Chris J. Gardner ${ }^{\text {a,b,* }}$, D. Charles Deeming ${ }^{\mathrm{c}}$, Ian Wellby ${ }^{\mathrm{d}}$, Carl D. Soulsbury ${ }^{\mathrm{c}}$ \& Paul E. Eady ${ }^{\text {c }}$. (2015)_Effects of surgically implanted tags and translocation on the movements of common bream Abramis brama (L.). Fisheries Research, 167: 252-259
${ }^{\text {a }}$ Ahern Ecology, 12 Hurricane Close, Old Sarum, Salisbury, SP4 6LG, UK.
${ }^{\mathrm{b}}$ The Environment Agency, Sunrise Business Park, Higher Shaftesbury Road, Blandford Forum, Dorset, DT11 8ST, UK.
${ }^{\text {c S School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, }}$ Riseholme Park, Lincoln, LN6 7DL
${ }^{\mathrm{d}}$ BlueRoof Ltd, Leicestershire, LE14 3QH, UK.
*Corresponding author. Tel.: +44(0)1722 580008.
Email addresses: chris.gardner@ahernecology.co.uk (C.J. Gardner),
cdeeming@lincoln.ac.uk (D.C. Deeming), csoulsbury@lincoln.ac.uk (C.D.
Soulsbury) peady@lincoln.ac.uk (P.E. Eady), ian@blueroof.co.uk (I. Wellby).

Abstract

Data collected from wildlife telemetry studies relies on tagging and attachment having minimal impacts on behaviour. Though a widespread technique, relatively few studies evaluate the impacts of differing tagging methods on both welfare and behaviour. Here we use tracking data, collected for other aims, to investigate the impact of interperitoneal surgical implantation of acoustic transmitters on the health and behaviour of common bream, Abramis brama (L.). In five separate capture events, the behaviour in terms of distances moved and linear range of newly tagged fish ($n=61$) were compared to previously tagged fish ($\mathrm{n}=55$) present in the same river at the same time. In the first 5 days post-tagging, newly tagged fish moved significantly further than previously tagged fish. Despite this difference, the linear ranges moved by the two groups of fish were equivalent. During 6-10 days post tagging there was no significant differences between the two groups. Thus, the tagging procedure had short term, but not long term behavioural impacts. In addition, a number of tagged fish were recaptured between 51 and 461 days post-surgery. Recaptured fish appeared to have clean, well-healed incisions and exhibited 'normal' behaviour in that they were caught alongside a large number of conspecifics. Three recaptured tagged fish were translocated $\sim 35 \mathrm{~km}$ downstream, to ascertain how translocation would affect their behaviour. The translocated fish had a greater linear range than control fish, with all three fish returning to the site of capture within 6 to 24 days, suggesting that common bream can exhibit site fidelity.

Key words: aquatic telemetry; surgical implantation; effects of tagging; translocation; Abramis brama (L.).

1. Introduction

The development of electronic tags has been one of the most important advances in the study of freshwater fish behaviour and ecology (Lucas \& Baras 2001; Cooke et al. 2013). Tag implantation into the peritoneal cavity is commonly used in long-term tracking studies of fishes (Lucas \& Batley 1996) and regularly used for cyprinid species (e.g. Lucas \& Batley 1996; Huber \& Kirchhofer 1998; Lyons \& Lucas 2002; Winter \& Fredrich 2003; Fredrich et al. 2003; Kuliskova et al. 2009; Gardner et al. 2013). Such telemetry studies commonly rely on three assumptions: 1) fish condition and mortality are not altered by the tagging procedure or transmitter presence; 2) transmitters are retained for the duration of the observation period; and 3) tagged individuals accurately represent the population being observed (i.e. they behave normally; Smith et al. 1998; Ramstad \& Woody 2003; Neely \& Steffensen 2010). Taylor et al. (2011) suggests the best approach to evaluate potential tagging effects is to use multiple endpoints that evaluate lethal and sub-lethal effects (e.g. healing, swimming activity, and performance; Cooke et al. 2011) and that field validations are necessary to ensure that data are relevant to field scenarios (Cooke et al. 2011).

Assessment of the effects of surgical implantation of transmitters on the behaviour of tagged fish has previously been carried out by observations of fish in captivity prior to release. In addition, examination of recaptured fish (post-release) can determine the degree of healing and the effects of tag implantation on fish condition (e.g. weight). However, there is a paucity of data on the effects of tag implantation on fish behaviour in the wild. Unusual long-distance movements have been observed during the first few days of release following transmitter implantation in largemouth bass Micropterus salmoides (L.) (Mesing \& Wicker 1986) and dace Leuciscus leuciscus (L.) (Clough \& Beaumont 1998), but without a suitable control population in the
watercourse, it is difficult to ascribe this behaviour as a direct effect of the capture, handling and surgical procedure.

Here, we present the results of a study in which the immediate post-surgery spatiotemporal behaviour of common bream Abramis brama (L.) was compared to that of other common bream that had been tagged between 55 and 378 days previously. The study had other primary objectives (see Gardner et al. 2013 \& 2015)., However, it also presented the opportunity to analyse the short-term effects of capture, handling and tagging on the behaviour of the bream via a comparison of the movements of the two groups of bream. In recapturing a sample of tagged individuals, incision wound healing could also be assessed. In addition, a small group of recaptured fish were translocated downstream and their behaviour compared to those that were not recaptured nor translocated. A detailed description of the tagging protocol is reported in response to calls for greater scrutiny of the methods used in order to compare, replicate and interpret the growing literature on fish telemetry studies (Thiem et al. 2011).

2. Material and methods

2.1 Study area

The study area was a continuous open reach of approximately 40 km of the non-tidal lower River Witham and associated tributaries in Lincolnshire, UK, see Gardner et al. (2013 \& 2015) for further details

2.2 Sampling procedures

In total, eighty-three adult common bream were caught by either rod and line, seine netting or electrofishing from the River Witham, and tagged in seven batches between

November 2006 and February 2009 (see summary in Table 1). Fish were retained overnight; on one occasion in net cages placed in the river (the site was secure), or more commonly in holding tanks on shore between capture and tagging. After surgery, all fish were released at the site of capture.

Coded acoustic transmitters of two types: Vemco (Nova Scotia, Canada) V9-2L (cylindrical with dimensions of 29 mm by 9 mm diameter, weight in air of 4.7 g , weight in water 2.9 g and with operational life of 80-330 days) and V13-1L (cylindrical with dimensions of 36 mm by 13 mm diameter, weight in air of 11.0 g , weight in water 6.0 g and with operational life of 526-621 days) were implanted into the body cavity. The tag weight in air would represent $0.16-0.57 \%$ of the fish's weight out of water.

2.3 Tag implantation protocol

The procedure described was regulated and licensed in the UK by the Home Office under the Animals (Scientific Procedures) Act 1986, and was performed under project licence number PPL 80/2016. The surgery itself took place within the shelter of a mobile laboratory under conditions that were as aseptic as possible in-the-field.

A specially constructed operating table was used to secure and restrain the fish in an upside-down position with the incision site clearly accessible. The mobile laboratory and operating table were washed and disinfected before any procedures were started. Surgical equipment was sterilised in 97% ethanol and then rinsed with sterile water or saline solution. Prior to the procedure the activated tag was tested in water with a hydrophone. Tags were then sterilised with a 25% Dettol $^{\mathrm{TM}}$ solution, rinsed with sterile water or saline solution and stored in a sterile swab. A 60 litre anaesthetic bath (Tricaine methanesulphonate MS-222; $50 \mathrm{mg} / \mathrm{L}$; see Carter et al.
2011), and a similar sized recovery tank, both with aeration were clearly labelled. The anaesthetic bath was tested with a single fish (which was not used again for subsequent anaesthesia and tagging) until anaesthesia was reached (indicated by loss of the righting reflex and a slowed operculum rate, which did not stop). The test fish was allowed to fully recover before any fish to be tagged were anaesthetised.

All surgeries were conducted by a single surgeon (CG). The surgeon and assistant thoroughly cleaned their hands with an alcohol-based hand wash and maintained as aseptic a procedure as was possible under field conditions. The surgeon wore sterile surgical gloves, changing them between fish, or after coming into contact with anything away from the surgical area. Fish were firstly weighed, measured, their sex determined, primarily by the presence of tubercles and also by vent \& body morphology (Kennedy \& Fitzmaurice 1968), and a scale sampled from the mid-flank above the lateral line, for subsequent age determination. The fish was then placed into the aerated anaesthetic bath. When anaesthesia was reached the fish was removed from the bath, inverted and secured in the operating table between wet smooth foam padding with Velcro ${ }^{\mathrm{TM}}$ straps and transferred to the mobile laboratory. During the surgery an assistant monitored the operculum movement throughout. If a problem with the fish's health or well-being was encountered during the procedure then the team had the option to administer an overdose of anaesthetic in-line with Schedule 1 of the Animals (Scientific Procedures) Act 1986.

The incision site was on the ventral surface of the fish, anterior of the pelvic fins and associated muscle blocks. Using tweezers, a line of 4 to 6 scales were removed from the incision site and another scale removed midway and perpendicular to the incision site to allow suture entry. The site was then swabbed with an iodine based antiseptic (Betadine ${ }^{\text {TM }}$). An incision was made with a sterile scalpel and was kept to
the minimum length required, approximately $20-30 \mathrm{~mm}$. The incision was begun just in front of the pelvic muscle blocks, where the body wall thins, and extended towards the pectoral fins. The incision was made slowly by dragging the scalpel lightly. An assistant used sterile tweezers to hold the incision open while it was being cut allowing the surgeon to see when the incision breached the body cavity and thus avoided making an incision that was too deep, potentially damaging vulnerable internal organs. A sterilised tag was inserted into the incision using a sterile, gloved hand and/or sterile tweezers. The incision was closed with a single suture (Ethicon PDS*II Polydioxanone violet monofilament absorbable W9125; Ethicon, Piscataway, NJ, U.S.A.). One scale had already been removed to allow suture entry and another 12 scales were removed with tweezers to achieve suture exit. The suture was secured with a surgeon's knot and excess suture material trimmed with sterile scissors, 5-10 mm from the knot.

The site was swabbed again and G7 wound sealer (Lincolnshire Fish Health, UK) was applied and allowed to at least partly dry for a few seconds. The site was then liberally covered with Orabase ${ }^{\mathrm{TM}}$ (Squibb \& Sons, Uxbridge, UK) protective paste to provide a temporary barrier and G7 wound sealer reapplied on top of the Orabase ${ }^{\mathrm{TM}}$, to prevent the Orabase ${ }^{\mathrm{TM}}$ barrier dissolving too quickly when fish were returned to the water. The whole procedure took approximately three to four minutes.

Following surgery, the fish was removed from the operating table and immediately placed in the aerated recovery tank where it was supported by hand in an upright position. An antibiotic injection of 1 ml Baytril at 2.5\% directly behind the dorsal fin was given while fish were recovering, although antibiotic use post-surgery has been questioned by Mulcahy (2011). The injection was made on the same line as the erect last dorsal ray between the two main muscle blocks. This site reduces possible scale
damage and reduces post-injection leakage of antibiotic. Once each fish was deemed recovered, which took no more than 5 minutes, it was removed to a separate retention net in the river for further observation. Fish were retained in this way for an hour after the last fish was tagged, to ensure they had regained balance and were actively swimming, then collectively released as a group.

2.4 Recapture and translocation of tagged fish

After release, the movements of the common bream were monitored in the lower River Witham, Lincolnshire between Short Ferry ($53^{\circ} 13^{\prime} 38^{\prime \prime N}$; $0^{\circ} 21^{\prime} 23^{\prime \prime W}$) and Boston ($52^{\circ} 58^{\prime} 53$ " $\mathrm{N} ; 0^{\circ} 1^{\prime} 46^{\prime \prime} \mathrm{W}$). Tracking results were obtained from up to twentysix fixed (marginal, maintained at approximately mid-water depth, a metre below the surface) VR2 and VR2W acoustic receivers (Vemco, Nova Scotia, Canada) which were positioned ~2-3 km apart, as described by Gardner et al. (2013).

Fish were recaptured both intentionally, for translocation and unintentionally, during fishing operations to capture new fish for tagging. When new fish were required for tagging, mobile tracking with a VR100 mobile receiver (Vemco, Nova Scotia, Canada) was undertaken to find areas where tagged fish were present and fishing for fresh fish was concentrated in these areas. Common bream are a shoaling species (Backiel \& Zawiska 1968) and thus tagged fish were likely to be associated with untagged fish. Recaptured tagged fish were isolated and identified with the VR100 mobile receiver in separate bank side tanks and identification confirmed by the presence of surgery incisions. The incision site was inspected and photographed to determine the extent of post-surgical healing. All fish were returned to the river alive.

On 16 March 2010 three fish (tag numbers: 12255, 12257\& 12266) were caught by wrap-around seine netting (35 m by 3 m pull down and 50 m by 3 m wrap; Coles et
al. 1985) in the Sincil Dyke, close to Short Ferry ($53^{\circ} 12^{\prime} 49^{\prime \prime N}$; $0^{\circ} 20^{\prime} 50$ "W) when three separate single haul nettings covered a length of drain of $\sim 1 \mathrm{~km}$. Fish were placed in large plastic bags (60 cm by 100 cm) containing approximately 20 L of water, bags were sealed at the top and the air space filled with oxygen. These fish were then translocated $\sim 35 \mathrm{~km}$ downstream by road and released as a group so their spatio-temporal behaviour could be compared with 'control' (not captured nor translocated) tagged fish that were present in the river.

The definition of the 'control' group used throughout the study warrants some comment; previously tagged fish were used as a 'control' group to compare with newly captured, tagged / translocated and released fish. A more appropriate control would be previously tagged fish recaptured but released at the same site and their behaviour compared with recently tagged (or translocated) and released fish. However, in this case it would not be clear if the difference in behaviour between the two groups was due to recapture itself (which is stressful) rather than the capture, handling and surgery / tag insertion (or translocation) which collectively is a distinct but also stressful event. Recapture of previously tagged fish was very difficult in such a large waterbody, thus it was considered that previously tagged fish still at liberty would act as a reasonable proxy for a control group.

2.5 Data handling and statistical analysis

Data were downloaded to a laptop using VR2PC and VUE software packages (Vemco, Nova Scotia, Canada). Allocation of a km value (measured using ArcMap v9.1 Geographic Information System, ESRI Ltd, Redlands, CA, USA) upstream of the tidal limits at Boston for each receiver allowed the movements of individual fish to be quantified.

There were five tagging events when 'new' fish were tagged while previously tagged fish were also being tracked in the river, allowing the behavioural effects of capture, handling and tagging to be compared between these two groups; newly tagged and previously tagged (details of each tagging event are presented in Table 1). The effects of the single translocation event of three fish were also compared.

Two methods of quantifying the spatio-temporal behaviour of the tracked fish were used. The cumulative distance moved between the receivers visited by an individual fish gave the total distance moved (TDM) in km. The longitudinal distance between the most upstream and downstream detections (Young 1999; Ovidio et al. 2000) gave the linear range (LR) in km, with positive values indicating ranges upstream and negative values indicating ranges downstream.

We analysed the TDM and the LR by newly tagged and previously tagged fish over two periods; the first 5 days (120 h) following release and the second 5 days (120.1 - 240 h) after release. Fish that were not detected during any period were omitted from that part of the analysis. The movement data did not fit a normal distribution, possibly because of the discrete intervals of transmitters in the river. Data instead fitted an overdispersed Poisson distribution. We analysed movement data using a Poisson GLMM with type (newly tagged/previously tagged) as a fixed factor and fish ID and tagging event as random factors. To account for overdispersion, we fitted an individual-level random effect. We then tested whether fish moved upstream or downstream using a binomial GLMM with the same fitted fixed and random effects. Using just newly tagged fish, we tested whether capture method impacted movements. Again, we used Poisson and binomial GLMMs with method (electrofishing, seine netting, rod and line) as a fixed factor and tagging event as a random effect. We fitted an individual level random effect to account for
overdispersion. All models were conducted using the glmer function from the lme 4 package (Bates et al. 2014) in R version 3.03 (R core team 2014).

For the translocation analysis, Mann-Whitney U tests were used to analyse differences in TDM and LR between the two groups during the consecutive five day periods following translocation, as data were not normally distributed, these analyses were performed with Minitab ${ }^{\circledR}$ v15.1.1 (Minitab Inc., PA, USA).

3. Results

All eighty-three common bream made a full recovery post-surgery and swam away strongly on release. Another fish implanted was euthanised under Schedule 1 of the Animals Scientific Procedures Act (1986) after it failed to fully recover from anaesthesia; although a post-mortem revealed no surgical complications. Individual fish were tracked from 40-629 days (mean 266.0 \pm SD 146.7; see Gardner et al. 2013). Subsequent analysis of tracking data showed no evidence of tag expulsion and survival rates of 100% were experienced for fish that stayed within the study area in the short term, with all fish released showing upstream movements (indicative of an alive fish) for at least two months, usually substantially more, post-surgery.

3.1 Recaptured fish

In total, eight ($\sim 10 \%$) of the eighty-three tagged common bream were recaptured during the study. A single haul seine netting on 30 November 2007 resulted in 990 adult common bream with masses between $\sim 2-3 \mathrm{~kg}$. The netting recaptured four tagged bream, three 51 days post-surgery and one 275 days post-surgery. One fish was recaptured 76 days post-surgery by electro-fishing in the Sincil Dyke on 24 February 2009. One fish 384 days post-surgery and two fish 461 days post-surgery
were recaptured during nettings on 16 March 2010, which resulted in 1,270 adult common bream between $\sim 1-3 \mathrm{~kg}$.

Recaptured fish appeared to be behaving naturally, in that they were associated with numbers of untagged fish, sometimes in very high densities. Physically they exhibited clean healing and tissue regeneration (Figure 1), although in one case there was some haemorrhaging around the incision site. There was no evidence of the tag expulsion process described by Jepsen et al. (2008). All recaptured fish where visually inspected and appeared to be in no worse a physical condition than when they were tagged. All three fish recaptured 51 day post-surgery and the single fish recaptured 76 days post-surgery still had sutures present. All four fish recaptured 275461 days post-surgery displayed clean healing and suture absorption, with a small scar being the only evidence of the surgical procedure. This indicates that the sutures were absorbed in line with the manufacturers' specifications, which state that absorption is minimal until about the 90 days post-surgery.

3.2 Effects of capture, handling and tagging procedure

There was a lot of variability between results from individual fish in some cases, hence the relatively large standard errors (Figures $2 \& 3$). In the first 5 days (120 h) following release the newly tagged fish moved significantly further than fish previously tagged and already in the river (Poisson GLMM: Estimate $=0.67 \pm 0.21, \mathrm{Z}$ $=3.12, P=0.002$; Figure 2), but the linear range they covered did not differ significantly (Poisson GLMM: Estimate $=0.30 \pm 0.22, \mathrm{Z}=1.38, P=0.169$; Figure 3). There was no significant difference in the proportion of fish moving upstream or downstream (Binomial GLMM: Estimate $=0.17 \pm 0.48, \mathrm{Z}=0.36, P=0.721$; total $\mathrm{n}=$ 87, control upstream $n=20$, control downstream $n=11$, newly tagged upstream $n=$

40, newly tagged downstream $n=16$), although when fish that did not register either an upstream or downstream movement (i.e. linear distance $=$ zero) were included in the analysis, newly tagged fish tended to move upstream more often (Binomial GLMM: Estimate $=1.11 \pm 0.41, \mathrm{Z}=2.76, P=0.006$; total $\mathrm{n}=116$, control upstream $n=20$, control downstream $n=11$, control non-movers $n=24$, newly tagged upstream $n=40$, newly tagged downstream $n=16$, newly tagged non-movers $n=5$). By contrast, newly tagged fish did not move significantly further than previously tagged fish already in the river at 6-10 days (120.1-240 h) post-release (Poisson GLMM: Estimate $=0.17 \pm 0.43, \mathrm{Z}=0.40, P=0.689$: Figure 2), nor did the linear range they moved differ significantly (Poisson GLMM: Estimate $=0.16 \pm 0.36, \mathrm{Z}=$ $0.434, P=0.665$; Figure 3). There was no significant difference in the proportion of fish moving upstream or downstream (Binomial GLMM: Estimate $=-0.52 \pm 0.62, \mathrm{Z}=$ $-0.84, P=0.401$; total $\mathrm{n}=55$, control upstream $\mathrm{n}=20$, control downstream $\mathrm{n}=9$, newly tagged upstream $n=15$, newly tagged downstream $n=11$). This result did not change when fish that did not register either an upstream or downstream movement were included in the analysis (Binomial GLMM: Estimate $=-0.36 \pm 0.48, \mathrm{Z}=-0.80$, $P=0.421$; total $\mathrm{n}=105$, control upstream $\mathrm{n}=20$, control downstream $\mathrm{n}=9$, control non-movers $n=29$, newly tagged upstream $n=15$, newly tagged downstream $n=11$, newly tagged non-movers $n=21$).

Method of capture had a significant effect on total distance moved in the first 5 days (120 h) following release by the newly tagged fish (Table 2). Fish caught by seine netting ($P=0.039$) moved significantly further than those caught by electrofishing, whilst there was a marginally non-significant tendency for rod caught fish to move further $(P=0.069)$. Similarly method of capture had a significant effect on the linear range (Table 2), with rod caught fish ($P=0.001$) having larger linear
ranges than those caught by electrofishing, and a non-significant tendency for seine net caught fish to have larger linear ranges ($P=0.155$). Method of capture did not impact the direction fish moved within the first 5 days post-release (Table 2).

By contrast, method of capture had no significant effect on the total distance moved 6-10 days post-release (Table 3), though fish caught by seine net had a marginally non-significant tendency to move less ($P=0.073$). Similarly, method of capture had no significant effect on the linear ranges of newly tagged fish (Table 3), or the direction fish moved (Table 3).

3.3 Effects of translocation

Following translocation all three fish returned to the Sincil Dyke 6-24 days after being released $\sim 35 \mathrm{~km}$ downstream (Figure 4). Individual fish showed considerable variability in their behaviour but there was no significant difference in mean TDM between the translocated and control fish (Figure 5). Mann-Whitney U tests revealed no significant effect on TDM in any five day period following translocation, Table 4. However, the translocated fish ranged over longer distances upstream as they returned to the Sincil Dyke, while the control fish slowly ranged downstream (Figure 6). Mann-Whitney U tests revealed significant differences in LR in every concurrent five day period (Table 4).

4. Discussion

4.1 Recaptured fish

Whenever surgery is involved fish will be subjected to disturbance and post-surgical healing rates vary according to species, age, the size of the incision and associated trauma, and water temperature (Lucas \& Baras 2001). Although the survival of tagged
fish is often not the best measure of the impact of the surgical procedure on fish (Jepsen et al. 2008), it remains the simplest to measure without invasive or destructive techniques. Although the sample size here was relatively small and may not be random or representative, all recaptured fish in this study were alive and showed advanced healing and no suture loss after 51 days with water temperatures between 4$14^{\circ} \mathrm{C}$. The four fish recaptured 275-461 days post tagging showed complete external recovery, with the incision site hard to identify and no signs of sutures, being absorbed in line with the manufacturer's specifications. Retention of sutures until healing is advanced is preferable to premature loss which may increase tag loss and mortality risk (Jepsen et al. 2002).

Efforts to recapture tagged fish often resulted in the capture of large numbers of untagged conspecifics, indicating tight shoaling behaviour (as described by Backiel \& Zawiska 1968; Phillips \& Rix 1985; Borcherding et al. 2002.). The observation of tagged fish with other untagged conspecifics (e.g. Clough \& Ladle 1997; Clough \& Beaumont 1998; Jepsen \& Berg 2002), and of tagged fish engaged in migration (e.g. Baras 1997) and spawning (e.g. Lucas \& Batley 1996) have been interpreted to indicate 'normal' behaviour by the tagged fish. However, few studies have quantified the effects of tagging on behaviour (see review by Bridger \& Booth 2003).

4.2 Effects of capture, handling and tagging procedure

The tagging procedure was designed with the highest regard for fish welfare and animal ethics, aseptic techniques, incision dressing and antibiotics were employed as a 'belt and braces' approach to safeguard against post-operative infection, despite recent evidence that such measures do not increase post-operative survival (see Jepsen et al. 2013). This approach was adopted following advice from the regulator. This
subject has been cause for recent debate and some now consider it important to discourage researchers from taking unnecessary precautions unless there are specific (documented) problems with infections (see Jepsen et al. 2013, 2014a, 2014b). However, the use of aseptic techniques has also been championed (see Mulcahy 2013 \& 2014) as standard best practice.

In this study the capture, handling and tagging procedure appeared to impact behaviour for the first 5 days post-tagging, detectable at the resolution of the tracking undertaken. These differences had disappeared at 6-10 days post-surgery. Similarly temporary effects of tagging have been observed elsewhere. Robertson et al. (2003) recorded negative effects on growth up to day 36 of a 45 day experiment assessing the impacts of tagging on wild Atlantic salmon Salmo salar (L.) parr implanted with dummy transmitters and observed in flow-through aquaria.

It is important to know if tagging disrupts behaviour in order to validate the data collected and conclusions drawn. For example, in a study of dace in the River Frome, UK, 88% of tagged fish moved upstream immediately after release, with some making large excursions on the day of release and three fish moving so far that they were lost outside of the study area (Clough \& Beaumont 1998). In response to such reports, some studies have either not recorded data from the period immediately after tagging (e.g. one week by Allouche et al. 1999) or excluded it from analyses to mitigate against the effects of tagging and handling on fish behaviour (Winter 1996).

Mesing \& Wickler (1986) report unusual long-distance movements in largemouth bass during the first days of release after transmitter implantation. By contrast, Lyons \& Lucas (2002) observed no large movements (> 100m) of tagged common bream in the River Trent, UK during the first hour after release. It is possible the effect of surgery on behaviour is taxon specific and may reflect differences in ecology, such as
the likelihood of predation. For instance, dace in the river Frome are common prey of pike (Masters et al. 2003). Alternatively, differences between studies may reflect differences in the spatial resolution of the tracking devices used, such that small changes in behaviour may not be picked up by static receivers positioned several km apart.

Capture by seine net and rod and line had the most effect on TDM and LR after 0-5 and 5-10 days, it might be that electrofishing is less disruptive than these other two methods. Disruption of an entire school of shoaling fish may elicit this response, with released fish trying to relocate their school.

4.4 Effects of translocation

Translocation did not significantly affect the activity levels of the fish, as determined by the mean total distance moved (although this may reflect the low statistical power associated with the movement of just 3 fish). However, linear ranges were significantly greater in the translocated fish as they appeared to display site fidelity, moving upstream towards the original capture site.

How fish navigate in complex habitats is still unclear, although it is likely to involve several mechanisms (see Hasler \& Wisby 1958; Malinin 1970; Carlson \& Haight 1972; Mesing \& Wicker 1986; Hert 1992; Baras 1997, Odling-Smee \& Braithwaite 2003). Fourteen radio tagged brown trout (Salmo trutta L.) were displaced over 0.8 to 3.6 km upstream and downstream in the river Eden, Scotland. Twelve of these fish subsequently returned to the areas from which they were taken, seemingly to follow specific orientation cues (e.g. olfactory) rather than searching at random (Armstrong \& Herbert 1997).

Here data lend support for the notion that fish are capable of relocating by directed movements using specific orientation cues, rather than by accident or a random search pattern. Prior to translocation all fish were relatively sedentary in the Sincil Dyke, and had been for some time. Following translocation, once fish had returned 'home', they tended to remain in relatively localized areas of the channel. The preceding tracking data of the fish allows some assessment of each fish's 'familiar area' (the zone through which the fish could remember having moved; Bovet 1992). Interestingly the fish that took the longest to return 'home' had prior knowledge of the lower river where it was translocated. Therefore, this fish could be using olfactory beacons (the presence or absence of familiar odours emanating from the familiar area; Halvorsen \& Stabell 1990), or any of a range of other potential cues, such as visual and olfactory landmarks, or areas of distinct water flow patterns (Armstrong \& Herbert 1997). By contrast, the other two translocated fish had not experienced the lower river in the preceding ~ 15 months and may have no experience of its visual and olfactory landmarks to use as navigational aids, and were the quickest to return 'home'.

In conclusion, this study detected short term impacts of capture, handling and tagging procedure on the behaviour of bream with newly tagged fish moving greater distances in the first five days post-operation, these differences had become nonsignificant during the 6-10 day period. Recaptured fish had clean healing incisions and appeared to be exhibiting 'normal' behaviour in that they were part of large shoals of common bream. Translocated fish appeared to exhibit site fidelity, moving quickly back to the site of capture.

Acknowledgments

Many thanks to Chris Reeds of The Environment Agency for managerial support and funding that allowed this work to take place. Environment Agency fisheries staff Dave May, Phil Thornton, Jake Reeds, Wal Potter, John Smith, Keith Bone, Andy Beal, Ellie Chapman, Reuben Page, Andy Hindes, Rupert Bucknall, Alan Henshaw, Dave Green, Robert Pitkin and Dan Mainwaring all provided invaluable help with fieldwork. The views expressed here are those of the authors and not necessarily those of The Environment Agency.

References

Allouche, S., Thevenet, A. \& Gaudin, P., 1999. Habitat use by chub (Leuciscus cephalus L.) in a large river, the French Upper Rhone, as determined by radiotelemetry. Arch. Hydrobiol. 145, 219-236.

Armstrong, J.D. \& Herbert, N.A., 1997. Homing movements of displaced streamdwelling brown trout. J. Fish Biol. 50, 445-449.

Backiel, T. \& Zawisza, J., 1968. Synopsis of biological data on the bream: Abramis brama (L.) Food and Agriculture Organization of the United Nations, Fish Biology Synopsis No. 36. p. 122.

Baras, E., 1997. Environmental determinants of residence area selection by Barbus barbus in the River Ourthe. Aquat. Living Resour. 10, 195-206.

Bates, D., Maechler, M., Bolker, B. and Walker, S., 2014. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-6.

Borcherding, J., Bauerfeld, M., Hintzen, D. \& Neumann, D., 2002. Lateral migrations of fishes between floodplain lakes and their drainage channels at the Lower Rhine: diel and seasonal aspects. J. Fish Biol. 61, 1154-1170.

Bovet, J., 1992. Mammals. In: Animal Homing. Papi, F. (ed.), London: Chapman \& Hall, pp. 321-362.

Bridger, C.J. \& Booth, R.K., 2003. The Effects of Biotelemetry Transmitter Presence and Attachment Procedures on Fish Physiology and Behavior. Rev. Fish. Sci. 11, 13-34.

Carlson, H.R. \& Haight, R.E., 1972. Evidence for a homesite and homing of adult yellowtail rockfish, Sebastes flavidus. J. Fish. Res. Board Can. 29, 1011-1014.

Carter, K.M., Woodley, C.M. \& Brown, R.S., 2011. A review of tricaine methanesulfonate for anesthesia of fish. Rev. Fish Biol. Fish. 21, 51-59.

Clough, S. \& Beaumont, W.R.C., 1998. Use of miniature radio-transmitters to track the movements of dace, Leuciscus leuciscus (L.) in the River Frome, Dorset. Hydrobiol. 371/372, 89-97.

Clough, S. \& Ladle, M., 1997. Diel migration and site fidelity in a stream-dwelling cyprinid, Leuciscus leuciscus. J. Fish Biol. 50, 1117-1119.

Coles, T.F., Wortley, J.S. \& Noble, P., 1985. Survey methodology for fish population assessment within Anglian Water. J. Fish Biol. 27, (Suppl. A), 175-186.

Cooke, S. J., Woodley, C.M., Eppard, M.B., Brown, R.S., \& Nielsen, J.L., 2011. Advancing the surgical implantation of electronic tags in fish: a gap analysis and research agenda based on a review of trends in intracoelomic tagging effects studies. Rev. Fish Biol. Fisher. 21, 127-151.

Cooke, S.J, Nguyen, V.M., Murchie, K.J., Thiem, J.D., Donaldson, M.R., Hinch, S.G., Brown, R.S. \& Fisk, A., 2013. To Tag or not to Tag: Animal Welfare, Conservation, and Stakeholder Considerations in Fish Tracking Studies That Use Electronic Tags. J. Int. Wild. Law Policy 16, 352-374.

Fredrich, F., Ohmann, B., Curio, B. \& Kirschbaum, F., 2003. Spawning migrations of the chub in the River Spree, Germany. J. Fish Biol. 63, 710-723.

Gardner, C.J., Deeming, D.C. \& Eady, P.E., 2013. Seasonal movements with shifts in lateral and longitudinal habitat use by common bream, Abramis brama, in a heavily modified lowland river. Fish. Manag. and Ecol. 20, 315-325. doi: 10.1111/fme. 12014

Gardner, C. J., Deeming, D. C. \& Eady, P. E., 2015. Seasonal water level manipulation for flood risk management influences home-range size of common bream Abramis brama (L.) in a lowland river. River Res. Applic. 31: 165-172. doi: 10.1002/rra. 2727

Hasler, A.D. \& Wisby, W.J., 1958. The return of displaced largemouth bass and green sunfish to a 'home' area. Ecol. 39, 289-293.

Halvorsen, M. \& Stabell, O.B., 1990. Homing behaviour of displaced stream-dwelling brown trout. Anim. Behav. 39, 1089-1097.

Hert, E., 1992. Homing and home-site fidelity in rock-dwelling cichlids (Pisces: Teleostei) of Lake Malawi, Africa. Environ. Biol. of Fish. 33, 229-237.

Huber, M. \& Kirchhofer, A., 1998. Radio telemetry as a tool to study habitat use of nase (Chondrostoma nasus L.) in medium-sized rivers. Hydrobiol. 371/372, 309-319.

Jepsen, N. \& Berg, S., 2002. The use of winter refuges by roach tagged with miniature radio transmitters. Hydrobiol. 483, 167-173.

Jepsen, N., Koed, A., Thorstad, E.B., \& Etienne, B., 2002. Surgical implantation of telemetry transmitters in fish: how much have we learned? Hydrobiol. 483, 239248.

Jepsen, N., Mikkelsen, J.S. \& Koed, A., 2008. Effects of tag and suture type on survival and growth of brown trout with surgically implanted tags in the wild. J. Fish Biol. 72, 594-602.

Jepsen, N., Boutrup, T.S., Midwood, J.D. \& Koed, A., 2013. Does the level of asepsis impact the success of surgically implanting tags in Atlantic salmon? Fish Res. 147, 344-348.

Jepsen, N., Aarestrup, K., Cooke, S.J., 2014a. Tagging fish in the field: ethical and procedural considerations. A comment to the recent paper of D. Mulcahy; "Legal, ethical and procedural bases for the use of aseptic techniques to implant electronic devices", J. Fish Wildl Manage 5, 441-444.

Jepsen, N., Boutrup, T.S., Midwood, J. \& Koed, A., 2014b. Fish surgery - a dirty business? Comments to a letter submitted by D. Mulcahy and C.A. Harms. Fish Res 156, 6-8.

Kennedy, M. \& Fitzmaurice, P., 1968. The biology of bream Abramis brama (L.) in Irish waters. Proceedings of the Royal Irish Academy, Inland Fisheries Trust, Dublin. p. 72.

Kuliskova, P., Horky, P., Slavik, O. \& Jones, J.I., 2009. Factors influencing movement behaviour and home range size in ide Leuciscus idus. J. Fish Biol. 74, 1269-1279.

Lucas, M.C. \& Baras, E., 2001. Migration of Freshwater Fishes. Blackwell Sciences Ltd, Oxford. p. 420.

Lucas, M.C. \& Batley, E., 1996. Seasonal movements and behaviour of adult barbel Barbus barbus, a riverine cyprinid fish: implications for river management. J. of Appl. Eco. 33, 1345-1358.

Lyons, J. \& Lucas, M.C., 2002. The combined use of acoustic tracking and echosounding to investigate the movement and distribution of common bream (Abramis brama) in the River Trent, England. Hydrobiol. 483, 265-273.

Masters, J.E.G., Hodder, K.H., Beaumont, W.R.C., Gozlan, R.E., Pinder, A.C., Kenward, R.E. \& Welton, J.S., 2003. Spatial behaviour of pike Esox lucius L. in the River Frome, UK. Proceedings of the fifth conference on fish telemetry held in Europe. Rome, FAO/COISPA. p. 295.

Malinin, L.K., 1970. Home range and actual paths of fish in the river pool of the Rybinsk reservoir. Transl. from Russian. In: Fish. Res. Board Can. Transl. Ser. 2282, p. 26.

Mesing, C.L. \& Wicker, A.M., 1986. Home range, spawning migrations, and homing of radio-tagged Florida largemouth bass in two central Florida lakes. Trans. of the Am. Fish. Soc. 115, 286-295.

Mulcahy, D.M., 2011. Antibiotic use during the intracoelomic implantation of electronic tags into fish. Rev. Fish Biol. Fish. 21, 83-96.

Mulcahy, D.M., 2013. Legal, ethical, and procedural bases for the use of aseptic techniques to implant electronic devices. J. Fish Wildl Manage 4, 211-219.

Mulcahy, D.M., 2014. A Reply to Jepsen, N., K. Aarestrup and S.J. Cooke. Tagging Fish in the Field: Ethical and Procedural Considerations. A Comment to the Recent Paper of D. Mulcahy; Legal, Ethical and Procedural Bases for the Use of Aseptic Techniques to Implant Electronic Devices, (J. Fish Wildl Manage 4, 211-219). J. Fish Wildl Manage 5, 445-449.

Neely, B.C. \& Steffensen, K.D., 2010. A comparison of gastrically and surgically implanted telemetry transmitters in shovelnose sturgeon. Fish. Manag. and Ecol. 16, 323-328.

Odling-Smee, L. \& Braithwaite, V.A., 2003. The role of learning in fish orientation. Fish and Fish. 4, 235-246.

Ovidio, M, Philippart, J. \& Baras, E., 2000. Methodological bias in home range and mobility estimates when locating radio-tagged trout, Salmo trutta, at different time intervals. Aquat. Living Res. 13, 449-454.

Phillips, R. \& Rix, M., 1985. Freshwater Fish of Britain, Ireland and Europe. Pan Books Ltd. London, p. 144.

Ramstad, K.M. \& Woody, C.A., 2003. Radio tag retention and tag-related mortality among adult sockeye salmon. N. Am. J. of Fish. Manag. 23, 978-982.

Robertson, M.J., Scruton, D.A. \& Brown, J.A., 2003. Effects of surgically implanted transmitters on swimming performance, food consumption and growth of wild Atlantic salmon parr. J. of Fish Biol. 62, 673-678.

Smith, G.W., Campbell, R.N.B. \& MacLaine, J.S., 1998. Regurgitation rates of intragastric transmitters by adult Atlantic salmon (Salmo salar L.) during riverine migration. Hydrobiol. 371/372, 117-121.

Taylor, M.K., Cook, K.V., Lewis, B., Schmidt, D. \& Cooke, S.J., 2011. Effects of intracoelomic radio transmitter implantation on mountain whitefish (Prosopium williamsoni). Northwest Sci. 85, 542-548.

Thiem, J.D., Taylor, M.K., McConnachie, S.H., Binder, T.R. \& Cooke, S.J., 2011. Trends in the reporting of tagging procedures for fish telemetry studies that have used surgical implantation of transmitters: a call for more complete reporting. Rev. Fish Biol. Fish. 21, 117-126.

Winter, J.G., 1996. Advances in underwater biotelemetry. In: B.R. Murphy \& D.W. Willis (eds) Fisheries Techniques, $2^{\text {nd }}$ edn. Bethesda, MD: American Fisheries Society, 555-590.

Winter, H.V. \& Fredrich, F., 2003. Migratory behaviour of ide: a comparison between the lowland rivers Elbe, Germany, and Vecht, The Netherlands. J. of Fish Biol. 63, 871-880.

Young, M.K., 1999. Summer diel activity and movement of adult brown trout in high elevation streams in Wyoming, U.S.A. J. of Fish Biol. 54, 181-189.

Figure 1. Incision site of fish 6073-51 days post tagging. Note the very clean
advanced healing and incision closure, suture still present.

Figure 2. The mean total distance moved TDM (\pm SE) from five different tagging events over two concurrent five day periods (0-5 days and 6-10 days) post-surgery of
newly tagged fish (light grey bars; 0-5 days $n=61 ; 6$-10 days $n=47$) and control previously tagged fish (dark grey bars; 0-5 days $n=55$; 6-10 days $n=58$).

Figure 3. The mean linear range LR (\pm SE) from five different tagging events over two concurrent five day periods (0-5 days and 6-10 days) post-surgery of newly tagged fish (light grey bars; 0-5 days $n=61 ; 6-10$ days $n=47$) and control previously tagged fish (dark grey bars; 0-5 days $n=55$; 6-10 days $n=58$).

Figure 4. Movement patterns for A; tag ID 12255 (male), B; 12257 (female) and C; ID 12266 (male) showing behaviour before and after translocation. Return journey to Sincil Dyke shown in red, which took 11, 6 and 24 days after release approx. 35km downstream respectively. bars) and non-translocated control group ($\mathrm{n}=7$; dark grey bars).

Figure 6. The mean linear range LR (\pm SE) over five concurrent five day periods up to twenty five days after release for the translocated group ($\mathrm{n}=3$; light grey bars) and non-translocated control group ($\mathrm{n}=7$; dark grey bars).

Table 1 Details of the seven groups of fish that were tagged between 2006 and 2009 and the tagging events used to compare the spatial-temporal behaviour of newly tagged fish with fish that had been tagged previously, which were present in the same waterbody and therefore subject to the same environmental variables.

Group No.	Tagging event No. for effects of tagging analysis (ETA)	Date Tagged	No. of new fish	No. of previously tagged fish used in ETA	Tag Type	Capture Method	```Mass mean \pmSD [range], (kg)```	Fork Length (mean \pm SD [range], mm)	Stated Tag Life (days)	No. days Tracked (days)
1	-	21/11/2006	7	-	V9	Electro fishing	$\begin{aligned} & \hline 2.46 \pm 0.34 \\ & {[1.92-2.94]} \end{aligned}$	$\begin{aligned} & 480.0 \pm 23.4 \\ & {[440-512]} \end{aligned}$	135-330	108-501
2	1	28/02/2007	7	7	V9	Rod and Line	$\begin{aligned} & 2.30 \pm 0.14 \\ & {[2.09-2.49]} \end{aligned}$	$\begin{aligned} & 485.1 \pm 17.4 \\ & {[460-510]} \end{aligned}$	80-330	69-495
3	2	10/10/2007	10	6	V9	Rod and Line	$\begin{aligned} & 2.31 \pm 0.24 \\ & {[1.92-2.66]} \end{aligned}$	$\begin{aligned} & 490.5 \pm 18.8 \\ & {[461-520]} \end{aligned}$	210	208-210
4	3	04/12/2007	19	16	V9	Seine netting	$\begin{aligned} & 2.40 \pm 0.25 \\ & {[1.95-2.91]} \end{aligned}$	$\begin{aligned} & 485.5 \pm 14.7 \\ & {[458-511]} \end{aligned}$	210	153-210
5	-	01/10/2008	15	-	V13	Electro fishing	$\begin{aligned} & 2.48 \pm 0.21 \\ & {[1.98-2.83]} \end{aligned}$	$\begin{aligned} & 486.3 \pm 9.79 \\ & {[468-505]} \end{aligned}$	526-621	202-629
6	4	10/12/2008	13	15	V13	Electro fishing	$\begin{aligned} & 2.22 \pm 0.23 \\ & {[1.92-2.83]} \end{aligned}$	$\begin{aligned} & 479.8 \pm 16.3 \\ & {[454-522]} \end{aligned}$	526-621	132-543
7	5	25/02/2009	12	28	V13	Electro fishing	$\begin{aligned} & 2.34 \pm 0.22 \\ & {[2.04-2.72]} \\ & \hline \end{aligned}$	$\begin{aligned} & 491.1 \pm 17.7 \\ & {[452-518]} \end{aligned}$	526-621	40-534

Table 2 Results of binomial GLMM, using just the newly tagged fish to test whether capture method impacted movements in the first 5 days (120h).

Model	Parameter	Estimate	Z	P
(a) Total distance moved	Electric fishing	0		
	Rod and line	0.54 ± 0.30	1.82	0.069
	Seine net	0.59 ± 0.29	2.06	0.039
(b) Linear range	Electric fishing	0		
	Rod and line	1.08 ± 0.33	3.28	0.001
	Seine net	0.48 ± 0.33	1.42	0.155
(c) Direction	Electric fishing	0		
	Rod and line	-0.32 ± 0.69	-0.47	0.637
	Seine net	0.38 ± 0.74	0.51	0.613

Concurrent five day period	Total Distance Moved	Linear Range
1 (1-5 days)	$\mathrm{U}=25, \mathrm{n}_{1}=3, \mathrm{n}_{2}=7, P=0.0674$	$\mathrm{U}=27, \mathrm{n}_{1}=3, \mathrm{n}_{2}=7, P=0.027^{*}$
2 (6-10 days)	$\mathrm{U}=19, \mathrm{n}_{1}=3, \mathrm{n}_{2}=7, P=0.6475$	$\mathrm{U}=27, \mathrm{n}_{1}=3, \mathrm{n}_{2}=7, P=0.027^{*}$
3 (11-15 days)	$\mathrm{U}=19, \mathrm{n}_{1}=3, \mathrm{n}_{2}=7, P=0.6485$	$\mathrm{U}=27, \mathrm{n}_{1}=3, \mathrm{n}_{2}=7, P=0.0227^{*}$
4 (16-20 days)	$\mathrm{U}=24.5, \mathrm{n}_{1}=3, \mathrm{n}_{2}=7, P=0.0855$	$\mathrm{U}=27, \mathrm{n}_{1}=3, \mathrm{n}_{2}=7, P=0.027^{*}$
5 (21-25 days)	$\mathrm{U}=16, \mathrm{n}_{1}=3, \mathrm{n}_{2}=7, P=1.0000$	$\mathrm{U}=27, \mathrm{n}_{1}=3, \mathrm{n}_{2}=7, P=0.027^{*}$

Table 3 Results of binomial GLMM, using just the newly tagged fish to test whether capture method impacted movements at 6-10 days (120.1-240h) post-release.

Model	Parameter	Estimate	Z	P
(a) Total distance moved	Electric fishing	0		
	Rod and line	0.45 ± 0.79	0.57	0.566
	Seine net	-1.79 ± 0.99	-1.79	0.073
(b) Linear range	Electric fishing	0		
	Rod and line	0.68 ± 0.63	1.09	0.278
	Seine net	-1.25 ± 0.82	-1.54	0.125
(c) Direction	Electric fishing	0		
	Rod and line	0.74 ± 1.07	0.69	0.491
	Seine net	-0.12 ± 1.23	-0.10	0.922

Table 4 Mann-Whitney U tests results for comparisons of TDM and LR between fish captured and translocated $\sim 35 \mathrm{~km}$ downstream, and control fish not captured or

