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Abstract Mapping and navigating with mobile robots in scenarios with reduced visibility, e.g. due to
smoke, dust, or fog, is still a big challenge nowadays. In spite of the tremendous advance on Simultaneous
Localization and Mapping (SLAM) techniques for the past decade, most of current algorithms fail in those
environments because they usually rely on optical sensors providing dense range data, e.g. laser range
finders, stereo vision, LIDARs, RGB-D, etc., whose measurement process is highly disturbed by particles
of smoke, dust, or steam. This article addresses the problem of performing SLAM under reduced visibility
conditions by proposing a sensor fusion layer which takes advantage from complementary characteristics
between a laser range finder (LRF) and an array of sonars. This sensor fusion layer is ultimately used with
a state-of-the-art SLAM technique to be resilient in scenarios where visibility cannot be assumed at all
times. Special attention is given to mapping using commercial off-the-shelf (COTS) sensors, namely arrays
of sonars which, being usually available in robotic platforms, raise technical issues that were investigated
in the course of this work. Two sensor fusion methods, a heuristic method and a fuzzy logic-based
method, are presented and discussed, corresponding to different stages of the research work conducted.
The experimental validation of both methods with two different mobile robot platforms in smoky indoor
scenarios showed that they provide a robust solution, using only COTS sensors, for adequately coping
with reduced visibility in the SLAM process, thus decreasing significantly its impact in the mapping and
localization results obtained.

Keywords SLAM - Reduced Visibility - Sensor Fusion - Robot Operating System (ROS)

1 Introduction

Over the past years, Simultaneous Localization and Mapping (SLAM) has been one of the most studied
subjects in Robotics. It is a fundamental process which consists of building maps while, at the same time,
estimating the robot position in the environment. SLAM is essential for autonomous mobile robots to
accomplish useful tasks with no a priori information about the environment. There are many approaches
to the SLAM problem [I] wherein each of them focuses on a particular issue. Despite all these approaches,
namely focusing on large environments [2] or performing SLAM with multiple mobile robots [3], there
are still many open challenges. For instance, when dealing with smoky, dusty, or foggy environments,
commonly used range sensors for SLAM, like Laser Range Finders (LRFs), stereo vision rigs, or RGB-D
sensors, are highly disturbed by noise induced in the measurement process by particles of smoke, dust,
or steam which may obscure the environment.
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This work is part of the CHOPINE project which addresses search and rescue (SaR) missions in
urban catastrophic scenarios (e.g. a fire in a large basement garage), by exploiting the human-robot
symbiosis [4]. These scenarios are usually associated with environments with reduced visibility, which
drastically decreases the progress of human rescuing forces and the accuracy and robustness of the
robotic sensorial system, thus compromising the SLAM and overall navigation system. Due to the ever-
increasing progress in the field of mobile robotics, it is foreseeable that in the short- and mid-term future,
one will have mobile robots assisting and even replacing human operators in dangerous, dull or dirty
tasks. This is the case of SaR missions which take place in extreme conditions and pose very difficult
challenges, including navigating in reduced visibility conditions. The applicability of SLAM methods in
these situations is scarce. Hereupon, it is necessary to propose techniques that can provide mapping and
positioning information of robots within such harsh scenarios.

In this work, we address the problem of successfully performing SLAM in environments with reduced
visibility conditions. Existing SLAM approaches require a “clean” environment, where the range sensor,
which is usually based on light propagation, e.g., LRF, stereo vision, time-of-flight (ToF) cameras, etc., is
not disturbed by particles of smoke, dust, or steam. The literature has shown that robots’ perception can
significantly benefit from merging sensing information from different sources. Therefore, in this article,
we propose a multimodal sensor fusion layer, which encompasses information from sonars, a LRF, and an
alcohol sensor, so as to overcome the lack of visibility and noise induced by smoke particles. The output
of our system corresponds to a normalized confidence measure, evaluated for each sonar reading and
corresponding section of the laser. We present and analyze both a preliminary heuristic based approach,
and an adaptable fuzzy system to solve the multimodal sensor fusion problem. The system consists of a
layer which uses the sensor data as input, and passes the processed sensor data on to the SLAM method.
Our decision layer evaluates and generates the sensors readings and adapts them according to the visibility
conditions. In other words, the proposed sensor fusion approach acts as a modular high level decision
layer, regardless on the robotic platform and SLAM algorithm considered. In this work, we evaluate the
sensor fusion layer using a Pioneer 3-DX and a Nomad Scout equipped with low cost sensors, such as a
sonar ring, a LRF and a dust sensor, in order to perform SLAM in the aforementioned conditions.

The outline of the article is as follows: in the next section, related work on SLAM approaches evaluated
under such harsh environments is reviewed. Then, a background study to assess the SLAM algorithm
that best fits the goal of this work is presented. Afterwards, initial hardware tests are conducted and
the main technical challenges involved in this work are discussed. Later, a preliminary version of an
heuristic algorithm that explores the complementary characteristics of LRFs and sonars is described and
validated through experiments in a room partially obscured by smoke. Afterwards, an improved fuzzy
version of the aforementioned algorithm is presented and new experiments are conducted. In this work,
two distinct mobile robots are used and their main technical issues are described. In the end, the output
of the mapping task using our approach is compared to a common SLAM method that does not consider
the smoke phenomenon. The results of both versions of the algorithm are discussed. Finally, the work
ends with conclusions.

2 Related Work

Presently, all recognized algorithms for robot mapping have a common feature: they rely on probabilities.
The advantage of applying probabilities is the robustness to measurement noise and the ability to formally
represent uncertainty in the measurement and estimation process. Most of the probabilistic models used
to solve the problem of mapping rely on Bayes rule [5]. These solutions account for sensor measurement
noise and estimation uncertainty.

The literature is rich in SLAM methods. We can find methods that make use of Extended Kalman
Filters (EKFs) [8][9] or even Rao-Blackwellized Particle Filters (RBPFs) [7][I0]. Thus, the principle
followed is similar: to incrementally compute joint posterior distributions over robot poses and landmarks.
In addition, graph-based SLAM approaches [II] are also popular due the efficient way they deal with
large-scale maps, and improvements in the sparse matrix calculations lead to a better graph optimization
[12].

Most methods which are in focus nowadays have taken advantage of high scanning rates of modern
Light Detection And Ranging (LIDAR) technology. These methods rely heavily on scan matching of
consecutive sensor readings, with combination of other techniques, like multi-resolution occupancy grid
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maps [I3], or dynamic likelihood field models for measurement [I4]. Despite the evident advances in
research on SLAM, most approaches do not consider environments disturbed by smoke, dust, or steam.

In fact, when the scenario has reduced visibility, the majority of SLAM algorithms fail or present un-
satisfactory results. The lack of visibility in the environment represents a challenge for SLAM algorithms,
since it can partially or totally obscure the field of view that is used to map the scenario.

Brunner et al. [15] proposed a SLAM approach robust to smoke based on different sensing capabilities
of visual cameras and thermal imaging cameras (TIC). The fundamental idea was to counterbalance the
limitations of the visual camera in the presence of smoke with the robustness of a TIC in this situation.
Experiments were performed in a smoky scenario using a robot equipped with a Raytheon thermal-eye
2000B infrared (IR) camera and a Point Grey Bumblebee XB3 camera set. Smoke was generated using a
smoke machine. The authors concluded that a reasonable outcome can be obtained, but the localization
accuracy decreased in the presence of smoke when only data from the TIC was used.

Deissler et al. [16] presented a SLAM algorithm based on a ultra-wideband (UWB) radar with a
bat-type antenna array. This algorithm was developed for catastrophic scenarios, where the environment
is corrupted with smoke or dust. Since it is a radar-based approach, the smoke/dust particles in the
environment do not affect this algorithm. The biggest challenge is data association, i.e. assigning the
time of flight of a given measurement from the radar to the corresponding landmark [I6]. The authors
solved this situation by using a RBPF for the data association process and an Extended Kalman Filter
to estimate the state vector. The approach was tested through simulations and data acquired previously.
The authors concluded that different propagation characteristics of walls, corners and other features in
indoor environments can be used to distinguish those features, locate them, and use them as landmarks
for navigation [16].

Castro et al. [I7] proposed a reliable perception system based on sensor fusion between a millimeter-
wave radar and a LRF. Although the LRF cannot penetrate heavy dust and smoke, the millimeter-wave
radar can. The matching between LRF scans and radar scans was made by calculating the 3D Euclidian
distance between each laser point and the closest radar target. The experiments were done using an all-
terrain unmanned ground vehicle equipped with four LRFs and a frequency modulated continuous wave
(FMCW) radar. The results obtained showed that most dust points in the LRF scans were removed.
However, some dust points (false negatives) remained.

Although the work done by Sales et al. [18] does not involve SLAM directly, the vision system that
is presented to determine the conditions of a given environment, i.e. to verify whether the environment
is filled with smoke when detecting and tracking people, is relevant to the scope of this article. Three
different person-following approaches were developed: sonar ring following, LRF following, and sonar time
difference of arrival (TDoA) following. Sonar ring following is based only on ultrasound technology and
its performance is the worst of the three approaches tested, as expected due to the low resolution of sonar
sensors. However, in low visibility conditions, it is a better alternative than the LRF. The LRF following
is based on scans from a LRF sensor to detect the person. Finally, the sonar TDoA following uses the
radio and ultrasonic sensors to implement the person-following algorithm. This algorithm has achieved
the best results in very different circumstances, even in smoky conditions.

Marti et al. [I9] developed a localization method for smoky or dusty conditions. Their goal was
to estimate the position of a mobile robot in front of points of interest (POI), such as doors or fire
extinguishers. Their approach makes use of fingerprinting techniques and ZigBee beacons around the
scenario to perform localization. Additionally, ZigBee beacons located in POI are equipped with a high
luminosity Light-emitting diode (LED) panel. A visual positioning process is executed when approaching
one of these panels. Since their location is known a priori, these panels can be used to determine accurately
the robot’s pose. This approach has been tested successfully in multiple scenarios, such as class rooms or
corridors with stairs.

Pascoal et al. [20] carried out a set of tests in order to analyze the behavior of distinct LRFs within low
visibility scenarios. Smoke was progressively injected in the scenario using a smoke machine and spread
by means of a ventilator. The main conclusion obtained in their benchmarking experiments was that all
the LRFs tested provide different levels of noisy and erroneous results with saturated outputs, which
makes them almost unusable under these conditions. Similar conclusions were obtained by Tretyakov and
Linder [21I], and in a recent comparison presented in Pomerleau et al. [22], in which the LRF Hokuyo
URG-04LX, also used in the results reported in section [5.4.1] presents the highest values of disparity and
error in depth measurements, among of all compared LRFs.

As distinct to previously described works, we herein propose a multi-sensor approach based on a LRF
and a sonar array which, despite being based on an affordable setup using only commercial off-the-shelf
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(COTS) sensors, can provide a robust solution when LRF measures are partially disturbed by the presence
of particles that reduce visibility.

3 Evaluation of SLAM algorithms in ROS

In this section, we introduce the Robot Operating System (ROS) framework used in this work and present
the rationale behind the choice of the adopted grid map-based RBPF SLAM approach.

ROqﬂ is a very popular robotics framework [27]. It provides several tools, libraries and drivers to
enhance the development of new robotic projects. Also, it provides 2D and 3D simulation environments
which increases its functionality. ROS has become one of the most used robotic frameworks, partly because
of its characteristics, such as hardware abstraction and architecture. It enables researchers to quickly and
easily perform experiments through the use of its integrated drivers, libraries, visualizers, message-passing
and more. It is based on a graph intuitive architecture. All the processing takes place in nodes and data
is exchanged using messages. The hardware abstraction layer in ROS, along with its messages service,
allows the creation of new code that can be used in many different robotic platforms. Moreover, ROS
provides a set of stable robotic software packages, like several SLAM algorithms, as shown in the course
of this section.

Proprioceptive sensors are subject to cumulative errors when estimating the robot’s motion. The high
dimensionality of the environment, the problem of determining whether sensor measurements taken at
different points in time correspond to the same object, and the fact that the world changes over time,
represent the biggest challenges in SLAM [I]. Instead of developing a new SLAM approach from scratch,
our work benefits from 2D laser-based SLAM algorithms available in ROS. However, a study of the
current available algorithms was required in order to investigate which algorithm best fits our needs. Five
2D laser-based SLAM algorithms available in ROS were reviewed and evaluated, namely: HectorSLAM
[13], GMapping [10], CoreSLAM [23], LagoSLAM [24] and KartoSLAM [25].

HectorSLAMﬂ combines a 2D SLAM system based on robust scan matching and 3D navigation
technique using an inertial sensing system [I3]. The authors make use of the high update rate and the
low distance measurement noise from modern LIDARs. The odometric information is not used, which
gives the possibility to implement this approach in aerial robots, like a Quadrotor UAV, or in ground
robots operating in uneven terrains.

GMappingﬁ is a laser-based SLAM algorithm [I0]. It has been proposed by Grisetti et al. [10] and is a
RBPF SLAM approach. The authors compute an accurate particle distribution by taking into account not
only the movement of the robotic platform, but also the most recent observations. In most particle filters,
the proposed distribution uses the odometry motion model. However, when a mobile robot is equipped
with a LRF, which is a very accurate sensor, the model of that sensor can be used, as it achieves extremely
peaked likelihood functions. Based on this, the authors integrate the most recent sensor observation.

C’oreSLAMH is a ROS wrapper for the original 200-lines-of-code tinySLAM algorithm, which is a
laser-based approach created with the purpose of being simple and easy to understand with minimum
loss of performance [23]. The algorithm is divided in two different steps: distance calculation and update
of the map. In the first step, for each incoming scan, it calculates the distance based on a very simple PF
algorithm.

The basis of graph-based SLAM algorithms is the minimization of a nonlinear non-convex cost function
[24]. More precisely, at each iteration, a local convex approximation of the initial problem is solved in
order to update the graph configuration. The process is repeated until a local minimum of the cost
function is reached. However, this optimization process is highly dependent on an initial guess to converge.
Carlone et al. [24] developed a new approach denoted as LagoSLAMIﬂ (Linear Approximation for Graph
Optimization), in which the optimization process requires no initial guess. In addition, the technique can
be used with any standard optimizer.

Another graph-based SLAM approach studied was KartoSLAMﬂ which was extended for ROS by
using a highly-optimized and non-iterative Cholesky matrix decomposition for sparse linear systems as
its solver [25]. In this approach, each node represents a pose of the robot along its trajectory and a set of

http://www.ros.org/
http://www.ros.org/wiki/hector_slam
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Table 1: Error estimation for each algorithm in a test arena (simulation and real world experiments). All

units in pixels.

Fig. 1: The test arena (MRL arena).

Simulation Experiments
HectorSLAM | Gmapping | KartoSLAM | CoreSLAM | LagoSLAM
0.4563 0.4200 0.5509 11.8393 1.4646
Real World Experiments
HectorSLAM | Gmapping | KartoSLAM | CoreSLAM | LagoSLAM
1.1972 2.1716 1.0318 14.75333 3.0264
0.5094 0.6945 0.3742 7.9463 0.8181
1.0656 1.6354 0.9080 7.5824 2.5236

sensor measurements. These are connected by arcs which represent the motion between successive poses.
For each new node, the map is computed by finding the spatial configuration of the nodes which are
consistent with constraints from the arcs.

All five SLAM techniques described above were tested in ROS using 2D simulations and real world
experiments. Simulations were performed in Stageﬂ a realistic 2D robot simulator integrated in the
ROS framework. Additionally, tests were also conducted with a physical robot in a real world scenario,
displaying the behavior of these SLAM packages in real world situations and in the absence of perfect
simulated conditions. Despite having perfect conditions in Stage simulations, like noise free odometric
and range sensing information, there are some imperfections in the final result, which may be due to other
phenomena, such as linearizations or the particle filtering step in Monte Carlo approaches. Although, noise
could be introduced in Stage for both odometric and sensor readings, the behavior of all aforementioned
methods in noise free scenarios can provide more information about the difference in performance between
noise free environments and noisy environments, allowing to check how each method will deal with small
concentrations of smoke. In all experiments, ROS was used and the robot was teleoperated. Note also
that the abstraction layer provided by ROS allows to use the same code for both simulation and real
experiments. Note that the update rate of the Hokuyo URG-04LX-UGO1 LRF used in the experiments
is only 10 Hz and Stage uses a similar maximum update rate. In order to deal with this, the robot was
driven with low angular and linear speeds. In the tests that were conducted, the output of each approach
described previously was the respective generated 2D occupancy grid map.

To evaluate the quality of the maps obtained in the experiments performed, an analysis of the error
between the generated map and the ground truth was conducted. The test arena on Fig. |1| was adopted,
and a performance metric based on the k-nearest neighbor concept was used. In order to adopt this
metric, the best fit alignment between the ground truth and the map obtained was computed using
intensity-based image registration tools. In [26], the metric is described in detail and more results are
presented. The numeric results are shown in Table [T}

From the analysis of the results, it was observed that GMapping and HectorSLAM generated the map
with the lowest error. On the other hand, KartoSLAM presented a slightly greater error, while results

8 http://www.ros.org/wiki/stage
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Table 2: CPU usage (%) of the 2D SLAM approaches: mean (Z), median (X) and standard deviation (o)

values.

HectorSLAM | Gmapping | KartoSLAM | CoreSLAM | LagoSLAM
z 6.1107 7.0873 5.4077 5.5213 21.0839
X 5.9250 5.5800 5.3000 5.4400 21.2250
o 1.993 4.4287 1.3018 1.6311 2.1684

of CoreSLAM presented the highest error value. GMapping is an extremely optimized PF algorithm
with an improved resampling process, and this justifies the quality of the resulting map. Also, the scan
matching process of HectorSLAM showed its efficiency. Nevertheless, it must be noted that the low speed
commands given to the robot, in order to compensate the rate update from the LRF, have some influence
in the results. Both KartoSLAM and LagoSLAM mapped successfully the arena. However, LagoSLAM
obtained the greatest error (excluding CoreSLAM). In real world experiments, the error increased for
all approaches as expected due to noisy input. In the case of KartoSLAM algorithm, the error obtained
in the real world experiments was not much higher than the error in simulations. The lower results of
CoreSLAM in all experiments showed that its loop closure procedure rarely converges.

Beyond the error analysis conducted, an evaluation of the computational load using each technique
was carried out (see Tablefor more details). All tests were conducted in a laptop equipped with and Intel
Core i7-3630QM and 8 Gb of RAM. LagoSLAM presented the highest percentages of central processing
unit (CPU) usage. Moreover, the values obtained are quite distant from the other four algorithms. The
resources needed by the other four approaches during the experiments were similar and remained low.
This analysis revealed that all five algorithms are quite efficient in terms of resources required and can
be adopted for on-the-fly SLAM, in field experiments to map generic 2D scenarios.

Both GMapping, HectorSLAM and KartoSLAM are strong candidates for our work. However, Hec-
torSLAM relies only on scan matching and it does not make use of odometry, which is a disadvantage in
reduced visibility condition, wherein typical range sensors fail and the odometry has a fundamental role
of estimating the robot pose. On the other hand, both GMapping and KartoSLAM showed its robustness
in every test and the error and CPU load always remained low. It is noteworthy that goal of this work
is to provide a decision layer for low visibility conditions that is decoupled from the SLAM algorithm.
The present comparison gives us an idea of which algorithm can be used to achieve the best results with
our layer. Both methods, GMapping and KartoSLAM, present very solid results. However, GMapping is
one of the most widely used SLAM methods, and has proven its use in more complex and demanding
scenarios. Also, this method has been adapted for every new version of ROS and has a better support in
the ROS community. So, the logical choice is to use GMapping as the base algorithm for this work, which
combines both scan matching and odometry in order to minimize the number of particles and improve
the accuracy of the estimated pose. More details about the SLAM evaluation conducted can be found in
[26].

4 Sensor limitations and technical challenges

The implementation of a SLAM technique highly depends on the correct choice of sensors, which is
related with the environment where the robot operates. The accuracy and reliability of common optical
range sensors, e.g. LRF or stereo-vision sensors, drastically decreases under low visibility conditions. As
mentioned before, LRFs are one the most adopted range sensors in SLAM. They are extremely accurate in
“clean” environments and easy to use. However, the main goal in this work is to develop and verify a SLAM
approach in environments with smoke, dust, or steam particles, which easily corrupt LRF readings. In
order to decrease the impact of such disturbances in SLAM algorithms using optical sensors, multimodal
sensor fusion is required, by merging information provided by different types of range sensors. An optical-
based range sensor (LRF, stereo camera, etc.), which is very effective in normal visibility conditions, can
be combined with another sensor that is less disturbed, or even immune, to visibility disturbances. Such
auxiliary sensor may provide sparser and less accurate range measurements, which may still be the only
valid readings in low visibility conditions. Possible combinations include LRF with sonars, LRF with ToF
cameras and sonars, LRF with UWB radars, efc. Sonars are the immediate economic and widely available
choice, as they use the propagation model of acoustic waves at higher frequency than the normal range
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(a) The Pioneer 3-DX. (b) The Nomad Scout.

Fig. 2: Robotic platforms used in this work.

of human hearing to extract information of the surroundings. Since they use acoustic waves, they are
immune to smoke or dust particles.

In this work, two differential mobile robotic platforms were used: the Pioneer 3-DX and the Nomad
Scout (see Fig. . The Pioneer 3-DX is equipped with an array of 8 sonars, being a very versatile
and robust mobile robot. It is a two-wheels differential robotic platform commonly used for research
worldwide. Its frontal sonar ring comprises 8 SensComp’s Series 600 Instrument grade Electrostatic
Transducerﬂ disposed at angles: —90°, —50°, —30°, —10°, 10°, 30°, 50° and 90°. Each ultrasonic sensor
has a beam angle of 15° at —6dB. Its maximum range is about 5 meters and the field of view (FoV) of
the sonar ring is about 196°. While the Pioneer robot has a 8 sonar array, the Nomad has an array of 16
uniformly distributed sonars with an overall FoV of 360°. Also, the characteristics of the sonars used in
each platform are different. The Scout robot uses a Polaroid 6500 range board with a FoV of about 20°
degrees. The performance of both arrays will be discussed in the following sections.

The LRF available for the experiments reported herein was an Hokuyo URG-04LX. It has a maximum
range of 5.6 meters, an angular resolution of about 0.36°, and a FoV of 240°. In order to guarantee a
common area with the range data information from the LRF and the sonar arrays, the information of
some of the sonars were discarded. More specifically, while for the Pioneer 3-DX all 8 sonars can match
the LRF readings, in the Nomad Scout only 9 sonars were considered (see sonars in Fig. . The sonars
arrangement in both robots is illustrated in Fig [3]

Before proceeding to the development of the proposed multi-sensor fusion methods to perform SLAM
under reduced visibility conditions, the behavior of each ranging sensor was evaluated in several situations.

In a first trial, the Pioneer 3-DX equipped with the Hokuyo LRF was placed in front of a flat wall
and smoke was injected between the robot and the wall. The smoke machine used was a Magnum 8007
Fig. [4] shows an example of the LRF readings before (Fig.[4a) and after (Fig. the injection of smoke.
As expected, even in small concentrations, smoke highly affects the sensor readings.

In order to successfully perform a mapping task under these conditions, sonars can be useful to
compensate the misreadings of the LRF due to their immunity to smoke particles. Regarding the sonar
ring of the Pioneer 3-DX, a somehow unexpected behavior occurred in some situations, which made
the development of the algorithm much more challenging. Consider a long corridor as shown in Fig. [5a]
where the robot is positioned in the middle of an obstacle-free corridor. The only sonars in the P3-DX
capable of detecting walls are the ones positioned at —90° and 90°. Due to the small FoV of each sensor,
approximately 15°, obstacles are only detected when the incident beam is normal or nearly normal to
them (c¢f., Fig. . Hereupon, it is necessary to discard these erroneous values, corresponding to saturated
values, i.e., the maximum range of the sonar. This is a necessary preprocess step, not only because the
saturated values do not allow to evaluate the “quality” of the LRF readings, but also do not allow to
map the environment in severe visibility conditions, where the LRF readings are all wrong.

Following the previous experiment, the Scout robot was tested in the same conditions, i.e., it was
deployed in the same corridor as the Pioneer 3-DX. The result is shown in Fig. [6} Each cone represents

9 http://www.senscomp.com/pdfs/series-600-instrument-grade-sensor.pdf
10 http://www.martin.com/product/product.asp?product=technofog&newseg=ent&mainseg=ent
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(a) The Pioneer 3-DX. (b) The Nomad Scout.

Fig. 3: Sonars displacement in both robots used in this work.
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(a) LRF readings without smoke. (b) LRF readings with smoke.

Fig. 4: Performance test of the LRF against a wall, with and without smoke.

(a) Corridor. (b) Sonar readings of the Pioneer 3-DX.

Fig. 5: Behavior of the Pionner’s sonar ring in a plain corridor. Red dots are the LRF readings and blue
dots are the sonars readings.

the sonar reading, where the size of the cone depends in the distance measured. As it can be noted, the
side sonars are able to detect the walls even when the incident sonar beam is not normal to the wall
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Fig. 6: Sonar readings of the Nomad Scout in the same plain corridor.

surface, providing more reliable data than the Pioneer. The output from Scout’s sonar ring is more stable
and it behaves closer to expected, although still providing a small subset of saturated readings. During
the development of the sensor fusion approach for reduced visibility scenarios described in this article,
the Pioneer 3-DX was replaced by the Nomad Scout platform due to the more stable behavior provided
by its sonar ring. This was important to improve our method and results.

In these preliminary tests, it was verified that the information obtained using only two types of
sensors would be insufficient under certain situations. This is the case, for example, when the comparison
between both is not possible (i.e, saturated sonar readings and noisy laser scans). When the smoke density
is very high, from the LRF standpoint, it forms an almost indistinguishable obstacle. Other challenging
situations occurs when the robot rotates and the sonar saturates due to their low resolution, which is
extremely problematic. Therefore, an additional sensor to inform about the concentration of smoke in the
environment was required. Typically, we would use a dust sensor in this context. However, as the smoke
machine available for our experiments produces a glycol-based vapor, an alcohol sensor was used instead.
This technological choice allowed to detect different concentrations of glycol-based vapor, thus emulating
a dust sensor in our experiments. The sensor model used was the MQSO?;AEL manufactured by Seeed
Studio, in which the output voltage is inversely proportional to the alcohol concentration in the air.

5 Multimodal Sensor Fusion Method for Low Visibility Scenarios
5.1 Mapping with sonars

The worst-case situation for the SLAM algorithm is when the smoke concentration is so high that the
whole LRF readings are corrupted. In such extreme case, the mapping task must be done using only the
sonar ring. Hence, it is important to verify whether GMapping is able to successfully map the environment
using only sonars data. However, this work is not intended to be limited to the use of the GMapping
SLAM approach only. Therefore, we developed an “intelligent” layer which fuses the output of each
sensor and adjusts, rectifies, or ignores certain information according to the situation. A ROS node was
developed to convert the data received from the sonar ring to laser scan data. Algorithm [I| presents a
high-level code of the implemented conversion of sonar readings (represented as a point cloud message)
to a laser scan message.

Several runs in a small scenario, denoted as MRL arena (see Figures [1| and , were conducted in
order to refine the parameters of GMapping so that it provides the best possible map using only sonar
data. Yet, the quality of the resulting map is expected to be low, due to the low resolution of sonars.
Moreover, the sonars return the maximum range (5.0 meters) when they do not receive the sound wave
echo, i.e. when they are unable to detect any obstacle within their range. Consequently, in order to
decrease the aforementioned issue related with the non-normal surfaces, the range of each sonar has been
limited to a maximum of 2.5 meters, thus avoiding misreadings from the robot while rotating.

The impact of the number of particles, map resolution, and temporal thresholds has been tested too.
After a fine tuning of these parameters by trial-and-error using empirical data, the best results were

11 http://wuw.seeedstudio.com/depot/images/product/MQ303A . pdf
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Algorithm 1: PointCloud message to LaserScan message (conversion of sonar readings).

input : sensor::msgs::PointCloud input_pcl
output: sensor::msgs::LaserScan sonar_scan

1 transformPointCloud(input_pcl,pcl_transformed,target_frame); //transforms sonar points from the local sonar frame
to the Laser reference frame

2 range_-min_sq = range-min X range._min;
angle_maz—angle_min )
angle_increment

)

ranges_size = ceil(

I

ranges[ranges_size] = range_max + 1.0;

5 for each point in pcl_transformed do
6 if /=0 and y/=0 then
7 range_sq = XXX + yXy;
8 if range_sq <range_min_sq then
9 continue;
10 end
11 angle=atan2(x,y);
12 forj:VGE[—%gle,%gle]do
13 if j <angle_min or j >angle_maz then
14 continue;
15 end
16 index = oL
17 if range_maxr =>range_sq then
18 sonar_scans.ranges[index] = ,/range_sg;
19 end
20 end
21 end
22 end

23 publish(sonar_scan);

Table 3: Parameters used in GMapping algorithm to successfully map the MRL arena using only sonar
data.

[ Parameter [ Value [ Parameter [ Value ]
maxUrange 16.0 sigma 0.05
kernelSize 1 iterations 5
linearUpdate 0.5 angularUpdate 0.8

temporalUpdate 3.0 resampleThreshold 0.5
particles 30 delta 0.01

achieved with the values presented in Table [3| Several other parameters were tested, such as the number
of iterations of the scan matching and the angular resolution.For instance, in Fig. [7} the maps obtained
with angular resolutions in different trials are shown.

The angular resolution of 0.0175° has been chosen, since it achieved a relatively accurate map and
represents the same value of angular resolution as the LRF used in our experiments.

5.2 Overview of the proposed multimodal sensor fusion laser

The proposed architecture receives messages from both range sensors and treats the data taking into
account the time stamps coming from both scans. The need to synchronize messages and to minimize the
delay in the processing time dictates that any of the algorithms has to be simple and effective. Message
synchronization between the sonar ring and the LRF is possible due to the message filter AP]]E available
in ROS. Whenever a LaserScan or a sonar PointCloud message arrives, their time stamps are compared
using an approximate time policy. After that, the point cloud received is transformed from the sonar
frame to the LRF frame, in order to analyze and compare both readings in the same reference frame.
Each point in the point cloud, corresponds to a section of the sonar simulated “scan”. The section is
determined by transforming the point to the polar form and using the FoV of the sonar.

12 http://wiki.ros.org/message_filters
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Fig. 7: Resulting maps of some of the experiments conducted with GMapping fed by sonars in the MRL
arena depicted in Fig. [T page

An overview of the aforementioned process is presented in Fig. 8] Two algorithms were developed in
the course of our work, corresponding to different stages of the research study. They are presented in
the following subsections. These algorithms fit into the “SmokeNav” box in Fig. [8| The layer in this box
adapts to any set of range data and provides the filtered data to potentially use any generic LRF-based
SLAM algorithm under low visibility conditions, in the form of a combined LaserScan ROS message. In
this way, although we have chosen GMapping to perform the SLAM task, the software module related
with the SLAM technique being used is interchangeable and any SLAM technique can be used with the
SmokeNav layer we developed.

The information arriving from the alcohol sensor is constantly monitored to infer the visibility condi-
tions of the environment. It should be noted that the data of each sensor is published at a rate of about
10Hz.

5.3 SmokeNav v1: Heuristic Model

In a preliminary attempt to propose a SLAM system that would perform well in smoky environments, a
deterministic method for our sensor fusion layer was developed. This approach considers a set of heuristics
supported by the conclusions obtained in preliminary tests.

For each sonar section 7; (¢f Fig. E[), the corresponding section in the LRF laser scan message is
evaluated. With that purpose, a threshold M AX _DIFF is calculated as follows:

1 &
= E : T4, (1)
=1
MAX _DIFF = agep - T, (2)

where 7 is the mean value of all ranges of the LRF in the given section 7; , N is the number of LRF
readings for the section 7; and ey is the laser scan angle increment (in rad). Afterwards, the squared
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Fig. 8: Overview of the SmokeNav layer integration.
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Fig. 9: Pioneer 3-DX sensors arrangement: LRF (blue dots) vs sonar array (purple dots). Each section is
labeled with 7.

differences of the ranges of all readings in a given section 7; are determined and, if any of the absolute
values of these differences is greater than MAX _DIFF, a zero—crossingIEl mechanism is applied. The
mechanism basically consists of: if one third of the differences (i.e., %) lead to sign changes, the laser
section will be discarded or replaced by the respective sonar reading, if it is valid.

As mentioned before, using only the range sensors is not enough to detect smoke and the information
provided by the alcohol sensor needs to be integrated. The alcohol sensor detects the artificial smoke
relatively fast, but it is slow to recover when the smoke concentration is decreasing. To overcome this issue,

two stages are identified: increasing and decreasing smoke concentration. According to these stages, smoke

13 A “gero-crossing” is a point where the sign of a function changes (e.g. from positive to negative).
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thresholds will vary. If the value of sonar readings do not match measurements taken by laser scans, and
the smoke levels detected by the alcohol sensor hits values below a minimum threshold SMOKE_MIN
(130mV)|E|, a greater confidence is given to LRF readings. If the alcohol sensor retrieves values greater
than SMOKE_MIN, sonar readings are superimposed to LRF readings. In this situation, when high
differences between the laser and sonar readings in the same section 7; occur, only the sonar ring data
from is used, as explained before.

If the smoke density surpasses the maximum smoke threshold, the mapping task will be performed
solely with the sonar data. However, due to the slow decreasing curve of the alcohol sensor, this threshold
was decomposed in SMOKE_MAX UP (200mV) and SMOKE_MAX_DOWN (240mV), for the case
where the smoke is increasing or decreasing, respectively. Algorithm [2] presents this set of rules.

After the evaluation of every sonar section, all the gathered information is used to build the combined
LaserScan ROS message. When smoke is detected in a given section 7; , the measurement of the LRF is
corrected if the sonar is available, or ignored if the sonar is unavailable. The sections of the LRF scan
not covered by the sonars (due to its reduced FoV) will be filtered according to the state of the adjacent
sections. Basically, these sections that only possess laser data are accepted only if adjacent sections are
not considered as being corrupted with smoke.

Algorithm 2: SmokeNav v1: Deterministic Model Pseudocode

1 if smoke concentration < SMOKE_MIN then
only LRF is used;
else
for each sonar section do
if smoke increasing then
if smoke concentration < SMOKE_MAX _UP then
Sonar is superimposed to LRF
else
only Sonar is used
end

2
3
4
5
6
7
8
9
10
11 else

12 if smoke concentration < SMOKE_MAX_DOW N then
13 LRF is superimposed to Sonar

14 else

15 only Sonar is used

16 end

17 end

18 end

19 end

5.3.1 Results and Discussion

In order to validate this preliminary heuristic algorithm, several real world experiments were performed
with the available Pioneer 3-DX robot in a smoky scenario. A large arena was built in a class room of the
Department of Electrical and Computer Engineering of the University of Coimbra. The resulting arena,
denoted as R3.2 arena, is shown in Fig. Additionally, a ground truth map of the arena was built
(Fig. . Also, GMapping was first evaluated in this arena with clean conditions. The resulting map is
shown in Fig.

In order to extract relevant data and validate the algorithm, several runs using the Pioneer 3-DX
robot were performed in the RS3.2 arena under different visibility conditions. All robot’s sensor data
(LRF, sonars, odometry, and alcohol sensor) was recorded using the the rosbag tool available in ROS.
This allowed running the algorithm after the experiment, and also testing GMapping in the same exact
conditions without the SmokeNav layer, and verify if there were significant improvements, i.e. if the
algorithm was able to successfully map in the presence of smoke.

The robot started in a clean zone in every trial. Afterwards, the robot started moving, and smoke
was injected at different intensities in an opposite area. In these experiments, the robot was teleoperated
using a Wiimote. Results of three trials under different conditions of smoke are shown in Fig.

As one may observe, in all trials when GMapping is fed solely with laser data, i.e., without the
SmokeNav vl layer, it is unable to map zones corrupted with smoke. Even when the robot leaves the
smoky zone, the estimation of the robot’s pose becomes erroneous and the algorithm is not able to

14 As mentioned before, note that our alcohol sensor provides an output voltage that is inversely proportional to the
alcohol (simulated smoke) concentration in the air.
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(a) Photo of the arena. (b) Ground truth map.

(c) Photo of the smoky conditions in the arena. (d) Resulting map of a run with Gmapping.

Fig. 10: The R3.2 arena with dimensions: 13.63 x 9.87 meters. The arrow in Fig. represents the
viewpoint of Fig.

correctly recover and update the pose. This is expected since the algorithm is only using the LRF and
the scan matching process fails due to the false readings.

From the analysis of the results, it can be seen that the first sensor fusion algorithm proposed was
able to map the arena even when the smoke density was high. However, when the switching from the
LRF to sonars occurred, the quality of the map drastically decreased, as expected. This happened not
only because of the low resolution of the sonars, but also due to their previously mentioned misbehavior.
This is verified in Figures [[1a] and [I1D] where the robot crossed regions with a higher density of smoke,
moments after the beginning of the mapping task. In the remaining trials, the smoke was injected only
in the latest region to be mapped. For this reason, GMapping using only LRF data did not perform
as poorly as one could expect. Nevertheless, in the second and third trials, the impact of smoke in the
mapping task is visible: the upper left corner was not correctly mapped. Due to the high smoke density,
the scans returned by the LRF resemble a dense obstacle in that area. However, when GMapping was
fed with sonar data, that zone was eventually mapped, though the quality of the mapping was low.

From the analysis of the results, it was concluded that this preliminary approach has several weaknesses
and is not robust enough for harsh conditions. The behavior of the sonar ring is erroneous and not stable
enough. Most of the times, the SLAM algorithm is relying only on the readings provided by the sonars,
which does not provide enough data for localization. Also, the quality of the obtained maps is low. In the
next section, we present a novel multi-sensor fusion approach based on fuzzy logic aiming to overcome
some of these issues.

5.4 SmokeNav v2: Fuzzified Model

The method presented in the previous subsection revealed that it is possible to map an environment under
low visibility conditions using only commercial off-the-shelf sensors. However, the obtained results were
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(a) Trial 1: GMapping only with LRF data. (b) Trial 1: GMapping with the SmokeNav v1
layer.

(c) Trial 2: GMapping only with LRF data. (d) Trial 2: GMapping with the SmokeNav v1
layer.

(e) Trial 3: GMapping only with LRF data. (f) Trial 3: GMapping with the SmokeNav vl
layer.

Fig. 11: Results of three trials. Left images are the resulting maps from GMapping only with LRF data
and the right images are the maps obtained using the preliminary multimodal sensor fusion technique.

bellow expectations and far from being applicable under real world situations. The need to improve the
method arose and this section presents a newer, more robust, and more elaborated version. Additionally,
we chose to use the Nomad Scout robot, which was available at this stage of the work, taking advantage
of its more reliable sonar ring, as it was discussed in sec. [4

In order to overcome the limitations of the deterministic approach described in the previous section, we
developed an adaptive fuzzy logic system to handle the sensing information arising from the sonars, LRF,
and alcohol sensor, by following a similar approach to our previous work in another domain [29]. This
was the base for the development of the SmokeNav v2 layer. Other proposals with different formalism to
multimodal sensor fusion, such as Bayesian decision analysis [30], could be adopted as well. The successful
development of a fuzzy model is a complex multi-step process, in which the designer is faced with a large
number of alternative implementation strategies and attributes [31].

In sum, based on the information extracted from the inputs, namely the alcohol sensor, sonar and
LRF readings, the fuzzy logic system can infer normalized confidence measures, which can be used to
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Fig. 13: Sensor readings over time: on the top, alcohol sensor readings, ag[t], over time; on the bottom,
standard deviation, o(Ig[t]), of the LRF readings over time. The alcohol sensor presents significant vari-
ations when facing smoke. However, it also presents a slow response. On the other hand, the standard
deviation of the laser readings proves to be a relevant complement to the decision-making.

decide on whether to choose the sonars or the LRF data (Fig. . These two outputs can be perceived
as the confidence on a given sonar reading (pg) or the probability on trusting on the laser readings
within the same section 7; of that sonar (pr). It is noteworthy that these probability measures are not
mutually exclusive. In other words, it is possible to reject the readings provided by both sources, e.g. a
high intensity of smoke detected by the alcohol sensor and a sonar reading above 2.5 meters is likely to
result in probabilities on trusting in both sources near to zero. In these cases, GMapping will be fed with
a value greater than the maximum range of the sensor, thus considering it as a saturated reading.

The control architecture presented in Fig. is executed at each iteration ¢, and for each section 7
(Fig. @, thus returning the probability of accepting the sonar 7 at time ¢, ps(7,t), and the probability
of accepting the LRF readings from the same section at time ¢, pr,(7,t). The inputs of the fuzzy system
comprise the sonar reading from section 7, sg[7,t], the alcohol sensor reading, ag[t], and the standard
deviation of LRF readings, o(Ig[t]). The latter was chosen to improve the decision mainly due to the
alcohol sensor limitations previously described. By monitoring the standard deviation of the LRF readings,
it is possible to observe that their standard deviation significantly drops when affected by the smoke (Fig.
. This is an expected behavior since the smoke tends to uniformly constrain the readings. Although
we have considered the standard deviation of readings in our experiments, other measures of dispersion
or correlation could be used instead.

As Fig. 12| depicts, the overall organization of this architecture resembles the commonly used feedback
controllers wherein contextual knowledge is extracted from data, followed by a reasoning phase to provide
the adequate information to the robot (i.e. map and localization). Hence, based on the alcohol sensor,
the sonars and the LRF, one can assess the relation between the inputs and outputs of the fuzzy system.
The choice around this relation depends on the characteristics of the readings arising from each source.

Considering the characteristics of the sensors previously highlighted and by observing Fig. one
can outline a considerably vague or fuzzy rationale: “The LRF readings can only be trusted when alcohol
readings are below 20 or the standard deviation of the laser readings is above 0.8. If not, only trust the
sonar readings whenever it presents readings inferior to 2.5 meters”.



A Sensor Fusion Layer to Cope with Reduced Visibility in SLAM 17

1 10
0.9r . 09F .
Confident Alcoholized
0.8 oslh
0.71 0.7 |
06F : ﬂsR(SR[T th = 06l :M‘BR(aR[tD = alt] < 25
! ’
i : . -1 el <t 08¢ : |( aglt]-25)2 )
04l V12 (2 ]1 1 < sglr,t] < 1.75 oal ,/’,{ 2(HEE)T 25 < agft] < 45
1 ! aglt]-65\2
03} : SRZTSt]125 175 < sefn,6] < 25 0al :l1—2(§5_25) ,45 < aglt] < 65
o-2r I sglT,t] = 2.5 02t "1, agplt] = 65
01f 01l
0 ‘ ‘ . . . . ‘ 0 ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 0 50 100 150 200 250
sglT, t] ag[t]
1 1-
09r 0.9 - 1 - 1
Dense Sonar-driven, Laser-driven
08 0.8
0.7F 0.7t
o5l g (0UeleD) = Il
' ! ( a(lg[t]) <08 tos(ps(T,0) = 1y, (pL(T, 1)) = !
0.5r | J(ZR D- 08 0.5r 1 X ={s,L} I
i - 4 2 (TR 08<a(klt) <1 oal, TR :
0 ) 1.2 .
0l i L 1—2 (TRl ) 1< o(lg[t]) < 1.2 03l
02l ‘A1, o(lg[tD) = 1.2 02}
0.1 0.1r
0 : ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘
0 05 1 15 2 25 3 0 0.2 0.4 0.6 0.8 1
a(le[t]) ps(T, 1), p (T, )

Fig. 14: Membership function for each input and to quantify the consequents: on the top-left, input
sonar reading from section 7, s, (Sr[7,t]); on the top-right, input alcohol sensor reading, pq,(ar[t]); on
the bottom-left, input standard deviation of laser readings, p,(c(Ig[t])); on the bottom-right, output
probabilities pg(7,t) and pr(7,1t).

Although the input information of the system might be imprecise, the results of fuzzy analysis are
not. Fuzzy sets need membership functions, i.e. mathematical equations that can take certain shapes [31].
Examples of reasonable functions are IT-shaped and bell-shaped functions, because of their simplicity and
efficiency when considering computational issues. In spite of this, and considering the above rationale,
the membership rules represented in Fig. and described below were defined.

The membership function pg, (sg[7,t]) represents how Confident the sonar is. The membership func-
tion fi,, (ar[t]) represents how Alcoholized the environment is. The membership function py, (o(Ir[t]))
represents how Dense the smoke is.

As for the consequent functions, one can simply define the same bell-shaped membership relation for
softening both outputs, as represented in Fig. The Mamdani-Minimum [31] was used to quantify the
premise and implication. The defuzzification was performed using the center-of-gravity (CoG) method.
The CoG is a continuous method and one of the most frequently used in control engineering and process
modeling, being represented by the centroid of the composite area of the output fuzzy term.

Considering the above rationale and figures, the following diffuse IF-THEN-ELSE rules are consid-
ered in Algorithm

Algorithm 3: SmokeNav v2: Fuzzified Model Pseudocode
1: if ag[t] is Alchoholized or o(Ig[t]) is Dense then

2:  pr(7,t) is Laser-driven
3: else if Sg[r,t] is Confident then
4:  p(7,t) is Sonar-driven

5: end if
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Fig. 15: The modified R3.2 arena.

The decision on whether to choose the sonar or the LRF at a given section 7 and time ¢ is then
evaluated by simply comparing which one has a higher trust probability and if that trust probability is
equal or greater than a given threshold. For instance, one will choose the sonar at time ¢ over the LRF
readings within the same section if pgs(7,t) > pr(7,t) and ps(7,t) > pr. In this work, we consider the
threshold to be the expected value of an uniform probability distribution with sample space between 0
1

and 1, i.e., pr = 3.

5.4.1 Results and Discussion

Several experiments with the Scout mobile robot (see Fig. pagem) in a realistic scenario were performed
to validate the SmokeNav v2 layer using fuzzy logic. A modified test arena was built in the same class
room used in the experiments reported in section [5.3.1] Additionally, a run with GMapping on the Nomad
Scout in this arena with clean conditions was conducted. The resulting map is shown in Fig. [I5] In this
new version, the Nomad Scout was available, and it was chosen due to the superior performance of the
sonar ring when compared to the Pioneer 3-DX, as seen in section ] As mentioned before, the sonar ring
of Scout robot behaves better in most of the situations. For example, in the case of plain corridor, the
sonar ring of this robot is able to retrieve more information than the Pioneer’s sonar ring.

During these experiments, the same test procedure described in subsection was considered to
evalute the fuzzified approach against one which exclusively uses LRF readings. As before, even when
the robot leaves the smoky region, the estimation of the robot’s pose using only LRF data becomes
erroneous and the SLAM algorithm is not able to correctly recover and update the robot’s pose. This is
not surprising since the algorithm is only using the LRF readings and the scan matching process fails
due to the false readings.

From the analysis of the results shown in Fig. [I6] it can be seen that the proposed fuzzy technique
allowed to successfully map the arena in most cases. The poor results obtained in the third trial are
justified by the higher density of smoke during all the experiment, which was an extreme case. To support
the results, the metric used in section [3| to evaluate the performance of different SLAM approaches was
used. The resulting error for each trial is shown in Table @] Also, the usage of sonar data was evaluated
by counting the time that sonar data was used along the experiments.

The improvements are significant and it has been shown that SLAM in such harsh conditions is
possible using commonly available range sensors in mobile robots and the fuzzified multimodal sensor
fusion approach proposed herein. In addition, the developed layer does not introduce significant delays in
the system, being adequate for use in real-time. The solution proposed is affordable, using only commercial
off-the-shelf (COTS) and fairly cheap sensors. Superior results would be obtained using sonars with more
stable readings. Beyond that, it is the authors’ belief that a solution based on a radar sensor (instead of
sonars) would be more effective, even though much more expensive, to solve the problem while maintaining
maps of high quality, regardless the smoke density in the environment.
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Fig. 16: Results of three trials. Top images are the resulting maps from GMapping only with LRF data
and the bottom images are the maps obtained using the SmokeNav layer v2.

Table 4: Error estimation for each trial.

Trial | SmokeNav Layer | LRF data | Sonar Usage
1 2.69 18.02 23.33%
2 10.14 19.07 40.25%
3 15.83 23.33 21.53%

6 Conclusion

In this work, a sensor fusion layer for SLAM in low visibility scenarios was proposed. It was verified in the
development of the method that the information obtained using only the available two sensory modalities
was insufficient in more extreme situations, and we made use of an additional sensor to assess smoke
density. A preliminary heuristic version of this technique was presented and the results were discussed.
This was fundamental to understand which challenges must be overcome, but also to learn the real impact
of the low visibility conditions on mapping tasks. The results obtained are insufficient for a real world
application, but mostly because of hardware issues. Despite that, we figured that with the correct choice
of ranging sensors it is possible to achieve mapping tasks in adverse conditions.

A second version of sensor fusion layer was proposed in order to overcome the limitations of the
preliminary approach. The proposed fuzzified multimodal sensor fusion technique makes use of multiple
COTS sensors in order to successfully map environments corrupted by smoke, dust, or steam particles.
It is a simple and easily adaptable approach that can be potentially applied with different LRF-based
SLAM algorithms, simply by replacing the GMapping layer with another algorithm. Experimental results
using a Particle Filter 2D SLAM approach proved its functionality. However, hardware limitations still
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have and important impact on the results, which are comprehensibly not optimal. Still, it was proved that
using the complementary characteristics of multiple range sensors, it is possible to surpass this reduced
visibility situation and benefit from the advantages of the distinct range sensors.

Some issues are still left open and correspond to future guidelines that can be followed to improve
the current work. Replacing the sonar ring by a range sensor, also immune to smoke but with higher
resolution (e.g. a UWB radar), would greatly improve the results. The integration of a visual camera to
provide a method to detect smoke in the FoV of the LRF, by measuring the gray intensity in the image,
could also be explored. Even though the visual camera is highly disturbed by lightning conditions, it
can provide richer information about the environment. It would be also interesting to integrate all these
changes and validate them through several scenarios with different conditions and more “realistic” smoke.
Additionally, an IMU can be integrated in order to increase the accuracy of the localization technique,
when sonars and odometry are the only sensors providing valid readings to the robot. At last, and given
the modularity of the herein proposed approach, a benchmark of several SLAM methods shall be carried
our in order to assess the most fitted combination to be used in scenarios with reduced visibility.
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