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doi:10.3906/mat-1403-62

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Frobenius-like groups as groups of automorphisms
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Abstract: A finite group FH is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup F with a

nontrivial complement H such that FH/[F, F ] is a Frobenius group with Frobenius kernel F/[F, F ] . Such subgroups

and sections are abundant in any nonnilpotent finite group. We discuss several recent results about the properties of a

finite group G admitting a Frobenius-like group of automorphisms FH aiming at restrictions on G in terms of CG(H)

and focusing mainly on bounds for the Fitting height and related parameters. Earlier such results were obtained for

Frobenius groups of automorphisms; new theorems for Frobenius-like groups are based on new representation-theoretic

results. Apart from a brief survey, the paper contains the new theorem on almost nilpotency of a finite group admitting

a Frobenius-like group of automorphisms with fixed-point-free almost extraspecial kernel.
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1. Introduction

Every nonnilpotent finite group contains nilpotent subgroups that are normalized but not centralized by elements

of coprime order. Therefore, there are sections of the form 1 ̸= [N, g]⟨g⟩ , where N is a nilpotent p′ -subgroup

and g has prime order p . Such a section is a special case of a so-called Frobenius-like group, the formal definition

of which is given below. This observation leads us to say that “there is an abundance of Frobenius-like groups

around”.

Definition 1.1 A finite group G is said to be Frobenius-like if it contains a nontrivial nilpotent normal

subgroup F , which is called the kernel of G ; and a nontrivial complement H to F in G , which is called the

complement in G such that

[F, h] = F for all nonidentity elements h ∈ H.

Remark 1.2 Every Frobenius group is a Frobenius-like group. Conversely, if FH is a Frobenius-like group

with kernel F and complement H , then FH/[F, F ] is a Frobenius group with kernel F/[F, F ] and complement

[F, F ]H/[F, F ] isomorphic to H . Since π(F ) = π(F/[F, F ]) we see that (|F |, |H|) = 1 and H has the structure

of a Frobenius complement. In particular (see [9, Chapter 6]),
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1. |H| divides (|F/[F, F ]| − 1) ,

2. all abelian subgroups of H are cyclic, and Sylow subgroups of H are either cyclic or generalized quaternion,

3. if all Sylow subgroups of H are cyclic, then [H,H] and H/[H,H] are both cyclic and have coprime orders,

[H,H] ⩽ F (H) , F (H) is cyclic and π(F (H)) = π(H) .

The purpose of this paper is to discuss some recent results concerning the structure of a finite solvable

group G on which a certain Frobenius-like group FH , with kernel F and complement H , acts by automor-

phisms. Earlier similar results, prompted by Mazurov’s problem 17.72 in the Kourovka Notebook [18], were

obtained in the case of FH being a Frobenius group. In this case, Khukhro, Makarenko, and Shumyatsky in

[10–17] obtained restrictions on various parameters of G such as Fitting height, nilpotency class, and exponent,

in terms of the fixed-point subgroup CG(H) of H . It is a natural and important problem to extend these

results to more general situations, both from the viewpoint of relaxing the strong conditions on the action of

the kernel and relaxing the conditions on the structure of the group FH itself. Focusing on the Fitting height

and related parameters, Ercan and Güloğlu introduced the concept of a Frobenius-like group and obtained the

results presented in [2,3], and together with Khukhro the results in [4].

The paper is structured as follows. The results for FH being a Frobenius group are described in Section 2.

Section 3 contains a brief discussion of Frobenius-like groups and the recent results on the structure of groups

acted on by them. In Section 4 we obtain a new theorem on almost nilpotency of a finite group admitting

a Frobenius-like group of automorphisms with fixed-point-free almost extraspecial kernel, which generalizes

Theorem 2.1 in [13] and Proposition C in [3].

2. Frobenius groups

We devote this section to the relevant work by Khukhro, Makarenko, and Shumyatsky and assume throughout

that the following hypothesis is satisfied.

Hypothesis 1 FH is a Frobenius group with kernel F and complement H and FH acts on the finite group

G by automorphisms.

The investigation of the properties and parameters of the group G under Hypothesis I was motivated by

Mazurov’s problem 17.72 stated in 2010 in “Kourovka Notebook” [18]. He supposes additionally that GF is a

Frobenius group with kernel G and complement F (then the group GFH is called a 2-Frobenius group) and

asks whether (a) the nilpotency class of G is bounded in terms of the order of H and the nilpotency class of

CG(H), and also whether (b) the exponent of G is bounded in terms of |H| and the exponent of CG(H).

The question (a) on the nilpotency class was answered affirmatively by Makarenko and Shumyatsky in

[16] using also some ideas of Khukhro’s. Subsequently it was observed that in order to get very precise structural

results about G it suffices to assume that F acts fixed-point-freely on G and not necessarily semiregularly.

Therefore, the condition that CG(x) = 1 for all nonidentity elements x ∈ F was replaced by CG(F ) = 1. By

a theorem of Belyaev and Hartley [7] based on the classification then G is solvable. Khukhro, Makarenko, and

Shumyatsky investigated extensively this case and proved the following theorems over a sequence of papers,

namely [10], [11], and [15]. Here Fi(G) denote terms of the Fitting series.

Theorem 2.1 Assume that Hypothesis I and the condition CG(F ) = 1 are satisfied. Then G is solvable and
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1. Fn(G) ∩ CG(H) = Fn(CG(H)) for any positive integer n ,

2. the Fitting height of G is equal to the Fitting height of CG(H) ,

3. the π -length of G is equal to the π -length of CG(H),

4. |G| is bounded in terms of |H| and |CG(H)| ,

5. the rank of G is bounded in terms of |H| and the rank of CG(H) .

The main ingredient of the proof of Theorem 2.1 is Clifford’s theorem, by which any kFH -module V on

which F acts fixed-point-freely is a free kH -module (often also called a regular kH -module).

Theorem 2.2 Assume that Hypothesis I and the condition CG(F ) = 1 are satisfied. If in addition FH is

metacyclic and CG(H) is nilpotent, then G is nilpotent and the nilpotency class of G is bounded in terms of

|H| and the nilpotency class of CG(H) .

Part (b) of Mazurov’s question so far has only been answered partially.

Theorem 2.3 Assume that Hypothesis I and the condition CG(F ) = 1 are satisfied. If in addition FH is

metacyclic, then the exponent of G is bounded in terms of |F | and the exponent of CG(H) .

Theorems 2.2 and 2.3 are proved by reducing each of them to a problem about Lie rings followed by a

delicate analysis of the corresponding parameters in the environment of Lie rings.

Although Theorem 2.1 might lead the reader to the expectation that ‘all’ the parameters of G and

CG(H) must be the same, this is not true for the nilpotency class and exponent, as shown by an example in

[1]. It must be mentioned, however, that there are only a few examples of this kind, which cannot support the

conjecture that both the nilpotency class and the exponent of G can be arbitrarily larger than those of CG(H)

— of course, with larger complements H . It is also worth mentioning that the additional condition of FH

being metacyclic is essential in Theorem 2.2, as shown by examples. It is conjectured that this condition can

be dropped in Theorem 2.3, but so far a corresponding result was only proved for |FH| = 12 by Shumyatsky

[17]. It is also conjectured that in Theorem 2.3 the dependence on |F | can be replaced by dependence on |H| .
It is now natural to ask what can be said without the assumption that CG(F ) = 1. In this direction

Khukhro obtained upper bounds for some parameters of the group G in terms of |H| and those of CG(H) in

[12]. Namely, he proved the following theorem, in which r(G) denotes the rank of a group G , that is, the least

number r such that every subgroup of G can be generated by r elements.

Theorem 2.4 Assuming Hypothesis I and that (|G|, |FH|) = 1 we have

1. |G| ⩽ |CG(F )| · f(|H|, |CG(H)|) and

2. r(G) ⩽ r(CG(F )) + g(|H|, r(CG(H))) ,

for some functions f and g .
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In view of these positive results one can also ask whether it could be possible to prove parts (1) and (2)

of Theorem 2.1 under the weaker assumption that [G,F ] = G . However, the answer is negative as the following

example due to Khukhro shows.

Example 2.5 Let FH be the Frobenius group of order 6 , K = LM be the Frobenius group of order 55 , and

T be the elementary abelian group of order 72 . We can define actions of FH on K and T by automorphisms

so that the following hold: F acts trivially on K and fixed-point-freely on T ; and H acts trivially on M and

fixed-point-freely on L ; and on T by transposing a basis of T so that |CT (H)| = 7 . We now define an action

of FH on the wreath product of K and T , by defining the action of TFH as in “non-commutative induced

representation”. The base subgroup of the wreath product is B = Kt1 × Kt2 × · · · × Kt49 , where 1 = t1 and

{ti | i = 1, 2, . . . , 49} = T . We define the action as (kt)a = (ka)t
a

for any k ∈ K, t ∈ T, a ∈ FH .

Let U = BT . Clearly FH acts on U . We let G = [U,F ] . The subgroup CU (H) contains the

Sylow 5-subgroup M t of Kt for every t ∈ CT (H) . These M t, t ∈ CT (H) are in F (CU (H)) , since for

t ∈ CT (H) , the group H normalizes Lt without fixed-points and M t centralizes Ks for any t ̸= s ∈ T .

Clearly T = [T, F ], T < G and G � U . Therefore, G contains [Kt, s] for any t, s ∈ T . Taking s, t ∈ CT (H)

and 1 ̸= m ∈ M we obtain in G the element [mt, s] = (m−1)tmts of order 5 in M t × M ts , which lies in

F (CG(H)) . However, for 1 ̸= x ∈ L , the element (m−1)tmts acts nontrivially on ⟨x−txts⟩ ⩽ [Lt, s] ⩽ G , and

hence (m−1)tmts is not in F (G) . Thus, F (CG(H)) ̸⩽ F (G)

Therefore, the following result of [6] seems to be interesting.

Theorem 2.6 Assume Hypothesis I. If (|G|, |FH|) = 1, [G,F ] = G , and CG(F )H is a Frobenius group with

kernel CG(F ) and complement H , then the Fitting height of G is equal to the Fitting height of CG(H) .

Here the condition that CG(F )H is a Frobenius group with kernel CG(F ) and complement H implies,

of course, that not necessarily F but FH acts fixed-point-freely on G . One can ask further whether the same

conclusion is true under the assumption that FH acts fixed-point-freely on G , and whether the coprimeness

condition (|G|, |FH|) = 1 could be dropped.

Other recent results on the structure of groups admitting the action of a Frobenius group with a not

necessarily fixed-point-free kernel are the following theorems due to Khukhro and Makarenko [13,14].

Theorem 2.7 Assume Hypothesis I, assume that CG(H) is nilpotent of class c and (|G|, |FH|) = 1 .

(a) Then G has a nilpotent characteristic subgroup of index bounded in terms of |CG(F )| and |F | .
(b) If in addition F is cyclic, then this subgroup can be chosen to be of index bounded in terms of c ,

|CG(F )| , and |F | and to have nilpotency class bounded in terms of c and |H| only.

As already mentioned above, the additional condition of F being cyclic cannot be dropped in part (b),

even in the case of a fixed-point-free kernel.

Theorem 2.8 Suppose that a finite p-group P admits a Frobenius group FH of automorphisms with cyclic

kernel F of order pk . Let c be the nilpotency class of the fixed-point subgroup CP (H) of the complement. Then

(a) P has a characteristic subgroup P1 of index bounded in terms of c , |F | , and |CP (F )| whose nilpotency

class is bounded in terms of c and |H| only.
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(b) P has a characteristic subgroup P2 of index bounded in terms of |F | and |CP (F )| such that

(i) |P2| ⩽ |CP (H)||H| ;

(ii) r(P2) ⩽ |H| · r(CP (H)) ;

(iii) the exponent of P2 is at most p2e , where pe is the exponent of CP (H) .

3. Frobenius-like groups

It is a natural and important problem to extend the results on Frobenius groups of automorphisms to more

general situations, both from the viewpoint of (a) relaxing the strong conditions on the action of the kernel and

(b) relaxing the conditions on the structure of the group FH itself. As for (a), we saw theorems in Section 2

for a Frobenius group of automorphisms FH under various weaker assumptions. In this section we consider

part (b) of this program.

As explained in the Introduction, the concept of a Frobenius-like group was defined during some efforts

to understand the real relation between the hypotheses on the acting group FH and its conclusions presented

in Section 2. Weakening the condition that FH is a Frobenius group to assuming only that FH is a Frobenius-

like group seems to be a very significant generalization, because Frobenius-like groups are much more probable

to be encountered in practice. Even if one cannot make use of the full generality of being Frobenius-like, but

understands only the case where F is a special group or even an extraspecial group, one gains an important

amount of information and methods in analyzing the structure of finite solvable groups with a prescribed

subgroup of the group of automorphisms. Indeed, reduction arguments applied while studying the structure

of minimal counterexamples often lead us to extraspecial groups F on which a group H acts in such a way

that H centralizes Z(F ) and acts semiregularly on the Frattini quotient group of F , so that FH becomes a

Frobenius-like group.

It is worth mentioning that the first difficulty arising in this context when FH is not a Frobenius group

is the fact that a kFH -module V on which F acts fixed-point-freely no longer must be a free kH -module.

However, the work by Ercan and Güloğlu in [2, Theorem A] shows that it is not very far from being free, at least

for certain Frobenius-like groups, in the sense that it contains a regular kH -module that guarantees that CV (H)

is nontrivial. Namely, Theorem A in [2] is proved by reducing the structure of a minimal counterexample to a

very restricted configuration and deducing a contradiction by proving the following theorem [2, Proposition C]

on representations of some specific groups having a normal extraspecial subgroup, which is also of independent

interest.

Theorem 3.1 Let H be a group in which each Sylow subgroup is cyclic. Assume that H /F (H ) is not a

nontrivial 2-group. Let P be an extraspecial group of order p2m+1 for some prime p not dividing |H| . Suppose

that H acts on P in such a way that H centralizes Z(P ) , and [P, h] = P for any nonidentity element h ∈ H .

Let k be an algebraically closed field of characteristic not dividing the order of G = PH and let V be a kG-

module on which Z(P ) acts nontrivially and P acts irreducibly. Let χ be the character of G afforded by V .

Then |H| divides pm− δ and χH = pm−δ
|H| ρ+ δµ , where ρ is the regular character of H , µ is a linear character

of H , and δ ∈ {−1, 1} .

This theorem can be regarded as a generalization of the classical result in [8, Satz V.17.13], and is proved

along the same lines as in its proof due to Dade. As an immediate consequence of Theorem 3.1 we have the

following.
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Corollary 3.2 Under the hypotheses and notation of Theorem 3.1, the module VH contains a regular kH -

submodule as a direct summand if and only if |H| ̸= pm + 1 . In particular, if FH is of odd order, then VH

contains a regular kH -submodule.

We now consider the following complicated-looking hypothesis introduced in [4]. It is formulated to

avoid the so-called exceptional cases, which possibly occur in Hall–Higman type arguments, and is slightly more

general than assuming that FH is of odd order as in the hypothesis of Theorem A in [2].

Hypothesis 2 FH is a Frobenius-like group with kernel F and complement H such that a Sylow 2-subgroup

of H is cyclic and normal, and F has no extraspecial sections of order p2m+1 such that pm + 1 = |H1| for

some subgroup H1 ⩽ H .

One can prove the following theorem by repeating word-for-word the proof of [2, Theorem A] (where

|FH| was odd).

Theorem 3.3 Let V be a nonzero vector space over an algebraically closed field k and let FH be a Frobenius-

like group satisfying Hypothesis II and acting on V as a group of linear transformations such that char(k) does

not divide the order of H . Then VH has an H -regular direct summand if one of the following holds:

1. CV (F ) = 0 ,

2. [V, F ] ̸= 0 and char(k) does not divide the order of F .

The upshot for the action of a Frobenius-like group satisfying Hypothesis II on a finite solvable group G

is the following.

Corollary 3.4 Let G be a finite solvable group acted on coprimely by a Frobenius-like group FH satisfying

Hypothesis II so that [G,F ] ̸= 1 . Then CG(H) ̸= 1 .

This corollary is used in the proof of the following main result of [3].

Theorem 3.5 Let G be a finite group admitting a Frobenius-like group of automorphisms FH satisfying

Hypothesis II such that [F, F ] is of prime order and [[F, F ],H] = 1 . Assume further that (|G|, |H|) = 1

and CG(F ) = 1 . Then

1. the Fitting series of CG(H) coincides with the intersections of CG(H) with the Fitting series of G ;

2. the Fitting height of G is equal to the Fitting height of CG(H) .

Exactly as in [11] one can deduce the corresponding theorem about π -series. Here Oπ(G) is the largest

normal π -subgroup of a group G , for some set of primes π .

Theorem 3.6 Let G be a finite group admitting a Frobenius-like group of automorphisms FH satisfying

Hypothesis II such that [F, F ] is of prime order and [[F, F ],H] = 1 . Assume further that (|G|, |H|) = 1

and CG(F ) = 1 . Then we have

1. Oπ(CG(H)) = Oπ(G) ∩ CG(H) for any set of primes π ,
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2. the π -length of G is equal to the π -length of CG(H) ,

3. Oπ1,π2,...,πk
(CG(H)) = Oπ1,π2,...,πk

(G) ∩ CG(H) , where πi is a set of primes for each i = 1, . . . , k .

As the example in [3] shows, the fixed-point-freeness of F on G in the hypothesis of Theorem 3.5 seems

to be essential to conclude that F (G) ∩ CG(H) = F (CG(H)), and one cannot even replace the condition

CG(F ) = 1 by the condition that CCG(F )(h) = 1 for all nonidentity elements h ∈ H , in contrast to Theorem

2.5.

One can obtain similar bounds for some parameters of the group G as in the case where FH is a

Frobenius group. Namely we have the following result obtained in [4].

Theorem 3.7 Let FH be a Frobenius-like group with kernel F and complement H satisfying Hypothesis II.

Let P be a finite p-group admitting FH as a group of automorphisms of coprime order so that [P, F ] = P .

Then

1. the nilpotency class of P is at most 2 log
p
|CP (H)| ,

2. |P | is bounded in terms of |H| and |CP (H)| ,

3. the rank of P is bounded in terms of |H| and the rank of CP (H) .

Recall that the rank of a group K denoted by r(K) is the smallest integer s such that every subgroup of

K can be generated by s elements. With this notation the above theorem leads to an analogue of Theorem 2.6

for Frobenius-like groups; namely we have the following result obtained in [4].

Theorem 3.8 Let FH be a Frobenius-like group with kernel F and complement H satisfying Hypothesis II.

If a finite group G admits FH as a group of automorphisms of coprime order, then

1. |G| ⩽ |CG(F )| · f(|H|, |CG(H)|) and

2. r(G) ⩽ r(CG(F )) + g(|H|, r(CG(H))) for some functions f and g .

We present below a result of different nature that is the most recent theorem in this context and appears

as the main theorem in [5].

Theorem 3.9 Let FH be a Frobenius-like group satisfying Hypothesis II acting faithfully by linear transfor-

mations on a vector space V over a field k of characteristic that does not divide |FH| . Then F is solvable of

derived length at most log2 m+ 2 , where m = dimk CV (H) .

Here the function log2 m+2 is well defined due to the fact that m ̸= 0 by Corollary 3.4. Notice also that

the bound for the derived length is independent of H . Finally, it should be noted that additional conditions

like Hypothesis II cannot be dropped as shown in Remark 2.4 in [5].
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4. Frobenius-like group of automorphisms with fixed-point-free almost extraspecial kernel

In this section we prove a new theorem on almost nilpotency of a finite group admitting a Frobenius-like group

of automorphisms with fixed-point-free almost extraspecial kernel, which generalizes Theorem 2.7(a). The proof

relies on the following generalization of a basic proposition that is essentially used in proving parts (1), (2) of

Theorem 2.1 and Theorems 2.6, 2.7, 3.5, 3.6 stated in the previous sections.

Proposition 4.1 Let FH be a Frobenius-like group satisfying Hypothesis II such that [F, F ] is of prime order

and [[F, F ],H] = 1 . Suppose that FH acts on a q -group Q of class at most 2 for some odd prime q coprime to

the order of FH . Let V be a kQFH -module where k is a field of characteristic not dividing |QFH| . Suppose

further that CV (F ) = 1 . Then we have Ker(C[Q,F ](H) onCV (H)) = Ker(C[Q,F ](H) onV ) .

Here we use alternative notation for the kernel of an action of a group A by automorphisms on a group

B denoting Ker(AonB) := CA(B) in order to avoid cumbersome subscripts.

Proof Suppose the proposition is false and choose a counterexample with minimum dimk V + |QFH| . To

ease the notation we set K = Ker(C[Q,F ](H) onCV (H)). We proceed in several steps. 2

(1) We may assume that k is a splitting field for all subgroups of QFH .

Proof We consider the QFH -module V̄ = V ⊗k k̄ , where k̄ is the algebraic closure of k. Notice that

dimkV = dimk̄V̄ and CV̄ (H) = CV (H) ⊗k k̄ . Therefore, once the proposition has been proven for the group

QFH on V̄ , it becomes true for QFH on V also. 2

(2) We have Q = [Q,F ] and hence CQ(F ) ⩽ Q′ ⩽ Z(Q) .

Proof We may assume that [Q,F ] acts nontrivially on V. If [Q,F ] ̸= Q , then the proposition holds by

induction for the group [Q,F ]FH on V . Since [Q,F, F ] = [Q,F ] due to the coprime action of F on Q , the

conclusion of the proposition is true. This contradiction shows that [Q,F ] = Q and hence CQ(F ) ⩽ Q′ ⩽ Z(Q).
2

(3) V is an irreducible QFH -module on which Q acts faithfully.

Proof As char(k) is coprime to the order of Q and K ̸= 1, there is a QFH -composition factor W of V on

which K acts nontrivially. If W ̸= V , then the proposition is true for the group QFH on W by induction.

That is,

Ker(CQ(H) onCW (H)) = Ker(CQ(H) onW )

and hence

K = Ker(K onCW (H)) = Ker(K onW ),

which is a contradiction with the assumption that K acts nontrivially on W. Hence V = W .

We next set Q = Q/Ker(Q on V ) and consider the action of the group QFH on V , assuming Ker(Q

on V ) ̸= 1. An induction argument gives

Ker(CQ(H) onCV (H)) = Ker(CQ(H) onV ),

which leads to a contradiction as CQ(H) = CQ(H). Thus we may assume that Q acts faithfully on V. 2

By Clifford’s theorem the restriction of the QFH -module V to the normal subgroup Q is a direct sum

of Q-homogeneous components.
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(4) Let Ω denote the set of Q-homogeneous components of V . Then F acts transitively on Ω and H

fixes an element of Ω.

Proof Let Ω1 be an F -orbit on Ω and set H1 = StabH(Ω1). Suppose first that H1 = 1. Pick an element

W from Ω1. Clearly, we have StabH(W ) ⩽ H1 = 1 and hence the sum X =
∑

h∈H Wh is direct. It is

straightforward to verify that CX(H) =
{∑

h∈H vh : v ∈ W
}
. By definition, K acts trivially on CX(H). Note

also that K normalizes each Wh as K ⩽ Q . It follows now that K is trivial on X. Notice that the action of

H on the set of F -orbits on Ω is transitive, and K ⩽ CQ(H). Hence K is trivial on the whole of V contrary

to (3). Thus H1 ̸= 1.

The group H acts transitively on {Ωi : i = 1, 2, . . . , s} , the collection of F -orbits on Ω. Let now

Vi =
⊕

W∈Ωi
W for i = 1, 2, . . . , s. Suppose that H1 is a proper subgroup of H, equivalently, s > 1. By

induction the proposition holds for the group QFH1 on V1 , that is,

Ker(CQ(H1) onCV1(H1)) = Ker(CQ(H1) onV1).

In particular, we have

Ker(CQ(H) onCV1(H1)) = Ker(CQ(H) onV1).

On the other hand, we observe that

CV (H) = {ux1 + ux2 + · · ·+ uxs : u ∈ CV1(H1)} ,

where x1, . . . , xs is a complete set of right coset representatives of H1 in H . By definition, K acts trivially on

CV (H) and normalizes each Vi . Then K is trivial on CV1(H1) and hence on V1. As K is normalized by H we

see that K is trivial on each Vi and hence on V contrary to (3). Therefore, H1 = H and F acts transitively

on Ω so that Ω = Ω1 as desired.

Let now S = StabFH(W ) and F1 = F ∩S . Then |F : F1| = |Ω| = |FH : S| and so |S : F1| = |H| . Notice

next that as (|F1|, |H|) = 1 there exists a complement, say S1 , of F1 in S with |H| = |S1| by Schur–Zassenhaus

theorem. Therefore by passing, if necessary, to a conjugate of W in Ω, we may assume that S = F1H, that is,

W is H -invariant. This establishes the claim. 2

From now on W will denote an H -invariant element in Ω the existence of which is established by (4).

It should be noted that the group Z(Q/CQ(W )) acts by scalars on the homogeneous Q-module W , and so

[Z(Q),H] ⩽ CQ(W ) as W is stabilized by H. Set L = K ∩ Z(CQ(H)). Since 1 ̸= K ⊴ CQ(H), the group L

is nontrivial. To simplify the notation we set F0 = [F, F ].

(5) Set U =
∑

x∈F0
W x and F2 = StabF (U) . Then [L,Q] ⩽ CQ(U) .

Proof Note that Z2(Q) = Q by the hypothesis and Q = [Q,H]CQ(H) as (|Q| , |H|) = 1. We have

[Q,L,H] ⩽ [Z(Q),H] ⩽ CQ(W ). We also have [L,H,Q] = 1 as [L,H] = 1. It follows now by the 3-

subgroup lemma that [H,Q,L] ⩽ CQ(W ). On the other hand, [CQ(H), L] = 1 by the definition of L . Thus

[L,Q] ⩽ CQ(W ). Since the group [L,Q] is F0 -invariant as [F0, H] = 1, we conclude that [L,Q] ⩽ CQ(U). 2

(6) F2 = F1F0 is a proper subgroup of F , and Kx acts trivially on U for every x ∈ F −F2. Moreover,

CV (H) ̸= 0.

Proof For F2 = StabF (U), clearly we have F0 ⩽ F2 and F1 = StabF (W ) ⩽ F2. Assume that F = F2 . This

forces the equality V = U as F is transitive on Ω by (4). In fact we have F = F1 = F2 and so V = W = U as
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F0 ⩽ Φ(F ). Then [LF2 , Q] ⩽ CQ(V ) = 1 by (5) and hence LF2 ⩽ Z(Q). Now Z(Q/CQ(W )) and hence L acts

by scalars on the homogeneous Q-module V . Notice that CV (H) ̸= 0 by Theorem 3.3 applied to the action of

FH on V. Since L acts faithfully and by scalars on V , we get L = 1, which is not the case. Consequently, in

any case F ̸= F2.

Pick x ∈ F − F2 and suppose that there exists 1 ̸= h ∈ H such that (Ux)h = Ux holds. Then

[h, x−1] ∈ F2 and so F2x = F2x
h = (F2x)

h , implying the existence of an element g ∈ F2x ∩ CF (h) by [[8],

Kapitel I, 18.6] by coprimeness. The Frobenius action of H on F/F2 gives that x ∈ F2 , a contradiction. That

is, for each x ∈ F − F2 , StabH(Ux) = 1. In particular, H−orbit of Ux is regular and hence we conclude that

CV (H) ̸= 0.

Set now U1 = Ux for some x ∈ F − F2 . The sum Y =
∑

h∈H U1
h is direct by the preceding paragraph.

It is straightforward to verify that CY (H) =
{∑

h∈H vh : v ∈ U1

}
. By definition, K acts trivially on CY (H).

Note also that K normalizes each U1
h for every h ∈ H as K ⩽ Q . It follows now that K is trivial on Y and

hence trivial on Ux for every x ∈ F − F2 , which is equivalent to Kx acting trivially on U for all x ∈ F − F2

as desired. 2

(7) L ⩽ Z(Q) and hence the group LCQ(W )/CQ(W ) acts by scalars on W.

Proof Recall that [L,Q] ⩽ CQ(U) by (5). This gives [LF2 , Q] ⩽ CQ(U). On the other hand, [Lx, Q] ⩽
[CQ(U), Q] ⩽ CQ(U) for any x ∈ F − F2 by (6). Then we have [LF , Q] ⩽ CQ(U). It follows that [LF , Q] = 1,

that is LF ⩽ Z(Q). 2

(8) CU (H) = 0, [U, [F2,H]] = 0, and hence [Q, [F2, H]] ⩽ CQ(U).

Proof It should be noted that the group [F2, H]H is Frobenius-like. If [U, [F2,H]] ̸= 0 then Theorem 3.3

applied to the action of [F2,H]H on U gives that CU (H) ̸= 0. This forces that CW (H) ̸= 0 and hence L acts

trivially on W , which is a contradiction. Therefore, we have CU (H) = 0 and [U, [F2,H]] = 0. As a consequence,

[U, [F2,H], Q] = 0 = [Q,U, [F2,H]] . It follows by the 3-subgroup lemma that [Q, [F2,H]] ⩽ CQ(U). 2

(9) [F2,H] = [F1,H] and [F1,H] ∩ F0 = 1

Proof By (8), [F1,H] ∩ F0 ⩽ CZ(F )(W ) and hence trivial. 2

(10) If F1 ̸= F2 then the theorem follows.

Proof Suppose that F1 ̸= F2 = F1F0 . Since F0 is of prime order, F0 ∩ F1 = 1 and hence F1 = [F1, H] . By

(8), [W,F1] = 0. However, CW (F1) = 0 as CV (F ) = 0. This contradiction establishes the claim. 2

(11) [Q,F1] = 1

Proof Assume the contrary. Note that F1 = F2 = [F1,H]F0. In the case CW (F0) ̸= 0 we apply Lemma

1.3 in [15] to the action of the Frobenius group (F2/F0)H on CW (F0) and see that CW (F0)|H is free. Since

CW (H) = 0 by (8) we must have CW (F0) = 0. Suppose now that [Q,F0] is not contained in CQ(W ). Then

the group [Q,F0]F0 is Frobenius-like and it satisfies Hypothesis II as q is odd. This forces by Theorem 3.3 that

CW (F0) ̸= 0. This contradiction shows that [Q,F0] ⩽ CQ(W ) and hence [Q,F0] = 1. By (8) [Q,F1] ⩽ CQ(W ).

As F1 � F we get [Q,F1] ⩽ CQ(V ) = 1. 2

(12) Final contradiction.

Proof By (7), LF ⩽ Z(Q). Suppose that [LF , F ] is not contained in CQ(W ) and let z ∈ [LF , F ]− CQ(W ).

It follows now that
∏

f∈F zf is a well defined element of Q which lies in C[LF ,F ](F ) = 1. Thus, by (7), we have
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1 =
∏
f∈F

zf = (
∏
f∈F1

zf )(
∏

f∈F−F1

zf ) ∈ (
∏
f∈F1

zf )CQ(W ).

On the other hand, we have [Q,F1] = 1 by (11). That is (
∏

f∈F1
zf )CQ(W ) = z|F1|CQ(W ) and so

z ∈ CQ(W ) as |F1| is coprime to |z| . This contradiction shows that [LF , F ] ⩽ CQ(W ), in fact [LF , F ] = 1. As

a consequence, L ⩽ Z(QFH) and so CV (L) is QFH -invariant. This leads to the contradiction that [V, L] = 0

as 0 ̸= CV (H) ⩽ CV (L). 2

We can now obtain an analogue of Proposition 2.11 in [13].

Proposition 4.2 Let G be a finite solvable group admitting a Frobenius-like group FH of automorphisms of

coprime order satisfying Hypothesis II with kernel F and complement H such that [F, F ] is of prime order and

[[F, F ],H] = 1 . Assume that V = F (G) = Op(G) is an elementary abelian p-group and CG(H) is nilpotent of

odd order. If CV (F ) = 1 , then G = V CG(F ) .

Proof The group Ḡ = G/V acts faithfully on V . Assume that F acts nontrivially on F (Ḡ) = S/V . Then we

see by a Hall–Higman type reduction that there exists an FH -invariant nontrivial q -subgroup Q of S of class

at most 2 with [Q,F ] = Q . It follows by Corollary 3.4 applied to the action of FH on Q that CQ(H) ̸= 0.

The same corollary applied to the action of FH on V gives CV (H) ̸= 0, too. Since CG(H) is nilpotent

we conclude that CQ(H) centralizes CV (H), contrary to Theorem 4.1. Thus F is trivial on F (Ḡ). Then

[F, F (Ḡ), Ḡ] = 1̄ = [F (Ḡ), Ḡ, F ] . It follows now by the 3-subgroup lemma that [Ḡ, F ] ⩽ CḠ(F (Ḡ)) ⩽ F (Ḡ).

Hence [Ḡ, F ] = 1̄ as [Ḡ, F ] = [Ḡ, F, F ] by coprimeness. 2

Theorem 4.3 Let G be a finite group admitting a Frobenius-like group FH of automorphisms of coprime order

satisfying Hypothesis II with kernel F and complement H such that [F, F ] is of prime order and [[F, F ], H] = 1 .

Suppose that the fixed-point subgroup CG(H) of the complement is nilpotent of odd order. Then the index of

the Fitting subgroup F (G) is bounded in terms of |CG(F )| and |F | .

Proof This can be proven as in Theorem 2.1 in [13] by the replacement of Proposition 2.11 in [13] by Propo-

sition 4.2 above. 2
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[3] Ercan G, Güloğlu İŞ. Action of a Frobenius-like group with fixed-point-free kernel. J Group Theory doi: 10.1515/jgt-

2014-0002.
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