies. Before any optimization this
ratio, shown in the lower right panel of Fig. 2, is given by

qHwva

Hd

= sin2(Gπ/2)

2[1 + � cos(Gπ/2) cos(θ − tδB)]
. (13)

Note that by inspection this expression never exceeds unity
for any function �(t) ∈ [0,1]. Since the inequality qHwva <

Hd ∀ t implies Swva > Sd (where S is the measurement
sensitivity), this argument is sufficient to establish that the
WVA technique can never reach a better (i.e., lower) sensitivity
than a direct technique.
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π

π

δ π

π

δ

π

π

δ π

π

δ

FIG. 2. (Color online) Contour lines of four important quantities
are plotted against measurement strength G and the angle (θ − tδB)
between pre- and postselection. Upper left: Hwva:Hd uncorrected for
the low postselection probability. White regions show a ratio higher
than 1 and hence the apparent superiority of the WVA scheme over
a direct scheme. Upper right: the inverse ratio; white regions now
show where the WVA scheme is inferior. Lower left: the postselection
success probability q. Lower right: the corrected ratio qHwva:Hd; note
that there are no longer white regions and the weak strategy is never
better. The asterisk denotes a choice of (G,θ ) that is generalized to
include dephasing noise in Fig. 4.

Note that when dephasing noise is completely absent then
one can reach a ratio of unity for the correct choice of G and θ ;
this is in good agreement with the results of Starling et al. [16]
and Zhu et al. [15]. However, even a small attenuation is
catastrophic to the weak-value technique because for small G

there is a faster than exponential decay of the ratio qHwva:Hd

as � decreases (see Fig. 3), and a strong measurement quickly
becomes favorable.

To illustrate this behavior with a concrete example, the
time dependence of Hd and Hwva is shown in Fig. 4
for phenomenological dephasing noise, �(t) = e−�t . In
Appendix B we address the possibility of keeping all of the data
after the postselection measurement. We also generalize the
decoherence model to incorporate, e.g., amplitude-damping
processes (Appendix C), and consider other scenarios where
WVA may be of benefit: namely, those scenarios where the
measurement itself is not implemented cleanly, and when the
interaction is unavoidably weak (Appendix D). None of these
generalizations alter our conclusion.

VI. CONCLUSION

We have analyzed the utility of weak-value amplification
for the purpose of estimating an unknown phase parameter

0 0.25 0.5 0.75 1
G

0.5

1

q Hwva

Hd

1

0.99

0.9

0.7

0.1

stronger measurement

FIG. 3. (Color online) Ratio of information available in the
WVA strategy and in its direct counterpart, as a function of the
measurement strength G. The different curves correspond to various
values of the attenuation function �(t). The postselection is fixed to
θ = tδB + π . When G = 1, one should match the direct strategy;
only the postselection probability q = 1/2 implies by symmetry that
half of the information is thrown away (see Appendix B).

appearing in the Hamiltonian of a two-level quantum system,
finding no advantage over strong and direct techniques for the
broad class of noise models captured by Eq. (1). This includes
any kind of dephasing noise, and we show in Appendix C
that the quality of our conclusion is preserved when other
imperfections (such as T1 processes) are considered. When
decoherence is completely absent the WVA strategy can match
the performance of the direct approach, encouraging the motto
“one postselected run acting as though many unpostselected
runs” [26]. In contrast to entanglement- or discord-enhanced
sensing protocols, however, which are robust against a degree
of mixing of the quantum state [36], any level of dephasing
noise ruins the performance of the WVA approach.

While we have described the system-meter qubit pair as
spin-1/2 particles, they are isomorphic to many other physical

0 0.05
0.1

0.15t
0

1
2

3

Γ

0

0.02

0.04 Quantum
Fisher
Information

FIG. 4. (Color online) Quantum Fisher information (in units of
T−2) for the two competing strategies is plotted as a function of
time t and the dephasing rate � (for � = e−�t ). The upper green
surface corresponds to the direct strategy Hd and the lower purple
surface corresponds to qHwva, the corrected weak-value amplified
strategy. The postselection and measurement strength are fixed to
θ = tδB + π, G = 0.02, respectively, corresponding to the asterisk
in Fig. 2. Even a moderate amount of dephasing has a catastrophic
effect on the weak-value scheme.
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systems: for example, one can use the polarization states of
photons to measure a phase shift introduced by a crystal, and
couple photons together to enable weak measurement [11].

We reiterate that our results do not contradict studies
that have already put WVA to use experimentally [12,13,16]
or the many theoretical proposals for improving signal-to-
noise [14,20,25,26,43,44] since in those cases the quantity
of interest is an interaction parameter, and only technical
noise is overcome. When the limiting disturbance is to the
quantum state however, rather than to the classical information
following the measurement, then there is no advantage to be
gained by using a weak-value amplified approach.

Future work may elucidate whether imaginary weak values
can be more useful for metrology than real weak values, as
has been suggested in Refs. [22,25]; it would be interesting to
study how this might apply in finite-dimensional meters [45].

The issue of technical noise in finite-dimensional meters could
also be studied.
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APPENDIX A: FULL EVOLUTION OF ANCILLA

For a completely general choice of angles between pre- and
postselection and the measurement control as defined in Fig. 1,
the evolution of the meter qubit is described by

η11 = 1
2

η12 = 4ie−(1/2)iGπ {cos(Gπ/2)+i cos(θ −�) sin(Gπ/2)+[cos(Gπ/4)2 cos(θ−tδB)−cos(θ−2�+tδB) sin(Gπ/4)2+i cos(�−tδB) sin(Gπ/2)]�}
8+8[cos(Gπ/4)2 cos(θ−tδB)+cos(θ−2�+tδB) sin(Gπ/4)2]� .

(A1)

In the main text a fixed relationship between � and θ was
chosen for simplicity, and because this additional freedom
cannot provide an advantage.

APPENDIX B: USING ALL THE DATA

Since the WVA technique can get close to the performance
of a direct strategy and involves discarding the majority
of experimental runs, one might imagine that some of the
discarded data may be used to increase the information,
perhaps even allowing the technique to outperform the direct
strategy. In addition to the quantum Fisher information arising
from successful postselection, Eq. (12), one now has

(1 − q)H⊥
wva = t2�2 sin2 (Gπ/2)

2 − 2� cos(Gπ/2) cos(θ − tδB)
(B1)

resulting from runs that would ordinarily be discarded.
One can see that the two quantities are complementary in

the following sense. In the regime where the WVA effect is
strongest, the discarded runs carry less and less information.
Since the total information is additive, one can achieve

Htotal := qHwva + (1 − q)H⊥
wva (B2)

= t2 sin2 (Gπ/2)

1 − �2 cos2 (Gπ/2) cos2(θ − tδB)
. (B3)

This quantity cannot exceed Hd, but has some interesting
features. It is greater than qHwva in regions where the WVA
effect is small, notably reaching qHwva/Hd = 1 (rather than
1/2) when the measurement is fully strong. It converges on
qHwva when the WVA effect is pronounced; see Fig. 5.

APPENDIX C: A MORE GENERAL NOISE MODEL

One can allow the populations of the density matrix ρ to
have a time dependence,

2ρ11(t) = R(t), 2ρ12(t) = −ie−igδBt�(t). (C1)

0
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1

G

0

π
2

π

tδB

0

0.5

1

(a) (b)

(c)

FIG. 5. (Color online) Quantum Fisher information for a weak-
value amplified sensing strategy (a) when the postselection is
“successful,” (b) when the postselection is “unsuccessful,” and
(c) when both are considered together; the plots shown correspond to
the decoherence-free case.
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Note that R(t) and �(t) are not independent and are related
by � � 2

√
R − R2, and that decoherence models such as

relaxation can now be modeled R(t) = e−t/T1 ,�(t) = e−t/(2T1).
This has no effect on Hd or Hwva (despite the ancilla qubit
now having an evolution out of plane that depends on δB).
Notwithstanding further optimizations of the measurement
interaction in this scenario, the results presented here are
conserved when the noise model is generalized to allow for
relaxation, polarization damping, or other noise channels.

APPENDIX D: IMPERFECTIONS IN THE
MEASUREMENT DEVICE

For an exhaustive assessment of the utility of WVA, one can
consider more contrived situations. The failure of the technique
to provide enhancement over direct measurements on a noisy
system is twofold. First it can be thought of as deriving from
the order in which the amplification and noise act. Because the
noise acts before the measurement takes place, it gets amplified
as much as the signal does. Second, one can think of the failure
as deriving from the drop in signal strength incurred from the
weak interaction strength.

1. Noisy meter system

It is natural to inquire about the case when the amplification
takes place before any noise has acted. Our model can be easily
adapted to study this possibility. One imagines a situation
where a well-isolated quantum system (perhaps a nuclear spin
with an infinite coherence time) is used to sense a parameter
(a magnetic field deviation), but is inaccessible to direct
measurement. Readout can be performed by coupling to an
ancillary spin (perhaps an electron spin) as above, but now
the ancilla suffers an attenuation of its coherences described
by �(t). An estimation scheme using a strong measurement
G = 1 without postselection can achieve (with the usual
optimization over the measurement control)

H̃anc = �2t2. (D1)

The tilde denotes the decoherence acting on the meter rather
than the system. Allowing the measurement strength to vary

and enabling postselection yields

H̃wva = �2t2 sin2(Gπ/2)

[1 + cos(Gπ/2) cos(θ − tδB)]2
(D2)

→ �2t2 cot2(Gπ/4) (D3)

when the postselection is tuned as above. Unsurprisingly the
signatures of AAV’s effect persist as long as the attenuation
of coherence in the meter has not completely annihilated
the off-diagonal density matrix terms [46–48]. Once more,
the weak-value approach suggests an emphatic improvement
(the expression diverges as G → 0). Note, however, that
assuming the postselection can be implemented is not entirely
consistent with the idea of being forced to measure indirectly
through a noisy qubit. Nevertheless, with the postselection
probability taken into account one finds

qH̃wva = �2t2 cos2(Gπ/4). (D4)

In close resemblance to the above case, the QFI never exceeds
the direct-strategy benchmark; in fact, it varies between at best
being equal to and at worst half as large. So, even when given
this improbably favorable scenario, the WVA approach fails
to offer an advantage.

2. Limited measurement strength

Let us consider the advantage postselection alone can have
on an arbitrary strength measurement accomplished via a meter
qubit. Perhaps one has no control over the value of G, but is
in fact forced to make a weak measurement. In this case the
appropriate ratio is

qHwva

Hanc
= 1

2
[
1 + � cos

(
Gπ

2

)
cos(θ − tδB)

] . (D5)

Now, there is a clear advantage as long as the dephasing noise
is not too aggressive. But again one has had to assume the use
of strong measurements for the purpose of postselection but
deny their use in the estimation part of the protocol, which is
not entirely consistent. This situation may appear similar to the
case of estimating an interaction parameter: but there the un-
known quantity of interest is the measurement strength, and the
Fisher information must be calculated with respect to G [49].
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