Finite p-groups with a Frobenius group of automorphisms whose kernel is a cyclic p-group

E. I. Khukhro
Sobolev Institute of Mathematics, Novosibirsk, 630090 , Russia
khukhro@yahoo.co.uk
N. Yu. Makarenko
Université de Haute Alsace, Mulhouse, 68093, France and
Sobolev Institute of Mathematics, Novosibirsk, 630090 , Russia
natalia_makarenko@yahoo.fr

Abstract

Suppose that a finite p-group G admits a Frobenius group of automorphisms $F H$ with kernel F that is a cyclic p-group and with complement H. It is proved that if the fixed-point subgroup $C_{G}(H)$ of the complement is nilpotent of class c, then G has a characteristic subgroup of index bounded in terms of $c,\left|C_{G}(F)\right|$, and $|F|$ whose nilpotency class is bounded in terms of c and $|H|$ only. Examples show that the condition of F being cyclic is essential. The proof is based on a Lie ring method and a theorem of the authors and P. Shumyatsky about Lie rings with a metacyclic Frobenius group of automorphisms $F H$. It is also proved that G has a characteristic subgroup of $\left(\left|C_{G}(F)\right|,|F|\right)$-bounded index whose order and rank are bounded in terms of $|H|$ and the order and rank of $C_{G}(H)$, respectively, and whose exponent is bounded in terms of the exponent of $C_{G}(H)$.

Key words. finite p-group, Frobenius group, automorphism, nilpotency class, Lie ring

1 Introduction

It has long been known that results on 'semisimple' fixed-point-free automorphisms of nilpotent groups and Lie rings can be applied for studying 'unipotent' p-automorphisms of finite p-groups. Alperin [1] was the first to use Higman's theorem on Lie rings and nilpotent groups with a fixed-point-free automorphism of prime order p in the study of a finite p-group P with an automorphism φ of order p. Namely, Alperin [1] proved that the derived length of P is bounded in terms of the number of fixed points $p^{m}=\left|C_{P}(\varphi)\right|$. Later the first author [10] improved the argument to obtain a subgroup of P of (p, m)-bounded index and of p-bounded nilpotency class, and the second author [19] noted that this class can be bounded by $h(p)$, where $h(p)$ is Higman's function bounding the nilpotency class of a Lie ring or a nilpotent group with a fixed-point-free automorphism of order p.

Henceforth we write for brevity, say, " $a, b, \ldots)$-bounded" for "bounded above by some function depending only on a, b, \ldots. Further strong results on p-automorphisms of finite p-groups were obtained by Kiming [17], McKay [23], Shalev [26], Khukhro [11], Medvedev [24, 25], Jaikin-Zapirain [6], Shalev and Zelmanov [27] giving subgroups of bounded index and of bounded derived length or nilpotency class. The proofs of most of these 'unipotent' results were also based on the 'semisimple' theorems of Higman [4], Kreknin [9], Kreknin and Kostrikin [8] on fixed-point-free automorphisms of Lie rings.

In the present paper 'unipotent' theorems are derived from the recent 'semisimple' results of the authors and Shumyatsky [16, 21] about groups G (and Lie rings L) admitting a Frobenius group $F H$ of automorphisms with kernel F and complement H. The results concern the connection between the nilpotency class, order, rank, and exponent of G and the corresponding parameters of $C_{G}(H)$. The more difficult of these results is about the nilpotency class, and its proof is based on the corresponding Lie ring theorem. Namely, it was proved in [16] that if the kernel F is cyclic and acts on a Lie ring L fixed-point-freely, $C_{L}(F)=0$, and the fixed-point subring $C_{L}(H)$ of the complement is nilpotent of class c, then L is nilpotent of $(c,|H|)$-bounded class (under certain assumptions on the additive group of L, which are satisfied in many important cases, like L being an algebra over a field, or being finite). Note that examples show that the condition of F being cyclic is essential. This Lie ring result also implied a similar result for a finite group G with a Frobenius group $F H$ of automorphisms with cyclic fixed-point-free kernel F such that $C_{G}(H)$ is nilpotent of class c, with reduction to nilpotent case provided by classification and representation theory arguments. The fixed-point-free action of F alone was known to imply nice properties of the Lie ring (solubility of $|F|$-bounded derived length by Kreknin's theorem [9]) and of the group (solubility and well-known bounds for the Fitting height due to Thompson [28], Kurzweil [18], Turull [29], and others - although an analogue of Kreknin's theorem is still an open problem for groups). But the conclusions of the results in [16] are in a sense much stronger, due to the combination of the hypotheses on fixed points of F and H, either of which on its own is insufficient.

We now state the 'unipotent' version of the nilpotency class result in [16].
Theorem 1.1. Suppose that a finite p-group P admits a Frobenius group $F H$ of automorphisms with cyclic kernel F of order p^{k}. Let c be the nilpotency class of the fixedpoint subgroup $C_{P}(H)$ of the complement. Then P has a characteristic subgroup of index bounded in terms of $c,|F|$, and $\left|C_{P}(F)\right|$ whose nilpotency class is bounded in terms of c and $|H|$ only.

The proof is quite similar to the proofs of the aforementioned results of Alperin [1] and Khukhro [10], with the Lie ring theorem in [16] taking over the role of the Higman-Kreknin-Kostrikin theorem. However, first a certain combinatorial corollary of that Lie ring theorem has to be derived (Proposition 2.2). Example 3.5 shows that the condition of the kernel F being cyclic in Theorem 1.1 is essential.

We now state the unipotent versions of the rank, order, and exponent results in [16]. (By the rank we mean the minimum number r such that every subgroup can be generated by r elements.)

Theorem 1.2. Suppose that a finite p-group P admits a Frobenius group $F H$ of automorphisms with cyclic kernel F of order p^{k}. Then P has a characteristic subgroup Q of index bounded in terms of $|F|$ and $\left|C_{P}(F)\right|$ such that
(a) the order of Q is at most $\left|C_{P}(H)\right|^{|H|}$;
(b) the rank of Q is at most $r|H|$, where r is the rank of $C_{P}(H)$;
(c) the exponent of Q is at most $p^{2 e}$, where p^{e} is the exponent of $C_{P}(H)$.

Note that the estimates for the order and rank are best-possible, and for the exponent close to being best-possible (and independent of $|F H|$). The proof is facilitated by a straightforward reduction to powerful p-groups. Then certain versions of the 'free H module arguments' are applied to abelian $F H$-invariant sections. If a finite group G admits a Frobenius group of automorphisms $F H$ with complement H and with kernel F acting fixed-point-freely, then every elementary abelian $F H$-invariant section of G is a free $k H$-module (for various prime fields k). This is exactly what provides a motivation for seeking results bounding various parameters of G in terms of those of $C_{P}(H)$ and $|H|$. In the 'semisimple' situation this fact is a basis of the results on the order and rank in [16]. The exponent result in [16] is more difficult, but in our unipotent situation a simpler argument can be used based on powerful p-groups to produce a much better result, with the estimate for the exponent depending only on the exponent of $C_{P}(H)$.

It should be mentioned that the 'semisimple' results on the order and rank in [16] do not assume the kernel to be cyclic, a 'unipotent' analogue of which is unclear at the moment. The results of the present paper can be regarded as generalizations of the results of [16], where the kernel F acts on G fixed-point-freely, to the case of 'almost fixed-pointfree' kernel. It is natural to expect that similar restrictions, in terms of the complement H and its fixed points $C_{G}(H)$, should hold for a subgroup of index bounded in terms of $\left|C_{G}(F)\right|$ and other parameters: 'almost fixed-point-free' action of F implying that G is 'almost' as good as when F acts fixed-point-freely. In the coprime 'semisimple' situation such restrictions were recently obtained in [14] for the order and rank of G, and in [15] and [20] for the nilpotency class. For the moment it is unclear how to combine these semisimple and unipotent results in a general setting, without assumptions on the orders of G and $F H$; note that the results in [16] for the fixed-point-free kernel were free of such assumptions.

2 Lie ring technique

First we recall some definitions and notation. Products in a Lie ring are called commutators. The Lie subring generated by a subset S is denoted by $\langle S\rangle$ and the ideal by ${ }_{i d}\langle S\rangle$.

Terms of the lower central series of a Lie ring L are defined by induction: $\gamma_{1}(L)=L$; $\gamma_{i+1}(L)=\left[\gamma_{i}(L), L\right]$. By definition a Lie ring L is nilpotent of class h if $\gamma_{h+1}(L)=0$.

A simple commutator $\left[a_{1}, a_{2}, \ldots, a_{s}\right]$ of weight (length) s is by definition the commutator $\left[\ldots\left[\left[a_{1}, a_{2}\right], a_{3}\right], \ldots, a_{s}\right]$.

Let A be an additively written abelian group. A Lie ring L is A-graded if

$$
L=\bigoplus_{a \in A} L_{a} \quad \text { and } \quad\left[L_{a}, L_{b}\right] \subseteq L_{a+b}, \quad a, b \in A
$$

where the grading components L_{a} are additive subgroups of L. Elements of the L_{a} are called homogeneous (with respect to this grading), and commutators in homogeneous elements homogeneous commutators. An additive subgroup H of L is said to be homogeneous if $H=\bigoplus_{a}\left(H \cap L_{a}\right)$; then we set $H_{a}=H \cap L_{a}$. Obviously, any subring or an ideal generated by homogeneous additive subgroups is homogeneous. A homogeneous subring and the quotient ring by a homogeneous ideal can be regarded as A-graded rings with the induced gradings.

Suppose that a Lie ring L admits a Frobenius group of automorphisms $F H$ with cyclic kernel $F=\langle\varphi\rangle$ of order n. Let ω be a primitive n-th root of unity. We extend the ground ring by ω and denote by \widetilde{L} the ring $L \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$. Then φ naturally acts on \widetilde{L} and, in particular, $C_{\widetilde{L}}(\varphi)=C_{L}(\varphi) \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$.

Definition. We define φ-components L_{k} for $k=0,1, \ldots, n-1$ as the 'eigensubspaces'

$$
L_{k}=\left\{a \in \widetilde{L} \mid a^{\varphi}=\omega^{k} a\right\}
$$

It is well known that $n \widetilde{L} \subseteq L_{0}+L_{1}+\cdots+L_{n-1}$ (see, for example, [5, Ch. 10]). This decomposition resembles a $(\mathbb{Z} / n \mathbb{Z})$-grading because of the inclusions $\left[L_{s}, L_{t}\right] \subseteq L_{s+t(\bmod n)}$, but the sum of φ-components is not direct in general.

Definition. We refer to commutators in elements of φ-components as being φ-homogeneous.

Index Convention. Henceforth a small letter with index i denotes an element of the φ-component L_{i}, so that the index only indicates the φ-component to which this element belongs: $x_{i} \in L_{i}$. To lighten the notation we will not use numbering indices for elements in L_{j}, so that different elements can be denoted by the same symbol when it only matters to which φ-component these elements belong. For example, x_{1} and x_{1} can be different elements of L_{1}, so that $\left[x_{1}, x_{1}\right]$ can be a nonzero element of L_{2}. These indices will be considered modulo n; for example, $a_{-i} \in L_{-i}=L_{n-i}$.

Note that under the Index Convention a φ-homogeneous commutator belongs to the φ-component L_{s}, where s is the sum modulo n of the indices of all the elements occurring in this commutator.

Since the kernel F of the Frobenius group $F H$ is cyclic, the complement H is also cyclic. Let $H=\langle h\rangle$ be of order q and $\varphi^{h^{-1}}=\varphi^{r}$ for some $1 \leqslant r \leqslant n-1$. Then r is a primitive q-th root of unity in the ring $\mathbb{Z} / n \mathbb{Z}$.

The group H permutes the φ-components L_{i} as follows: $L_{i}^{h}=L_{r i}$ for all $i \in \mathbb{Z} / n \mathbb{Z}$. Indeed, if $x_{i} \in L_{i}$, then $\left(x_{i}^{h}\right)^{\varphi}=x_{i}^{h \varphi h^{-1} h}=\left(x_{i}^{\varphi^{r}}\right)^{h}=\omega^{i r} x_{i}^{h}$, so that $L_{i}^{h} \subseteq L_{i r}$; the reverse inclusion is obtained by applying the same argument to h^{-1}.

Notation. In what follows, for a given $u_{k} \in L_{k}$ we denote the element $u_{k}^{h^{i}}$ by $u_{r^{i} k}$ under the Index Convention, since $L_{k}^{h^{i}}=L_{r^{i} k}$. We denote the H-orbit of an element x_{i} by $O\left(x_{i}\right)=\left\{x_{i}, x_{r i}, \ldots, x_{r^{q-1}}\right\}$.

Combinatorial theorem. We are going to prove a combinatorial consequence of the Makarenko-Khukhro-Shumyatsky theorem in [16], which we state in a somewhat different form, in terms of $(\mathbb{Z} / n \mathbb{Z})$-graded Lie rings with a cyclic group of automorphisms H.

Theorem 2.1 ([16, Theorem 5.5 (b)]). Let $M=\bigoplus_{i=0}^{n} M_{i}$ be a ($\left.\mathbb{Z} / n \mathbb{Z}\right)$-graded Lie ring with grading components M_{i} that are additive subgroups satisfying the inclusions $\left[M_{i}, M_{j}\right] \subseteq M_{i+j(\bmod n)}$. Suppose M admits a finite cyclic group of automorphisms $H=\langle h\rangle$ of order q such that $M_{i}^{h}=M_{r i}$ for some element $r \in \mathbb{Z} / n \mathbb{Z}$ having multiplicative order q. If $M_{0}=0$ and $C_{M}(H)$ is nilpotent of class c, then for some functions $u=u(c, q)$ and $f=f(c, q)$ depending only on c and q, the Lie subring $n^{u} L$ is nilpotent of class $f-1$, that is, $\gamma_{f}\left(n^{u} L\right)=n^{u f} \gamma_{f}(L)=0$.

The corresponding theorems in [16] were stated about Lie rings admitting a Frobenius group $F H$ of automorphisms with cyclic kernel $F=\langle\varphi\rangle$ of order n. After extension of the ground ring, the φ-components behave like components of a $(\mathbb{Z} / n \mathbb{Z})$-grading, as we saw above. In fact, the proofs in [16] only used the 'grading' properties of the φ components, so that Theorem 2.1 was actually proved therein. The following proposition is a combinatorial consequence of this theorem.

Proposition 2.2. Let $f=f(c, q), u=u(c, q)$ be the functions in Theorem 2.1. Suppose that a Lie ring L admits a Frobenius group of automorphisms FH with cyclic kernel $F=\langle\varphi\rangle$ of order n and with complement H of order q such that the fixed-point subring $C_{L}(H)$ of the complement is nilpotent of class c. Then for the (c, q)-bounded number $w=(u+1) f(c, q)$ the n^{w}-th multiple $n^{w}\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{f}}\right]$ of every simple φ-homogeneous commutator in $\widetilde{L}=L \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$ of weight f with non-zero indices can be represented as a linear combination of φ-homogeneous commutators of the same weight f in elements of the union of H-orbits $\bigcup_{s=1}^{f} O\left(x_{i_{s}}\right)$ each of which contains a subcommutator with zero sum of indices modulo n.

Remark 2.3. Similar combinatorial propositions were also proved for Lie algebras in [20] and for Lie rings whose ground ring contains the inverse of n in [15].

Proof. The idea of the proof is application of Theorem 2.1 to a free Lie ring with operators $F H$. Given arbitrary (not necessarily distinct) non-zero elements $i_{1}, i_{2}, \ldots, i_{f} \in \mathbb{Z} / n \mathbb{Z}$, we consider a free Lie ring K over R with $q f$ free generators in the set

$$
Y=\{\underbrace{y_{i_{1}}, y_{r i_{1}}, \ldots, y_{r q-1}}_{O\left(y_{i_{1}}\right)}, \underbrace{y_{i_{2}}, y_{r i_{2}}, \ldots, y_{r^{q-1} i_{2}}}_{O\left(y_{i_{2}}\right)}, \cdots, \underbrace{y_{i_{f}}, y_{r i_{f}}, \ldots, y_{r q-i_{i}}}_{O\left(y_{i_{f}}\right)}\},
$$

where indices are formally assigned and regarded modulo n and the subsets $O\left(y_{i_{s}}\right)=$ $\left\{y_{i_{s}}, y_{r i_{s}}, \ldots, y_{r{ }^{q-1} i_{s}}\right\}$ are disjoint. Here, as in the Index Convention, we do not use numbering indices, that is, all elements $y_{r k_{j}}$ are by definition different free generators, even if indices coincide. (The Index Convention will come into force in a moment.) For every $i=0,1, \ldots, n-1$ we define the additive subgroup K_{i} generated by all commutators in the generators $y_{j_{s}}$ in which the sum of indices of all entries is equal to i modulo n. Then $K=K_{0} \oplus K_{1} \oplus \cdots \oplus K_{n-1}$. It is also obvious that $\left[K_{i}, K_{j}\right] \subseteq K_{i+j(\operatorname{modn})}$; therefore this is a $(\mathbb{Z} / n \mathbb{Z})$-grading. The Lie ring K also has the natural \mathbb{N}-grading $K=G_{1}(Y) \oplus G_{2}(Y) \oplus \cdots$
with respect to the generating set Y, where $G_{i}(Y)$ is the additive subgroup generated by all commutators of weight i in elements of Y.

We define an action of the Frobenius group $F H$ on K by setting $k_{i}^{\varphi}=\omega^{i} k_{i}$ for $k_{i} \in K_{i}$ and extending this action to K by linearity. An action of H is defined on the generating set Y as a cyclic permutation of elements in each subset $O\left(y_{i_{s}}\right)$ by the rule $\left(y_{r^{k} i_{s}}\right)^{h}=y_{r^{k+1} i_{i_{s}}}$ for $k=0, \ldots, q-2$ and $\left(y_{r^{q-1} i_{s}}\right)^{h}=y_{i_{s}}$. Then $O\left(y_{i_{s}}\right)$ becomes the H-orbit of the element $y_{i_{s}}$. Clearly, H permutes the components K_{i} by the rule $K_{i}^{h}=K_{r i}$ for all $i \in \mathbb{Z} / n \mathbb{Z}$.

Let $J={ }_{\text {id }}\left\langle K_{0}\right\rangle$ be the ideal generated by the φ-component K_{0}. Clearly, the ideal J consists of linear combinations of commutators in elements of Y each of which contains a subcommutator with zero sum of indices modulo n. The ideal J is generated by homogeneous elements with respect to the gradings $K=\bigoplus_{i} G_{i}(Y)$ and $K=\bigoplus_{i=0}^{n-1} K_{i}$ and therefore is homogeneous with respect to both gradings. Note also that the ideal J is obviously FH -invariant.

Let $I={ }_{\text {id }}\left\langle\gamma_{c+1}\left(C_{K}(H)\right)\right\rangle^{F}$ be the smallest F-invariant ideal containing the subring $\gamma_{c+1}\left(C_{K}(H)\right)$. The ideal I is obviously homogeneous with respect to the grading $K=$ $\bigoplus_{i} G_{i}(Y)$ and is $F H$-invariant. The fact that the ideal I is F-invariant, implies that $n I \subseteq I_{0} \oplus \cdots \oplus I_{n-1}$, where $I_{k}=I \cap K_{k}$ for $k=0,1, \ldots n-1$. Indeed, for $z \in I$, for every $i=0, \ldots, n-1$ we have $z_{i}:=\sum_{s=0}^{n-1} \omega^{-i s} z^{\varphi^{s}} \in K_{i}$ and $n z=\sum_{j=0}^{n-1} z_{i}$. We denote $\hat{I}=I_{0} \oplus \cdots \oplus I_{n-1}$. This is an ideal of K, which is homogeneous with respect to both gradings $K=\bigoplus_{i} G_{i}(Y)$ and $K=\bigoplus_{i=0}^{n-1} K_{i}$. It is also $F H$-invariant, since I is FH-invariant and the components K_{i} are permuted by $F H$.

Consider the quotient Lie ring $N=K /(J+\hat{I})$. Since the ideals J and \hat{I} are homogeneous with respect to the gradings $K=\bigoplus_{i} G_{i}(Y)$ and $K=\bigoplus_{i=0}^{n-1} K_{i}$, the quotient ring N has the corresponding induced gradings. We use indices to denote the components N_{i} of the $(\mathbb{Z} / n \mathbb{Z})$-grading induced by $K=\bigoplus_{i=0}^{n-1} K_{i}$. Note that $N_{0}=0$ by the construction of J.

The group H permutes the grading components of $N=N_{1} \oplus \cdots \oplus N_{n-1}$ with regular orbits of length q. Therefore elements of $C_{N}(H)$ have the form $a+a^{h}+\cdots+a^{h^{q-1}}$. Hence $C_{N}(H)$ is contained in the image of $C_{K}(H)$ in $N=K /(J+\hat{I})$ and therefore $\gamma_{c+1}\left(C_{N}(H)\right)$ is contained in the image of the ideal I by its construction. Then $n \gamma_{c+1}\left(C_{N}(H)\right)=0$, since $n I \subseteq \hat{I}$.

The group H also permutes the $(\mathbb{Z} / n \mathbb{Z})$-grading components of $M:=n N=\bigoplus_{i=0}^{n-1} M_{i}$, where $M_{i}=n N_{i}$, with regular orbits of length q. Therefore, $C_{M}(H)=n C_{N}(H)$ and $\gamma_{c+1}\left(C_{M}(H)\right)=\gamma_{c+1}\left(n C_{N}(H)\right)=n^{c+1} \gamma_{c+1}\left(C_{N}(H)\right)=0$.

Since $N_{0}=0$, we also have $M_{0}=0$.
By Theorem 2.1 for some (c, q)-bounded function $u=u(c, q)$ the Lie ring $n^{u} M$ is nilpotent of (c, q)-bounded class $f-1=f(c, q)-1$. Consequently,

$$
n^{(u+1) f}\left[y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{f}}\right]=\left[n^{u+1} y_{i_{1}}, n^{u+1} y_{i_{2}}, \ldots, n^{u+1} y_{i_{f}}\right] \in J+\hat{I} .
$$

Since both ideals J and \hat{I} are homogeneous with respect to the grading $K=\bigoplus_{i} G_{i}(Y)$, this means that the left-hand side is equal modulo the ideal \hat{I} to a linear combination of commutators of the same weight f in elements of Y each of which contains a subcommutator with zero sum of indices modulo n.

Now suppose that L is an arbitrary Lie ring satisfying the hypothesis of Proposition 2.2, and let $\widetilde{L}=L \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$. Let $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{f}}$ be arbitrary φ-homogeneous elements of \widetilde{L}.

We define the homomorphism δ from the free Lie ring K into \widetilde{L} extending the mapping

$$
y_{r^{k} i_{s}} \rightarrow x_{i_{s}}^{h^{k}} \quad \text { for } \quad s=1, \ldots, f \quad \text { and } \quad k=0,1, \ldots, q-1
$$

It is easy to see that δ commutes with the action of $F H$ on K and \widetilde{L}. Therefore $\delta\left(O\left(y_{i_{s}}\right)\right)=$ $O\left(x_{i_{s}}\right)$ and $\delta(I)=0$, since $\gamma_{c+1}\left(C_{\widetilde{L}}(H)\right)=0$ and $\delta\left(C_{K}(H)\right) \subseteq C_{\widetilde{L}}(H)$. We now apply δ to the representation of $n^{(u+1) f}\left[y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{f}}\right]$ constructed above. Since $\delta(\hat{I}) \subseteq \delta(I)=0$, as the image we obtain a required representation of $n^{(u+1) f}\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{f}}\right]$ as a linear combination of commutators of weight f in elements of the set $\delta(Y)=\bigcup_{s=1}^{f} O\left(x_{i_{s}}\right)$ each of which has a subcommutator with zero sum of indices modulo n.

3 Nilpotency class

We begin with two lemmas that are well-known in folklore. Induced automorphisms of invariant subgroups and sections are denoted by the same letters. Fixed-point subgroups are denoted as centralizers in the natural semidirect products.

Lemma 3.1 (see, e. g., [12, Theorem 1.5.1]). If α is an automorphism of a finite group G and N is an α-invariant subgroup of G, then $\left|C_{G / N}(\alpha)\right| \leqslant\left|C_{G}(\alpha)\right|$.

Lemma 3.2 (see, e. g., [12, Corollary 1.7.4]). If φ is an automorphism of order p^{k} of a finite abelian p-group A and $\left|C_{A}(\varphi)\right|=p^{s}$, then the rank of A is at most $s p^{k}$.

The following lemma is a well-known consequence of the theory of powerful p-groups [22].

Lemma 3.3 (see, e. g., [13, Corollary 11.21]). If a finite p-group P has rank r and exponent p^{e}, then $|P|$ is (p, r, e)-bounded.

Proof of Theorem 1.1. Recall that P is a finite p-group admitting a Frobenius group $F H$ of automorphisms with cyclic kernel $F=\langle\varphi\rangle$ of order p^{k} and complement H of order q. Let $p^{m}=\left|C_{P}(F)\right|$ and let $C_{P}(H)$ be nilpotent of class c. We need to find a characteristic subgroup of (p, k, m, c)-bounded index and of (c, q)-bounded nilpotency class.

Consider the associated Lie ring $L(P)=\bigoplus_{i} \gamma_{i}(P) / \gamma_{i+1}(P)$, where γ_{i} denote terms of the lower central series (see, e. g., §3.2 in [12]). Extend the ground ring by a p^{k}-th primitive root of unity ω setting $L=L(P) \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$ and regarding $L(P)$ as $L(P) \otimes 1$. The group $F H$ naturally acts on L. We define the φ-components as in $\S 2$ (with $n=p^{k}$); recall that $p^{k} L \subseteq L_{0}+L_{1}+\cdots+L_{p^{k}-1}$. Since any φ-homogeneous commutator with zero sum of indices modulo p^{k} belongs to L_{0}, by Proposition 2.2 we obtain

$$
p^{k(f+w)} \gamma_{f}(L)=p^{k w} \gamma_{f}\left(p^{k} L\right) \subseteq p^{k w} \gamma_{f}\left(L_{0}+L_{1}+\cdots+L_{p^{k}-1}\right) \subseteq{ }_{\mathrm{id}}\left\langle L_{0}\right\rangle
$$

for the functions $f=f(c, q), w=w(c, q)$ in that proposition. Since $L_{0}=C_{L(P)}(\varphi) \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$ and $p^{m} C_{L(P)}(\varphi)=0$ by Lemma 3.1 and the Lagrange theorem, we obtain

$$
p^{k(f+w)+m} \gamma_{f}(L) \subseteq p^{m}{ }_{\mathrm{id}}\left\langle L_{0}\right\rangle=0
$$

In particular, $p^{k(f+w)+m} \gamma_{f}(L(P))=0$. In terms of the group P this means that the factors $\gamma_{i}(P) / \gamma_{i+1}(P)$ have exponent dividing $p^{k(f+w)+m}$ for all $i \geqslant f$.

By Lemmas 3.1 and 3.2, the rank of every factor $\gamma_{i}(P) / \gamma_{i+1}(P)$ is at most $m p^{k}$. Together with the bound for the exponent, this gives a bound for the order, which we state as a lemma.

Lemma 3.4. Suppose that P is a finite p-group admitting a Frobenius group FH of automorphisms with cyclic kernel $F=\langle\varphi\rangle$ of order p^{k} and complement H of order q. Let $p^{m}=$ $\left|C_{P}(F)\right|$ and let $C_{P}(H)$ be nilpotent of class c. Then $\left|\gamma_{i}(P) / \gamma_{i+1}(P)\right| \leqslant p^{(k f+k w+m) m p^{k}}$ for all $i \geqslant f$, where $f=f(c, q)$ and $w=w(c, q)$ are the functions in Proposition 2.2.

Lemma 3.4 can be applied to any $F H$-invariant subgroup Q of P. In particular, we choose $Q=\gamma_{U+1}(P\langle\varphi\rangle)$, where $U=(k f+k w+m) m p^{k}$. Clearly, $Q \leqslant P$, so that $\left|C_{Q}(\varphi)\right| \leqslant p^{m}$. By Lemma 3.4, $\left|\gamma_{i}(Q) / \gamma_{i+1}(Q)\right| \leqslant p^{U}$ for all $i \geqslant f$. On the other hand, by the well-known theorem of P. Hall [3, Theorem 2.56] we have $\left|\gamma_{i}(Q) / \gamma_{i+1}(Q)\right| \geqslant p^{U+1}$ if $\gamma_{i+1}(Q) \neq 1$. To avoid a contradiction we must conclude that $\gamma_{f+1}(Q)=1$. Thus, Q is nilpotent of (c, q)-bounded class $\leqslant f$.

The automorphism φ acts trivially on the factors of the lower central series of $P\langle\varphi\rangle$. Since $\left|C_{P\langle\varphi\rangle}(\varphi)\right|=p^{m+k}$, by Lemma 3.1 the orders of all these factors are at most p^{m+k}. Since the quotient $P\langle\varphi\rangle / Q$ is nilpotent of class U by construction, its order is at most $p^{(m+k) U}=p^{(m+k)(k f+k w+m) m p^{k}}$, which is a (p, k, m, c)-bounded number. Thus, Q has (p, k, m, c)-bounded index in P and (c, q)-bounded nilpotency class. The subgroup Q contains a characteristic subgroup $P^{p^{e}}$ for some (p, k, m, c)-bounded number e. Since the rank of P is (p, k, m, c)-bounded, the index of $P^{p^{e}}$ in P is also (p, k, m, c)-bounded by Lemma 3.3.

We now produce an example showing that the condition of the kernel being cyclic in Theorem 1.1 is essential.

Example 3.5. Let L be a Lie ring whose additive group is the direct sum of three copies of \mathbb{Z}_{2}, the group of 2-adic integers, with generators e_{1}, e_{2}, e_{3} as a \mathbb{Z}_{2}-module, and let the structure constants of L be $\left[e_{1}, e_{2}\right]=4 e_{3}, \quad\left[e_{2}, e_{3}\right]=4 e_{1}, \quad\left[e_{3}, e_{1}\right]=4 e_{2}$. A Frobenius group $F H$ of order 12 acts on L as follows: $F=\left\{1, f_{1}, f_{2}, f_{3}\right\}$, where $f_{i}\left(e_{i}\right)=e_{i}$ and $f_{i}\left(e_{j}\right)=-e_{j}$ for $i \neq j$, and $H=\langle h\rangle$ with $h\left(e_{i}\right)=e_{i+1(\bmod 3)}$. Since L is a powerful Lie \mathbb{Z}_{2}-algebra, by [2, Theorem 9.8] the Baker-Campbell-Hausdorff formula defines the structure of a uniformly powerful pro-2-group P on the same set L. For any positive integer n, the quotient of P by $P^{2^{n}}=2^{n} L$ is a finite 2 -group T. The induced action of $F H$ on T is such that $\left|C_{T}(F)\right|=8$ and $C_{T}(H)$ is cyclic, while the derived length of T is about $\log _{4} n$.

4 Order, rank, and exponent

Suppose that a finite abelian group V admits a Frobenius group of automorphisms $F H$ with cyclic kernel $F=\langle\varphi\rangle$ of order n. We can extend the ground ring by a primitive n-th root of unity ω forming $W=V \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$ and define the natural action of the group
$F H$ on W. As a \mathbb{Z}-module (abelian group), $\mathbb{Z}[\omega]=\bigoplus_{i=0}^{E(n)-1} \omega^{i} \mathbb{Z}$, where $E(n)$ is the Euler function. Hence,

$$
\begin{equation*}
W=\bigoplus_{i=0}^{E(n)-1} V \otimes \omega^{i} \mathbb{Z} \tag{1}
\end{equation*}
$$

so that $|W|=|V|^{E(n)}$. Similarly, $C_{W}(\varphi)=\bigoplus_{i=0}^{E(n)-1} C_{V}(\varphi) \otimes \omega^{i} \mathbb{Z}$, so that $\left|C_{W}(\varphi)\right|=$ $\left|C_{V}(\varphi)\right|^{E(n)}$.

As in $\S 2$ for \widetilde{L}, we define φ-components W_{k} for $k=0,1, \ldots, n-1$ as the 'eigensubspaces'

$$
W_{k}=\left\{a \in W \mid a^{\varphi}=\omega^{k} a\right\}
$$

Recall that W is an 'almost direct sum' of the W_{i} : namely,

$$
\begin{equation*}
n W \subseteq W_{0}+W_{1}+\cdots+W_{n-1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } w_{0}+w_{1}+\cdots+w_{n-1}=0 \quad \text { for } w_{i} \in W_{i}, \quad \text { then } n w_{i}=0 \text { for all } i . \tag{3}
\end{equation*}
$$

As in $\S 2$ we refer to elements of φ-components as being φ-homogeneous, and apply the Index Convention using lower indices of small Latin letters to only indicate the φ-component containing this element.

As before, since the kernel F of the Frobenius group $F H$ is cyclic, the complement H is also cyclic, $H=\langle h\rangle$, say, of order q, and $\varphi^{h^{-1}}=\varphi^{r}$ for some $1 \leqslant r \leqslant n-1$, which is a primitive q-th root of unity in $\mathbb{Z} / n \mathbb{Z}$. The group H permutes the φ-components W_{i} by the rule $W_{i}^{h}=W_{r i}$ for all $i \in \mathbb{Z} / n \mathbb{Z}$. For $u_{k} \in W_{k}$ we denote $u_{k}^{h^{i}}$ by $u_{r^{i} k}$ under the Index Convention.

From now on we assume in addition that V is an abelian $F H$-invariant section of the p-group P in Theorem 1.2. Recall that $|\varphi|=n=p^{k}$ and $\left|C_{P}(\varphi)\right|=p^{m}$.

Lemma 4.1. There is a characteristic subgroup U of V such that $|U|$ is (p, k, m)-bounded and
(a) $|V / U| \leqslant\left|C_{V}(H)\right|^{|H|}$;
(b) the rank of V / U is at most $r|H|$, where r is the rank of $C_{P}(H)$;
(c) the exponent of V / U is at most p^{e}, where p^{e} is the exponent of $C_{P}(H)$.

Proof. The group H acts on the set of φ-components W_{i} with one single-element orbit $\left\{W_{0}\right\}$ and $\left(p^{k}-1\right) / q$ regular orbits. We choose one element in every regular H-orbit and let $Y=\sum_{j=1}^{\left(p^{k}-1\right) / q} W_{i_{j}}$ be the sum of these chosen φ-components. The mapping $\vartheta: y \rightarrow y+y^{h}+\cdots+y^{h^{q-1}}$ is a homomorphism of the abelian group Y into $C_{W}(H)$. We claim that $p^{k} \operatorname{Ker} \vartheta=0$. Indeed, if $y \in \operatorname{Ker} \vartheta$ is written as $y=\sum_{j=1}^{\left(p^{k}-1\right) / q} y_{i_{j}}$ for $y_{i_{j}} \in W_{i_{j}}$, then $\vartheta(y)$ is equal to y plus a linear combination of elements of φ-components $W_{r^{l_{i}}}$ with all the indices $r^{l} i_{j}$ being different from the indices $i_{1}, \ldots, i_{\left(p^{k}-1\right) / q}$. Therefore the equation $\vartheta(y)=0$ implies $p^{k} y_{i_{j}}=0$ by (3), so that $p^{k} y=0$. Clearly, $|Y / \operatorname{Ker} \vartheta| \leqslant\left|C_{W}(H)\right|$, the rank of $Y / \operatorname{Ker} \vartheta$ is at most the rank of $C_{W}(H)$, and the exponent of $Y / \operatorname{Ker} \vartheta$ is at most the exponent of $C_{W}(H)$.

Let p^{f} be the maximum of p^{k} and the exponent of W_{0}, which is a (p, k, m)-bounded number. Then $\Omega_{f}(W) \geqslant W_{0}+\operatorname{Ker} \vartheta$ (where we use the standard notation Ω_{i} for the subgroup generated by all elements of order dividing p^{i}). Since

$$
p^{k} W \leqslant W_{0}+W_{1}+\cdots+W_{p^{k}-1}=W_{0}+Y+Y^{h}+\cdots+Y^{h^{q-1}}
$$

we obtain the following.
Lemma 4.2. The image of $p^{k} W$ in $W / \Omega_{f}(W)$ is contained in the image of $Y+Y^{h}+$ $\cdots+Y^{h^{q-1}}$ in $W / \Omega_{f}(W)$, and the image of Y is a homomorphic image of $Y / \operatorname{Ker} \vartheta$.

We claim that $U=\Omega_{f+k}(V)$ is the required characteristic subgroup. The rank of the abelian group V is at most $m p^{k}$ by Lemmas 3.1 and 3.2 . Hence $\Omega_{f+k}(V)$ being of bounded exponent has (p, k, m)-bounded order. We now verify that parts (a), (b), (c) are satisfied.
(a) In the abelian p-group W the order of the image of $p^{k} W$ in $W / \Omega_{f}(W)$ is equal to $\left|W / \Omega_{f+k}(W)\right|$. Therefore Lemma 4.2 implies

$$
\begin{equation*}
\left|W / \Omega_{f+k}\right| \leqslant|Y / \operatorname{Ker} \vartheta|^{|H|} \leqslant\left|C_{W}(H)\right|^{|H|} . \tag{4}
\end{equation*}
$$

Clearly, $\Omega_{f+k}(W)=\Omega_{f+k}(V) \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$ and therefore $\left|\Omega_{f+k}(W)\right|=\left|\Omega_{f+k}(V)\right|^{E\left(p^{k}\right)}$. Since $|W|=|V|^{E\left(p^{k}\right)} \mid$ and $\left|C_{W}(\varphi)\right|=\left|C_{V}(\varphi)\right|^{E\left(p^{k}\right)}$, taking the $E\left(p^{k}\right)$-th root of both sides of (4) gives $\left|V / \Omega_{f+k}(V)\right| \leqslant\left|C_{V}(H)\right|^{|H|}$.
(b) Similarly, the rank of the image of $p^{k} W$ in $W / \Omega_{f}(W)$ is equal to the rank of W / Ω_{f+k}. By Lemma 4.2 we obtain that the rank of $W / \Omega_{f+k}(W)$ is at most $|H|$ times the rank of $C_{W}(H)$. Since the ranks are multiplied by $E\left(p^{k}\right)$ when passing from V to W, we obtain that the rank of $V / \Omega_{f+k}(V)$ is at most $|H|$ times the rank of $C_{V}(H)$, which in turn does not exceed r, the rank of $C_{P}(H)$, because $C_{P}(H)$ covers $C_{V}(H)$ since the action of H is coprime.
(c) Finally, the exponent of the image of $p^{k} W$ in $W / \Omega_{f}(W)$ is equal to the exponent of W / Ω_{f+k}. By Lemma 4.2 we obtain that the exponent of $W / \Omega_{f+k}(W)$ is at most that of $C_{W}(H)$, so that the exponent of $V / \Omega_{f+k}(V)$ is at most that of $C_{V}(H)$, which is at most p^{e}, the exponent of $C_{P}(H)$, since the action is coprime.

Proof of Theorem 1.2. Recall that P is a finite p-group admitting Frobenius group $F H$ of automorphisms with cyclic kernel F of order p^{k} with $p^{m}=\left|C_{P}(F)\right|$ fixed points of the kernel. Let $p^{s}=\left|C_{P}(H)\right|$, let r be the rank of $C_{P}(H)$, and p^{e} the exponent of $C_{P}(H)$. We need to find a characteristic subgroup Q of (p, k, m)-bounded index with required bounds for the order, rank, and exponent. We can of course find such a subgroup separately for each of these parameters and then take the intersection.

By Lemmas 3.1 and 3.2, the rank of P is at most $m p^{k}$. Hence P has a characteristic powerful subgroup of (p, k, m)-bounded index by [22, Theorem 1.14]. Therefore we can assume P to be powerful from the outset.

By [11] (see also [13, Theorem 12.15]), the group P has a characteristic subgroup P_{1} of (p, k, m)-bounded index that is soluble of p^{k}-bounded derived length at most $2 K\left(p^{k}\right)$ (where K is Kreknin's function bounding the derived length of a Lie ring with a fixed-point-free automorphism of order p^{k}). Let V be any of the factors of the derived series
of P_{1}. By Lemma 4.1 we have $|V| \leqslant p^{g}\left|C_{V}(H)\right|^{|H|}$ for some (p, k, m)-bounded number $g=g(p, k, m)$. Then

$$
\left|P_{1}\right|=\prod_{V}|V| \leqslant p^{2 g K\left(p^{k}\right)} \prod_{V}\left|C_{V}(H)\right|^{|H|}=p^{2 g K\left(p^{k}\right)}\left|C_{P_{1}}(H)\right|^{|H|},
$$

since the action of H is coprime. Since the rank of the powerful p-group P is at most $m p^{k}$, by taking a sufficiently large but (p, k, m)-bounded power $P^{f(p, k, m)}$ we obtain a characteristic subgroup of order at most $\left|C_{P}(H)\right|^{|H|}$, which has (p, k, m)-bounded index by Lemma 3.3.

The powerful p-group P has a series

$$
\begin{equation*}
P>P^{p^{k_{1}}}>P^{p^{k_{2}}}>\cdots>1 \tag{5}
\end{equation*}
$$

with uniformly powerful factors of strictly decreasing ranks. For every factor S of this series having exponent, say, p^{t}, its subgroup $V=S^{p^{[(t+1) / 2]}}$ is abelian. By Lemma 4.1 the subgroup V has a characteristic subgroup U of (p, k, m)-bounded order such that the rank of V / U is at most $r|H|$. Therefore the rank of S can be higher than $r|H|$ only if the exponent of S is (p, k, m)-bounded. Since the rank of P is at most $m p^{k}$, all the factors in (5) of rank higher than $r|H|$ combine in a quotient $P / P^{p^{k_{u}}}$ of (p, k, m)-bounded order; then $P^{p^{k u}}$ is the required characteristic subgroup of (p, k, m)-bounded index and of rank at most $r|H|$.

Let p^{v} be the exponent of P. Since in the powerful group P the series $P>P^{p} \geqslant P^{p^{2}} \geqslant$ $P^{p^{3}} \geqslant \cdots$ is central, the subgroup $P^{p^{[(v+1) / 2]}}$ is abelian. By Lemma 4.1 the exponent of $P^{p^{[(v+1) / 2]}}$ is at most p^{e+f} for some (p, k, m)-bounded number f. Hence the exponent of P is at most $p^{2 e+g}$ for some (p, k, m)-bounded number $g=g(p, k, m)$. Since the rank of P is at most $m p^{k}$, the characteristic subgroup $P^{p^{g}}$ has (p, k, m)-bounded index and exponent at most $p^{2 e}$.

References

[1] J. L. Alperin, Automorphisms of solvable groups, Proc. Amer. Math. Soc. 13 (1962), 175-180.
[2] J. D. Dixon, M. P. F. Du Sautoy, A. Mann, D. Segal, Analytic pro-p groups, 2nd Ed., Cambridge Univ. Press, 2003.
[3] P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. (2) 36 (1934), 29-95.
[4] G. Higman, Groups and rings which have automorphisms without non-trivial fixed elements, J. London Math. Soc. 32 (1957), 321-334.
[5] B. Huppert and N. Blackburn, Finite groups II, Springer, Berlin, 1982.
[6] A. Jaikin-Zapirain, On almost regular automorphisms of finite p-groups, Adv. Math. 153 (2000), 391-402.
[7] V. A. Kreknin, The solubility of Lie algebras with regular automorphisms of finite period, Dokl. Akad. Nauk SSSR 150 (1963), 467-469; English transl., Math. USSR Doklady 4 (1963), 683-685.
[8] V.A.Kreknin and A.I. Kostrikin, Lie algebras with regular automorphisms, Dokl. Akad. Nauk SSSR 149 (1963), 249-251; English transl., Math. USSR Doklady 4 (1963), 355-358.
[9] V. A. Kreknin, The solubility of Lie algebras with regular automorphisms of finite period, Dokl. Akad. Nauk SSSR 150 (1963), 467-469 (Russian); English transl., Math. USSR Doklady 4 (1963), 683-685.
[10] E. I. Khukhro, Finite p-groups admitting an automorphism of order p with a small number of fixed points, Mat. Zametki 38 (1985), 652-657; English transl., Math. Notes. 38 (1986), 867-870.
[11] E. I. Khukhro, Finite p-groups admitting p-automorphisms with few fixed points, Mat. Sb. 184 (1993) , 53-64; English transl., Sb. Math. 80 (1995), 435-444.
[12] E. I. Khukhro, Nilpotent groups and their automorphisms, De Gruyter, Berlin, 1993.
[13] E. I. Khukhro, p-Automorphisms of finite p-groups, Cambridge University Press, 1998.
[14] E. I. Khukhro, Rank and order of a finite group admitting a Frobenius group of automorphisms, Algebra Logik 52 (2013); English transl., Algebra Logic 52 (2013), to appear.
[15] E. I. Khukhro and N. Yu. Makarenko, Finite groups and Lie rings with a metacyclic Frobenius group of automorphisms, submitted to J. Algebra, 2013; arXiv:1301.3409.
[16] E. I. Khukhro, N. Y. Makarenko, and P. Shumyatsky, Frobenius groups of automorphisms and their fixed points, Forum Math., 2011; DOI: 10.1515/FORM.2011.152; arxiv.org/abs/1010.0343.
[17] I. Kiming, Structure and derived length of finite p-groups possessing an automorphism of p-power order having exactly p fixed points, Math. Scand. 62 (1988), 153172.
[18] H. Kurzweil, p-Automorphismen von auflösbaren p^{\prime}-Gruppen, Math. Z., 120 (1971) 326-354.
[19] N. Yu. Makarenko, On almost regular automorphisms of prime order, Sibirsk. Mat. Zh. 33, no. 5 (1992), 206-208; English transl., Siberian Math. J. 33 (1992), 932-934.
[20] N. Yu. Makarenko and E. I. Khukhro, Lie algebras admitting a metacyclic Frobenius group of automorphisms, Sibirsk. Mat. Zh. 54, no. 1 (2013), 131-149; English transl., Siberian Math. J. 54 (2013), 50-64.
[21] N. Yu. Makarenko, E. I. Khukhro, and P. Shumyatsky, Fixed points of Frobenius groups of automorphisms, Dokl. Akad. Nauk 437, no. 1 (2011), 20-23; English transl., Doklady Math. 83, no. 2 (2011), 152-154.
[22] A. Lubotzky and A. Mann, Powerful p-groups. I: finite groups, J. Algebra 105 (1987), 484-505.
[23] S. McKay, On the structure of a special class of p-groups, Quart. J. Math. Oxford (2) 38 (1987), 489-502.
[24] Y. A. Medvedev, p-Groups, Lie p-rings and p-automorphisms, J. London Math. Soc. 58 (1998), 27-37.
[25] Y. A. Medvedev, p-Divided Lie rings and p-groups, J. London Math. Soc. (2) 59 (1999), 787-798.
[26] A. Shalev, On almost fixed point free automorphisms, J. Algebra 157 (1993), 271282.
[27] A. Shalev and E. I. Zelmanov, Pro-p groups of finite coclass, Math. Proc. Cambridge Philos. Soc. 111 (1992), 417-421.
[28] J. Thompson, Automorphisms of solvable groups, J. Algebra 1 (1964), 259-267.
[29] A. Turull, Fitting height of groups and of fixed points, J. Algebra 86 (1984), 555-566.

