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Abstract

Bayesian inference methods are extensively used to detect the presence of population structure given genetic data. The
primary output of software implementing these methods are ancestry profiles of sampled individuals. While these profiles
robustly partition the data into subgroups, currently there is no objective method to determine whether the fixed factor of
interest (e.g. geographic origin) correlates with inferred subgroups or not, and if so, which populations are driving this
correlation. We present OBSTRUCT, a novel tool to objectively analyse the nature of structure revealed in Bayesian ancestry
profiles using established statistical methods. OBSTRUCT evaluates the extent of structural similarity between sampled and
inferred populations, tests the significance of population differentiation, provides information on the contribution of
sampled and inferred populations to the observed structure and crucially determines whether the predetermined factor of
interest correlates with inferred population structure. Analyses of simulated and experimental data highlight OBSTRUCT’s
ability to objectively assess the nature of structure in populations. We show the method is capable of capturing an increase
in the level of structure with increasing time since divergence between simulated populations. Further, we applied the
method to a highly structured dataset of 1,484 humans from seven continents and a less structured dataset of 179
Saccharomyces cerevisiae from three regions in New Zealand. Our results show that OBSTRUCT provides an objective metric to
classify the degree, drivers and significance of inferred structure, as well as providing novel insights into the relationships
between sampled populations, and adds a final step to the pipeline for population structure analyses.
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Introduction

When there is a lack of free gene flow within sexual populations,

neutral and selective forces will erode population homogeneity and

tend to establish population structure [1,2]. This process of

subdivision will have a significant bearing on genetic diversity,

local adaptation and processes such as speciation [3,4]. When

individuals sampled from discrete points (such as similar

geographic locations or niches) tend to be more closely related

to one another than between points, this supplies evidence of

population structure. Subgroups isolated by barriers to gene flow

will become increasingly differentiated by the processes of

mutation, selection and drift but sufficient gene flow between

subgroups will serve to homogenise groups into a single population

[5–7]. Classic population genetics methods estimate the combined

effect of these processes to infer the extent of population

subdivision by analysing allele frequencies within and between

sampled populations, that may or may not be differentiated [8].

Under this framework, sample locations are chosen to test factors

thought to mainly define population structure, usually geographic

location. The drawback of these methods is that one must a priori

assign individuals to populations: it is conceivable that population

structure exists but is missed by such a priori assignments because a

factor other than the one considered is driving population

structure. A widely used, newer and more powerful approach

utilises Bayesian MCMC methods to test for population structure

and dispenses with the need to assign individuals a priori to

populations, and thus circumvents this issue [8]. These methods

iteratively determine the optimal number of populations (within

which there is free gene flow) given the data, and subsequently

assign individuals to these inferred populations probabilistically.

These methods may account for admixture, or some level of gene

flow between inferred populations, in which case the proportion of

each individual’s ancestry in each population is estimated and thus

ancestry profiles are generated for each individual [8,9]. While

these methods are powerful at determining whether structure is

present, they do not allow one to determine which factors drive

this structure as the current protocol relies on the subsequent

subjective interpretation of plots of ancestry profiles. Simply, we

propose a method to objectively analyse these inferred ancestry

profiles.

STRUCTURE is the most widely-used software package for

Bayesian analysis and clusters individuals by attempting to create

inferred populations that are in, or as close as possible to, Hardy-

Weinberg equilibrium [8]. If admixture is assumed, this results in a

large number of optimal configurations so STRUCTURE produces

ancestry profiles for each individual showing the proportion of
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time each individual is present in each of the inferred populations.

The methods implemented in INSTRUCT [9] also produce ancestry

profiles but extend the structure algorithm and allow analysis

without the assumption of Hardy-Weinberg equilibrium by

calculating expected genotype frequencies based on the rates of

inbreeding within each inferred population. This means InStruct is

more suited to analyse populations that may be highly inbred, such

as some plants and most microbes [9]. Finally, baps implements a

number of novel algorithms which aim to efficiently analyze large-

scale datasets to determine structure and admixture; the output of

these analyses also being ancestry profiles [10,11].

The optimal number of inferred populations may be estimated

from these analyses [9,10,12]. The ancestry profiles for each

sampled individual produced by these software packages may be

examined, and a graphical overview of the patterns may be

produced using DISTRUCT [13] or within BAPS itself. The ancestry

profiles represent an objective estimation of structure and

admixture within the data, and DISTRUCT visualises groupings by

colouring each inferred population uniquely so that a highly

structured dataset will show sampled populations mostly contain-

ing a single colour. While this approach produces a figure that is

readable, it only allows a subjective visual interpretation of

whether any patterns in the ancestry profiles correlate with the

fixed factor of interest (e.g. geographic origin of samples). In clear-

cut cases of striking population subdivision this might be sufficient,

however not all datasets will show clear differentiation. Factors

such as high admixture, recent divergence and inadequate

sampling will create noise in the data which renders plots of

ancestry profiles difficult to interpret. Presently, there is no method

to objectively analyse these ancestry profiles. The method

presented here addresses the interpretation of signals for popula-

tion structure by analysing ancestry profiles generated by Bayesian

methods, and is not concerned with the Bayesian method itself,

which we consider robust.

The main aspect we consider here is how the assignment of

individuals to inferred populations relates to the factor of interest.

The Bayesian methods derive and assign individuals to subgroups

without knowledge of the origin of individuals. Imagine one

samples individuals from three geographic locations, and hence

location is hypothesised to be a driver of structure. An analysis of

the genotypes obtained using Bayesian methods suggest the

optimal number of inferred populations is four. What does this

mean? Any number of possibilities are biologically feasible: one

location might harbor two or more populations, or perhaps

geographic origin bears no relationship to the inferred popula-

tions, but some other factor does. The issue is that the current

visualisation methods, while informative, do not allow population

assignments and ancestry profiles to be objectively analysed: a

subjective assessment of the plots is only possible. Our method

statistically analyses these ancestry profiles and allows one to

determine whether inferred population assignment and the factor

of interest (e.g. origin of individuals) are significantly correlated.

Having determined the extent to which a factor of interest defines

observed population structure, one may then conduct finer scale

analyses to ascertain the relative contribution of each sampled and

inferred population to overall population structure. Which

sampled and inferred populations are most differentiated or

contribute the most to overall structure? We set about applying a

statistical procedure which can objectively quantify the level of

structure in these ancestry profiles, test the sources of structure,

and determine statistical significance using a permutation

approach. Our method complements visualization with distruct,

adds a final step to the pipeline for population structure analyses,

and allows one to analyse factors driving population structure

within ancestry profiles and the extent to which these factors are

explaining the variability seen within ancestry profiles as a whole.

Methods

Data
OBSTRUCT directly takes STRUCTURE [8], INSTRUCT [9] and BAPS

[10,11] outputs from analyses that include admixture. For each

individual sampled the outputs contain the proportion of ancestry

in each inferred population, summing to one. A specific range of

inferred populations (K ) is typically run to determine the optimal

value of K that gives the highest resolution of individuals to

inferred populations. OBSTRUCT can either use the optimal value

of K determined by INSTRUCT using Deviance Information

Criterion (DIC) or a value specified by the user. baps can estimate

K using its log(ml) algorithm or use a value specified by the user.

STRUCTURE does not estimate an optimal K and needs a secondary

method to determine the optimal K (e.g., [12]).

OBSTRUCT tests whether the population structure represented

by the ancestral profiles is correlated to the structure given by the

predefined populations (sampled populations). Predefined popula-

tions are discrete sampling units within the data based on the

factor of choice. For example, predefined populations in a

geographic study would be different sampled regions. Predefined

populations can be specified at different categorical scales to

explore a single dataset in multiple ways, e.g. by language,

continent, altitude, salinity, region, pH, etc. If inferred structure

correlates with predefined populations, individuals within each of

the predefined populations will tend to have high values of

ancestry in a small number of unique inferred populations.

The R2 Statistic
Our aim is to determine the extent to which the factor of

interest (encoded as the predefined populations) is reflected in the

ancestry profiles. We use the R2 statistic to quantify this extent. Let

S denote the number of predefined populations, and K the

number of inferred populations. Let nj denote the number of

individuals in population j~1, . . . ,S, and let yijk denote the

ancestry of individual i from predefined population j in inferred

population k. Hence, we have yij1z . . . zyijK~1. Further let y:jk
denote the proportion with which the average individual in

predefined population j is in inferred population k (also known as

the group mean), and let y::k denote the proportion with which the

average individual is in inferred population k (also known as the

overall mean).

Our null hypothesis states that the inferred ancestries do not

reflect our predefined populations, i.e. individuals inferred to share

a high proportion of ancestry (forming a population within the

data) appear randomly scattered among the predefined popula-

tions or, alternatively, all individuals have equal ancestries to all

inferred populations. In short, this indicates the factor of interest

does not account for or drive inferred population structure. An

established way of assessing how well the predefined populations

are represented by the inferred populations is by evaluating the

variation within and across predefined populations (e.g., [14,15]).

The sum of squares across populations (SSA) is given as follows:

SSA~
XK

k~1

XS

j~1

nj
: y:jk{y::k

� �2

:
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The nj in the summation accounts for heterogeneous population

sizes. The sum of squares within populations (SSW ) is given by:

SSW ~
XK

k~1

XS

j~1

Xnj

i~1

yijk{y:jk

� �2

~
XK

j~1

XS

j~1

(nj{1):s2
jk,

where s2
jk is the empirical variance of population j within group

k. To see how much of the variability in the ancestry profiles is

explained by the predefined populations, we simply compute the

multiple R2 statistic:

R2~
SSA

SSAzSSW

, ð1Þ

i.e., we assess how much of the total variability in the data is

accounted for by grouping the data points according to the

predefined populations. The R2 statistic is well-known and easily

interpretable. A low R2 means that either the predefined

populations have diverged quite recently or that there is a lot of

migration and admixture between the populations. A high R2

indicates strong diversification and/or population structure.

The usual way of assessing the amount of evidence against the

null hypothesis is by computing a p-value. In classic ANOVA, one

uses SSA and SSW to build the F statistic which is F -distributed

with degrees of freedom corresponding to S{1 and N{S, where

N~n1z . . . ,nS . However, since we have K response variables

this approach is no longer valid [15]. Instead, we generate a

distribution for the R2 statistic under the null hypothesis using

permutations of individuals (e.g., [14,15]). If our null hypothesis is

true, then the perceived similarity within predefined populations is

arbitrary and permuting the ancestry profiles of the individuals

should not significantly change the R2 statistic. For our approach

we considered 10,000 permuted datasets appropriate. The p-value

is then the proportion of permuted datasets for which the R2

statistic exceeds the value for the initial dataset.

Since we assess the null hypothesis using the variability in the

data, and the data are proportions, we have to account for

heterogeneity in variance. Proportions close to 0 or close 1 tend to

have a smaller variance than proportions close to 0.5. Not

accounting for this can lead to observing effects that are due to the

heterogeneity in the variance rather than similarities in the

population structure. To address this problem we follow the

common approach and use the logit transform on the proportions,

i.e. we replace yijk with:

logit(yijk)~ log (yijk){ log (1{yijk):

Additional Analyses of Population Structure
Relative Contributions of Populations. Having established

the overall level of structure within the dataset, we can apply the

statistic to examine the relative contributions of each of the

predefined and inferred populations to this structure. To assess the

contribution we remove one predefined or one inferred population

at a time and recalculate R2 for the reduced dataset. An increase

in R2 means that the removed population was more homogenised

than average and thus contributed less than average to the

structure in the data. A decrease in R2, on the other hand,

indicates that the removed population contributed to an increase

in structure by discriminating against the other populations or

showing discriminating structure itself. Such an analysis has

biological relevance in determining the main drivers of population

structure, e.g. whether just a few populations are giving rise to the

total structure seen in the data.

Pairwise Comparisons of Predefined Populations. The

primary units of interest are populations deriving from the

predefined factor level (e.g. geographic location) so we next focus

on further analysing the patterns of structure between them. This

allows us to identify similarities and differences between prede-

fined populations and test the significance of these relationships.

To do this we apply the R2 statistic calculation for all pairwise

combinations of predefined populations to produce a pairwise

matrix of R2 values. To access the significance of the similarities or

differences between predefined populations we again carry out by

permutation of ancestry profiles within each pairwise combination

and correct for multiple re-sampling with Bonferroni correction.

Visualisation of Structure. An integral part of every

statistical analysis is plotting the data to visualise the outcome of

the analysis. To visualise the structure derived from the inferred

populations and their relation to the predefined populations we

use canonical discriminant analysis (CDA, see e.g., [14]). CDA is a

method to assess and visualise the correlation between a set of

response variables and a set of dummy variables coded from the

factor variable. Here, each inferred population is treated as a

response variable and the predefined populations compose our

factor variable. The data on which the CDA is executed are the

logit-transformed ancestral profiles. A CDA starts by fitting a

linear model between each inferred population and the predefined

population, and then combines these K models into a single model

which assesses the correlation of the inferred populations. It then

suggests a set of transformed, orthogonal variables which help

visualising the observed divergences in the data. The difference of

a CDA to the more popular principal component analysis is the

explicit inclusion of the explanatory variable in the calculations.

The output of OBSTRUCT contains a script executable in the

statistical software R (http://www.r-project.org), using the R-

specific packages candisc and heplots [16]. Upon execution it will

create three figures.

The first figure visualises all individuals coloured according to

the predefined population they belong to. The two axes are

labelled with the two variables explaining the highest proportion of

variability in the data. This proportion is part of the axis label, thus

providing the user with information about the amount of

variability visualised in the 2D-plot. Further, the plot shows two

ellipsoids centred at the hypothetical average over all data points.

The inner ellipse contains approximately 50% of the individuals

while the outer ellipse contains about 95% of the individuals.

The second figure summarises the information of the first by

drawing 66% ellipsoids for every predefined population centred at

the respective population mean. This type of plot indicates the

position of the predefined populations relative to each other when

given the transformed variables.

The final figure is called an HE plot. Here, the H stands for

hypothesis, and E stands for error. The plot will post the same axis

labels as the previous plots. However, the predefined populations

are reduced to simply show their centres. In addition, inferred

populations are visualised by arrows indicating their relation to the

transformed variables. Possibly the most important feature of the

plot are the two ellipsoids. The one labeled group indicates the

range of individuals, while the red ellipsoid labeled error indicates

the range of variation between the group means if predefined and

inferred populations do not resemble each other. If there is no

OBSTRUCT: A Method to Analyse Ancestry Profiles
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resemblance in structure the red ellipsoid will be large and

potentially exceed the group ellipsoid, while a strong resemblance

will lead to a small error ellipsoid within the group ellipsoid.

Trial Datasets
To test the effectiveness of our method, we applied it to

simulated and experimental data. Simulations using coalescent

theory allow the demographic modeling of population structure

backwards in time. This means we can directly compare the

divergence of populations with known parameters with the

performance of our method to describe population division

processes throughout the simulation. The application of our

method to experimental data then serves to illustrate the practical

benefits of the method and provides further useful information on

the data.

Simulations. The fastsimcoal software [17] was used to

simulate three populations of 25,000 diploid individuals each

diverging into 5 populations of 5,000 diploid individuals and then

continuing to evolve without gene flow for 1,000 generations.

Samples of 100 individuals from each population were taken every

50 generations starting from the initial divergence up to 1,000

generations, resulting in 21 sampling points per population. The

simulation outputs were specified as 10 unlinked microsatellite loci

with the geometric parameter for a Generalised Stepwise

Mutation model of 0.05. Ten markers were used as a conservative

measure of variation, if structure can be found in ten markers then

more will only add to the power of the method. The microsatellite

profiles were analysed for population structure using INSTRUCT

and STRUCTURE (10,000 iterations of burn-in, 20,000 iterations of

sampling, 3 chains) with K set to 5 since this is the true number of

populations within this dataset. The resulting ancestry profiles

were used to calculate R2 to determine whether the increasing

population structure generated in the simulations was recovered

with this new method of analysis.

Experimental Data. We chose to analyse two published

datasets showing high and low levels of population structure in

order to evaluate the effectiveness of our method across a range of

conditions encountered in nature. The first of these datasets

comprises 1,484 humans genotyped at 678 microsatellite loci in 78

worldwide populations from 7 distinct geographic continents [18].

R2 was calculated with predefined populations specified at both

Figure 1. Change in population structure over 1,000 generations of simulated population divergence as inferred by (a) STRUCTURE

and (b) INSTRUCT. Error bars denote the standard error of three separate simulations for each sampling time point.
doi:10.1371/journal.pone.0085196.g001

Table 1. R2 values calculated for two experimental datasets
of human and S. cerevisiae microsatellite profiles.

Dataset Scale R2

Human Continental 0:77+0:01***

Regional 0:92+0***

S. cerevisiae Regional 0:22+0***

The error reported is the standard error of calculating R2 for three separate
chains of each dataset.
***Denotes (pv0:0001).
doi:10.1371/journal.pone.0085196.t001
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the continental and regional scales to determine whether greater

population structure was observed at finer-scale sampling, as might

be expected. The second dataset comprises Saccharomyces cerevisiae (a

microbial sexual diploid eukaryote) isolates sampled from three

regions of the North Island of New Zealand and genotyped at 9

microsatellite loci [19]. A conserved microsatellite binning

procedure was applied to the data leaving a total of 179 isolates

from the three sampled regions. Microbes are not constrained as

heavily by body size, population density or range size as are larger

organisms, leading some to hypothesise an increase in passive

dispersal ability [20]. S. cerevisiae also has an extensive history of

human association [21] which means this dataset might contain

less population structure due to increased gene flow between

regions due to both passive and human-mediated movement.

The human data were analysed with structure as per [18] for

10,000 iterations of burn-in and 20,000 iterations of sampling

using the admixture model. K was set to 6 as this was the maximal

value that was found to significantly increase the resolution of the

resulting ancestry profiles in the original study. Three independent

chains were run to check for convergence. Due to the highly

inbred nature of S. cerevisiae, INSTRUCT was run on this dataset for

100,000 iterations of burn-in and a further 100,000 iterations of

sampling using the admixture model from K~ 1 to 30 and 3

chains per K . Both programs output ancestry profiles in the

distruct format which ObStruct parses. To provide a visual

comparison with our method, ancestry profiles were plotted using

distruct [13].

Implementation
The OBSTRUCT method is implemented in a Perl script called

ObStruct.pl which, along with documentation, is available from

http://goddardlab.auckland.ac.nz/ObStruct. The script takes

outputs from STRUCTURE, INSTRUCT and BAPS directly to calculate

R2 values and generates two output files: a comma-separated text

file summarising the results of the R2 analyses, and an R-script

providing the commands to visualise the relationship of predefined

and inferred population structure in the data.

Results

Simulated Data
The R2 proportions generated from the simulated datasets are

plotted in Figure 1 for STRUCTURE and INSTRUCT. As expected,

both figures show an increase in the level of inferred population

structure through time after the initial divergence event. Since no

gene flow occurred between populations and the rate of mutation

is the same for all populations, the only variability in the

simulations should be that of sampling. 5,000 individuals are

present in each population but just 100 are sampled at each time

point. This variability gives rise to stochasticity in the levels of

population structure which is further operated on by their analyses

leading to variation in the R2 proportions, shown by the error

bars.

Our analysis shows INSTRUCT gave rise to a consistent

relationship between time and structure with little variability seen

within each sample for the three replicate simulations (Figure 1b).

STRUCTURE displayed a similar relationship but with significantly

increased error around R2 proportions (Figure 1a). The detection

of significant population structure, as determined using permuta-

tion significance testing, also showed a similar pattern where

significance (pv0:05) was observed for all simulations after 50

generations in the INSTRUCT analyses while the last non-significant

replicate was observed at generation 450 for the structure analyses.

The gradual increase in STRUCTURE reported by INSTRUCT more

accurately reflects the expectations given the parameters of the

simulations, given the fact that populations are necessarily inbred

due to the absence of gene flow between populations.

STRUCTURE aims to maximise Hardy-Weinberg equilibrium

within inferred populations whereas INSTRUCT instead focusses on

using inbreeding rates to calculate expected genotype frequencies

Figure 2.World map showing DISTRUCT plots of ancestry profiles for 1,484 humans sampled from seven continents from [18]. Ancestry
profiles were generated using STRUCTURE with K~6.
doi:10.1371/journal.pone.0085196.g002
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within inferred population. The choice of software should be made

based on biological information instead of statistical consider-

ations. Nevertheless, these results clearly show that OBSTRUCT is

capable of identifying the predefined population structure in the

ancestral profiles produced using both methods, if it exists.

Results for Experimental Data
Applying the OBSTRUCT method to experimental data allows an

additional empirical analysis of population structure over the

description of graphical outputs of ancestry profiles using district

plots. Graphical outputs are open to interpretation whereas

OBSTRUCT provides objective insights into the resemblance

between predefined and inferred population structure. We will

not only mirror the conclusion of the studies from which the data

are taken, but also expand upon these results and provide new

insights.

Geographically-diverse Human Microsatellite

Profiles. We recapitulated the analyses of data from [18] using

structure with K~6. R2 was calculated when the data were

partitioned by continent (n~7) and region (n~78) to enable

analysis of structure at disparate scales. The resulting R2 values are

shown in Table 1. The structural resemblance observed is much

higher when partitioned by region (R2~0:92; pv0:0001) com-

pared with partitioning by continents (R2~0:77; pv0:0001). This

is not surprising since we would expect individuals sampled at finer

scales to be more closely related. The variability observed between

the three chains run for each dataset is minimal, indicating

adequate convergence of chains.

Table 2 shows the changes to the R2 values when each

predefined continental population is removed. Removing Africa

reduced R2 the most, meaning that this continent has the highest

proportion of individuals with high ancestries to a single inferred

population, and thus contributes the most to the signal for

population structure. The removal of East Asia and Europe

reduced the R2 value below the overall value by a smaller margin

indicating higher than average levels of structure within these

continents. The Middle East and Oceania left the value of R2

unchanged. Continents that caused R2 to increase above the

overall value were Central South Asia and America. Removing

America in particular causes a large increase in R2 from the

observed value, indicating that it is the most heterogenous

continent harboring individuals with mixed ancestries. These

analyses complement patterns seen in the distruct plot of this data

shown in Figure 2. However, Oceania appears to be highly

structured into a single unique inferred population in the plots but

its removal does not alter the R2 value in our analyses. The reason

for this lies in this continent’s small population size of 36

individuals. The calculation of R2 takes into account sample size

and will adjust for populations with small sizes since their high

structure might be due to chance. Our choice to include the

Oceania data stems from the desire to use the full dataset from the

original publication and show how our method deals with small

population sizes.

Table 2 also shows the changes in R2 values when each of the

six inferred populations is removed in turn for the continental

scale. All inferred populations apart from two decrease R2 from

the overall value, which indicates these inferred populations are

contributing to structure within the data. Inferred population three

doesn’t change the R2 value and inferred population two increases

it (shown in blue in Figure 2). Individuals with high ancestry to this

inferred population come from two regional populations within

the American continent. Since this inferred population only occurs

in America as a subset of the overall diversity in that continent,

removing it serves to increase the signal of structure from the

entire American continent. This shows the diagnostic value of this

technique for identifying potential sub-structure within predefined

populations.

Table S1 shows R2 values for each pairwise combination of

sampled continents. When visually compared with the distruct plot

of the data (Figure 2), a number of interesting patterns emerge.

First, among these are the significantly reduced R2 values for all

pairwise combinations involving America, resulting from the high

heterogeneity of ancestries within the American continent.

Comparisons of the three continents with high levels of ancestry

in the purple inferred population have R2 values at or below 0.3,

indicating relatively little differentiation. The largest increases to

R2 are observed in pairwise comparisons involving Africa, showing

that this continent is the most distinct. East Asia shows a similar

pattern to Africa but not to the same extent due to the admixture

seen within it (purple bars amongst the orange). Oceania is a

unique case since in the distruct plot it appears to be highly

structured, but the pairwise R2 values are lower than for the

similarly highly-structured Africa. This is again explained by the

small sample size from the Oceania continent which means this

sample is biased within any pairwise combinations by contributing

less to the sum of squares across (SSA). While many of the patterns

observed in our analysis can be seen within the DISTRUCT plots, it is

important to stress the objective nature of our analyses supporting

the subjective interpretation of plotted ancestry profiles. Further,

not all datasets are as clear-cut and easy to interpret as this highly-

structured dataset, the next experimental dataset on S. cerevisiae

strains illustrates this.

Saccharomyces cerevisiae Microsatellite

Profiles. Table 1 shows that the observed R2 value for the S.

cerevisiae dataset is 0:22 (pv0:0001). Figure 3 matches the ancestry

profiles for this dataset, as generated with distruct, to the location

of the sampled regions in New Zealand.

The relatively low R2 value compared to the human dataset is

due to two reasons, (1) only nine loci are used in the yeast data

while there were 678 loci encoding divergence in the human data,

and (2) these yeast populations appear to experience more

admixture than human populations. Despite this, we observe

structure within inferred populations that is explained by

Table 2. Changes from the observed R2 value when each
continent and inferred population is removed in turn for the
human dataset.

Predefined
Population R2

Inferred
Population R2

Africa {0:04+0:01 6 (Purple) {0:01

East Asia {0:03+0:02 5 (Green) {0:01

Europe {0:02+0:01 4 (Pink) {0:01

Middle East {0:01+0:01 1 (Orange) {0:01

Oceania {0:01+0:01 3 (Yellow) 0:00

Central South Asia 0:01+0:01 2 (Blue) 0:04

America 0:10+0:01

The colours for inferred populations correspond to those seen in Figure 2. The
error reported for the continents is the standard error of R2 calculated for three
separate chains of each dataset. No such error is reported for inferred
populations because the designations for inferred populations differ between
chains.
doi:10.1371/journal.pone.0085196.t002
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corresponding sampled regions, i.e., unique genetic diversity is

found within at least one of the sampled regions. Our in-depth

analysis (Table S2) shows that removing West Auckland from the

data leads to a reduction in R2 by 0:12, meaning that this region

contains the highest proportion of individuals with high ancestries

to inferred populations not seen elsewhere; the turquoise inferred

population in Figure 3. Waiheke Island and Hawke’s Bay contain

some unique population structure as evidenced by a significant R2

value when West Auckland is removed from the data. Unique

structure is seen in the Waiheke Island and Hawke’s Bay regions in

the light blue and purple inferred populations within each region

(Figure 3), and this structure is enough to reduce the R2 value

slightly by 0:02 for Waiheke Island and 0:01 for Hawke’s Bay

when each region is removed from the data.

Finally, the changes to R2 when each inferred population is

removed in turn (data not shown) indicate that a single inferred

population, when removed, reduces the R2 by 0:08 while the rest

increase it by 0{0:1. This indicates that one of the inferred

populations is driving structure within the dataset, i.e. comprises a

large number of individuals from a single region. This pattern is

identical for all three chains run for the data. This population is in

fact the turquoise inferred population seen extensively in West

Auckland, shown in Figure 3.

Figure 4 shows two of the plots ObStruct creates when applied

to this dataset. We see that two transformed variables are sufficient

to visualise the variation for all individuals, with the first variable

covering 71:6% and the second the remaining 28:4%. Figure 4a

visualises the position of individuals to each other, coloured by

their membership to a predefined population. We see that all three

populations are relatively separate with West Auckland showing a

large cluster of individuals separate from the rest. Figure 4b

reduces the sampling populations to their center and visualises the

Figure 3.Map of New Zealand showing DISTRUCT plots of ancestry profiles for 179 S. cerevisiae sampled from three regions from [19].
Ancestry profiles were generated using InStruct with K~10.
doi:10.1371/journal.pone.0085196.g003
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influence of the inferred populations with arrows (inferred

populations are coloured the same as in Figure 3). We see that

the turquoise arrow representing inferred population 3 strongly

points toward West Auckland encompassing the cluster of

individuals there. The unique structure within Waiheke Island is

encompassed by inferred populations 4 and 7, with the rest of the

inferred populations covering the direction of Hawkes Bay. While

this can also be seen in the DISTRUCT plot, the HE plot adds an

extra layer by visualising the strength of resemblance through the

red error circle which indicates that Hawke’s Bay and Waiheke

Island could be considered more similar to each other than to

West Auckland, an observation that is not as obvious when looking

at DISTRUCT plots.

Note that not every dataset will show enough discrimination

with just two CDA variables. The variation indicated at the axis is

a good indicator of how much variation has been covered by the

CDA variables. If a third variable is useful, use the R-function

heplot3d for an interactive, 3-dimensional form of the HE-plot.

Discussion

We have presented a novel application of a classic statistical tool

to analyse ancestry profiles produced from the Bayesian methods

implemented in STRUCTURE and INSTRUCT. Our method analyses

the signals for population structure present in these ancestry

profiles and determines the extent to which inferred structure

correlates with the predefined factor of interest. We believe this

method is a valuable addition to the existing pipeline for analysing

population structure and extends the subjective interpretation of

plots of ancestry profiles. To support our position we have applied

the method to three distinct datasets: analyses of simulations show

the ability of OBSTRUCT to capture information on overall

structure; analyses of human data show how the method performs

on a highly structured dataset; and, analyses of S. cerevisiae data

show how the method performs on a highly admixed dataset.

The steady increase in structure through time since divergence

seen in the simulation data would not be easy to determine using

present methods in population genetics. Our method quickly and

easily captures this information and tests significance using a

permutation approach. We found that within our simulations

significant population structure could be detected in all three

replicates after 50 generations by INSTRUCT and after 450

generations by STRUCTURE. After 1,000 generations of divergence,

analyses of outputs from STRUCTURE and INSTRUCT converged on

R2 values around 0.85, although STRUCTURE produced inconsistent

R2 values, possibly due to the way the method attempts to cluster

inferred populations based on assumptions of Hardy-Weinberg

equilibrium. Testing for differences in the effectiveness of these

two methods is outside the scope of this study, but these results

indicate the R2 is suitable for such tests and clearly indicates the

levels of population structure in datasets.

The application of our method to experimental data showed the

comparability of the overall R2 value between datasets. The highly

admixed S. cerevisiae had a much lower R2 value of 0:22 compared

with 0:77 for the human data partitioned by continent, or 0:92 by

region. Our new method allows one to test if the factor of interest

correlates with inferred structure. Further, we were able to

objectively determine the sources of structure within these datasets.

Understanding the drivers of structure allows us to draw

biologically relevant conclusions and understand the relative

relatedness of sampled populations.

The absolute R2 value is useful for comparing datasets but it is

difficult to generalise specific R2 values to categorical levels of

structure. Rather, we recommend in-depth exploration of the

dataset by using the pairwise predefined population matrix and

lists of R2 values when each predefined and inferred population is

Figure 4.Canonical discriminant analysis on the Saccharomyces cerevisiae dataset. (a) Mapping the individual data according to the CDA
variables. The inner ellipsoid contains 50% of all individuals, the outer ellipsoid contains 95% of all individuals. Individuals are colour- and shape-
coded according to their respective sampled region. (b) The HE plot shows the relation of variation in the group means on two variables relative to
the error variance. The coloured arrows indicate the position of the inferred populations relative to the axes obtained by the canonical discriminant
analysis. The black points indicate predefined populations (WA = West Auckland; WI = Waiheke Island; HB = Hawke’s Bay) while numbers at the
arrows indicate inferred populations.
doi:10.1371/journal.pone.0085196.g004
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removed. It is this exploration that uncovers sources of structure

within the data between specific populations, for example, it may

be possible that one predefined population is very distinct from the

rest of the data which itself shows high admixture. This means that

the overall R2 value is primarily itself only a benchmark against

which to compare the changes to it from deeper tests performed by

our method. Manual manipulations of ancestry profiles show that

the R2 statistic is able to differentiate differences in ancestry

proportions as low as 1% which makes it a sensitive measure of

structure.

The method described in this work has wide-ranging applica-

tions to any field employing population genetic techniques, and we

feel that this is a valuable addition to a pipeline for the analyses of

population structure. An objective quantification of population

structure in datasets means that disparate datasets may now be

compared. This opens up the ability to conduct theoretical and

practical tests on the nature of population structure and the factors

that influence its inception and perpetuation. The ability to look

within a dataset at the causes of structure help to determine the

relative difference of populations and allows further interpretation

of the data. We believe that objectively quantifying the levels of

structure in data and taking into account important characteristics

such as population size, number of predefined populations and

statistical significance is a significant addition to the currently

available analyses.

Supporting Information

Table S1 Pairwise matrix of R2 values between conti-
nents for the human dataset.

(PDF)

Table S2 Pairwise matrix of R2 values between regions
for the Saccharomyces cerevisiae dataset.

(PDF)
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