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Abstract

Suppose that a finite p-group G admits a Frobenius group of automorphisms
FH with kernel F that is a cyclic p-group and with complement H. It is proved
that if the fixed-point subgroup CG(H) of the complement is nilpotent of class c,
then G has a characteristic subgroup of index bounded in terms of c, |CG(F )|, and
|F | whose nilpotency class is bounded in terms of c and |H| only. Examples show
that the condition of F being cyclic is essential. The proof is based on a Lie ring
method and a theorem of the authors and P. Shumyatsky about Lie rings with a
metacyclic Frobenius group of automorphisms FH. It is also proved that G has a
characteristic subgroup of (|CG(F )|, |F |)-bounded index whose order and rank are
bounded in terms of |H| and the order and rank of CG(H), respectively, and whose
exponent is bounded in terms of the exponent of CG(H).
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1 Introduction

It has long been known that results on ‘semisimple’ fixed-point-free automorphisms of
nilpotent groups and Lie rings can be applied for studying ‘unipotent’ p-automorphisms
of finite p-groups. Alperin [1] was the first to use Higman’s theorem on Lie rings and
nilpotent groups with a fixed-point-free automorphism of prime order p in the study of a
finite p-group P with an automorphism ϕ of order p. Namely, Alperin [1] proved that the
derived length of P is bounded in terms of the number of fixed points pm = |CP (ϕ)|. Later
the first author [10] improved the argument to obtain a subgroup of P of (p,m)-bounded
index and of p-bounded nilpotency class, and the second author [19] noted that this
class can be bounded by h(p), where h(p) is Higman’s function bounding the nilpotency
class of a Lie ring or a nilpotent group with a fixed-point-free automorphism of order p.
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Henceforth we write for brevity, say, “(a, b, . . . )-bounded” for “bounded above by some
function depending only on a, b, . . . ”. Further strong results on p-automorphisms of finite
p-groups were obtained by Kiming [17], McKay [23], Shalev [26], Khukhro [11], Medvedev
[24, 25], Jaikin-Zapirain [6], Shalev and Zelmanov [27] giving subgroups of bounded index
and of bounded derived length or nilpotency class. The proofs of most of these ‘unipotent’
results were also based on the ‘semisimple’ theorems of Higman [4], Kreknin [9], Kreknin
and Kostrikin [8] on fixed-point-free automorphisms of Lie rings.

In the present paper ‘unipotent’ theorems are derived from the recent ‘semisimple’
results of the authors and Shumyatsky [16, 21] about groups G (and Lie rings L) admitting
a Frobenius group FH of automorphisms with kernel F and complement H. The results
concern the connection between the nilpotency class, order, rank, and exponent of G and
the corresponding parameters of CG(H). The more difficult of these results is about the
nilpotency class, and its proof is based on the corresponding Lie ring theorem. Namely, it
was proved in [16] that if the kernel F is cyclic and acts on a Lie ring L fixed-point-freely,
CL(F ) = 0, and the fixed-point subring CL(H) of the complement is nilpotent of class c,
then L is nilpotent of (c, |H|)-bounded class (under certain assumptions on the additive
group of L, which are satisfied in many important cases, like L being an algebra over a
field, or being finite). Note that examples show that the condition of F being cyclic is
essential. This Lie ring result also implied a similar result for a finite group G with a
Frobenius group FH of automorphisms with cyclic fixed-point-free kernel F such that
CG(H) is nilpotent of class c, with reduction to nilpotent case provided by classification
and representation theory arguments. The fixed-point-free action of F alone was known to
imply nice properties of the Lie ring (solubility of |F |-bounded derived length by Kreknin’s
theorem [9]) and of the group (solubility and well-known bounds for the Fitting height
due to Thompson [28], Kurzweil [18], Turull [29], and others — although an analogue of
Kreknin’s theorem is still an open problem for groups). But the conclusions of the results
in [16] are in a sense much stronger, due to the combination of the hypotheses on fixed
points of F and H, either of which on its own is insufficient.

We now state the ‘unipotent’ version of the nilpotency class result in [16].

Theorem 1.1. Suppose that a finite p-group P admits a Frobenius group FH of auto-
morphisms with cyclic kernel F of order pk. Let c be the nilpotency class of the fixed-
point subgroup CP (H) of the complement. Then P has a characteristic subgroup of index
bounded in terms of c, |F |, and |CP (F )| whose nilpotency class is bounded in terms of c
and |H| only.

The proof is quite similar to the proofs of the aforementioned results of Alperin [1]
and Khukhro [10], with the Lie ring theorem in [16] taking over the role of the Higman–
Kreknin–Kostrikin theorem. However, first a certain combinatorial corollary of that Lie
ring theorem has to be derived (Proposition 2.2). Example 3.5 shows that the condition
of the kernel F being cyclic in Theorem 1.1 is essential.

We now state the unipotent versions of the rank, order, and exponent results in [16].
(By the rank we mean the minimum number r such that every subgroup can be generated
by r elements.)
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Theorem 1.2. Suppose that a finite p-group P admits a Frobenius group FH of auto-
morphisms with cyclic kernel F of order pk. Then P has a characteristic subgroup Q of
index bounded in terms of |F | and |CP (F )| such that

(a) the order of Q is at most |CP (H)||H|;
(b) the rank of Q is at most r|H|, where r is the rank of CP (H);
(c) the exponent of Q is at most p2e, where pe is the exponent of CP (H).

Note that the estimates for the order and rank are best-possible, and for the exponent
close to being best-possible (and independent of |FH|). The proof is facilitated by a
straightforward reduction to powerful p-groups. Then certain versions of the ‘free H-
module arguments’ are applied to abelian FH-invariant sections. If a finite group G
admits a Frobenius group of automorphisms FH with complement H and with kernel F
acting fixed-point-freely, then every elementary abelian FH-invariant section of G is a
free kH-module (for various prime fields k). This is exactly what provides a motivation
for seeking results bounding various parameters of G in terms of those of CP (H) and |H|.
In the ‘semisimple’ situation this fact is a basis of the results on the order and rank in
[16]. The exponent result in [16] is more difficult, but in our unipotent situation a simpler
argument can be used based on powerful p-groups to produce a much better result, with
the estimate for the exponent depending only on the exponent of CP (H).

It should be mentioned that the ‘semisimple’ results on the order and rank in [16]
do not assume the kernel to be cyclic, a ‘unipotent’ analogue of which is unclear at the
moment. The results of the present paper can be regarded as generalizations of the results
of [16], where the kernel F acts on G fixed-point-freely, to the case of ‘almost fixed-point-
free’ kernel. It is natural to expect that similar restrictions, in terms of the complement
H and its fixed points CG(H), should hold for a subgroup of index bounded in terms of
|CG(F )| and other parameters: ‘almost fixed-point-free’ action of F implying that G is
‘almost’ as good as when F acts fixed-point-freely. In the coprime ‘semisimple’ situation
such restrictions were recently obtained in [14] for the order and rank of G, and in [15]
and [20] for the nilpotency class. For the moment it is unclear how to combine these
semisimple and unipotent results in a general setting, without assumptions on the orders
of G and FH; note that the results in [16] for the fixed-point-free kernel were free of such
assumptions.

2 Lie ring technique

First we recall some definitions and notation. Products in a Lie ring are called com-
mutators. The Lie subring generated by a subset S is denoted by 〈S〉 and the ideal by

id〈S〉.
Terms of the lower central series of a Lie ring L are defined by induction: γ1(L) = L;

γi+1(L) = [γi(L), L]. By definition a Lie ring L is nilpotent of class h if γh+1(L) = 0.
A simple commutator [a1, a2, . . . , as] of weight (length) s is by definition the commu-

tator [...[[a1, a2], a3], . . . , as].
Let A be an additively written abelian group. A Lie ring L is A-graded if

L =
⊕
a∈A

La and [La, Lb] ⊆ La+b, a, b ∈ A,
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where the grading components La are additive subgroups of L. Elements of the La are
called homogeneous (with respect to this grading), and commutators in homogeneous
elements homogeneous commutators. An additive subgroup H of L is said to be homoge-
neous if H =

⊕
a(H ∩ La); then we set Ha = H ∩ La. Obviously, any subring or an ideal

generated by homogeneous additive subgroups is homogeneous. A homogeneous subring
and the quotient ring by a homogeneous ideal can be regarded as A-graded rings with the
induced gradings.

Suppose that a Lie ring L admits a Frobenius group of automorphisms FH with cyclic
kernel F = 〈ϕ〉 of order n. Let ω be a primitive n-th root of unity. We extend the ground

ring by ω and denote by L̃ the ring L ⊗Z Z[ω]. Then ϕ naturally acts on L̃ and, in
particular, CL̃(ϕ) = CL(ϕ)⊗Z Z[ω].

Definition. We define ϕ-components Lk for k = 0, 1, . . . , n− 1 as the ‘eigensubspaces’

Lk =
{
a ∈ L̃ | aϕ = ωka

}
.

It is well known that nL̃ ⊆ L0 + L1 + · · ·+ Ln−1 (see, for example, [5, Ch. 10]). This
decomposition resembles a (Z/nZ)-grading because of the inclusions [Ls, Lt] ⊆ Ls+t (modn),
but the sum of ϕ-components is not direct in general.

Definition. We refer to commutators in elements of ϕ-components as being ϕ-homoge-
neous.

Index Convention. Henceforth a small letter with index i denotes an element of the
ϕ-component Li, so that the index only indicates the ϕ-component to which this element
belongs: xi ∈ Li. To lighten the notation we will not use numbering indices for elements
in Lj, so that different elements can be denoted by the same symbol when it only matters
to which ϕ-component these elements belong. For example, x1 and x1 can be different
elements of L1, so that [x1, x1] can be a nonzero element of L2. These indices will be
considered modulo n; for example, a−i ∈ L−i = Ln−i.

Note that under the Index Convention a ϕ-homogeneous commutator belongs to the
ϕ-component Ls, where s is the sum modulo n of the indices of all the elements occurring
in this commutator.

Since the kernel F of the Frobenius group FH is cyclic, the complement H is also
cyclic. Let H = 〈h〉 be of order q and ϕh−1

= ϕr for some 1 6 r 6 n − 1. Then r is a
primitive q-th root of unity in the ring Z/nZ.

The group H permutes the ϕ-components Li as follows: Lh
i = Lri for all i ∈ Z/nZ.

Indeed, if xi ∈ Li, then (xhi )ϕ = xhϕh
−1h

i = (xϕ
r

i )h = ωirxhi , so that Lh
i ⊆ Lir; the reverse

inclusion is obtained by applying the same argument to h−1.

Notation. In what follows, for a given uk ∈ Lk we denote the element uh
i

k by urik under
the Index Convention, since Lhi

k = Lrik. We denote the H-orbit of an element xi by
O(xi) = {xi, xri, . . . , xrq−1i}.
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Combinatorial theorem. We are going to prove a combinatorial consequence of the
Makarenko–Khukhro–Shumyatsky theorem in [16], which we state in a somewhat different
form, in terms of (Z/nZ)-graded Lie rings with a cyclic group of automorphisms H.

Theorem 2.1 ([16, Theorem 5.5 (b)]). Let M =
⊕n

i=0Mi be a (Z/nZ)-graded Lie
ring with grading components Mi that are additive subgroups satisfying the inclusions
[Mi,Mj] ⊆ Mi+j (modn). Suppose M admits a finite cyclic group of automorphisms
H = 〈h〉 of order q such that Mh

i = Mri for some element r ∈ Z/nZ having multi-
plicative order q. If M0 = 0 and CM(H) is nilpotent of class c, then for some functions
u = u(c, q) and f = f(c, q) depending only on c and q, the Lie subring nuL is nilpotent
of class f − 1, that is, γf (nuL) = nufγf (L) = 0.

The corresponding theorems in [16] were stated about Lie rings admitting a Frobenius
group FH of automorphisms with cyclic kernel F = 〈ϕ〉 of order n. After extension
of the ground ring, the ϕ-components behave like components of a (Z/nZ)-grading, as
we saw above. In fact, the proofs in [16] only used the ‘grading’ properties of the ϕ-
components, so that Theorem 2.1 was actually proved therein. The following proposition
is a combinatorial consequence of this theorem.

Proposition 2.2. Let f = f(c, q), u = u(c, q) be the functions in Theorem 2.1. Suppose
that a Lie ring L admits a Frobenius group of automorphisms FH with cyclic kernel
F = 〈ϕ〉 of order n and with complement H of order q such that the fixed-point subring
CL(H) of the complement is nilpotent of class c. Then for the (c, q)-bounded number
w = (u + 1)f(c, q) the nw-th multiple nw[xi1 , xi2 , . . . , xif ] of every simple ϕ-homogeneous

commutator in L̃ = L ⊗Z Z[ω] of weight f with non-zero indices can be represented as a
linear combination of ϕ-homogeneous commutators of the same weight f in elements of
the union of H-orbits

⋃f
s=1O(xis) each of which contains a subcommutator with zero sum

of indices modulo n.

Remark 2.3. Similar combinatorial propositions were also proved for Lie algebras in [20]
and for Lie rings whose ground ring contains the inverse of n in [15].

Proof. The idea of the proof is application of Theorem 2.1 to a free Lie ring with operators
FH. Given arbitrary (not necessarily distinct) non-zero elements i1, i2, . . . , if ∈ Z/nZ,
we consider a free Lie ring K over R with qf free generators in the set

Y = {yi1 , yri1 , . . . , yrq−1i1︸ ︷︷ ︸
O(yi1 )

, yi2 , yri2 , . . . , yrq−1i2︸ ︷︷ ︸
O(yi2 )

, . . . , yif , yrif , . . . , yrq−1if︸ ︷︷ ︸
O(yif )

},

where indices are formally assigned and regarded modulo n and the subsets O(yis) =
{yis , yris , . . . , yrq−1is} are disjoint. Here, as in the Index Convention, we do not use num-
bering indices, that is, all elements yrkij are by definition different free generators, even
if indices coincide. (The Index Convention will come into force in a moment.) For every
i = 0, 1, . . . , n − 1 we define the additive subgroup Ki generated by all commutators in
the generators yjs in which the sum of indices of all entries is equal to i modulo n. Then
K = K0⊕K1⊕· · ·⊕Kn−1. It is also obvious that [Ki, Kj] ⊆ Ki+j (mod n); therefore this is a
(Z/nZ)-grading. The Lie ring K also has the natural N-grading K = G1(Y )⊕G2(Y )⊕· · ·
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with respect to the generating set Y , where Gi(Y ) is the additive subgroup generated by
all commutators of weight i in elements of Y .

We define an action of the Frobenius group FH on K by setting kϕi = ωiki for ki ∈ Ki

and extending this action to K by linearity. An action of H is defined on the generating set
Y as a cyclic permutation of elements in each subset O(yis) by the rule (yrkis)

h = yrk+1is for
k = 0, . . . , q− 2 and (yrq−1is)

h = yis . Then O(yis) becomes the H-orbit of the element yis .
Clearly, H permutes the components Ki by the rule Kh

i = Kri for all i ∈ Z/nZ.
Let J = id〈K0〉 be the ideal generated by the ϕ-component K0. Clearly, the ideal J

consists of linear combinations of commutators in elements of Y each of which contains
a subcommutator with zero sum of indices modulo n. The ideal J is generated by ho-
mogeneous elements with respect to the gradings K =

⊕
iGi(Y ) and K =

⊕n−1
i=0 Ki and

therefore is homogeneous with respect to both gradings. Note also that the ideal J is
obviously FH-invariant.

Let I = id〈γc+1(CK(H))〉F be the smallest F -invariant ideal containing the subring
γc+1(CK(H)). The ideal I is obviously homogeneous with respect to the grading K =⊕

iGi(Y ) and is FH-invariant. The fact that the ideal I is F -invariant, implies that
nI ⊆ I0 ⊕ · · · ⊕ In−1, where Ik = I ∩ Kk for k = 0, 1, . . . n − 1. Indeed, for z ∈ I,
for every i = 0, . . . , n − 1 we have zi :=

∑n−1
s=0 ω

−iszϕ
s ∈ Ki and nz =

∑n−1
j=0 zi. We

denote Î = I0 ⊕ · · · ⊕ In−1. This is an ideal of K, which is homogeneous with respect
to both gradings K =

⊕
iGi(Y ) and K =

⊕n−1
i=0 Ki. It is also FH-invariant, since I is

FH-invariant and the components Ki are permuted by FH.
Consider the quotient Lie ring N = K/(J + Î). Since the ideals J and Î are homoge-

neous with respect to the gradings K =
⊕

iGi(Y ) and K =
⊕n−1

i=0 Ki, the quotient ring
N has the corresponding induced gradings. We use indices to denote the components Ni

of the (Z/nZ)-grading induced by K =
⊕n−1

i=0 Ki. Note that N0 = 0 by the construction
of J .

The group H permutes the grading components of N = N1 ⊕ · · · ⊕Nn−1 with regular
orbits of length q. Therefore elements of CN(H) have the form a+ah + · · ·+ah

q−1
. Hence

CN(H) is contained in the image of CK(H) in N = K/(J + Î) and therefore γc+1(CN(H))
is contained in the image of the ideal I by its construction. Then nγc+1(CN(H)) = 0,
since nI ⊆ Î.

The group H also permutes the (Z/nZ)-grading components of M := nN =
⊕n−1

i=0 Mi,
where Mi = nNi, with regular orbits of length q. Therefore, CM(H) = nCN(H) and
γc+1(CM(H)) = γc+1(nCN(H)) = nc+1γc+1(CN(H)) = 0.

Since N0 = 0, we also have M0 = 0.
By Theorem 2.1 for some (c, q)-bounded function u = u(c, q) the Lie ring nuM is

nilpotent of (c, q)-bounded class f − 1 = f(c, q)− 1. Consequently,

n(u+1)f [yi1 , yi2 , . . . , yif ] = [nu+1yi1 , n
u+1yi2 , . . . , n

u+1yif ] ∈ J + Î .

Since both ideals J and Î are homogeneous with respect to the grading K =
⊕

iGi(Y ),

this means that the left-hand side is equal modulo the ideal Î to a linear combination of
commutators of the same weight f in elements of Y each of which contains a subcommu-
tator with zero sum of indices modulo n.

Now suppose that L is an arbitrary Lie ring satisfying the hypothesis of Proposition 2.2,
and let L̃ = L ⊗Z Z[ω]. Let xi1 , xi2 , . . . , xif be arbitrary ϕ-homogeneous elements of L̃.
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We define the homomorphism δ from the free Lie ring K into L̃ extending the mapping

yrkis → xh
k

is for s = 1, . . . , f and k = 0, 1, . . . , q − 1.

It is easy to see that δ commutes with the action of FH onK and L̃. Therefore δ(O(yis)) =
O(xis) and δ(I) = 0, since γc+1(CL̃(H)) = 0 and δ(CK(H)) ⊆ CL̃(H). We now apply δ

to the representation of n(u+1)f [yi1 , yi2 , . . . , yif ] constructed above. Since δ(Î) ⊆ δ(I) = 0,

as the image we obtain a required representation of n(u+1)f [xi1 , xi2 , . . . , xif ] as a linear

combination of commutators of weight f in elements of the set δ(Y ) =
⋃f

s=1O(xis) each
of which has a subcommutator with zero sum of indices modulo n.

3 Nilpotency class

We begin with two lemmas that are well-known in folklore. Induced automorphisms of
invariant subgroups and sections are denoted by the same letters. Fixed-point subgroups
are denoted as centralizers in the natural semidirect products.

Lemma 3.1 (see, e. g., [12, Theorem 1.5.1]). If α is an automorphism of a finite group
G and N is an α-invariant subgroup of G, then |CG/N(α)| 6 |CG(α)|.

Lemma 3.2 (see, e. g., [12, Corollary 1.7.4]). If ϕ is an automorphism of order pk of a
finite abelian p-group A and |CA(ϕ)| = ps, then the rank of A is at most spk.

The following lemma is a well-known consequence of the theory of powerful p-groups
[22].

Lemma 3.3 (see, e. g., [13, Corollary 11.21]). If a finite p-group P has rank r and
exponent pe, then |P | is (p, r, e)-bounded.

Proof of Theorem 1.1. Recall that P is a finite p-group admitting a Frobenius group FH
of automorphisms with cyclic kernel F = 〈ϕ〉 of order pk and complement H of order q.
Let pm = |CP (F )| and let CP (H) be nilpotent of class c. We need to find a characteristic
subgroup of (p, k,m, c)-bounded index and of (c, q)-bounded nilpotency class.

Consider the associated Lie ring L(P ) =
⊕

i γi(P )/γi+1(P ), where γi denote terms
of the lower central series (see, e. g., § 3.2 in [12]). Extend the ground ring by a pk-th
primitive root of unity ω setting L = L(P )⊗Z Z[ω] and regarding L(P ) as L(P )⊗ 1. The
group FH naturally acts on L. We define the ϕ-components as in § 2 (with n = pk); recall
that pkL ⊆ L0 + L1 + · · ·+ Lpk−1. Since any ϕ-homogeneous commutator with zero sum
of indices modulo pk belongs to L0, by Proposition 2.2 we obtain

pk(f+w)γf (L) = pkwγf (pkL) ⊆ pkwγf (L0 + L1 + · · ·+ Lpk−1) ⊆ id〈L0〉

for the functions f = f(c, q), w = w(c, q) in that proposition. Since L0 = CL(P )(ϕ)⊗ZZ[ω]
and pmCL(P )(ϕ) = 0 by Lemma 3.1 and the Lagrange theorem, we obtain

pk(f+w)+mγf (L) ⊆ pmid〈L0〉 = 0.
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In particular, pk(f+w)+mγf (L(P )) = 0. In terms of the group P this means that the factors
γi(P )/γi+1(P ) have exponent dividing pk(f+w)+m for all i > f .

By Lemmas 3.1 and 3.2, the rank of every factor γi(P )/γi+1(P ) is at most mpk.
Together with the bound for the exponent, this gives a bound for the order, which we
state as a lemma.

Lemma 3.4. Suppose that P is a finite p-group admitting a Frobenius group FH of auto-
morphisms with cyclic kernel F = 〈ϕ〉 of order pk and complement H of order q. Let pm =
|CP (F )| and let CP (H) be nilpotent of class c. Then |γi(P )/γi+1(P )| 6 p(kf+kw+m)mpk for
all i > f , where f = f(c, q) and w = w(c, q) are the functions in Proposition 2.2.

Lemma 3.4 can be applied to any FH-invariant subgroup Q of P . In particular,
we choose Q = γU+1(P 〈ϕ〉), where U = (kf + kw + m)mpk. Clearly, Q 6 P , so that
|CQ(ϕ)| 6 pm. By Lemma 3.4, |γi(Q)/γi+1(Q)| 6 pU for all i > f . On the other hand,
by the well-known theorem of P. Hall [3, Theorem 2.56] we have |γi(Q)/γi+1(Q)| > pU+1

if γi+1(Q) 6= 1. To avoid a contradiction we must conclude that γf+1(Q) = 1. Thus, Q is
nilpotent of (c, q)-bounded class 6 f .

The automorphism ϕ acts trivially on the factors of the lower central series of P 〈ϕ〉.
Since |CP 〈ϕ〉(ϕ)| = pm+k, by Lemma 3.1 the orders of all these factors are at most pm+k.
Since the quotient P 〈ϕ〉/Q is nilpotent of class U by construction, its order is at most
p(m+k)U = p(m+k)(kf+kw+m)mpk , which is a (p, k,m, c)-bounded number. Thus, Q has
(p, k,m, c)-bounded index in P and (c, q)-bounded nilpotency class. The subgroup Q
contains a characteristic subgroup P pe for some (p, k,m, c)-bounded number e. Since the
rank of P is (p, k,m, c)-bounded, the index of P pe in P is also (p, k,m, c)-bounded by
Lemma 3.3.

We now produce an example showing that the condition of the kernel being cyclic in
Theorem 1.1 is essential.

Example 3.5. Let L be a Lie ring whose additive group is the direct sum of three copies
of Z2, the group of 2-adic integers, with generators e1, e2, e3 as a Z2-module, and let the
structure constants of L be [e1, e2] = 4e3, [e2, e3] = 4e1, [e3, e1] = 4e2. A Frobenius
group FH of order 12 acts on L as follows: F = {1, f1, f2, f3}, where fi(ei) = ei and
fi(ej) = −ej for i 6= j, and H = 〈h〉 with h(ei) = ei+1 (mod 3). Since L is a powerful
Lie Z2-algebra, by [2, Theorem 9.8] the Baker–Campbell–Hausdorff formula defines the
structure of a uniformly powerful pro-2-group P on the same set L. For any positive
integer n, the quotient of P by P 2n = 2nL is a finite 2-group T . The induced action of
FH on T is such that |CT (F )| = 8 and CT (H) is cyclic, while the derived length of T is
about log4 n.

4 Order, rank, and exponent

Suppose that a finite abelian group V admits a Frobenius group of automorphisms FH
with cyclic kernel F = 〈ϕ〉 of order n. We can extend the ground ring by a primitive
n-th root of unity ω forming W = V ⊗Z Z[ω] and define the natural action of the group
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FH on W . As a Z-module (abelian group), Z[ω] =
⊕E(n)−1

i=0 ωiZ, where E(n) is the Euler
function. Hence,

W =

E(n)−1⊕
i=0

V ⊗ ωiZ, (1)

so that |W | = |V |E(n). Similarly, CW (ϕ) =
⊕E(n)−1

i=0 CV (ϕ) ⊗ ωiZ, so that |CW (ϕ)| =
|CV (ϕ)|E(n).

As in § 2 for L̃, we define ϕ-components Wk for k = 0, 1, . . . , n − 1 as the ‘eigensub-
spaces’

Wk =
{
a ∈ W | aϕ = ωka

}
.

Recall that W is an ‘almost direct sum’ of the Wi: namely,

nW ⊆ W0 +W1 + · · ·+Wn−1 (2)

and
if w0 + w1 + · · ·+ wn−1 = 0 for wi ∈ Wi, then nwi = 0 for all i. (3)

As in § 2 we refer to elements of ϕ-components as being ϕ-homogeneous, and apply the In-
dex Convention using lower indices of small Latin letters to only indicate the ϕ-component
containing this element.

As before, since the kernel F of the Frobenius group FH is cyclic, the complement H
is also cyclic, H = 〈h〉, say, of order q, and ϕh−1

= ϕr for some 1 6 r 6 n − 1, which is
a primitive q-th root of unity in Z/nZ. The group H permutes the ϕ-components Wi by
the rule W h

i = Wri for all i ∈ Z/nZ. For uk ∈ Wk we denote uh
i

k by urik under the Index
Convention.

From now on we assume in addition that V is an abelian FH-invariant section of the
p-group P in Theorem 1.2. Recall that |ϕ| = n = pk and |CP (ϕ)| = pm.

Lemma 4.1. There is a characteristic subgroup U of V such that |U | is (p, k,m)-bounded
and

(a) |V/U | 6 |CV (H)||H|;
(b) the rank of V/U is at most r|H|, where r is the rank of CP (H);
(c) the exponent of V/U is at most pe, where pe is the exponent of CP (H).

Proof. The group H acts on the set of ϕ-components Wi with one single-element orbit
{W0} and (pk − 1)/q regular orbits. We choose one element in every regular H-orbit

and let Y =
∑(pk−1)/q

j=1 Wij be the sum of these chosen ϕ-components. The mapping

ϑ : y → y + yh + · · ·+ yh
q−1

is a homomorphism of the abelian group Y into CW (H). We

claim that pkKerϑ = 0. Indeed, if y ∈ Kerϑ is written as y =
∑(pk−1)/q

j=1 yij for yij ∈ Wij ,
then ϑ(y) is equal to y plus a linear combination of elements of ϕ-components Wrlij with

all the indices rlij being different from the indices i1, . . . , i(pk−1)/q. Therefore the equation
ϑ(y) = 0 implies pkyij = 0 by (3), so that pky = 0. Clearly, |Y/Kerϑ| 6 |CW (H)|, the
rank of Y/Kerϑ is at most the rank of CW (H), and the exponent of Y/Kerϑ is at most
the exponent of CW (H).
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Let pf be the maximum of pk and the exponent of W0, which is a (p, k,m)-bounded
number. Then Ωf (W ) > W0 + Kerϑ (where we use the standard notation Ωi for the
subgroup generated by all elements of order dividing pi). Since

pkW 6 W0 +W1 + · · ·+Wpk−1 = W0 + Y + Y h + · · ·+ Y hq−1

,

we obtain the following.

Lemma 4.2. The image of pkW in W/Ωf (W ) is contained in the image of Y + Y h +
· · ·+ Y hq−1

in W/Ωf (W ), and the image of Y is a homomorphic image of Y/Kerϑ.

We claim that U = Ωf+k(V ) is the required characteristic subgroup. The rank of the
abelian group V is at most mpk by Lemmas 3.1 and 3.2. Hence Ωf+k(V ) being of bounded
exponent has (p, k,m)-bounded order. We now verify that parts (a), (b), (c) are satisfied.

(a) In the abelian p-group W the order of the image of pkW in W/Ωf (W ) is equal to
|W/Ωf+k(W )|. Therefore Lemma 4.2 implies

|W/Ωf+k| 6 |Y/Kerϑ||H| 6 |CW (H)||H|. (4)

Clearly, Ωf+k(W ) = Ωf+k(V ) ⊗Z Z[ω] and therefore |Ωf+k(W )| = |Ωf+k(V )|E(pk). Since

|W | = |V |E(pk)| and |CW (ϕ)| = |CV (ϕ)|E(pk), taking the E(pk)-th root of both sides of (4)
gives |V/Ωf+k(V )| 6 |CV (H)||H|.

(b) Similarly, the rank of the image of pkW in W/Ωf (W ) is equal to the rank of
W/Ωf+k. By Lemma 4.2 we obtain that the rank of W/Ωf+k(W ) is at most |H| times the
rank of CW (H). Since the ranks are multiplied by E(pk) when passing from V to W , we
obtain that the rank of V/Ωf+k(V ) is at most |H| times the rank of CV (H), which in turn
does not exceed r, the rank of CP (H), because CP (H) covers CV (H) since the action of
H is coprime.

(c) Finally, the exponent of the image of pkW in W/Ωf (W ) is equal to the exponent
of W/Ωf+k. By Lemma 4.2 we obtain that the exponent of W/Ωf+k(W ) is at most that
of CW (H), so that the exponent of V/Ωf+k(V ) is at most that of CV (H), which is at most
pe, the exponent of CP (H), since the action is coprime.

Proof of Theorem 1.2. Recall that P is a finite p-group admitting Frobenius group FH
of automorphisms with cyclic kernel F of order pk with pm = |CP (F )| fixed points of the
kernel. Let ps = |CP (H)|, let r be the rank of CP (H), and pe the exponent of CP (H). We
need to find a characteristic subgroup Q of (p, k,m)-bounded index with required bounds
for the order, rank, and exponent. We can of course find such a subgroup separately for
each of these parameters and then take the intersection.

By Lemmas 3.1 and 3.2, the rank of P is at most mpk. Hence P has a characteristic
powerful subgroup of (p, k,m)-bounded index by [22, Theorem 1.14]. Therefore we can
assume P to be powerful from the outset.

By [11] (see also [13, Theorem 12.15]), the group P has a characteristic subgroup P1

of (p, k,m)-bounded index that is soluble of pk-bounded derived length at most 2K(pk)
(where K is Kreknin’s function bounding the derived length of a Lie ring with a fixed-
point-free automorphism of order pk). Let V be any of the factors of the derived series

10



of P1. By Lemma 4.1 we have |V | 6 pg|CV (H)||H| for some (p, k,m)-bounded number
g = g(p, k,m). Then

|P1| =
∏
V

|V | 6 p2gK(pk)
∏
V

|CV (H)||H| = p2gK(pk)|CP1(H)||H|,

since the action of H is coprime. Since the rank of the powerful p-group P is at most
mpk, by taking a sufficiently large but (p, k,m)-bounded power P f(p,k,m) we obtain a
characteristic subgroup of order at most |CP (H)||H|, which has (p, k,m)-bounded index
by Lemma 3.3.

The powerful p-group P has a series

P > P pk1 > P pk2 > · · · > 1 (5)

with uniformly powerful factors of strictly decreasing ranks. For every factor S of this
series having exponent, say, pt, its subgroup V = Sp[(t+1)/2]

is abelian. By Lemma 4.1
the subgroup V has a characteristic subgroup U of (p, k,m)-bounded order such that the
rank of V/U is at most r|H|. Therefore the rank of S can be higher than r|H| only if the
exponent of S is (p, k,m)-bounded. Since the rank of P is at most mpk, all the factors
in (5) of rank higher than r|H| combine in a quotient P/P pku of (p, k,m)-bounded order;
then P pku is the required characteristic subgroup of (p, k,m)-bounded index and of rank
at most r|H|.

Let pv be the exponent of P . Since in the powerful group P the series P > P p > P p2 >
P p3 > · · · is central, the subgroup P p[(v+1)/2]

is abelian. By Lemma 4.1 the exponent of
P p[(v+1)/2]

is at most pe+f for some (p, k,m)-bounded number f . Hence the exponent of P
is at most p2e+g for some (p, k,m)-bounded number g = g(p, k,m). Since the rank of P is
at most mpk, the characteristic subgroup P pg has (p, k,m)-bounded index and exponent
at most p2e.
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