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Abstract—A low computational cost method is proposed for de-
tecting actuator/sensor faults. Typical model-based fault detection
units for multiple sensor faults, require a bank of estimators (i.e.,
conventional Kalman estimators or artificial intelligence based
ones). The proposed fault detection scheme uses an artificial
intelligence approach for developing of a low computational
power fault detection unit abbreviated as ‘iFD’. In contrast to
the bank-of-estimators approach, the proposed iFD unit employs
a single estimator for multiple actuator/sensor fault detection.
The efficacy of the proposed fault detection scheme is illustrated
through a rigorous analysis of the results for a number of sensor
fault scenarios on an electromagnetic suspension system.

Index Terms—fault tolerant control, actuator/sensor fault de-
tection, reconfigurable control, loop-shaping robust control de-
sign, electromagnetic suspension, maglev trains, neural networks,
artificial intelligence.

I. INTRODUCTION

Design of fault tolerant control systems involves a trade-
off between system economic aspects, control performance
and reliability. Reliability is important in control systems
particularly to safety-critical systems. In many cases such
as Unmanned Area Vehicles (UAVs), control methods that
guarantee control reliability increase the computational cost
of the already limited system resources [1], [2].

Fault accommodation in modern control systems can be
achieved by either Passive Fault Tolerant Control (PFTC), or
Active FTC (AFTC), or a combination of both [3]. In order to
ensure controller robustness in the PFTC, prior knowledge of
the faults is necessary. In the AFTC method, the approach
used in this paper, a reconfigurable controller is designed
in combination with a Fault Detection and Isolation (FDI)
unit. Although the complexity of the design is increased,
the computational cost is reduced and the performance is
guaranteed under faults [4].

Fault tolerance against sensor (and/or actuator) failures is
extensively considered in the literature using both model-based
and model-free methods. This is because the stability and
performance of the plant under control depends on them and
because failures on those components occur on a relatively
regular basis [5]–[7]. Consequently, the FDI unit must be
able to detect and isolate any faulty sensors (and/or actuators)
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Bank of Estimators

Fig. 1. Actuator/Sensor signals estimation using bank of estimators (dotted
lines) vs the proposed estimator (bold lines).

based on their readings, and then the controller must be
reconfigured to maintain the performance using the remaining
healthy sensors (and/or actuators).

In relation to sensor fault tolerance, a few FDI methods exist
such as bank of Neural Networks (NNs) or Kalman Estimators
(KE) [1], [8], or other methods that use the information
from the remaining healthy sensors to reconstruct the lost
signal [9]. Both of the FDI approaches mentioned above
are useful since sensor redundancy is avoided, although the
required computational power is usually higher due to multiple
estimators that are used.

In contrast to the KE approach, NNs present an increased
False Alarm Rates (FAR) mainly due a very small residual
that remains after fault estimation [9]. Nevertheless, NNs are
widely used since they can work without having precise and
formal knowledge of the system [10]. In situations where many
sensors (actuators) exist, either of the two aforementioned
approaches require a co-working bank of parallel estimators
(shown with dotted lines in Fig. 1) for multiple faults detection
[11]. Consider the example of one actuator and ny the total
number of sensors and assume that not all of them can fail,
then the resulting number of sensor fault combinations is
2ny − 1. In order to detect the sensor faults in the previous
example, an equal number of estimators is required which
consequently increases both the complexity of the control
design and the computational resources (since a number of
estimators in parallel is needed). NNs have been widely used
in FTC systems, specifically in Fault Detection (FD) methods
and in sensor FDI [9], [12].

In this work the authors propose a low computational
cost FD mechanism (iFD) based on Artificial Intelligence
(AI) methods, that reduces the complexity and computational
power of a bank-based FD. More specifically, in Fig. 1 a
single estimator (solid line box) replaces a bank of estimators
that work in parallel (dotted lines)]. The single estimator
achieves the same performance as the bank-based FD but
with substantially lower computational cost. The methodology
presented here is a substantial extension of the authors’ work
in [13], [14]. The proposed framework is tested on an Electro-
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Magnetic Suspension (EMS) system used on maglev trains to
support the mass of the vehicle and passengers as well as to
ensure proper ride quality during the journeys [15].

The proposed FD scheme is also compared with a bank of
Kalman Estimators. Since the introduction of the basic linear
KE, several versions of the KE have been developed mainly
for non-linear systems [16]. Although practically applicable,
they are computationally expensive, hence the linear KE
approach is used for the comparison in order to have the lowest
computational cost possible.

The remainder of the paper is organized as follows: In
Section II we provide an outline of the proposed iFD approach.
Section III presents modeling issues for the EMS system.
Section IV validates the efficacy of the proposed method based
on the results from a number of simulation runs for various
fault scenarios. Finally, in Section V we conclude the paper.

II. THE PROPOSED FAULT DETECTION SCHEME

The proposed FD scheme is illustrated in Fig 2a. A typical
industrial system has a set of inputs (control signals) and
outputs (measurement signals). In practice, the inputs are
driven by a set of actuators, U , and the outputs are measured
by a set of sensors, Y . The control and measurement signals
refer to actuators and sensors respectively.

When one or more sensors (and/or actuators) are impaired
those signals are distorted, effectively leading to performance
degradation or even instability of the closed-loop. The sets of
actuators and sensors are defined as U = [u1, u2, . . . unu ] and
Y = [y1, y2, . . . yny

], where uj is the jth actuator, yj is the
jth sensor and nu, ny are the total number of actuators and
sensors respectively.

The control loop features a bank of controllers
[K1,K2, . . .Knyu

] and two isolation units that are responsible
for isolating faulty actuator and sensor signals when these
occur. The iFD mechanism comprises a NN-based estimator,
a Residual Generator (RG) and a Decision Mechanism (DM)
and its main responsibility is to detect the faults.

The NN-estimator is trained in such a way so that the
sensors (and actuators) signals are estimated and fed to the RG
which then produces the residual using the estimated signals.
Finally, the residuals are fed to the DM where a decision is
made whether a sensor (and/or actuator) is faulty or not.

The estimator’s inputs are obtained from the Binary
Switches (BS) shown in Fig. 2b. This unit features three
inputs: The first input represents the real measured values
of U and Y , whereas the second one originates from the
functions Cuj

and Cyj
defined as Cuj

= [cu1
, cu2

. . . cunu
]

and Cyj
= [cy1

, cy2
. . . cyny

]. In fact Cuj
and Cyj

represent
two arrays that contain predefined functions, used during the
training and operation phases of the iFD. The rationale behind
choosing Cuj

and Cyj
is that having different value profiles

compared to the values of the relevant sensor (and/or actuator)
channel is useful to avoid iFD confusion during training.
Designer experience, per application, target is advantageous in
such case, i.e., to select initial value profile sets for Cuj and
Cyj

based on the known/expected sensor(s) (and/or actuator(s))
capabilities. Hence, a more realistic failure scenario can be
provided to the iFD for training. We will illustrate this
aspect in later sections of the paper. The third input is the
Isolation Signal, ISyj , which is a binary input that controls
the switching operation between its inputs e.g., from y1 to cy1
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Fig. 2. (a) General diagram of actuator/sensor FDI with the proposed iFD,
(b) Binary switch operation.

and vice versa. The output yBSj of the BS is given by,

yBSj
=

{
yj , if ISyj

= 1,

cyj
, if ISyj

= 0.
(1)

The moving average filter defined in (1) generates the
residual and accommodates the noise coming from the sensors,
reducing in this way the FAR [17],

ryj
=

j∑
j−(N−1)

(yj − ŷj)2

N
, (2)

where ryj
is the residual, yj and ŷj are the jth real and

estimated signals respectively (for the actuators the y is
replaced by u), and N is the total number of past samples.

The DM decides whether one or more actuators and/or
sensors are impaired or not by comparing each residual with
a predefined threshold for each actuator/sensor, whereas the
engineer has to pre-set the threshold for each residual, rj . The
Reconfiguration Signal RS at the output of DM essentially
identifies a new controller when reconfiguration takes place.
Both the ISj and RS are switching signals and they change
state when one or more faults (either actuator(s) or sensor(s))
is(are) detected. The ISj isolates the faulty components from
the loop and the RS adds a new controller in the loop which
is designed to work with the remaining healthy components.

A. Offline training of the iFD unit: obtaining the learning set
The training procedure of the iFD can be done using one

of the available training algorithms in the literature. The key
point on the iFD functionality is the way the training data set
is constructed. The iFD unit is trained with data accumulated
from the various sub-sets of the main sensor set Y . The
collected data are then packed together in the structure format
listed in Table I.
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TABLE I
STRUCTURE OF THE DATA USED FOR THE iFD TRAINING.

Training data Estimated sensor/actuators signals
Actuator/ Actuator/

y1 y2 y3 . . . yny
u1 u2 u3 . . . unu

ŷ1 ŷ2 ŷ3 . . . ŷnŷ
û1 û2 û3 . . . ûnû

Sensor Set Sensor
Number Status

1

Healthy sets: D1
y1
1

D1
y1
2

D1
y1
3

. . . D1
y1
ny

D1
u1
1

D1
u1
2

D1
u1
3

. . . D1
u1
nu

D1
ŷ1
1

D1
ŷ1
2

D1
ŷ1
3

. . . D1
ŷ1
nŷ

D1
û1
1

D1
û1
2

D1
û1
3

. . . D1
û1
nû

Y = y1, y2,. . . ,yny

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

U = u1, u2,. . . ,unu D1
yk
1

D1
yk
2

D1
yk
3

. . . D1
yk
ny

D1
uk
1

D1
uk
2

D1
uk
3

. . . D1
uk
nu

D1
yk
1

D1
ŷk
2

D1
ŷk
3

. . . D1
ŷk
nŷ

D1
ûk
1

D1
ûk
2

D1
ûk
3

. . . D1
ûk
nû

2

Faulty set: c2
y1
1

D2
y1
2

D2
y1
3

. . . D2
y1
ny

D2
u1
1

D2
u1
2

D2
u1
3

. . . D2
u1
nu

c2
ŷ1
1

D2
ŷ1
2

D2
ŷ1
3

. . . D2
ŷ1
nŷ

D2
û1
1

D2
û1
2

D2
û1
3

. . . D2
û1
nû

y1
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
c2
yk
1

D2
yk
2

D2
yk
3

. . . D2
yk
ny

D2
uk
1

D2
uk
2

D2
uk
3

. . . D2
uk
nu

c2
ŷk
1

D2
ŷk
2

D2
ŷk
3

. . . D2
ŷk
nŷ

D2
ûk
1

D2
ûk
2

D2
ûk
3

. . . D2
ûk
nû

3

Faulty set: c3
y1
1

c3
y1
2

D3
y1
3

. . . D3
y1
ny

D3
u1
1

D3
u1
2

D3
u1
3

. . . D3
u1
nu

c3
ŷ1
1

c3
ŷ1
2

D3
ŷ1
3

. . . D3
ŷ1
nŷ

D3
û1
1

D3
û1
2

D3
û1
3

. . . D3
û1
nû

y1, y2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
c3
yk
1

c3
yk
2

D3
yk
3

. . . D3
yk
ny

D3
uk
1

D3
uk
2

D3
uk
3

. . . D3
uk
nu

c3
ŷk
1

c3
ŷk
2

D3
ŷk
3

. . . D3
ŷk
nŷ

D3
ûk
1

D3
ûk
2

D3
ûk
3

. . . D3
ûk
nû

4

Faulty set: c4
y1
1

c4
y1
2

D4
y1
3

. . . D4
y1
ny

c4
u1
1

D4
u1
2

D4
u1
3

. . . D4
u1
nu

c4
ŷ1
1

c4
ŷ1
2

D4
ŷ1
3

. . . D4
ŷ1
nŷ

c4
û1
1

D4
û1
2

D4
û1
3

. . . D4
û1
nû

y1, y2, u1
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
c4
yk
1

c4
yk
2

D4
yk
3

. . . D4
yk
ny

c4
uk
1

D4
uk
2

D4
uk
3

. . . D4
uk
nu

c4
ŷk
1

c4
ŷk
2

D4
ŷk
3

. . . D4
ŷk
nŷ

c4
ûk
1

D4
ûk
2

D4
ûk
3

. . . D4
ûk
nû

5

Faulty set: c5
y1
1

D5
y1
2

D5
y1
3

. . . D5
y1
ny

c5
u1
1

c5
u1
2

D5
u1
3

. . . D5
u1
nu

c5
ŷ1
1

D5
ŷ1
2

D5
ŷ1
3

. . . D5
ŷ1
nŷ

c5
û1
1

c5
û1
2

D5
û1
3

. . . D5
û1
nû

y1, u1, u2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
c5
yk
1

D5
yk
2

D5
yk
3

. . . D5
yk
ny

c5
uk
1

c5
uk
2

D5
uk
3

. . . D5
uk
nu

c5
ŷk
1

D5
ŷk
2

D5
ŷk
3

. . . D5
ŷk
nŷ

c5
ûk
1

c5
ûk
2

D5
ûk
3

. . . D5
ûk
nû

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

nyu

Faulty sets: c
nyu

y1
1

c
nyu

y1
2

. . . c
nyu

y1
ny−1

D
nyu

y1
ny

c
nyu

u1
1

c
nyu

u1
2

. . . c
nyu

u1
nu−1

D
nyu

u1
nu

c
nyu

ŷ1
1

c
nyu

ŷ1
2

. . . c
nyu

ŷ1
ny−1

D
nyu

ŷ1
nŷ

c
nyu

û1
1

c
nyu

û1
2

. . . c
nyu

û1
nu−1

D
nyu

û1
nû

y1,. . . ,yny−1
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
u1,. . . ,unu−1 c

nyu

yk
1

c
nyu

yk
2

. . . c
nyu

yk
ny−1

D
nyu

yk
ny

c
nyu

uk
1

c
nyu

uk
2

. . . c
nyu

uk
nu−1

D
nyu

yk
nu

c
nyu

ŷk
1

c
nyu

ŷk
2

. . . c
nyu

ŷk
ny−1

D
nyu

ŷk
nŷ

c
nyu

ûk
1

c
nyu

ûk
2

. . . c
nyu

ûk
nu−1

D
nyu

ŷk
nû

k is the total number of samples at each actuator/sensor set.

The first column identifies the sensor set number, 1...nyn,
defined as nyu = 2(nu+ny)−2nu−2ny+1. The second column
shows the status of the sensor set (all possible sensor/actuator
fault scenarios are covered), and the next two columns are the
training data (measured sensor and actuator signals).

The last two columns refer to the estimated sensors and
actuators signals. The data set D has dimensions dr×dc which
are given by, dr = nyu × k and dc = ny + nu + nŷ + nû.
The number of estimated signals for actuators and sensors
are noted nû and nŷ respectively. D is constructed with data
from appropriate simulations for every sensor/actuator fault
scenario. Anywhere in the table, where the sensor(s) and or
actuator(s) is(are) assumed to be faulty, a known function
cuj , cyj replaces the k data points. For this reason, the design
engineer needs to select a set of functions, Cuj and Cyj in
order to replace the unpredicted outputs of the faulty actuators
and sensors respectively. When an actuator and/or sensor
fault occurs, the corresponding function, cuj

and/or cyj
is/are

connected to the iFD. This is a result of the iFD’s learning
capability to respond to sensor/actuator faults in such a way
where it continually checks for faults on the full sensor set
and its sub-sets.

III. THE EMS SYSTEM - A TEST CASE

A. The EMS model

The single-stage, one degree-of-freedom model of the EMS
system represents a quarter of a typical maglev vehicle. A
rigorous analysis on the non-linear model and the linearization
is discussed in [15]. The EMS is a non-linear, inherently
unstable, and critical-safety system with non-trivial control
requirements. The EMS consists of an electromagnet with a
ferromagnetic core and a coil of Nc turns which is attracted
to the rail track (made of ferromagnetic material). The vehicle
mass, Ms is supported on the electromagnet, with zt being

the rail track’s position, z the electromagnet’s position (both
are accounted for small variations around the operating point),
and (zt− z) is the distance between them, namely the airgap.
The airgap is to be kept as close as possible to the operating
point at a range that will not infringe the maximum allowed
as shown later in this section. The non-linear model is given
by,

dI

dt
=
Vc − IRc +

NcApKb

G2 (dztdt −
dZ
dt )

NcApKb

G + Lc

, F = KfB
2,

d2Z

d2t
= g − KfI

2

MsG2
, B = Kb

I

G
,
dG

dt
=
dzt
dt
− dZ

dt
,

(3)

where Vc is the coil’s voltage, F is the vertical force, I is
the coil’s current, G is the airgap, Z is the electromagnet’s
position, B is the flux density, Ms is the vehicle’s mass, Rc

is the coil’s resistance, Lc is the coil’s inductance, Nc is the
number of turns and Ap is the pole face area. Kb, Kf and g
reflect the flux, force and gravity constants with values equal
to 0.0015Tm/A, 0.0221Nm2/A2 and 9.81m/s2 respectively.

Although linearization of the EMS is needed for the design
of the linear controllers, in this work the controllers are tuned
and tested with the nonlinear model of the EMS. Lineariza-
tion is performed on small variations around the operating
point, i.e., the linearized model for the airgap is given by
G = Go+(zt−z), where lower case letters characterize small
variations, and subscript ’o’ refers to the operating point. The
same notation is used for B, F , I , Vc and Z variables.

Following [15], a linear time invariant state space model
of the EMS is expressed as ẋ = Ax + Bucuc + Bżt żt and
y = Cx, where A is the state matrix, Buc is the control input
matrix, Bżt is the disturbance input matrix and C is the output
matrix. The state vector is given by x = [i ż (zt − z)]T ,
where i is the current, ż and (zt− z) are the vertical velocity
and the airgap to be controlled, żt is the velocity of the rail
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track input and uc is the control input (driving voltage). The
state space matrices for the operating point with a vehicle mass
of Ms = 1000kg and the parameters of the coils are given in
[14].

B. Disturbance inputs and control requirements of the EMS

Two input disturbances are considered at the vertical axis of
the EMS system. Typically, the EMS must be able to follow
the gradient onto the rail (i.e., Deterministic (Dtm) input) and
reject the disturbances caused by rail track irregularities (i.e.,
Stochastic (Sth) input). The Deterministic input is driven by
the position change of the rail, zt, caused by the intended
changes of the rail track’s gradient while the vehicle is moving
along the rails. Dtm input is assumed a 5% rail track gradient
at a vehicle speed of 15m/s with an acceleration of 0.5m/s2

and a jerk of 1m/s3. The control requirements of the EMS
system are: maximum airgap deviation, (zt − z)p ≤ 7.5mm,
maximum control effort, ucp ≤ 300V , settling time, ts ≤ 3s,
and airgap steady state error, e(zt−z)ss = 0. The Stochastic
input is driven by the random variations of the rail track
with the velocity variations approximated by a double-sided
power spectrum density [14]. The control requirements for the
stochastic case are: Root Mean Square (RMS) of acceleration,
z̈rms ≤ 1ms−2, RMS of airgap variation, (zt−z)rms ≤ 5mm,
RMS of control effort, ucrms

≤ 300V .

IV. EFFICACY AND ASSESSMENT OF THE PROPOSED iFD

A. The iFD applied on the EMS system

The EMS system has one input (i.e., nu = 1), U = {uc},
and four possible output measurements (i.e., ny = 4), Y =
{i, (zt − z), ż, z̈}, that can be used for controller design.
The H∞ Loop-Shaping Design Procedure (LSDP) robust
control method is used to achieve the necessary closed-loop
performance, which requires to have the controlled variable
(i.e., zt− z) as a standard input to the controller [18]. Hence,
three sensor fault possibilities are assumed for the EMS, i.e., i,
ż and z̈. Since (zt− z) is a standard output measurement, the
total number of actuator/sensor sets is, nyu = 8. Consequently,
eight controllers of this type (i.e., K(zt−z), Ki,(zt−z), . . . ,
etc.) are utilized to cover all seven possible sensor fault
combinations as illustrated in Fig. 3a.

B. Neural Network estimator offline training

A dynamic nonlinear input-output NN model with tapped
delay lines at the input was used for time-series prediction.
The NN algorithm is adapted to fit the inputs and targets
of the EMS for the iFD realization. It has a total of five
inputs (uc and i, (zt − z), ż, z̈) and three estimated outputs,
(̂i, ˆ̇z, ˆ̈z) and is realized as a hidden layer (with one delay
and 20 hidden neurons) and an output layer with sigmoid
and linear functions respectively. A fast convergence method
used for training moderate sized feed-forward neural networks
is the Levenberg-Marquardt backpropagation algorithm [19].
Two stopping criteria were set as: i) the Mean Square Error
(MSE≤ 10−5) or, ii) a maximum of 1000 epochs. The total
time for the training process is about 30 min on a typical
desktop PC (Intel i3@2GHz, 8GB RAM).

The EMS has one actuator nu = 1 and one estimated
actuator signal nû = 1. Moreover, the number of sensors is
ny = 4, the estimated sensor signals number nŷ = 3 (air gap is

Operating
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Fig. 3. (a) The proposed iFD applied to the EMS system, (b) Sensor fault
categories and types.

assumed to be faultless hence is not included), and the number
of sensor (actuator) sets nyu = 8. The training data from each
sensor set that composes D were collected at a sample rate
of τs = 1kHz with a total simulation time of T = 6.6s. The
data set D consists of the data sets Dd and Ds, drawn from
the Dtm and Sth responses of the EMS1. The data set used

for training is given by Ddr×dc =
[
Ddrd

×dcd

d Ddrs×dcs
s

]T
where, dr = drd + drs and dc = dcd = dcs are calculated as
explained in Section II-A. The total number of columns is
calculated as dc = 9, hence for a total number of samples per
set k = 6.6× 1000, the data set sizes drd = drs = 52800 and
dr = 105600. The functions used for the training of the NN are
Cyj = {ci = 0, cż = 0, cz̈ = 0} with dimensions k × 3. These
functions are both used in the Dtm and Sth responses of the
EMS where a sensor fault occurs, as explained in Section II-A.

C. Sensor fault scenarios for the EMS

Sensor faults are categorized into ADditive (AD) and
MultiPlicative (MP) (see Fig. 3b). AD and MP categories are
both considered for the sensor fault scenarios i.e., the output of
the sensor, yj , is added or multiplied with a function fa and fm
respectively. Three types of faults exist in each category were
set as follows: i) Abrupt Fault (AF): when an actuator/sensor
component is damaged and its output changes in a step-wise
fashion; this fault can be rough but easier to detect and there-
fore isolated from the control loop, ii) Incipient Fault (IF):
this type of fault develops slower, hence it is harder to detect.
It is generally very dangerous because it could destabilize
the control loop before it is detected, iii) Indeterminate Fault
(InF): it can have characteristics similar to the AF and IF but
it occurs in random width time windows and amplitudes. This
fault is equally dangerous like, in ii), because it appears and
vanishes at any time without warning. This type of fault is
treated like PF by the iFD, and is ’captured’ once it appears.

In total, there are 4 sensors in the full sensor set, Y , with
the assumption that the airgap sensor (zt−z) cannot fail2 (also

1Subscripts d and s indicate the Dtm and Sth cases respectively.
2In case where fault tolerance is required for the airgap then redundant

components can be used under a voting scheme.
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Fig. 4. Coil’s current sensor, i, fault profiles.

note that the control actuator uc is assumed not to fail). The
AD, MP categories and bias faults are utilized for each one
of the i, ż and z̈ sensors.

The fault profiles used for each sensor are similar to the
ones illustrated for the current sensor, i, in Fig. 4b-4f. In
all cases the faults start developing at one second, i.e., the
sensor fault time tf = 1s, is marked at point A in all
figures. The Dtm input to the EMS is illustrated in Fig. 4a.
Fig. 4b for the impaired sensor illustrates the normal current
value superimposed with a low frequency band-limited random
signal, ν(t), at frequencies of 10rad/s and zero mean, white
noise characteristics and power spectral density of Si = 5
limited to ωi = 1.6Hz. As a consequence, the AD/AF profile
for the current sensor, faai is given by (4). The same pattern
is used for the ż and z̈ sensors with the same bandwidth and
Sż = 0.03 and Sz̈ = 2 respectively. Fig. 4c depicts the MP/AF,
fmai

, where the current sensor suddenly fails at tf = 1s and
as a result its output becomes five times larger than normal
(4). Similar fault profile is used in the case of ż and z̈.

faai
(t) =

{
ν(t), if tf ≤ t <∞,
0, if t < tf ,

fmai
(t) =

{
5, if tf ≤ t <∞,
1, if 0 ≤ t < tf .

(4)

The bias/abrupt type of fault for the current measurement
is shown in Fig. 4f. It is clearly shown that the output of the
sensor abruptly increases up to its maximum value, where for
the current sensor case is 10A, i.e., yoi = 10A.

IFs are illustrated in Fig. 4d and Fig. 4e respectively. In
the former figure the AD/IF on the current measurement, faii
are described by (5). The latter is a ramp type signal with σi
slope superimposed with a low frequency random signal with

band-limited white noise characteristics as it was previously
explained. The aforementioned figure, depicts the MP/IF, fmii

described by (5), where the fault starts developing at tf = 1s
and then falls to zero (due to multiplication by zero).

faii(t) =

{
σi(t− tf ) + ν(t), if tf ≤ t <∞,
0, if 0 < t < tf ,

fmii(t) =

{
σi(t− tf ) + 1 + ν(t), if tf ≤ t <∞,
1, if 0 < t < tf .

(5)

The fault profiles for ż and z̈ follow the same behaviour as
above with effective slopes, σi = 20, σż = 6 and σz̈ = 20 and
for the PSD, Si = 0.5, Sż = 0.03 and Sz̈ = 0.5 respectively.

The following scenario is used for the detailed explanation
of the iFD working principle: i) the Dtm disturbance is applied
to EMS, ii) three sensors are subsequently impaired with a
time difference as follows: z̈ at 0.5s, ż at 1.5s and i at 2s,
iii) a MP/AF profile is used for each sensor e.g., for i see
Fig. 4c.

Fig. 5a illustrates the airgap with the fault-free case (i.e.,
healthy sensor set, Y , with Ki,(zt−z),ż,z̈) and under the
fault scenario mentioned. The z̈ sensor is impaired at 0.5s
(designated at point A) and immediately after a controller
reconfiguration follows i.e., a new controller, Ki,(zt−z),ż , is
introduced in the loop) to maintain the performance of the
EMS3. Next, ż fails at tf = 1.5s (point B) and i follows
at tf = 2s (point C). The subsequent faults are successfully
detected and accommodated via appropriate switching on
Ki,(zt−z) and K(zt−z) respectively.

Taking the i (current sensor) as example, the sensor fault

3Note that the EMS response in both cases comply with the requirements
described in Section III.
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Fig. 5. Fault scenario with id : 8 in Table II.

accommodation for each failure is integrated in three steps:
i) Sensor FD: when the fault occurs at tf = 1s, the residual
of the current measurement, ryi

starts increasing and as soon
as it passes the threshold (see Fig. 5b) the fault is detected,
ii) Fault Isolation: At this stage the faulty sensor is removed
from the loop using a BS, and cyi = 0 is connected at the input
of the iFD. Fig. 6 shows the signal at the input/output of the
BS and the signal at the output of the iFD, iii) Controller
reconfiguration: a reconfiguration signal is generated and the
new controller, K(zt−z), is introduced in the loop.

A close inspection in Fig. 6, after the fault occurs at point
C, indicates that it takes a few time steps to detect the fault for
the iFD and one time step for the BSyi

to permanently change
its output to cyi = 0. As a result, the residual is always large,
which effectively justifies why with the proposed method the
output of the BS will never return to its previous stage when or
if the fault vanishes. The input to BSyi

with the two previous
sensor faults, more specifically the acceleration and velocity,
(at point A and B respectively) is also shown.

Table II gives the resulted performance of the EMS and
the FA after 35 faults for each Dtm and Sth responses of
the EMS. The first column of the table describes the sensor
fault scenarios used to test the proposed iFD. Typically, rows
2-4 show the results for single sensor faults that occur at
tf = 1s, whereas the rest of the rows show the results with
subsequence faults starting from 0.5s with a time difference of
1s. The first six columns present the performance with AFs,
whereas the rest four show the performance with IFs. The
EMS was tested with the Dtm and Sth disturbance inputs as
given in Section III-B. MP and AD faults are used, as well
as a bias (Bis.) fault that occurs abruptly. In each scenario,
if the performance of the EMS is successfully maintained is
indicated with X or otherwise with 7. Also, if an FA occurs
is marked with X.

A close inspection in the table shows that the iFD suc-
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Fig. 6. Input-output of the BSyi of the current sensor, i, and output of the
iFD.

TABLE II
PERFORMANCE WITH VARIOUS SENSOR FAULT SCENARIOS FOR THE EMS.

AF IF
Faulty MP/FA AD/FA Bis./FA MP/FA AD/FA

id sensor(s) Sth. Dtm. Sth. Dtm. Sth. Dtm. Sth. Dtm. Sth. Dtm.
1 Fault-free X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7
2 i X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7
3 ż X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7
4 z̈ X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7
5 i→ ż X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7
6 i→ z̈ X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7 X/7
7 ż → z̈ X/7 X/X X/7 X/X X/7 X/X X/7 X/X X/X X/X
8 z̈ → ż → i X/7 X/X X/7 X/X X/7 X/X X/7 X/X X/7 X/X

cessfully detects and reconfigures the controller in every case,
and performance is successfully maintained in all scenarios
even though, in some cases, an FA appears. The FA, which
appears in certain cases in id : 7 − 8, means that a sensor
looks impaired although it is actually healthy. Substantial
conclusions regarding occurred FA have arisen during various
simulations: i) the set threshold for the residuals plays a vital
role: If for example a sensor, y1 is impaired, then during the
transition from one controller to another the residuals of the
healthy sensors may increase as well, and if the residuals
thresholds are low enough a FA will occur. If the residual
threshold value of the other sensors is increased and under
an assumed situation where these sensors also develop a fault
then FD delays could drive the system to instability4, ii) the
ability of the NN nature of the iFD to estimate the faults
causes delay in the detection of a fault, since it generally
leaves a small residual for some time after a fault occurs
[13], iii) there is coupling between the integrated units in the
reconfigurable FTC scheme. The NN estimator, the residual
generator, the decision and reconfiguration mechanisms are
strongly interconnected in a way that a small parameter change
in one may affect the performance of the other.

Sensitivity issues due to the aforementioned interactions
form current research which authors are investigating.

Table III outlines the FD time for each scenario including
the detection time in FA. The first column is the identifier
number for the selected scenario and the second column lists
the sensors (the underlined ones indicate those to be impaired

4Threshold levels are calculated via trial-and-error in this case to avoid
sensitivity to noise and allow for appropriate fault detection.
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TABLE III
FD TIME USING THE iFD WITH VARIOUS SENSOR FAULT SCENARIOS.

Fault detection time, td(s)

id Sens. tf

AF IF
Mult. Add. Bis. Mult. Add.

(s) Sth. Dtm. Sth. Dtm. Sth. Dtm. Sth. Dtm. Sth. Dtm.

1
i 1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.052 1.000 1.000 1.000
ż - - - - - - - - - - -
z̈ - - - - - - - - - - -

2
i - - - - - - - - - - -
ż 1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.399 1.000
z̈ - - - - - - - - - - -

3
i - - - - - - - - - - -
ż - - - - - - - - - - -
z̈ 1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.030 1.000 2.075 1.000

4
i 0.5 0.500 0.500 0.500 0.500 0.500 0.500 0.527 0.500 0.500 0.500
ż 1.5 1.500 1.502 1.500 1.500 1.500 1.500 1.517 1.500 2.335 1.511
z̈ - - - - - - - - - - -

5
i 0.5 0.500 0.500 0.500 0.500 0.500 0.500 0.527 0.500 0.500 0.500
ż - - - - - - - - - - -
z̈ 1.5 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.510 1.514 1.500

6
i - - 1.700∗ - 1.700∗ - 1.700∗ - 1.700∗ 2.400∗ 1.700∗

ż 0.5 0.500 0.500 2.070 0.500 0.500 0.500 0.500 0.500 2.423 0.534
z̈ 1.5 1.500 1.500 1.500 1.500 1.500 1.700 1.500 1.500 2.403 1.500

7
i 2.0 2.000 0.654∗ 2.000 0.654∗ 2.000 0.650∗ 2.614 0.654∗ 2.000 0.654∗

ż 1.5 1.517 1.502 1.500 1.500 1.500 1.500 1.517 1.502 2.336 1.511
z̈ 0.5 0.506 0.500 0.500 0.500 0.500 0.500 0.508 0.500 0.500 0.500

at tf as shown in the next column). The rest of the values
account for the FD time td. The values marked in bold show
that the occurred fault is detected and in bold* indicate the
false alarms.

A careful observation of the results shows that with abrupt
single sensor failures (id : 1−3) the fault detection is achieved
just when the sensor fails, but in the IF cases, the fault is
detected with a certain delay in between 0.030s − 0.399s.
However, this delay causes no problems on the stability
or performance of the EMS before or after the controller
reconfiguration. Although delays are observed in FD through
these three scenarios and the next two, none of them causes
FAs. The last two scenarios (in the sixth two subsequent faults
on velocity and acceleration measurements are considered and
in the seventh the acceleration, velocity and current sensors
are impaired sequentially) FAs appear mainly on the current
sensor. It should be mentioned that other observed fault delays
in iFD are successfully accommodated through the controller
reconfiguration.

D. Comparison with a bank of KEs

In this section a comparison is done between the iFD unit
and a typical model-based FD unit composed of a bank of
linear KEs. A typical bank of KEs (Oyi

) is shown in Fig. 7.
The inputs to the FD are the full sensor set Y and the control
input uc of the EMS system. For more details regarding the
design of such an FD unit the reader can refer to [15]. The
comparison is done at the simulation level using the same fault
scenarios described in Section IV-C. The fault detection time,
td from each sensor fault scenario is tabulated in Table IV.
By comparing the td values with the ones in Table III it can
be seen that the model-based approach has smaller detection
time. This occurs because the iFD unit is using a NN estimator
which can estimate the fault itself, therefore the development
of the residual is relatively slow. The results clearly show
that the iFD can successfully detect the sensor faults before
the performance/stability of the EMS is seriously affected. It
should also be noted that the model-based approach requires
the model being precise enough. This is true in this case
for the EMS model, however in many complex engineering
applications it will not be the case. Nonlinearities and model
uncertainty would impact modeling and the NN approach for
FD will be seen a more favourable approach to take.

Fig. 7. Conventional approach for multiple sensor failure detection with KEs.

TABLE IV
FD TIME USING A BANK OF KES WITH VARIOUS SENSOR FAULT

SCENARIOS.

Fault detection time, td(s)

id Sens. tf

AF IF
Mult. Add. Bis. Mult. Add.

(s) Sth. Dtm. Sth. Dtm. Sth. Dtm. Sth. Dtm. Sth. Dtm.

1
i 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ż - - - - - - - - - - -
z̈ - - - - - - - - - - -

2
i - - - - - - - - - - -
ż 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
z̈ - - - - - - - - - - -

3
i - - - - - - - - - - -
ż - - - - - - - - - - -
z̈ 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4
i 0.5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
ż 1.5 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
z̈ - - - - - - - - - - -

5
i 0.5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
ż - - - - - - - - - - -
z̈ 1.5 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50

6
i - - - - - - - - - - -
ż 0.5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
z̈ 1.5 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50

7
i 2.0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
ż 1.5 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
z̈ 0.5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

E. Comparison of the execution time

A comparison of the simulation elapsed time for the bank of
KEs (shown in Fig. 7) and the iFD is done using the full sensor
set Y . The execution time, te is measured over a high level
simulation in Simulink platform iteratively for 100 times. The
execution time for each simulation is depicted in Fig. 8. The
average simulation time for the iFD is about 0.5s and for the
bank of KE about 8s. Fig. 8 clearly shows that the iFD is about
16 times faster than the bank-estimator approach and proves
that the proposed fault detection method is adequately fast and
worth considering for detecting actuators/sensors faults in real
industrial applications.
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Fig. 8. Execution time of iFD unit vs. bank of Kalman estimators.
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V. DISCUSSION AND CONCLUSIONS

A. Discussion

It has been demonstrated that a single NN estimator can
replace a bank of estimators and is able to detect multiple
faults with the advantage of having lower computational
cost and simplified programming. Based on the simulation
results some points are discussed in this section before the
conclusion:

i) IFs are considered as PFs because once they are detected
by the iFD they are permanently removed from the loop,

ii) if a component appears to be faulty (false alarm) then it
is permanently removed from the loop and never inserted
back even if the fault vanishes,

iii) collecting the training data is a time consuming process
since the controller has to be designed for each actua-
tor/sensor set, but nevertheless the training of the iFD
requires a short time and is done only once,

iv) there is no analytical method for the user to define cj for
each actuator and sensor, but the rationale behind it is that
its values should never be the same as the actuator/sensor
otherwise the iFD will be confused,

v) threshold selection is a non-trivial task to perform, since
on one hand it affects the fault detection sensitivity of
the DM and on the other it directly affects the FAR. If
the DM is very sensitive to faults (thresholds are set too
low) then the FAR increases, or if it is insensitive (high
thresholds), the loop may actually go unstable before the
reconfiguration happens. Taking into account the property
of the iFD’s AI nature which is able to estimate the
faults, the threshold selection needs to be done very
carefully with the trial and error method [20]. Although
this field has gain a lot of attention is beyond the scope
of this paper. Threshold selection for example is also
related to the nature of the faults. Since soft faults leave
small residuals, the threshold is set lower but this can
increase the FA rate. On the contrary, hard faults leave
large residual, therefore threshold is set higher. Another
solution found in the literature is the adaptive threshold
approach which improves robust detection of faults [21],

vi) the advantage of iFD in terms of reducing complexity and
computational expense is clear, while the model-free na-
ture of NNs helps on dealing with model approximation.
KEs work well regarding the avoidance of false alarms
and no delay in fault detection, however require good
model knowledge and at expense of complexity (bank of
KEs).

B. Conclusions

A detailed analysis of an FD scheme applied on an EMS
with 70 fault scenarios is presented. The tests accounted for
scenarios with a number of typical sensor fault characteristics.
The results show that a single NN estimator scheme can be
used in the FDI instead of multiple which has less complexity
and computational resources. A few simple modifications in
the proposed architecture allow the replacement of the bank of
estimators with a typical NN. The results show that this new
approach has strong potential to replace multiple estimators
used in FDI schemes in industrial applications. Robustness
properties and false alarm rates of the proposed scheme is
work that the authors investigate currently.
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