
FINITE GROUPS AND LIE RINGS
WITH AN AUTOMORPHISM OF ORDER 2n

E. I. KHUKHRO, N. YU. MAKARENKO, AND P. SHUMYATSKY

Abstract. Suppose that a finite group G admits an automorphism ϕ of order 2n such

that the fixed-point subgroup CG(ϕ2n−1

) of the involution ϕ2n−1

is nilpotent of class
c. Let m = |CG(ϕ)| be the number of fixed points of ϕ. It is proved that G has a
characteristic soluble subgroup of derived length bounded in terms of n, c whose index
is bounded in terms of m,n, c. A similar result is also proved for Lie rings.

1. Introduction

Suppose that a finite group G admits an automorphism ϕ. It follows from the classifi-
cation of finite simple groups that if ϕ is fixed-point-free, that is, CG(ϕ) = 1, then G is
soluble [26], and when in addition |ϕ| is a prime, G is nilpotent by Thompson’s theorem
[30] (which does not use the classification but rather lies in its foundation). Extending the
Brauer–Fowler theorem, using the classification Hartley [5] proved that if |CG(ϕ)| = m,
then G has a soluble subgroup of (|ϕ|,m)-bounded index. (Henceforth we write, say,
“(a, b, . . . )-bounded” to abbreviate “bounded above in terms of a, b, . . . only”.)

Now let G be soluble from the outset; further results were obtained about the Fitting
height (the length of a shortest normal series with nilpotent factors). When CG(ϕ) = 1,
by a special case of Dade’s theorem [3] the Fitting height of G is bounded in terms of
α(|ϕ|) — the number of prime factors of |ϕ| counting multiplicities; the coprime case
(|G|, |ϕ|) = 1 of this result was proved earlier as a special case of Thompson’s theorem
[31]. In the general situation, when |CG(ϕ)| = m, it is conjectured that G has a subgroup
of (|ϕ|,m)-bounded index with Fitting height bounded in terms of α(|ϕ|). This conjecture
was proved in the coprime case by Hartley and Isaacs [7] using Turull’s results [32], and
in the case where |ϕ| is a prime-power by Hartley and Turau [8]. A weaker bound for
the Fitting height, in terms of |ϕ| and m was also obtained in the case where |ϕ| is a
product of two prime-powers in an unpublished note by Hartley [6]. (The aforementioned
results of Thompson [31], Hartley–Issacs [7], and Turull [32] are actually about any, not
necessarily cyclic, soluble groups of automorphisms, and Dade’s theorem [3] is about any
Carter subgroup.)

When there is a bound for the Fitting height, further studies are naturally reduced to
nilpotent groups. It is conjectured that if CG(ϕ) = 1, then the derived length of G is
bounded in terms of |ϕ|. So far this is proved only when |ϕ| is a prime due to Higman [9]
(and Kreknin–Kostrikin [21, 22] with an explicit bound), or |ϕ| = 4 due to Kovács [20].
In these two cases even the ‘almost fixed-point-free’ theorems were proved by Khukhro
[13], and Khukhro and Makarenko [24], which give a subgroup of |ϕ|-bounded nilpotency
class or derived length with (|ϕ|, |CG(ϕ)|)-bounded index. Another area where definitive
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results of this kind were proved is the case where G is a finite p-group and |ϕ| is a power
of p (Alperin [1], Khukhro [12], Shalev [27], Khukhro [14], Medvedev [25], Jaikin-Zapirain
[11]).

All these results on nilpotent groups are based on the corresponding theorems on au-
tomorphisms of Lie rings. In particular, by Kreknin’s theorem [21] a Lie ring L with a
fixed-point-free automorphism of finite order n is soluble of n-bounded derived length.
Khukhro and Makarenko [23] also proved almost solubility of a Lie algebra (or a Lie ring,
under some additional conditions, which hold, for example, for finite Lie rings) with an
almost fixed-point-free automorphism ϕ of finite order, with a ‘strong’ bound, in terms
of |ϕ| only, for the derived length of a subalgebra (or a subring) of bounded codimension
(or index in the additive group). But group-theoretic analogues of these results remain
open conjectures, except for the cases where |ϕ| is a prime or 4, as described above.

Therefore it makes sense to obtain results in this direction under additional conditions.
One such result was obtained by Shumyatsky [28]: if a finite group G admits a fixed-

point-free automorphism ϕ of order 2n such that the fixed-point subgroup CG(ϕ2n−1
) of

the involution ϕ2n−1
is nilpotent of class c, then G is soluble of (n, c)-bounded derived

length. The purpose of the present paper is an ‘almost fixed-point-free’ generalization of
this result.

Theorem 1.1. Suppose that a finite group G admits an automorphism ϕ of order 2n such
that the fixed-point subgroup CG(ϕ2n−1

) of the involution ϕ2n−1
is nilpotent of class c. Let

m = |CG(ϕ)| be the number of fixed points of ϕ. Then G has a characteristic soluble
subgroup of (m,n, c)-bounded index that has (n, c)-bounded derived length.

In fact, the condition in the theorem that CG(ϕ2n−1
) is nilpotent of class c can be

weakened to requiring all Sylow subgroups of CG(ϕ2n−1
) to be nilpotent of class at most c;

see Remark 4.4. The standard inverse limit argument yields a consequence for locally
finite groups.

Corollary 1.2. Suppose that a locally finite group G contains an element g of order 2n

with finite centralizer of order m = |CG(g)| such that the centralizer CG(g2n−1
) of the

involution g2n−1
is nilpotent of class c. Then G has a characteristic soluble subgroup of

finite (m,n, c)-bounded index that has (n, c)-bounded derived length.

Here, too, the condition that CG(g2n−1
) is nilpotent of class c can be weakened to

requiring all nilpotent subgroups of CG(g2n−1
) to be nilpotent of class at most c.

In our recent paper [17] we also used Theorem 1.1 to prove that if a locally finite
group G has a 2-element g with Chernikov centralizer such that the involution in 〈g〉 has
nilpotent centralizer, then G has a soluble subgroup of finite index.

By the aforementioned results the proof of Theorem 1.1 reduces to the case of nilpotent
groups, where a Lie ring method of ‘graded centralizes’ developed in [13, 23] is used in
conjunction with ideas of the proof in [28]. We state separately the corresponding Lie
ring result, which is used in the proof of Theorem 1.1.

Theorem 1.3. Suppose that a finite Lie ring L admits an automorphism ϕ of order 2n

such that the fixed-point subring CL(ϕ2n−1
) of the involution ϕ2n−1

is nilpotent of class c.
Let m = |CL(ϕ)| be the number of fixed points of ϕ. Then L has ideals M1 >M2 such that
M1 has (m,n)-bounded index in the additive group L, the quotient M1/M2 is nilpotent of
class at most c+ 1, and M2 is nilpotent of (n, c)-bounded class.
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Theorem 1.3 can be extended to Lie algebras over a field and to other classes of Lie
rings admitting such an automorphism of order 2n. Here we confine ourselves to the case
of finite Lie rings, since this is sufficient for the purpose of proving Theorem 1.1. Even in
view of the aforementioned general Khukhro–Makarenko theorem [23], Theorem 1.3 still
makes sense, since it gives a stronger ‘metanilpotent’ conclusion (of course, under stronger
assumptions).

In § 2 we give definitions, introduce notation, and list several results that are used
in the sequel. In § 3 we prove Theorem 1.3 on Lie rings using a modification of the
method of graded centralizers developed in [13, 23] for studying almost fixed-point-free
automorphisms. Theorem 1.1 is proved in § 4. Known results reduce the proof to the
case of a nilpotent group. Then we firstly apply the Lie ring method similarly to [28] to

obtain a ‘weak’ bound, depending on m,n, c, for the nilpotency class of [G,ϕ2n−1
]. Finally,

Theorem 1.3, or rather one of the propositions in its proof, is used to obtain the required
‘strong’ bound, in terms of n, c only, for the nilpotency class of [H,ϕ2n−1

] for a certain
subgroup H of (m,n, c)-bounded index. When a subgroup of (m,n, c)-bounded index and
of (n, c)-bounded derived length is constructed, we obtain a characteristic subgroup of
(m,n, c)-bounded index and of the same derived length due to the general result [16] on
subgroups of finite index satisfying a multilinear commutator law; see Theorem 2.7.

2. Preliminaries

First we recall some definitions and notation. Products in a Lie ring are called com-
mutators. A simple commutator [a1, a2, . . . , as] of weight (length) s is the commutator
[...[[a1, a2], a3], . . . , as]. The Lie subring and the ideal generated by a subset S are denoted
by 〈S〉 and id〈S〉, respectively. For additive subgroups U, V of a Lie ring, [U, V ] denotes the
additive subgroup generated by all commutators [u, v], u ∈ U , v ∈ V . Terms of the lower
central series of a Lie ring L start from γ1(L) = L, and by induction, γi+1(L) = [γi(L), L].
A Lie ring L is nilpotent of class at most h if γh+1(L) = 0. Terms of the derived series
start from L = L(0), and by induction, L(i+1) = [L(i), L(i)]. A Lie ring L is soluble of
derived length at most d if L(d) = 0.

Let A be an additively written abelian group. A Lie ring L is A-graded if

L =
⊕
a∈A

La and [La, Lb] ⊆ La+b, a, b ∈ A,

where the grading components La are subgroups of the additive group of L. Elements
of the La are called homogeneous (with respect to this grading), and commutators in
homogeneous elements homogeneous commutators. A subgroup H of the additive group
of L is said to be homogeneous if H =

⊕
a∈A(H∩La); then we set Ha = H∩La. Obviously,

any subring or an ideal generated by homogeneous additive subgroups is homogeneous.
A homogeneous subring and the quotient ring by a homogeneous ideal can be regarded
as A-graded rings with the induced gradings.

Index Convention. For a homogeneous element of a (Z/nZ)-graded Lie ring L we use
a small letter with an index that only indicates the grading component to which this
element belongs: xi ∈ Li. Thus, different elements can be denoted by the same symbol,
since it will only matter to which component these elements belong. For example, x1 and
x1 can be different elements of L1, so that [x1, x1] can be a nonzero element of L2. These
indices are considered modulo n; for example, a−i ∈ L−i = Ln−i.
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Note that under the Index Convention a homogeneous commutator belongs to the
component Ls, where s is the sum modulo n of the indices of all the elements occurring
in this commutator.

Suppose that a Lie ring L admits an automorphism ϕ of order n. Let ω be a primitive

n-th root of unity. We extend the ground ring by ω and denote by L̃ the ring L⊗Z Z[ω].

Then ϕ naturally acts on L̃ and, in particular, CL̃(ϕ) = CL(ϕ)⊗Z Z[ω].
We define the analogues of eigenspaces Lk for k = 0, 1, . . . , n− 1 as

Lk =
{
a ∈ L̃ | aϕ = ωka

}
.

If n is invertible in the ground ring of L (for example, when L is finite of order coprime
to n), then

L̃ = L0 ⊕ L1 ⊕ · · · ⊕ Ln−1

(see, for example, [10, Ch. 10]). This is a (Z/nZ)-grading because

[Ls, Lt] ⊆ Ls+t (modn) for all s, t.

Notation. Whenever we say that L0 ⊕ L1 ⊕ · · · ⊕ Ln−1 is a (Z/nZ)-graded Lie ring, we
mean that the Li are the grading components, so that [Ls, Lt] ⊆ Ls+t (mod n).

We now state the ‘graded’ version of the Khukhro–Makarenko theorem [23] on Lie rings
with an almost fixed-point-free automorphism of finite order.

Theorem 2.1 ([23, Corollary 2]). Suppose that L = L0⊕L1⊕· · ·⊕Ln−1 is a (Z/nZ)-graded
Lie ring. If the component L0 is finite of order m, then L has a soluble homogenous ideal
M of n-bounded derived length and of finite (m,n)-bounded index in the additive group
of L.

We now introduce specialized notation for our case of an automorphism of order 2n.
Let L = L0 ⊕ L1 ⊕ · · · ⊕ L2n−1 be a (Z/2nZ)-graded Lie ring.

Notation. Let Lodd denote the set of all ‘odd’ grading components Lj with odd j, and
let L− be their sum. Similarly, let Leven denote the set of all ‘even’ components Li with
even i, and let L+ be their sum. We also abuse this notation by letting Lodd and Leven

denote the unions of the corresponding components. We use similar notation for any
homogeneous additive subgroup X and its components.

For Li, Lj ∈ Lodd and Lk, Ll ∈ Leven we clearly have [Li, Lj] ∈ Leven, [Li, Lk] ∈ Lodd,
and [Lk, Ll] ∈ Leven. Therefore L+ is a subring of L, while L− is not. Note also that the
subring generated by Lodd is an ideal of L.

The next theorem is essentially a reformulation of Shumyatsky’s theorem for Lie rings
[28].

Theorem 2.2 ([28, Proposition 2.6]). Suppose that L = L0 ⊕ L1 ⊕ · · · ⊕ L2n−1 is a
(Z/2nZ)-graded Lie ring such that the subring L+ is nilpotent of class c and L0 = 0.
Then the subring generated by L− is nilpotent of (n, c)-bounded nilpotency class f(n, c).

Since 〈L−〉 = id〈L−〉, under the hypotheses of Theorem 2.2 the Lie ring L satisfies

γf(n,c)+1(γc+1(L)) = 0.

For dealing with a Lie ring whose additive group is a finite 2-group we need the following
‘combinatorial’ corollary of Theorem 2.2. Slightly abusing notation, we use the same
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symbols γi (as those denoting terms of the lower central series) to denote Lie polynomials
that are simple multilinear commutators and write

(γi ◦ γj)(x1, x2, . . . , xij) = γi
(
γj(x1, . . . , xj), . . . , γj(x(i−1)j+1, . . . , xij)

)
=
[
[x1, x2, . . . , xj], [xj+1, . . . , x2j], . . . , [x(i−1)j+1, . . . , xij]

]
.

Corollary 2.3. Let n, c be positive integers, and f = f(n, c) the value of the function
given by Theorem 2.2. For r = (c + 1)(f + 1), the following holds. If we arbitrarily
and formally assign lower indices i1, i2, . . . , ir to elements yi1 , yi2 , . . . , yir of an arbitrary
Lie ring, then the commutator (γf+1 ◦ γc+1)(yi1 , yi2 , . . . , yir) can be represented as a linear
combination of commutators in the same elements yi1 , yi2 , . . . , yir each of which contains
either a subcommutator with zero modulo 2n sum of indices or a subcommutator of weight
c + 1 of the form [g2u1 , g2u2 , . . . , g2uc+1 ] with even indices, where every element g2j is a
commutator in yi1 , yi2 , . . . , yir such that the sum of indices of all the elements involved in
g2j is congruent to 2j modulo 2n.

Proof. Let M be a free Lie ring freely generated by xi1 , xi2 , . . . , xir . For each i =
0, 1, . . . , 2n − 1, let Mi be the additive subgroup of M generated by all commutators
in the generators xij with the sum of indices congruent to i modulo 2n. Then, obviously,
M = M0 ⊕M1 ⊕ · · · ⊕M2n−1 and [Mi,Mj] ⊆ Mi+j (mod 2n), so this is a (Z/2nZ)-grading.
By Theorem 2.2 we obtain

(γf+1 ◦ γc+1)(xi1 , xi2 , . . . , xir) ∈ id〈M0〉+ γc+1

(
M0 +M2 + · · ·+M2n−2

)
.

By the definition of the Mi this inclusion is equivalent to the required equality for yij = xij .
Since the elements xi1 , xi2 , . . . xir freely generate the Lie ring M , the same equality holds
for any elements yij in any Lie ring. �

The following theorem was proved by P. Hall [4] for groups; the assertion for Lie rings
is proved by essentially the same (even simpler) arguments. The bound for the nilpotency
class was later improved by other authors, up to the best possible bound in [29].

Theorem 2.4 (P. Hall [4]). If a Lie ring L has a nilpotent ideal K of nilpotency class k
such that the quotient L/[K,K] is nilpotent of class l, then L is nilpotent of (k, l)-bounded
class.

The following lemmas are well-known properties of fixed-point subgroups. As a rule, the
induced automorphism of a quotient group by an invariant normal subgroup is denoted
by the same letter.

Lemma 2.5. Let α be an automorphism of a finite group G, and N a normal α-invariant
subgroup of G.

(a) Then |CG/N(α)| 6 |CG(α)|.
(b) If in addition (|N |, |α|) = 1, then CG/N(α) = CG(α)N/N .

The following lemma follows from the consideration of the Jordan normal form of
the automorphism regarded as a linear transformation of invariant elementary abelian
sections.

Lemma 2.6. Let p be a prime number and suppose that a finite abelian group A of
exponent pa admits an automorphism of order pk with exactly pb fixed points. Then |A| 6
pabp

k
.
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Recall that a multilinear (or outer) commutator is any commutator κ of weight w in w
distinct group variables; in other words, κ is obtained by nesting commutators, but using
always different variables. Laws κ = 1 for multilinear commutators κ define many popular
soluble group varieties, including those of nilpotent groups of given class, and of soluble
groups of given derived length. The following Khukhro–Makarenko theorem [16] greatly
facilitates working with subgroups of finite index satisfying a multilinear commutator law.
In the special case of nilpotency laws this result was obtained by Bruno and Napolitani [2].
(Further generalizatons and improvements of this theorem were obtained in [15, 18, 19].)

Theorem 2.7 ([16, Theorem 1]). If a group G has a subgroup H of finite index k satisfying
the law κ(H) = 1, where κ is a multilinear commutator of weight w, then G also has a
characteristic subgroup C of finite (k, w)-bounded index satisfying the same law κ(C) = 1.

3. Lie rings

The bulk of the proof of Theorem 1.3 is about (Z/2nZ)-graded Lie rings considered in
the following proposition.

Proposition 3.1. Suppose that L = L0 ⊕L1 ⊕ · · · ⊕L2n−1 is a (Z/2nZ)-graded Lie ring.
Suppose that the subring L+ is nilpotent of class c, while the component L0 is finite of
order m. Then L contains a homogeneous nilpotent ideal M of (n, c)-bounded nilpotency
class such that M ∩ L− has (m,n)-bounded index in the additive group L−.

By Theorem 2.1 the Lie ring L contains a soluble homogeneous ideal of n-bounded
derived length and of (m,n)-bounded index in L. Therefore Proposition 3.1 will be proved
if we prove the following proposition, taking advantage of induction on the derived length.

Proposition 3.2. Suppose that under the hypotheses of Proposition 3.1 the Lie ring L
has a soluble homogeneous ideal A of derived length d such that A∩L− has index l in the
additive group L−. Then L contains a homogeneous nilpotent ideal B of (d, n, c)-bounded
nilpotency class such that B ∩ L− has (d, l,m, n)-bounded index in L−.

Proof. The sought-for ideal B is constructed by using certain additive subgroups Lj(t) 6
Lj of the components Lj, so-called graded centralizers of levels t = 1, 2, 3. We also use
induction of d. Clearly, if d = 1, then A is abelian and we can put B = A. So we assume
that A is not abelian.

Let R = A(d−2) be the penultimate (metabelian) term of the derived series of A. First
we construct graded centralizers Rj(1) 6 Rj in R, which are additive subgroups of (m,n)-
bounded index in the grading components Rj = R ∩ Lj, and fix certain elements called
r-representatives, whose total number is (m,n)-bounded.

Definition. The pattern of a homogeneous commutator is its bracket structure together
with the arrangement of the indices under the Index Convention. The weight of a pattern
is the weight of the commutator. The commutator is then called the value of its pattern
on the given elements. For example, [a2, [b1, b1]] and [x2, [z1, y1]] are values of the same
pattern of weight 3.

Definition of representatives in R. For every i 6= 0 and for every pair (P, a0) consist-
ing of the pattern P of a simple commutator of weight 2n with one and the same index
i 6= 0 (repeated 2n times) and a commutator a0 ∈ R0 that is the value of this pattern on
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homogeneous elements of Ri we fix one such representation. (The same element a0 ∈ R0

may appear in different pairs if it is equal to values of different patterns; the same pattern
may appear in different pairs if different commutators are the values of this pattern.) The
elements of Rj, j 6= 0, involved in these fixed representations are called r-representatives
and denoted by rj(0) ∈ Rj under the Index Convention: recall that the same symbol
can denote different elements. Thus, the commutator a0 mentioned above is equal to
[ri(0), . . . , ri(0)︸ ︷︷ ︸

2n

]. Since the total number of patterns P under consideration is equal to

2n− 1 and the number of elements in R0 is at most m, the number of r-representatives is
(m,n)-bounded.

The definition of r-representatives implies the following.

Lemma 3.3. Every simple homogeneous commutator in elements of R of length 2n with
one and the same index i 6= 0 repeated 2n times can be represented as a commutator of
the same pattern in r-representatives.

Before defining graded centralizers, we introduce the following homomorphisms.

Definition 3.4. Let ~z = (zi1 , . . . , zik) be an ordered tuple of elements zis ∈ Lis , is 6= 0,
such that i1 + · · · + ik 6≡ 0 (mod 2n). We put j = −i1 − · · · − ik (mod 2n) and define the
mapping

ϑ~z : yj → [yj, zi1 , . . . , zik ].

By linearity this is a homomorphism of the additive group Lj into L0 by the choice of j.
Since |L0| 6 m, we have |Lj : Kerϑ~z| 6 m. Clearly, we also have |Rj : Ker η~z| 6 m for
the restriction η~z of ϑ~z to Rj.

Definition of graded centralizers in R. We define the graded centralizers in R by
setting for each i 6= 0

Ri(1) =
⋂
~r

Ker η~r,

where η~r is defined in Definition 3.4 with ~r = (ri(0), . . . , ri(0)) running over all possible
ordered tuples of length 2n − 1 consisting of (possibly different) r-representatives with
the same index i. Elements of Ri(1) for i = 1, . . . , 2n − 1 are also called centralizers
in R for short and are denoted by ri(1) (under the Index Convention). The number
of r-representatives is (m,n)-bounded and |Ri : Ker η~r| 6 m for all ~r. Hence this is an
intersection of (m,n)-boundedly many subgroups of m-bounded index in Ri and therefore
Ri(1) also has (m,n)-bounded index in the additive group Ri.

By construction, we have the following centralizer property:

(3.1)
[
ri(1), ri(0), . . . , ri(0)︸ ︷︷ ︸

2n−1

]
= 0

for any centralizer ri(1) ∈ Ri(1) in R and any r-representatives ri(0) with the same index
i 6= 0. (Here, as always under the Index Convention, the elements ri(0) can be different.)

We also need to introduce another set of representatives in R.
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Coset representatives in R. For each j 6= 0 we fix an arbitrary system of coset repre-
sentatives of the subgroup Rj(1) in the additive group Rj. These elements are denoted
by qj ∈ Rj (under the Index Convention) and called coset representatives in R. The
total number of coset representatives is (m,n)-bounded, since the indices |Rj : Rj(1)| are
(m,n)-bounded for all j 6= 0 by construction.

Our next construction is of representatives and graded centralizers in the whole ring L.

Definition of level 1 for L. We define the graded centralizers of level 1 in L by setting
for each i 6= 0

Li(1) =
⋂
~z

Kerϑ~z,

where the ϑ~z are defined in Definition 3.4 and ~z = (qj, . . . , qj) runs over all possible
ordered tuples of length k 6 2n− 1 consisting of coset representatives in R with the same
index j 6= 0 such that

i+ kj ≡ 0 (mod 2n).

(Under the Index Convention the tuple ~z = (qi, . . . , qi) may consist of different coset
representatives qi.) Elements of the Li(1) are also called centralizers of level 1 in L and
are denoted by yi(1) (under the Index Convention). The number of coset representatives
in R is (m,n)-bounded and |Li : Kerϑ~z| 6 m for all ~z. Hence this is an intersection of
(m,n)-boundedly many subgroups of m-bounded index in Li and therefore Li(1) also has
(m,n)-bounded index in the additive group Li.

For each j 6= 0 we also fix an arbitrary system of coset representatives of the subgroup
Lj(1) in the additive group Lj. These elements are denoted by bj(1) (under the Index
Convention) and called coset representatives of level 1 in L. The total number of coset
representatives is (m,n)-bounded, since the indices |Lj : Lj(1)| are (m,n)-bounded for all
j = 1, 2, . . . , 2n − 1.

Definition of level 2 in L. We define the graded centralizers of level 2 in L by setting
for each j 6= 0

Lj(2) = Lj(1) ∩
⋂
~z

Kerϑ~z,

where the ϑ~z are defined in Definition 3.4 and ~z = (bi1(1), . . . , bik(1)) runs over all possible
ordered tuples of all lengths k 6 23n+1 consisting of coset representatives of level 1 in L
such that

j + i1 + · · ·+ ik ≡ 0 (mod 2n).

Elements of the Lj(2) are called centralizers of level 2 and are denoted by yj(2) (under the
Index Convention). The number of coset representatives of level 1 in L is (m,n)-bounded
and |Lj : Kerϑ~z| 6 m for all ~z. Hence this is an intersection of (m,n)-boundedly many
subgroups of m-bounded index in Lj and therefore Lj(2) also has (m,n)-bounded index
in the additive group Lj.

For each j 6= 0, we now fix an arbitrary system of coset representatives of the subgroup
Lj(2) in the additive group Lj. These elements are denoted by bj(2) (under the Index
Convention) and called coset representatives of level 2 in L. The total number of coset
representatives of level 2 is (m,n)-bounded, since the indices |Lj : Lj(2)| are (m,n)-
bounded for all j = 1, 2, . . . , 2n − 1.
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Definition of level 3 in L. We define the graded centralizers of level 3 in L by setting
for each j 6= 0

Lj(3) = Lj(2) ∩
⋂
~z

Kerϑ~z,

where the ϑ~z are defined in Definition 3.4 and ~z = (bi1(2), . . . , bik(2)) runs over all possible
ordered tuples of all lengths k 6 23n+1 consisting of coset representatives of level 2 in L
such that

j + i1 + · · ·+ ik ≡ 0 (mod 2n).

Elements of the Lj(3) are called centralizers of level 3 and are denoted by yj(3) (under the
Index Convention). The number of coset representatives of level 2 in L is (m,n)-bounded
and |Lj : Kerϑ~z| 6 m for all ~z. Hence this is an intersection of (m,n)-boundedly many
subgroups of m-bounded index in Lj and therefore Lj(3) also has (m,n)-bounded index
in the additive group Lj.

The construction of centralizers and coset representatives of levels 6 3 in L is complete.

Note that by construction we have

(3.2) Lj(k + 1) 6 Lj(k)

for all j and k.
The definition of centralizers yv(1) of level 1 implies the following centralizer property

with respect to coset representatives in R:

(3.3) [yi(1), qj, . . . , qj︸ ︷︷ ︸
k

] = 0,

for any k 6 2n− 1 for any (possibly different) coset representatives qj in R with the same
index j such that i+ kj ≡ 0 (mod 2n).

The definitions of centralizers yv(t) of levels t = 2, 3 imply the following centralizer
property with respect to coset representatives in L of the preceding level:

(3.4) [yj(t), bi1(t− 1), . . . , bik(t− 1)] = 0,

for any k 6 23n+1 for any coset representatives in L of level t−1 such that j+i1+· · ·+ik ≡
0 (mod 2n).

The following two lemmas are similar to [23, Lemma 3] and a special case of [23,
Lemma 9], but we have to reproduce the proofs, since the definitions of representatives
and graded centralizers here are somewhat different.

Lemma 3.5. Any commutator of the form [a−i, yi(k)], where yi(k) is a centralizer of level
k = 2, 3, is equal to a commutator of the form [y−i(k − 1), yi(k)], where y−i(k − 1) is a
centralizer of level k − 1.

Proof. We have a−i = b−i(k− 1) + y−i(k− 1) for some coset representative b−i(k− 1) and
a centralizer y−i(k − 1) of level k − 1. Then

[a−i, yi(k)] = [b−i(k − 1), yi(k)] + [y−i(k − 1), yi(k)] = [y−i(k − 1), yi(k)],

since [b−i(k − 1), yi(k)] = 0 by (3.4). �
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Lemma 3.6. For any j 6= 0 any commutator

(3.5) [yj(3), ak1 , ak2 , . . . , aks ] ∈ L0

(under the Index Convention), of any length, for any indices ki ∈ {0, 1, . . . , 2n−1 − 1}
such that j + k1 + · · · + ks ≡ 0 (mod 2n) is equal to a linear combination of elements of
the form [y−k(1), yk(1)] for various k 6= 0.

Proof. We use induction on s. If s = 0 there is nothing to prove, since j 6= 0. If s = 1, this
follows from Lemma 3.5, by which [yj(3), a−j] = [yj(3), y−j(2)], and from the inclusions
(3.2).

For s > 1 by the Jacobi identity we can permute the elements aku in the commutator
(3.5) modulo

s−1∑
t=1

∑
j+i1+···+it≡0 (mod 2n)

[Lj(3), Li1 , . . . , Lit ].

By the induction hypothesis all elements in this sum can be expressed in the required form.
Therefore we may freely permute the aku in (3.5) in order to express our commutator in
the required form.

We express every element aku in (3.5) with non-zero index ku 6= 0 in the form bku(2) +
yku(2) and substitute all these expressions into the commutator (3.5). We obtain a linear
combination of commutators

[yj(3), zk1 , zk2 , . . . , zks ],

where the zku are either bku(2), or yku(2), or a0, and j + k1 + · · · + ks ≡ 0 (mod 2n).
If among the zku there is at least one yku(2), then we transfer it to the right end of
the commutator, denote by a−ku the preceding initial segment, and apply Lemma 3.5:
[a−ku , yku(2)] = [y−ku(1), yku(2)], which is of required form by the inclusions (3.2).

Hence it remains to consider the case of a commutator

(3.6) [yj(3), zk1 , zk2 , . . . , zks ],

where all the zku are either bku(2) with ku 6= 0 or a0, and j + k1 + · · ·+ ks ≡ 0 (mod 2n).
(Note that the zi cannot all be a0, since j 6= 0.) We now prove that such a commutator is
actually equal to 0. We do this by showing that some of the entries bku(2) can be placed
at the beginning after yj(3) producing an initial segment of bounded weight with zero
sum of indices modulo 2n, which is equal to 0 by (3.4).

For each index u 6= 0 that occurs less than 22n times we transfer all the bu(2) (if any)
to the left to place them right after yj(3) (in any order). Let ŷt ∈ Lt denote the initial
segment of length < 23n formed in this way. If there are no other indices, that is, indices
k 6= 0 for which there are at least 22n elements bk(2) in the commutator, then the only
elements outside ŷt are a0 and we must have t = 0, since the original sum of indices was
0 modulo 2n. Then ŷt = 0 by (3.4) and the proof is complete.

Thus, we can assume that there are non-zero indices v1, . . . , vr, where 1 6 r 6 2n − 1,
such that for each vi there are at least 22n elements bvi(2) in the commutator (3.6). Let
v = gcd(v1, . . . , vr) be the greatest common divisor of v1, . . . , vr. Since the sum of all
indices is 0 modulo 2n, the number gcd(v, 2n) must divide t. By the Chinese remainder
theorem there exist integers ui such that v = u1v1 + · · ·+ urvr. Replacing the ui by their
residues modulo 2n and changing notation we have v = u1v1 + · · · + urvr + u2n, where
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ui ∈ {0, 1, . . . , 2n − 1} for all i and u is an integer. Since gcd(v, 2n) divides t, there is
w ∈ {0, 1, . . . , 2n − 1} such that t + wv ≡ 0 (mod 2n). Substituting the expression for v
we obtain

(3.7) 0 ≡ t+ wv ≡ t+ wu1v1 + · · ·+ wurvr (mod 2n).

We now arrange an initial segment of the commutator by placing after ŷt exactly wu1

elements bv1(2), then exactly wu2 elements bv2(2), and so on, up to exactly wur elements
bvr(2). This is possible because wui 6 22n for each i, and there are at least 22n elements
bvi(2) outside ŷt. The resulting initial segment has zero sum of indices modulo 2n by (3.7)
and has length 6 23n + 23n. Hence it is equal to 0 by (3.4). �

We now proceed with the proof of Proposition 3.2. Consider the ideal I = id

〈
Lodd(3)

〉
∩

A. Clearly, I ∩L− has (l, n,m)-bounded index in L−, since A∩L− has index l in L−, and
each component in Lodd(3) has (n,m)-bounded index in the corresponding component in
Lodd. Let S = I(d−2) be the (d− 2)-nd term of the derived series of I. Note that, clearly,
S 6 R = A(d−2).

Lemma 3.7. The ideal S is nilpotent of (n, c)-bounded class.

Proof. Recall that we write S− =
∑
Sodd and S+ =

∑
Seven, and similarly for [S, S].

We represent S as the sum of two ideals S = J1 + J2, where J1 = [S, S] + S− and
J2 = [S, S]+S+. Since S is metabelian, [S, S]− is an ideal of J2. By hypothesis, γc+1(J2) 6
[S, S]−.

We claim that J1 is nilpotent of n-bounded class. For that, we need to show that any
simple commutator

[ai1 , ai2 , ai3 , . . . ]

of large enough n-bounded length in homogeneous elements of J1 is equal to 0. Since S is
metabelian, we can assume that all the entries starting from the third one are from S−,
so the commutator is a linear combination of commutators of the form

(3.8) [[ai1 , ai2 ], aodd, aodd, . . . ], aij ∈ Sij , aodd ∈ Sodd,

and all the entries aodd can be freely permuted without changing the commutator. When
the length is large enough, we can rearrange these entries in such a way that there will
be an initial segment in [S, S]0 of n-bounded length, which we denote by w0. With large
enough length of (3.8) there will remain at least 2n−1(2n+1 + 2n − 4) + 1 elements aodd

outside the initial segment w0, and therefore at least 2n+1 + 2n− 3 of them with the same
(odd) index, say, j. These entries aj can be moved to be placed at the beginning after
w0. Therefore it suffices to prove that the commutator

(3.9) [w0, aj, aj, . . . , aj︸ ︷︷ ︸
2n+1+2n−3

], where 2 - j,

is equal to zero.
Since S 6 R we can represent all the entries aj in (3.9) in the form aj = rj(1) + qj,

where the rj(1) are centralizers in R, and the qj are coset representatives in R. (Note
that these elements may no longer be in I). After expanding all brackets, we obtain a
linear combination of commutators

(3.10) [w0, zj, zj, . . . , zj︸ ︷︷ ︸
2n+1+2n−3

], where 2 - j,
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and each zj is either rj(1) or qj. In each of such commutators there are either at least
2n + 1 entries rj(1), or at least 2n+1 − 3 entries qj.

By permuting the entries rj(1) and qj (we can freely permute these elements, since R
is metabelian and w0 ∈ [R,R], rj(1), qj ∈ R), we obtain from (3.10) either a commutator
with an initial segment

(3.11) [w0, rj(1), rj(1), . . . , rj(1)︸ ︷︷ ︸
2n+1

], where 2 - j,

or a commutator with an initial segment

(3.12) [w0, qj, qj, . . . , qj︸ ︷︷ ︸
2n+1−3

], where 2 - j.

Thus, it suffices to show that both commutators (3.11) and (3.12) are equal to 0.
In the commutator (3.11) we regard the initial segment of the first two entries aj =

[w0, rj(1)] simply as an element of the ideal R which belongs to Rj. By Lemma 3.3 we
can represent the initial segment

[aj, rj(1), rj(1), . . . , rj(1)︸ ︷︷ ︸
2n−1

] ∈ L0

in terms of r-representatives of level 0, so that the commutator (3.11) becomes equal to

[[rj(0), . . . , rj(0)︸ ︷︷ ︸
2n

], rj(1)].

This commutator in turn is equal to a linear combination of commutators of the form

[rj(1), rj(0), . . . , rj(0)︸ ︷︷ ︸
2n

],

in each of which the initial segment of length 2n is equal to 0 by (3.1).
We now consider the commutator (3.12). Its initial segment w0, being in I, also belongs

to id〈Lodd(3)〉 and therefore is a linear combination of elements of the form

(3.13) [lodd(3), ui1 , ui2 , . . . , uis ]

with zero sum of indices modulo 2n, where uik ∈ Lik are arbitrarily homogeneous elements,
in any number. By Lemma 3.6 an element of the form (3.13) can be represented as a linear
combination of elements of the form [y−k(1), yk(1)], for various, not necessarily odd, k (and
these elements are not necessarily contained in I). Therefore the commutator (3.12) is a
linear combination of commutators of the form

(3.14)
[
[y−k(1), yk(1)], qj, qj, . . . , qj︸ ︷︷ ︸

2n+1−3

]
.

By the Jacobi identity, the commutator (3.14) is equal to a linear combination of com-
mutators of the form [

[y−k(1), qj, qj, . . . , qj︸ ︷︷ ︸
k

], [yk(1), qj, qj, . . . , qj︸ ︷︷ ︸
2n+1−3−k

]
]
.
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In such a commutator, one of the two subcommutators contains a subcommutator of the
form

[y±k(1), qj, qj, . . . , qj︸ ︷︷ ︸
2n−1

].

Since j is odd, there is an initial segment in L0, which is equal to 0 by (3.3).
Thus, we have proved that the ideal J1 of S is nilpotent of n-bounded class c1.
As a result,

γc+1+c1+1(S) = γc+1+c1+1(J1 + J2)

6 γc1+1(J1) + γc+1(J2)

6 [S, S]−.

But S is an ideal of L, and hence γc+1+c1+1(S) is also an ideal of L. Since [[S, S]−, Lodd] 6
L+, the inclusion γc+1+c1+1(S) 6 [S, S]− implies that [γc+c1+2(S), L−] = 0. This means
that L− is contained in the centralizer of the ideal γc+c1+2(S), and then [γc+c1+2(S), id〈L−〉] =
0. In particular, [γc+c1+2(S), I] = 0, and therefore γc+c1+3(S) = 0.

The lemma is proved. �

We now complete the proof of Proposition 3.2. The quotient L/[S, S] contains the
homogeneous ideal I/[S, S] of derived length at most d − 1 and its intersection with
the image of L− has (l, n,m)-bounded index t in the image of L−. By the induction
hypothesis, there is a homogeneous nilpotent ideal J/[S, S] of (d− 1, n, c)-bounded class
whose intersection with the image of L− has (d−1, t,m, n)-bounded index in the image of
L−. Then the quotient (S+J)/[S, S] is also nilpotent of (d−1, n, c)-bounded class. Since
S is nilpotent of (n, c)-bounded class by Lemma 3.7, we obtain that the full inverse image
B = J + S of (J + S)/[S, S] is nilpotent of (d, n, c)-bounded class by Hall’s Theorem 2.4.
This is a required ideal, since its intersection with L− has (d, l, n,m)-bounded index in
L− (recall that t is an (l, n,m)-bounded number). �

Proof of Proposition 3.1. Proposition 3.1 follows from Proposition 3.2 and Theorem 2.1.
�

Proof of Theorem 1.3. Recall that L is a finite Lie ring admitting an automorphism ϕ of
order 2n such that the fixed-point subring CL(ϕ2n−1

) of the involution ϕ2n−1
is nilpotent

of class c, and m = |CL(ϕ)| is the number of fixed points of ϕ. We wish to prove that L
has homogeneous ideals M1 >M2 such that M1 has (m,n)-bounded index in the additive
group L, the quotient M1/M2 is nilpotent of class at most c + 1, and M2 is nilpotent of
(n, c)-bounded class.

First we extend the ground ring by a 2n-th root of unity ω forming L̃ = L⊗ZZ[ω]. Then

|CL̃(ϕ)| 6 m2n and CL̃(ϕ2n−1
) = CL(ϕ2n−1

)⊗ZZ[ω] is also nilpotent of class c. Therefore it

is clearly sufficient to prove the theorem for L̃, so we assume that L = L̃ in what follows.
We begin with the case where L has odd order. Then

L =
2n−1⊕
i=0

Li and [Li, Lj] 6 Li+j (mod 2n)

for the analogues of eigenspaces of ϕ

Li = {x ∈ L | xϕ = ωix}, i = 0, 1, . . . , 2n − 1.
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Thus, this is a (Z/2nZ)-grading of L and L satisfies the hypotheses of Proposition 3.1.
By that proposition, L contains a homogeneous nilpotent ideal M2 of (n, c)-bounded
nilpotency class such that M2 ∩ L− has (m,n)-bounded index in the additive group L−.
The latter means that in the inherited grading of the quotient L̄ = L/M2 the order of L̄−

is (m,n)-bounded.
For any fixed homogeneous element aj ∈ L̄− (so that j is odd) and for any even k

the map bk → [aj, bk] from L̄k to L̄j+k ∈ L̄odd is linear with (m,n)-bounded image.
Therefore its kernel has (m,n)-bounded index in L̄k ∈ L̄even. As a result, CL̄+(aj) has
(m,n)-bounded index in L̄+. Taking the intersection over an (m,n)-bounded number of
homogeneous elements generating L̄− we obtain that |L̄+ : CL̄+(L̄−)| is (m,n)-bounded
and therefore |L̄ : CL̄(L̄−)| is also (m,n)-bounded, since |L̄−| is (m,n)-bounded.

Let K = 〈L̄−〉 be the subring of L̄ generated by L̄−. Recall that K is an ideal of L̄,
and therefore CL̄(K) is also an ideal of L̄. The index |L̄ : CL̄(K)| is also (m,n)-bounded
since CL̄(K) = CL̄(L̄−). We prove that the ideal CL̄(K) is nilpotent of class at most c+1.
Indeed, L̄/K = (L̄+ +K)/K is nilpotent of class at most c by hypothesis, and CL̄(K)∩K
is central in K. Hence,

[CL̄(K), . . . , CL̄(K)︸ ︷︷ ︸
c+1

, CL̄(K)] ⊆ [K,CL̄(K)] = 0

and therefore M̄1 = CL̄(K) is a nilpotent ideal of class at most c+ 1. Then its full inverse
image M1 and the aforementioned ideal M2 satisfy the conclusion of Theorem 1.3.

We now consider the case where the additive group of L is a finite 2-group. Although
we no longer have a direct sum, it is well known (see, for example, [10, Ch. 10]) that

2nL 6 L0 + L1 + · · ·+ L2n−1 and [Li, Lj] 6 Li+j (mod 2n).

By Corollary 2.3 applied to the subring M = L0 + L1 + · · ·+ L2n−1 we have

γf(n,c)+1

(
γc+1(M)

)
6 id〈L0〉 .

It follows that

mγf(n,c)+1

(
γc+1(M)

)
6 m id〈L0〉 = 0,

since mL0 = 0 by Lagrange’s theorem. Hence,

γf(n,c)+1

(
γc+1(mM)

)
= 0.

By Lemmas 2.5(a) and 2.6 the index of the additive subgroup 2nmL 6 mM in L is
(n,m)-bounded, and hence M1 = 2nmL and M2 = γc+1(M1) are the required ideals.

In the case of an arbitrary finite Lie ring, L is a direct sum of two ideals L = T2 ⊕ T2′ ,
where the additive group T2 is the Sylow 2-subgroup of L, and T2′ is the Hall 2′-subgroup
of L. As shown above, T2 and T2′ contain ideals I1 and I2, respectively, of (m,n)-bounded
indices such that

γg(n,c)
(
γc+2(Ik)

)
= 0, k = 1, 2

for some (n, c)-bounded number g(n, c). Since [T2, T2′ ] = 0, it follows that I1 and I2 are
commuting ideals of L. The sum M1 = I1 + I2 and M2 = γc+2(M1) are the sought-for
ideals of L. �
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4. Groups

Here we prove the main group theoretic result. Known results reduce the proof to the
case where G is a nilpotent group of odd order. Then we firstly apply the Lie ring method
similarly to [28] to obtain a ‘weak’ bound, depending on m,n, c, for the nilpotency class of

[G,ϕ2n−1
]. Then Theorem 1.3 is used to obtain the required ‘strong’ bound, in terms of n, c

only, for the nilpotency class of [H,ϕ2n−1
] for a certain subgroup H of (m,n, c)-bounded

index.

Proof of Theorem 1.1. Recall that we have a finite group G admitting an automorphism
ϕ of order 2n such that CG(ϕ2n−1

) is nilpotent of class c, and m = |CG(ϕ)| is the number
of fixed points of ϕ. We need to prove that G has a soluble subgroup of (m,n, c)-bounded
index that has (n, c)-bounded derived length.

We begin with reduction to the case where G is a nilpotent group of odd order.
The group G has a soluble subgroup of (m,n)-bounded index by Hartley’s theorem [5].
Therefore we can assume from the outset that G is soluble. The quotient G/O2′,2(G)
acts faithfully by conjugation on the Frattini quotient V = T/Φ(T ) of the 2-group
T = O2′,2(G)/O2′(G). By Lemma 2.5(a) we have |CV (ϕ)| 6 m. Therefore the order
of V is (m,n)-bounded by Lemma 2.6. As a result, the order of G/O2′,2(G) is also (m,n)-
bounded.

By Lemma 2.5(a) we have |CT (ϕ)| 6 m. By Khukhro’s theorem [14] on p-automorphisms
of finite p-groups, the group T contains a subgroup U of (m,n)-bounded index that has
n-bounded derived length. By Theorem 2.7 this subgroup U can be assumed to be char-
acteristic in G/O2′(G) and therefore normal and ϕ-invariant.

By the Hartley–Turau theorem [8], the index of the n-th Fitting subgroup Fn(G) in G is
(m,n)-bounded. By Lemma 2.5(b) every factor Qi = Fi(O2′(G))/Fi−1(O2′(G)) of the Fit-
ting series of Fn(O2′(G)) admits the action (not necessarily faithful) of the automorphism

ϕ such that |CQi
(ϕ)| 6 m and CQi

(ϕ2n−1
) is nilpotent of class at most c.

Suppose that Theorem 1.1 is already proved for the case where G is a nilpotent group
of odd order. Then every Qi has a subgroup Ri of (m,n, c)-bounded index that is soluble
of (n, c)-bounded derived length; by Theorem 2.7 this subgroup can be assumed to be
characteristic. Let T̃ = O2′,2(G), Ũ , Q̃i = Fi(O2′(G)), and R̃i denote the inverse images
in G of the sections T , U , Qi, and Ri, respectively. We can set

H = O2′,2(G) ∩ CG(T̃ /Ũ) ∩ CG
(
O2′(G)/Q̃n

)
∩
n−1⋂
i=1

CG(Q̃i/R̃i).

(Here the centralizer of a section A/B is defined naturally as CG(A/B) = {g ∈ G |
[A, g] 6 B}.) Then H is a subgroup of (m,n, c)-bounded index, since all the quotients
G/CG(T̃ /Ũ), G/CG

(
O2′(G)/Q̃n

)
, G/CG(Q̃i/R̃i) embed into the automorphism groups of

sections of (m,n, c)-bounded order. The intersections of the images of H with the sections
T̃ /Ũ , O2′(G)/R̃n, and Q̃i/R̃i are central in H by construction. Let g be the derived length
of U , and fi the derived length of Ri. Then

[H,H](g) 6 [O2′,2(G), CG(T̃ /Ũ)](g) ∩H
6 Ũ (g) ∩H 6 O2′(G) ∩H,
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[O2′(G) ∩H, O2′(G) ∩H] 6 [O2′(G), CG
(
O2′(G)/Q̃n

)
] ∩H

6 Q̃n ∩H,
and [

Q̃i ∩H, Q̃i ∩H
](fi) 6 [Q̃i, CG(Q̃i/R̃i)

](fi) ∩H
6 R̃

(fi)
i ∩H 6 Q̃i−1 ∩H,

where i = 1, 2, . . . , n and Q̃0 = 1. It follows that H is soluble of derived length at most

1 + g + 1 +
n∑
i=1

(1 + fi),

which is an (n, c)-bounded number. Thus, H satisfies the conclusion of Theorem 1.1,
which completes our reduction.

Therefore in what follows we can assume from the outset that G is a nilpotent group
of odd order. We now obtain a ‘weak’ bound, in terms of m,n, c, for the nilpotency class
of the subgroup [G,ϕ2n−1

]. For that we consider the associated Lie ring of [G,ϕ2n−1
], but

preliminary lemmas are stated in terms of abstract Lie rings. To lighten the notation we
denote ψ = ϕ2n−1

. We denote by [L, ψ] the additive subgroup generated by {−l+ lψ | l ∈
L}.

Lemma 4.1. If L is a finite metabelian and nilpotent Lie ring of odd order admitting
an automorphism ϕ of order 2n such that |CL(ϕ)| = m, then the ideal [L, ψ] + [L,L] is
nilpotent of (m,n)-bounded class.

Proof. We actually show that the ideal [L, ψ] + [L,L] is nilpotent of class at most 1 +
(m + 1)2n. We can assume from the outset that the ground ring contains a primitive
2n-th root of 1, since the extension of the ground ring by this root may only increase the
size of the fixed-point subring in terms of n. As in § 2, we decompose L into the direct
sum of analogues of eigenspaces Li, which serve as components of a (Z/2nZ)-grading.
Then [L, ψ] = L−. Therefore we need to show that any simple homogeneous commutator
of length 2 + (m + 1)2n in elements of Lodd and [L,L] is trivial. Since [L,L] is abelian,
we can assume that starting from the third place all entries are in Lodd, and all these
entries can be freely permuted without changing the commutator. By [28, Lemma 2.2]
any sequence of 2n − 1 odd numbers can be rearranged to produce an initial segment
with any pre-assigned sum modulo 2n. Therefore we can rearrange the (m+ 1)2n entries
of our commutator, starting from the third one, so as to produce m + 1 different initial
segments in L0. As a result, since |L0| = m, there will be two different initial segments
equal to the same element in L0. The longer of these two segments can be substituted
instead of the shorter one, then again in the resulting longer commutator, and so on.
Thus the commutator becomes equal to an ever longer commutator. Since L is nilpotent
by hypothesis, the commutator is equal to 0. �

Lemma 4.2. Suppose that a finite metabelian and nilpotent Lie ring L of odd order admits
an automorphism ϕ of order 2n such that |CL(ϕ)| = m and CL(ψ) is nilpotent of class c.
Then γg(L) 6 [[L,L], ψ] for some (m,n, c)-bounded number g.

Proof. As is Lemma 4.1 we can assume that the ground ring contains a primitive 2n-th
root of 1 and L is graded by analogues of eigenspaces of ϕ, so that [[L,L], ψ] = [L,L]−.

16



Consider the ideals J1 = [L,L]+L− and J2 = [L,L]+L+; then L = J1+J2. By Lemma 4.1
we have γf (J1) = 0 for some (m,n)-bounded number f . Since [L,L]− is an ideal of J2,
we have γc+1(J2) 6 [L,L]− by hypothesis. We now obtain

γf+c+1(J1 + J2) 6 γf (J1) + γc+1(J2)

6 0 + [L,L]−,

as required. �

Proposition 4.3. Suppose that a finite Lie ring L of odd order admits an automorphism
ϕ of order 2n such that |CL(ϕ)| = m and CL(ψ) is nilpotent of class c. Then the Lie ring
generated by [L, ψ] is nilpotent of (m,n, c)-bounded class.

Proof. As before we can assume that the ground ring contains a primitive 2n-th root of
1 and L is graded by analogues of eigenspaces Li of ϕ. We can obviously assume that
L = 〈L−〉 = 〈[L, ψ]〉. Consider the lower central series of L. The fixed points of ϕ in its
factors are images of the fixed points in L by Lemma 2.5(b). Therefore there are at most
m factors where ϕ is not fixed-point-free. We obtain a series of ϕ-invariant ideals of length
at most 2m + 1 each factor of which either is central or admits ϕ as a fixed-point-free
automorphism. The fixed-point subrings of ψ in these factors are images of subrings of
CL(ψ) by Lemma 2.5(b) and therefore are nilpotent of class at most c. By Theorem 2.2
the factors with fixed-point-free action of ϕ are soluble of (n, c)-bounded derived length.
As a result, L is soluble of (m,n, c)-bounded derived length. Therefore it is sufficient to
prove by induction on the derived length d of L = 〈L−〉 that L is nilpotent of (d,m, n, c)-
bounded class. If d = 1, there is nothing to prove, so let d > 2. Let R = L(d−2) be the
penultimate (metabelian) term of the derived series of L. By the induction hypothesis,
L/[R,R] is nilpotent of (d−1,m, n, c)-bounded class. By Lemma 4.2, γg(R) 6 [R,R]− for
an (m,n, c)-bounded number g. But γg(R) is an ideal of L, and therefore [γg(R), L] = 0,
since [[R,R]−, Lodd] 6 L+ and L = 〈L−〉. Therefore, in particular, γg+1(R) = 0. It
remains to apply Hall’s Theorem 2.4, by which L is nilpotent of (d,m, n, c)-bounded
class, as required. �

We now complete the proof of Theorem 1.1. Recall that we already have a reduction to
the case of a finite nilpotent group G of odd order admitting an automorphism ϕ of order
2n such that the fixed-point subgroup CG(ψ) of the involution ψ = ϕ2n−1

is nilpotent of
class c. For m = |CG(ϕ)| being the number of fixed points of ϕ, we need to prove that G
has a soluble subgroup of (m,n, c)-bounded index that has (n, c)-bounded derived length.

Recall that the associated Lie ring L(D) of a group D is defined on the direct sum
of lower central factors L(D) =

⊕
i γi(D)/γi+1(D). For a ∈ gi(D), b ∈ γj(D), the Lie

products are defined by [a + γi+1(D), b + γj+1(D)] = [a, b] + γi+j+1(D) via the group
commutator [a, b] on the right and extended to L(D) by linearity. This definition is
correct because of the inclusions [γi(D), γj(D)] 6 γi+j(D). These inclusions also imply
that for any k and any ai ∈ D,

(4.1) [a1, . . . , ak]γk+1(D) = [ā1, . . . āk],

where the left-hand side is the image of the group commutator in γk(D)/γk+1(D) and the
right-hand side is the commutator in L(D) of the images of ai in D/γ2(D). In particular,
if D is a nilpotent group, then L(D) is a nilpotent Lie ring and its nilpotency class is
exactly the same as that of D.
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Consider the associated Lie ring L([G,ψ]) of [G,ψ]. By Lemma 2.5(b) the induced auto-
morphism ϕ denoted by the same letter has the same number |CL([G,ψ])(ϕ)| = |C[G,ψ](ϕ)| 6
m of fixed points. Since CL([G,ψ])(ψ) is the sum of the images of subgroups of C[G,ψ](ψ)
by Lemma 2.5(b), it is easy to see that CL([G,ψ])(ψ) is also nilpotent of class at most c.
By Proposition 4.3 we obtain that L([G,ψ]), and therefore also [G,ψ], is nilpotent of
(m,n, c)-bounded class k. However, our aim is a subgroup of bounded index with derived
length ‘strongly’ bounded, in terms of n and c only, independently of m = |CG(ϕ)|. We
will achieve this goal by applying Theorem 1.3 to find a subgroup H of (m,n, c)-bounded

index such that [H,ϕ2n−1
] is nilpotent of (n, c)-bounded class.

We extend the ground ring by a primitive 2n-th root of unity ω forming L = L([G,ψ])⊗Z
Z[ω]. Then L = L0⊕L1⊕· · ·⊕L2n−1 is a (Z/2nZ)-graded Lie ring with grading components
Li — analogues of eigenspaces of ϕ — satisfying [Ls, Lt] ⊆ Ls+t (mod 2n). As usual, the
Lie ring L([G,ψ]) is considered to be embedded in L as L([G,ψ]) ⊗ 1. The Lie ring L
is nilpotent of the same nilpotency class k. We also have |CL(ϕ)| 6 m2n and CL(ψ) is
nilpotent of class at most c.

By Proposition 3.1 the Lie ring L has a nilpotent ideal B of (n, c)-bounded class h such
that B ∩ L− has (m,n)-bounded index in L−. Since [G,ψ] is generated by elements x
such that xψ = x−1, it follows that L is generated by elements l such that lψ = −l, that
is, L = 〈L−〉 = L− + [L,L]. Then M = B + [L,L] is an ideal of (m,n)-bounded index in
L. The nilpotency class of M = B + [L,L] is strictly smaller than the nilpotency class
k of L, as long as k was higher than h. Indeed, consider any commutator of weight k in
elements of B ∪ [L,L]. If it involves at least one element of [L,L], then it clearly belongs
to γk+1(L) = 0; otherwise it belongs to γk(B), which is trivial when k > h.

Consider T = M ∩ L([G,ψ]), which is an ideal of the Lie ring L([G,ψ]) containing
γ2(L([G,ψ])). Taking the ‘full inverse image’ of T modulo γ2([G,ψ]) we obtain a subgroup
G1 of (m,n)-bounded index in [G,ψ]. As long as h < k, the nilpotency class of G1 is
strictly smaller than the nilpotency class k of [G,ψ]. Indeed, consider any commutator
[a1, . . . , ak] of weight k in elements ai ∈ G1. Since γk+1([G,ψ]) = 1, by formula (4.1) we
have

[a1, . . . , ak] = [ā1, . . . , āk],

where āi is the image of ai in [G,ψ]/γ2([G,ψ]). By construction, āi ∈ T and therefore
the Lie ring commutator on the right is equal to 0 if k > h, which also means that
[a1, . . . , ak] = 1.

By the Bruno–Napolitani theorem [2, Lemma 3] (see also Theorem 2.7), there is also
a characteristic subgroup of [G,ψ] that has (m,n)-bounded index in [G,ψ] and is nilpo-
tent of class at most k − 1. Changing notation we denote this subgroup again by G1,
which is now normal in G and ϕ-invariant. Then the product G2 = G1CG(ψ) is a ϕ-
invariant subgroup of G of (m,n)-bounded index (the latter because G = [G,ψ]CG(ψ) by
Lemma 2.5(b)), and the nilpotency class of [G2, ψ] 6 G1 is strictly smaller than k. We can
now apply the same arguments to G2 and so on, at each step obtaining a ϕ-invariant sub-
group G2i containing CG(ψ) and having (m,n)-bounded index in G2i−2 such that [G2i, ψ]
has nilpotency class strictly smaller than that of G2i−2 — as long as the latter remains
greater than the (n, c)-bounded number h given by Propositon 3.1. The number of these
steps is (m,n, c)-bounded, since the nilpotency class of [G,ψ] is (m,n, c)-bounded. As
a result, we arrive at a subgroup H of (m,n, c)-bounded index in G such that [H,ψ] is
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nilpotent of (n, c)-bounded class at most h. Since CH(ψ) is nilpotent of class at most c by
hypothesis, this subgroup H is soluble of (n, c)-bounded derived length. By Theorem 2.7
there is also a characteristic subgroup of (m,n, c)-bounded index in G which has the same
derived length as H. �

Remark 4.4. The condition in the theorem that CG(ϕ2n−1
) is nilpotent of class c can be

weakened to requiring all Sylow subgroups of CG(ϕ2n−1
) to be nilpotent of class at most

c. Indeed, that condition is not used in the reduction at the beginning of the section to
the case G = O2′(G). After that, as we saw, it is sufficient to consider the factors Qi of

the Fitting series of O2′(G). If all Sylow subgroups of CG(ϕ2n−1
) are nilpotent of class at

most c, then CQi
(ϕ2n−1

) is nilpotent of class at most c for every i and we find ourselves
under the hypotheses of Theorem 1.1.

Similarly, in Corollary 1.2 the condition that CG(g2n−1
) is nilpotent of class c can be

weakened to requiring all nilpotent subgroups of CG(g2n−1
) to be nilpotent of class at

most c, because when applying the inverse limit argument to a system of finite subgroups
containing g, we would be able to use the aforementioned stronger version of Theorem 1.1.
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