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OBJECTIVES OF THE PROJECT

- To develop software tools for robust control design of highly uncertain systems involving the QFT
method.

- To carry out acomprehensive case study and illustrate the method via appropriate examples.

- To automate the control design (loop shaping) stage using optimisation techniques



ABSTRACT

This report outlines the full work on the final year project. The project’s title is ‘CAD for robust
control using the QFT design method ’. The aim of the project isto develop software tools, suitable
for the robust control design of highly uncertain SISO systems. The design of these systems is
based on | Horowitz s QFT method. This is a frequency domain loop-shaping design technique,
which is fully described in Chapter 2. The report is a step-by-step guide to the design. It includes an
introduction to control and robust systems, an explanation of the QFT method, and the problem
definition of the design using an illustrative example. It continues with designs of phase lead and
lag compensators via graphical techniques. Next the application of optimisation methods for the
design of optimal PD and PID controllers is discussed. Designing an appropriate pre-filter
completes the design procedure. Finally, a number of simulations show that the design technique
was successful and meets the given specifications. The report concludes with a summary of the
project work and its results and suggests future directions, which can be followed in order to
improve certain aspects of the design. The Appendix summarises aspects of the theories used for the

purposes of the project and alist of Matlab files created and used.
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CHAPTER ONE

INTRODUCTION TO CONTROL SYSTEMS, UNCERTAINTY AND ROBUST CONTROL

1.1 Control Systems

There are two types of Control Systems, Open Loop & Closed Loop Systems illustrated in

figure 1.1.A:

Input R
(1) b p| Controller

Input R +

Output Y

Plant L5

Controller

Output Y

Plant >

Figure 1.1.A: (1) Open loop and (2) Closed Loop Systems

In the case of open loop systems, the output has no effect on the input signal. In the case of closed
loop systems, however the output through the feedback element affects the input signal, ideally ‘in
such a manner asto maintain the desired output value' [Ref.1]. The feedback element ‘ provides the
means for feeding back the output signal, in order to compare it with the reference input signal’
[Ref.1]. Often, undesirable external input signals can enter the feedback loop and they have effects
on the output (Open-Loop systems) or on both the output and the input (Closed-Loop systems). One
type of such signals, are external disturbances. Figure 1.1.B, shows an external step disturbance

signal entering at the plant’s outpuit:
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Input R . Output Y
( 1) > Controller > Plant >
+
D l
Input R . . Output Y
Controller > Plant >
2 B -
Feedback <
Element

1 ) ) . .
The Disturbance input isusually a step input.

Figure 1.1.B: (1) Open loop and (2) Closed loop systems, with external disturbance

From the above figure, in the Open loop system, the disturbance appears directly on the output and
as a result it cannot be attenuated by means of the controller. In the Closed loop system however,
the disturbance affects both the output and the input signals. It is thus possible to reduce its effect
on the output by designing a controller K(s) appropriately.

In addition to disturbance rejection the control system should also have good tracking properties
(the output should follow the reference input fast and accurately with small steady state errors
{s.s.e}) and also good stability margins.

1.2 Uncertainty and Robust Control
The design of a control system according to classical methods assumes full knowledge of the plant
and the controller. In practical systems, however, the plant model will always be an inaccurate

representation of the actual physical system due to:
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- Parameter changes
- Unmodeled dynamics
- Unmodeled time delays

- Changes in equilibrium point (operating point)

Table 1.2.a: Reasons of inaccurate representation of a practical physical system, by a plant
model

Robust Control methods address the problem of uncertainty systematically. They aim to maintain
adequate performance and stability margins despite the presence of uncertainty in the dynamics of
the plant. For the purposes of this project QFT was used in the design and analysis of control
systems characterised by significant uncertainty and undesired external inputs [Ref.1,2,3,4]. A

robust control system has the following characteristics:

- Low sensitivities to parameter changes
- Closed loop gability is maintained within the range of parameter change

- Its performance does not deteriorate rapidly with parameter change

Table 1.2.b: Characteristics of a Robust Control System

The meaning of the above termsiisillustrated in the example of figure 1.2.A:

ES
System_ D(s)
RI Dynamics
R
© + + Y(s)
> Pre-Filter Controller > Plant
F(s) K(s) G(s) >

Figure 1.2.A: TDF control system plus external disturbance at the output of the plant.



Chapter One Introduction to Control Systems, Uncertainty and Robust Control

The main example of a plant model? that considered in this report is taken as the following second

order system:

G(s) =

K& \here kO[L10] and a0[110] (1)
s(s+a)

This model is simply used to illustrate the design method. The software developed was written with
general SISO plants in mind [Ref.1]. In equation (1), k and a are uncertain but constant parameters

varying in the given ranges. The region of plant uncertainty is shown in figure 1.2.B:

Figure 1.2.B: Region of plant uncertainty (known as Parameter Space)

Note that this plant has significant uncertainty due to the range of its uncertain parameters. Since
the parameters a and k can vary simultaneously, the plant exhibits both gain and phase uncertainty
in the frequency domain. The main objective of robust control in this case is to maintain the
stability and performance properties of the closed loop system, as a and k vary in the indicated

ranges.

% In Chapter Four, other plant models are used to illustrate the performance of the design
methods.



CHAPTER TWO

QUANTITATIVE FEEDBACK THEORY

2.1 The Development of QFT

QFT is afrequency domain loop shaping design method [Ref.1,2,3,4]. | M Horowitz proposed this
method in 1969 and since then it has been developed for SISO, MISO and MIMO LTI uncertain
plants. In addition, the method has also been extended to non-linear and time-varying systems. QFT
is a systematic design methodology for systems characterised by significant parameter uncertainty.>

2.2 Design method (Problem Definition)
QFT emphasises the use of feedback in order to achieve adequate robust system performance
tolerances despite the presence of plant uncertainty and disturbance signals. It formulates, by

guantitative means, the design objectives in terms of the following sets [Ref.1]:

1. Tr={Tgr} and Tp ={Tp}, acceptable tracking input-output bounds and acceptable disturbance
output bounds, respectively, typically defined in the frequency domain (i.e. in terms of
magnitude Bode plots).

2. P = {P}, possible uncertain plants, defined either in the frequency domain (‘uncertainty

templates’) or in the parameter-space.

The objective is to guarantee that the control ratio Tr (between the reference input and the system’s
output) will exist within the bounds Tg; and that the ratio T (between the disturbance input and the
system’s output) will exist within the bounds Tp, for all P in P. Thus, the technique proposes that
the designed system has to meet the tracking specifications and has to reject the disturbance input
for all possible plants. For the purposes of this project, QFT theory is applied to a SISO system,
which includes external disturbance input.* For illustration purposes the TDF unity feedback
cascade compensated system of figure 1.2.A will be used. The plant model is given by equation (1)
and the parameter space is shown in figure 1.2. The reference and the disturbance signals are both
unit step inputs { R,=1, D=1} .

® There are dternative techniques with the same aim, i.e. H., optimal control

* The system can be described as a pseudo-MISO system due to the existence of the external
disturbance, although MISO systems are normally characterised by the presence of multiple reference
inputs
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2.3 Design specifications (Tracking M odels)

The closed loop system has to satisfy a number of specifications. These correspond to the closed
loop time responses to specific reference or disturbance input signals. For the purpose of QFT these
are firgt translated in the frequency domain. The tracking control ratio models are based on asimple
second order system and are synthesised in order to specify time and gain tolerance responses
(under-damped and over-damped conditions) [Appendix A] [Ref.1]. In this case the upper and

lower bounds of the tracking control ratios{ Tr(s)} are shown below:

Upper tracking bound, under-damped with peak gain Mp=1.2 (approx. 20% overshoot) and with
settling time t=2 sec.
0.6584(s+ 30)

T: ()= 2
7 (9 (s+2+ 3.969) @
Lower tracking bound, over-damped with settling time ts=2 sec.
8400
Ts (8) =
R )= 5335+ 2)(5+10)(5+70) (3)

The zero a s=-30 {term (s+30)} in (1) and the pole at s=-70 {term (s+70)} in (2), were introduced
because the difference between the upper and the lower tracking bounds at high frequencies
AR(j a)ur needs to be wider compared to the high frequency model uncertainty. Figures 2.3.A and
2.3.B show the time domain step responses and the frequency domain responses, of the upper and
lower bounds, respectively.
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The difference between the upper and lower bounds J&k(jw) in figure 3.2.B, for eight chosen

frequenciesisgivenin Table 2.3.a

Freguencies (rads/sec) 05 |10 |20 (30 |50 |100 |30.0 |60.0
Difference dr(jw) (dBs) 0.26 | 1.03 | 3.72 | 7.14 | 10.57| 9.85 | 18.30| 29.45

Table 2.3.a: Tracking specifications dr(jwi), i = 1,2,3,... (in dBs)

Function track_ul() was used to produce the frequency and time domain step responses of the

upper and lower models.

2.4 Translation of Parameter Space Uncertainty into Uncertainty Templates

QFT assumes that the plant uncertainty can be represented by a set of templates on the complex
plane, known as uncertainty templates [Ref.1]. Each template encloses all the possible frequency
responses of the plant for a specific frequency w. As an example, eight frequencies are considered
w={0.5,12, 3,5, 10, 30, 60} rads/sec and as a result eight uncertainty templates will be formed.
The complex plane, on which the uncertainty templates are displayed, is known as the Nichols
Chart (NC). It represents the open loop gain of a system in dBs versus the open loop phase of the
system in degrees, in the frequency domain. One uncertainty template, in this case for w=5

rads/sec, is shown in figure 2.4.A:

10 T T T T T T
5,_______:________._______,_______.________E _____ : Y
= L ETETEHE
DR i et i _|___+__£_&__$_+_—h:1‘_1_ﬂ_+4&+t_____
: + 3 T X 0 T+ 8T e
L + T 1% i#*lli++++*f‘.++*
B R D e i TRt e ey S, T - . -
= ; ‘f T i i b __: + R e A
=] e S + T : 1
4—% S | e :_3_____1__ Iz___"_'___T___:l-____:____F__F__F:_'__+:|—_-|:—|_—’J,:"_"f1__ _____
Y S TR R 1 : :
L ] :
& -15}------- SEa T e s Bamnes o e < s aan e
:_|_ -+ o -
) RS AL S SO = S5, B IERSESUE SESEEUT SESERES
|+ = - I
e il < i G T DIl DB et e e
30 1 1 L 1 1 1
=181 =170 ="VGiL) =150 =140 =130 =120 =170
Fhase (degrees)

Figure 2.4.A: Uncertainty template for ws=5 rads/sec and Nominal plant, on the NC.

8
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Generally, uncertainty templates on the NC can be translated to the open loop transmission function
of the system, L(j a)=G(j WK(j &) viathe controller K(s). The variation of L(ja) can be assumed to
be the same as the variation of G(ja) for all its possible values at any specific frequency. This is
because the compensator K(ja) is assumed to be fixed. The nominal L(j«), indicated by Lo(j a),
arises from a controller K(s)=1 and the subgtitution for k=1 and a=1 which corresponds to our
choice of nominal plant. Although this choice is arbitrary (any fixed a and k combination would be
acceptable) it is considered good practice to select the nominal plant which has its NC template

point at the lower left corner for all frequencies for which the templates were obtained.

To find the uncertainty templates for the model given in (1), function templ_cs() was used. To
reduce the computational burden of the algorithm, function c_hulll() was used to reduce the
number of the points representing each template. Figure 2.4.B shows the convex hull of the
template of figure 2.4.A.

1[:] T T T T T T
ER A :"'""*."'""*:""'"F """ W """
: : B 1
|:| ________ e _|________'_,.1_-_-"f4-_ﬂ-_____|_ _______ SRR F R SRR
. T : : b
o R ey L e e
[ —5 ________ |___7K__|_______T _______ y TR ==
= § ' ' : ! :
] ;] . : : : Y+
- R o] R e AOCTTTE: DRERESS b ot TR
: : : : : !
o : ; 3 L : :
E_15 ________ T e e e o e A :____:_,___,:"':’_-—? ______
: r : . il :
e (1] TR [ R - “"““'““‘:i:;"'i‘:““"": ________
1 1] ;JI-F;_'_,_,.-'-"""_ : : 1
' P T . —— S —
i i § QT s ey T ,
_30 i ol ‘i ............... i i i i
-180 <170 -160 <150 -140 =130 =120 <110
Fhase (degrees)

Figure 2.4.B: Convex Hull of uncertainty template for «ws=5 rads/sec

The eight uncertainty templates (one for each of the eight selected frequencies) on the NC are
shown in figure 2.4.C. Moreover, the nominal open loop Lo(jw) for K(s)=1 is shown in figure
2.4.D.
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Open-Loop Phase {deq)

4[:] T T T T T T T
20 db
— | -Bdb
% ) =112 db
& .20f --{20 db
-20 T
£
.
5
8.—4[] LA0 db
B R e . R0 db
_8[:] i i I 1 Il 1 1 _8[:] ':ﬁ:'
=350 =300 - 250 =200 =150 =100 =50 i

Figure 2.4.C: NC with uncertainty templates for w;={ 0.5, 1, 2, 3, 5, 10, 30, 60} rads/sec
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Figure 2.4.D: NC with nominal open loop Lo(j &)
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Chapter Two Quantitative Feedback Theory

2.5 Stability Bound or U-Contour

The stability bound or U-contour (sometimes referred to as Universal High Frequency Boundary
UHFB), defines the region of the NC which should not be penetrated by the nominal open loop
system Lo(j =Go(j ) K(j ) at high frequencies. The reason for thisis as follows:

To edtablish minimum damping for the nominal closed loop system it is well known that
Lo(j )=Go(j WK () should not enter an appropriately chosen M-circle (in this case M=1.2)
[Appendix B]. Since,

(a) at high frequencies the uncertainty template becomes a vertical line and

(b) we want to enforce the minimum damping requirement for all plants,

the lowest point of the M-circle must be extended downwards by a gain V which is equal to the gain
uncertainty spread at high frequencies. For example, consider a general system as the one in figure
2.5.A. In this example the uncertainty template is a vertical line of length V dBs and the nominal
open loop response is represented by its lowest point. Then for all uncertain L’s to lie outside the
M=1.2 circle a high frequencies, the nominal open loop response must lie on or below the U-

contour.

4[:' T T T T T T T
eLtl S ¢ en==+7]db
SETSROERREEY Y. -
T ’ = leaimidB
SN ________:__ - .I_.'J AR Uncerlalmy_dqub
_____________________ -______h________'_’fu__,___T?r_npla_‘t_ea_u,-.go db

B
o

Open-Loop Gain (db)
b
o

|
|
"""""""" 4R W B sy B N[0 11015 [

bemm e mmmmeeesT T eSO 60 db

i
i
=

_SD N A L L i 1 1 _8[:’] dl:l
0

-350 -300 -250 -200 -150 -100 -50
COpen-Loop Phase (deq)

Figure 2.5.A: NC with U-contour, example for illustration
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In general, gain V is obtained as.

V =Alogy|L(ja)
or

. . . . 4
V =Alog,o|G(ja)| = I jg[ZOlogloleax(Jw)l —20loglo|Gmm(Jw)|] &

For the model givenin (1), Visfound using (4) as.

V = Al0gyo[G(j &) = 1im|2010;0|Gya, ()] = 201010|Gyin ()|
thus
V = Alog,o|G(jw)| = JJ_TO[Z()'OglO(an)max ~ 20100y, (j&)* ~20l0g;o(kx @) i, +20l0g;o(jw)?

which implies
V =20l0g,,(10x10) — 20l0g,,(1x1) =V =40-0=V =40dBs

Function hf_bound() was used to produce the U-contour for the system in (1), which is shown in
figure 2.5.B

40

20 db

-43 db
16 db

412 db

=

Open-Loop Gain (db)
b
o

_______________________________________________ e A
B T T SR - SO <440 db
.T1] P e L e T 460 db
B350 300 250 200 -150 100 .50 e

COpen-Loop Phase (deq)

Figure 2.5.B: NC with U-contour (m-circle value, M=1.2)
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2.6 Tracking bounds (Horowitz templates)

In order to achieve the closed loop specifications, the plant templates must lie on or above specific
areas on the NC. These areas are in the forms of contours and they are known as Tracking bounds
or Horowitz templates [Ref.1,2,3]. They specify the minimum open loop gain for the system to
achieve the desired robust performance. In the case of the model given in (1) and for the selected
eight frequencies w, eight tracking bounds will be plotted on the NC. Functions hr_bndsl() and
trk_bnds(). Figure 2.6.A displaysthe tracking contours for our system.

4[:] T T T T T T T

20k db
N T J43db
o | ST 46 db
% ___________ - ; =112 db
%—EU e T I e ST = TSl 420 db
L
sl
5
R T T T - - =40 db
)

LI e = e i e T 0 0 0 0 0 e S S 0 =60 db

_8[:] i i 1 I i 1 1 8[:] I:Il:l

<350 =200 290 =200 -150 -100 50 0
Open-Loop Phase (deq)

Figure 2.6.A: NC with Horowitz templates (for eight frequencies)

The Horowitz templates can be obtained from the following considerations:
The control ratio of the system without the presence of the pre-filter is:

L(jw)

N e . (4)
Tlto L(ja))’ where L(jw) =G(jw)K (jw)

Tr(jo) =

13



Chapter Two Quantitative Feedback Theory

The locus of all points [Tr|=M, is known as an M-circle [Appendix B] [Ref.5]. The grid lines shown
in figure 2.6.A, represent the M-circles for different values of M. For each uncertainty template, the

corresponding tracking specification require that:

X T ()] g = Tri (1) g < (1) (5)

With the plant templates placed at any location on the NC, the above condition is equivalent to

M e =M in| < 3(j @) (6)
where Mmax and Mpin denote the maximum and the minimum M-value among all points of the
templates, respectively. Consequently, if at its current location condition (6) is not satisfied, the
open loop gain must be increased. The points defining the Horowitz template (for each phase)
represent the gain at which condition (6) is met with equality. In practice, the Horowitz templates

are calculated in software via a simple bisection algorithm over a finite phase grid.

2.7 Disturbance Rejection

In the presence of external disturbance inputs, the system must not only satisfy the tracking
specifications but also the disturbance rejection specifications in order to have the desired
performance. The disturbance rejection models used are either first or second order systems [Ref.1].
In this case a second order disturbance rejection model is needed to reject the unit step disturbance
input at the output of the plant in figure 1.2.A. The requirement is:

ly(t)<a,, fort=t, (7

where a, and tx are design parameters. For a second order model, the disturbance response in the

time domain is of the form,
y(t) = D,e™* cosbt (8)
The corresponding disturbance rejection model is:

s(s+a)

MD(S):—(S+a)2 b2

(9)

14



Chapter Two Quantitative Feedback Theory

where a= {a and b= ax(1-¢%) Y2, in which a, is the natural frequency and ¢ is the damping factor of
the model. The model parameters can be obtained from the initial value of the disturbance input Do,
the percent undershoot p,, the settling time tx and the maximum gain o of the disturbance response.

It can be easily shown that for this model:

W, = |n(a—pj (10)

{ can be obtained from alook up table and is related to its percent undershoot.

The model in equation (9) also contains a non-dominant zero, which ensures that the final model is
compatible with the degree of the control ratio of the system. Note also that the zero s=0 in (9)
enforces asymptotic rejection to step disturbance inputs.

| the example considered in this project, a second order model is needed with Dy=1, p,=25%,

0,=0.1 and ty=2sec. The following parameters were obtained using function dop_md2a():

h=2.65 rad/sec
{=0.43
a=115
b=2.39

The disturbance model obtained is:

s(s+1.15)

Mp(s) =
P (s+1.15)% +2.392

(11)

The above model rejects the disturbance input (the step response of the disturbance model stays
within the region [-0.1,0.1]) after 2 sec with an undershoot of approximately 25%, as verified from
the simulation shown in figure 2.7.A. Figure 2.7.B shows the magnitude-frequency response of
MD(S).
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Figure 2.7.A: Second order Disturbance rejection model

In the frequency domain the magnitude bode plot of the model is the following:

10 T T ™ T T T ERT T T T T RN T T T 7 T T0 7

10° 10"
Freguency (radsisec)

Figure 2.7.B: Magnitude Bode plot of the second order disturbance rejection model
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The blue circlesin figure 2.7.B represent the gain at each of the eight specified frequencies {0.5, 1,
2, 3,5, 10, 30, 60} rads/sec. The results are summarised in table 2.7.a.

Freguencies (rads/sec) 0.5 10 (20|30 |50 |10.0 |30.0 |60.0
Gain A (dBs) (in absoluteterms) | 20.78 | 12.5 | 1.54| 2.55 | 1.59 | 0.43 | 0.05 | 0.01

Table 2.7.a: Disturbance rejection gain (A, i=1,2,3,..,8)

2.8 Disturbance Bounds

When an external disturbance input is present, the design must satisfy both tracking and disturbance
rejection specifications in order to be characterised as successful. For disturbance rejection the
nominal open loop Lo(ja) must lie on or above specific regions on the NC to ensure that the closed
loop disturbance rejection specifications will be successfully met. These areas are known as the
disturbance bounds and they are formed in a similar way to the tracking bounds. They specify the
minimum open loop gain of the system required to meet the disturbance rejection specifications for

all uncertain plants. These are obtained as follows:
The disturbance-modelling ratio of the syssemin figure 1.2.A is:.

1 _ 1
1+G(jo)K(jw) 1+ L(jw)

Ty (jw) = (12)

For the disturbance bounds on the NC the requirement for fulfilling the disturbance rejection
specifications is that:

|TYD(ja},)|sA, forali (23
where A is the corresponding gain in dBs of the Bode plot in table 2.7.a, a each frequency.

According to the above, the disturbance bounds for the example considered here were found using
functions dis_bnds() and dist_bnd1().Figure 2.8.A shows the disturbance bounds on the NC:
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Figure 2.8.A: NC with disturbance bounds

The nominal open loop must lie on or above the disturbance bounds in figure 2.8.A for the
corresponding frequencies, in order to meet the disturbance rejection specifications.

The system must lie above the disturbance bounds and the tracking bounds in order to meet
simultaneously the disturbance rejection and the tracking specifications. Moreover, it must not
penetrate the U-contour in order to establish a minimum damping for the nominal closed loop
system. Figure 2.8.B shows the NC with the Horowitz templates, the disturbance bounds, the U-
contour, and the nominal open loop. In addition, figure 2.8.C shows the maximum bounds that the
nominal open loop must lie on or above, so that the system will meet the disturbance and tracking
specifications simultaneously.
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Figure 2.8.C: NC with maximum bounds, U-contour, and nominal open loop
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From figure 2.8.C, note that in the left region of the NC (region of phases from —360° until the first
phase at which the U-contour starts forming) the nominal open loop (if it exists in this region) must
lie on or above the bound at 0 dBs (straight line) to ensure stability. It is also a good practice to
consider the U-contour as a performance bound; this helps with the implementation of the

algorithms given later in this project.

2.9 Loop shaping
So far we have seen that in order to attain the desired closed loop specifications the following

requirements must be fulfilled:

() L(j @ must not penetrate the U-contour to ensure stability and minimum damping.

(b) The nominal open loop must lie on or above the tracking and disturbance bounds on the NC (for
each corresponding frequency) to achieve robust tracking performance and disturbance
rejection. If it happens to exist in the left region of the NC, it must also lie on or above the 0 dB

bound to ensure stability.

Therefore the open loop response will be shaped with the aim to satisfy (a) and (b) above.

Open loop shaping can be achieved using compensator design. A compensator or controller is a
dynamic system that is used in cascade with the plant to achieve the desired open loop
characteristics. In the next chapter four types of controllers are discussed, phase lead, phase lag, PD,
and PID. The first two controllers are used for loop shaping using a graphical design. The PD and
PID controllers are designed via optimisation methods to find the ‘best’ solution to the design

problem.
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CHAPTER THREE

CONTROLLER DESIGN

3.1 Introduction

This chapter discusses the design of appropriate controllers, which are used so that the system will
achieve desired open loop characteristics. Four types of controllers are considered, phase
lead/phase lag, PD, and PID [Ref.5,7]. The first two types are used to shape the loop suitably viaa
graphical design. The PD and PID controllers are designed to give the optimal solution to a suitably
defined optimisation problem. The process and the results are illustrated using appropriate

examples.

3.2 Graphical design using Phase L ead and Phase lag controllers
In order to shape the loop appropriately (see Section 2.9), gain, phase lead or phase lag need to be
injected at each frequency of interest so that the design will give an acceptable result according to

the given specifications [Ref.5,7].

3.2.1 Phase Lead Controller

A phase lead controller has a transfer function of the form:

1+ >

K(s) = — 2

1+ >
aa,

(14)

where a>1. The phase lead controller injects positive phase in the system for all frequencies. The

maximum phase shift is given by:

-1 a _1
= 15
@ =sin (a +1j (15)
and occurs at frequency:
Wy =W Na (16)
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Chapter Three

Figure 3.2.1.A, showsthe Bode plots of the following phase lead controller:

S
15
S

1+

K(s)

1+

30

19.47° a w=21.2 rads/sec.

m:

where ay=15 rads/sec, a=2 and, using formulae (15) and (16), @
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Figure 3.2.1.A: Bode plots (magnitude and phase) of phase lead controller

Asiit can be seen from the Bode plots, the phase lead controller acts as a high pass filter because it

increases the gain at high frequencies relative to the gain at low frequencies. As an example, figure

3.2.1.B shows aloop shaping using one phase lead controller:
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Figure 3.2.1.B: NC with overall bounds, initial nominal open loop (green line) and new
nominal open loop using one phase lead controller (blue line)

From figure 3.2.1.B we can see that the use of a phase lead controller introduces high gain at high
frequencies and attenuates low frequencies. Moreover, the nominal open loop moves outside the U-

contour a the frequency at which maximum phase was injected.

3.2.2 Phase Lag Controller
The transfer function of a phase lag controller is:

(17)

where a>1. The phase lag controller injects negative phase to the system for a specific range of

frequencies. The maximum phase shift is given by equation (15) and it occurs a w, given by
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equation (16). Figure 3.2.2.A shows the Bode plots of a phase lag controller with the following

transfer function:

S
30
S

1+

K(s)

1+

15

15 rads/sec, a=2 and, using formulae (15) (we also have to introduce a minus sign due to

where w

phase lag) and (16), ¢=-19.47° a a»=21.2 rads/sec.
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Figure 3.2.2A: Bode plots (magnitude and phase) of phase lag controller

As can be seen from the above figure, the phase lag controller acts as a low pass filter as it

increases gain at low frequencies relative to the gain at high frequencies. Therefore it can be used in

cascade with a phase lead controller to give a reasonable design. Figure 3.2.2.B shows the shaping

of the loop after the use of one phase lead controller (from figure 3.2.1.B) and one phase lag

controller in cascade.
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Figure 3.2.2.B: NC with initial nominal open loop, and new nominal open loop after using
one phase lead controller (from figure 3.2.1.B) and one phase lag controller.

Thus, by using appropriate designed phase lead and phase lag controllers in cascade, a solution to
the loop-shaping problem can be obtained. This is shown in figure 3.2.2.C (next page), where a
number of phase lead and phase lag controllers are used to give the best performance.
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Figure 3.2.2.C: NC with initial nominal open loop and final nominal open loop (the
controller obtained helps the system to satisfy all given specifications)

3.2.3 User Graphical Program
Since a number of 1% order controllers are required to shape L, appropriately, a user friendly
graphical program was designed to make this design task easier.

For this purpose function gr_des() was written. The procedure for the design is the following:

By clicking on a point (desired frequency at which the max phase shift will be injected) on the NC,
gr_des() returns the point’s co-ordinates (magnitude and phase). From these co-ordinates, gr_des()
estimates the nearest point on the L, (nearest exact frequency of interest) and the true magnitude
and phase are obtained. Then by clicking on a second point, the required phase (lead or lag) and
gain are estimated and the appropriate controller is selected via the functions ph_lead() and
ph_lag(). This procedure has been implemented in such away (with the use of aloop), which offers
the designer the following capabilities:
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. Design new controller
. Connect new controller in cascade with old controller

. Remove the last designed controller
. Exit when design is completed and save all data information

The loop is shown by means of the following logic diagram:

> Design <
I(I"IEW
YES
Store new
controller and
shape the loop

YES

Keep
controller?

Continue?

Exit (save data)

Flow Diagram 3.2.3.f: Procedure of graphical design

Exit
(save data)

NO

Continue?

Remove last
controller

The final design is illustrated using function maintest(). This function returns the overall controller

obtained from the design.

27



Chapter Three Controller Deign (Graphical)

3.3 Controller Design using Optimisation M ethods

In the previous section the design of a controller consisting of phase lag and lead cascade terms was
discussed. This section presents optimisation methods for designing proportional and derivative
(PD) and proportional, integral and derivative (PID) controllers. The first part is an introduction to
optimisation methods in general, while the next two parts discuss the application of these methods
to the design of a PD and a PID controller, respectively. Two simulations — one for each type of
controller — show that the methods work appropriately.

3.3.1 Optimisation methods

Optimisation according to Fletcher [Ref.6] is ‘the science of determining the “ best solutions’ to
certain mathematically defined problems, which are often models of physical reality’. Optimisation
and its hybrid methods can be applied to a great range of problems and practical applications. The
solution obtained by these methods is typically simpler, more accurate, and cost effective. For the
purposes of this project, optimisation is used in order to determine algorithmic solutions to the
problem of designing optimal PD and PID controllers for highly uncertain plants. The procedure is

described below and the simulations are mainly based on the plant given in equation (1).

3.3.2 Proportional plus Derivative (PD) Controller
The first type of controller, which can be used to give a solution to the design problem, is the PD
controller. Here, both the error and the derivative of the error are used for control, and its transfer
function is the following:

Ko (8) =k, +kgs (18)

The PD controller, effectively adds a zero a s=-ky/kq to the OL+t¢. Both the transient response and
the steady state error (s.s.€) are improved, because the PD anticipates large errors and tries to
correct them before they occur [Ref.5,7].

In frequency domain terms, the PD controller adds phase lead to the nominal open loop, reaching a
maximum additional phase lead of 90° at high frequencies (this is due to the dominant nature of the
derivative at high frequencies). At low frequencies the dominant part is the proportional term which
only adds gain to the nominal OL. The phase is always positive due to the derivative term (the
proportional term has 0° phase). For example, figure 3.3.2.A shows the Bode plots of a PD
controller with the following transfer function:
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Figure 3.3.2.A: Bode plots of aPD controller

In order to optimise the controller the following considerations were made:

The frequency response (s=j«) of the PD controller (from equation (18)), in terms of magnitude

and phase is:
Kpa(jw) =k, +kyjw (19)
Magnitude (linear): M) = [K o ()| = K + (Kg@0)? (20)
Phase: o) =tan'1("|j—“’jzo (21)
p

Suppose that @(a) is fixed at any specified frequency wy, i.e. @(aw)=@o. Then by using equation
(21), @ isgiven by:
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which implies

=y, (22)

where )4 is aconstant which fixes the relation between k, and kg.

Moreover, using (22) the phase of the controller at any frequency wis:

Aw) =tan'1[it—wj=tan'1[tan((ﬂo)w£} =tan () (23)

p o]

It follows from the analysis above that if the phase of the compensator is fixed at any specified
frequency (i.e. #(w)=@,) then the phase ¢ of the compensator at all other frequenciesis also fixed.

Under these conditions the magnitude (linear) of the controller can be expressed as.

K 2
m(cw) =|K (jo)| = k2 + kia? =k, (k—"J +w’ =k i2+a)2 (24)
d 14

o

i.e. M(a) O |Kq. Now consider the nominal plant model G, and the nominal OL system L,=GK.
Then the phase of the nominal OL is:

OLo(ja) =0G, (ja) + DK (ja)
or,

Y(w) = B(w) + tan™ (y,w) (25)

where the phase of the nominal plant model A« is fixed and known. Also, the magnitude of the

nominal open loop in dBsis:
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Lo (@)l =[Go(j@)] g +[K(j0)] g

. 1
Lo (jo)| 5 = Al g +2010g50 ([Ky]) + 20|ogl{ 3 + wZJ (26)

[o]

where, Algs is the gain of the nominal plant G, a any frequency « in dBs. Now, consider the

Nichols chart with Horowitz templates {f(cu, @), f(a, @), ............f(an, @)} and U-contour B:

Mag(dBs) A

/

B (U-contour)

Figure 3.3.2.B: NC with Horowitz templates and U-contour, discrete phases ¢; (PD controller)

The design constraints that the PD controller hasto satisfy are:

1 L)l = f(a) ,forali=1,2,3,.....,N

2. L(jw) O B, fordli=123,...... N
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According to QFT theory [Ref.2,3], the asymptotic gain of the open loop system must be a
minimum (subject to satisfying the Horowitz and U-contour congtraints). This is to avoid ‘over-
designing’ the system (e.g. resulting in a closed loop bandwidth larger than is absolutely necessary)
which could imply measurement noise amplification and possible instability due to un-modelled

dynamics. The asymptotic gain of the nominal open loop systemis given by:

lim{ |k, +kqj@)x G, (i) |} 27)

W — 00

Suppose that:

. A
Go(j@)| O
(43

a very high frequencies. (Assume that p=2, where p is the pole/zero excess of the nominal plant).

Then the asymptotic gain of the nominal open loop is:

A
a Pt

Lo (j@)| O— 1 x[kg|

at high frequencies. Since A and p are fixed from the plant, |Lo(j)|w=nigh IS Minimised by

minimising |ky|. Hence the following optimisation problem is formulated:

Minimise ky subject to the following constraints:

IL(jw)| 2 f(w,p), forali=1,23,......N

(where = UL(j a))

AND L(jw)OB, forali=1,23,......N
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This suggests an algorithm for minimising |kq|. First assume that the axis representing the phase
angle of the NC has been discretised into a linearly spaced array { ¢a, b, U5, .. ....... ¢k} (N can take
any value but 100 is suitable)®.

Suppose that we fix the phase at the nominal open loop at the first frequency of interedt, i.e.

OLo(j 1) =Y1. Then:

or

Hence

is fixed. Thus

or

and hence

OK(jow ) =0L,(jan) —UG, (jar)

Kq
OK(je) =¢; - Bley) = tan_l[k_ lej

p

ka 21, tan*(tan(y, - B(w)))

. 1
K(je)| =|kg|. |5 +&F
y

o

. 1
|K(Jw| )|dB = 20109, (|kd |) +10|0910(F + wfj

o

® The result depends on the discretisation of the phases, i the discretised phases comply with the
phases of the bounds then the result isnearly accurate.
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. 1 .
ILo(j@)| , =2010g,0(Ky) +10|ogl{7 ¥ w.zj + 20l0g,0([G, (jay)]) (31)

o

|kq] should be large enough to satisfy the Horowitz specifications (including disturbance bounds if
applicable), i.e.:

ILo(j@)| g 2 f(w. ) (32)

where ¢=0L(jw), for ali=1,2,3,...... ,N. Thisimplies (from equation (31)) that

. 1
201095 (4 ) 2 (@ .4;) — 2010,o(|G, (ic0)) )—10Iogl{7 + w.zj £22
(o]
The above is equivalent to:
. 1
2010944 (|ky) 2 iD{LrZT,]??)..(..,N}{ f(w,¢) - 20|0910(|Go(la’| ) ) —10log,, (y_ﬁ +af j}
or
. 1
. max {f(w. i) - 20Ioglo(|Go(Jw. ) )‘10|0910{2 + wfj}
if{1,2,3,....,N} Ve
kg |2 100 (33)

20

In order to minimise the asymptotic gain of Lo(j &) we must choose ky equal to the RHS of equation
(33). Note, that 4=/ o(j ) isfixed for al i=1,2,3,...... ,n. Specifically:

Y, is fixed by assumption
W, =0L,(jw,) =0G,(jw,) +tan(y,w,),  where jo=[tan(¢)/ ]

Yy =0L(Jowy) = DG:o(ij) + tan‘l(yoa)N)
The following algorithm was implemented in MATLAB:
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Algorithm PD,
1. Initialise an array to store the local minimum variable kq for each value of /1L o(jay).
2. Initialise an array to store the relevant values of k.

3. Outer loop (runs n times, where n isthe number of discretised fixed phases for the first frequency
of interest)

3.1 Find constant J using the following expression:
1 .
Yo =a><tan(% - 0G,(jw,))

where, @ isthe value of thefixed phasesfor k=1,2,3,...... ,nfor thefirst frequency a.

3.2 Initialise an array to store phases of nhominal open loop for all frequencies of interest (it
initialises every time the value of fixed phase is changed).

3.3 Initialise an array to store the values of ky obtained for all frequencies each time the outer
loop runs (it also initialises every time the outer 1oop runs, and this helps to identify the minimum
local kqfor each k)

3.4 Inner loop (runs a total of N times, where N is the number of frequencies of interest).

3.4.1 For the first frequency (when i=1) a the phase of the nominal open loop is
fixed by assumption.

3.4.2 For therest of the frequencies (when i runs from 2 until N) find the phase of the
nominal open loop using the following expression:

W; =0G,(jw) +tan™ (@)
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which is fixed because every time the loop runs the phase of the nominal plant is fixed and known,
the frequency is known and the constant )4 is also known (obtained from the outer loop). The OL
phase for the first frequency is exactly the same as the phase of the bounds. For all other
frequencies the magnitude of the bounds is obtained approximately via linear interpolation.

3.4.3 For each i find kg using formula (33) (met with equality) that satisfies the
requirements and temporary storeit.

End of Inner loop.

3.5 Find the local minimum kq that satisfies the requirements for each k, and store it.

3.6 Find therelevant k;, using formula (22) (first solve for k,) and also storeit.

End of Outer loop

4. Obtain the value of the global minimum kg (optimal solution) and the corresponding index.

5. Use the index obtained in step 4 to find the relevant value of kp.

END OF ALGORITHM

The above algorithm (which was implemented in Matlab function cpd_opti()), works as expected
and finds the optimal controller which gives the solution to the design problem. In order to illustrate

the procedure, consider the following two examples:

- Example 1.

Consider the plant given in equation (1) and the specifications for tracking requirements and
disturbance rejection given in Sections 2.3 and 2.7. Figure 3.3.2.C shows the nominal open loop
with the frequencies of interest, the U-contour and the corresponding maximum bounds. It also

shows the new nominal open loop corresponding to the designed optimal PD controller.
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40
20 db

— B
8 0 165 db
& {12 db
220 120 db
i
-y
T
& -40 A0 db
2]

s H e e O S0 0 e S S <60 db

= 1 ' I I J i 1 1 _8[:] db

350 2300 250 200 150 <00 -50 0
Open-Loop Phase (deq)

Figure 3.3.2.C: PD optimal design (old nominal open loop (green line) and new nominal
open loop after the design of the controller (blue line). The circles represent the
frequencies of interest)

The optimal PD controller obtained is given by:

K pa_opt (5) =13.3+3.53s

From figure 3.3.2.C it can be clearly seen that a low frequencies the additional phase lead
introduced by Kpg_opt is small while at high frequencies rises to aimost 90° (the phase of the nominal
open loop reaches asymptotically —90° in this example). The shaped open loop system satisfies the
tracking/disturbance specifications and is outside the U-contour. At three frequencies (i= 4, 5, 7),
Lo(ja) lies exactly on the corresponding bounds. Figure 3.3.2.D shows the Bode plots of the
controller obtained above, where the gain and the phase introduced can be clearly seen (the
frequencies of interest are marked with a blue circle):
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Controller Kpd=13.3 + 3 535
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Figure 3.3.2.D: Bode plots of optimal PD controller (gain and phase introduced at each

frequency)

-Example 2:

Consider the system:

_a

(34)

G(s)

where a][1,10]

g2’

An optimal PD controller needs to be designed so that the above system is stabilised and satisfies

the tracking specifications given in the previous example (in this case there is no disturbance

rejection). Following the procedure of Section 3.3.2, the optimal controller was obtained as:

=0.5+3.25s

K pd _opt2 (S)

Figure 3.3.2.E shows the NC with the nominal open loop, the U-contour, and the corresponding

bounds and the new nominal open loop after the design of the optimal PD. In this case the phase

range is from —180° until —90° because the controller introduces only positive phase with a

maximum of 90°;
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40
20 db
—_ -3 db
3 0F- 16 db
B -412 db
Q.20 120 db
o
-
T
a -0 A0 db
O
L e . . B b 60 db
0
A D 1 1 I I ' P 1 1 8[:] dl:'
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Figure 3.3.2.E: PD optimal design for G(s)= a/s?, where 1<a<10 (old nominal open loop and
frequencies of interest in green, and nominal open loop after designing the controller in blue)

The above examples show that for a realisable system, the design of an optimal PD controller
following the procedure discussed here is successful. A similar procedure can be followed in order
to design a Pl controller which has the following transfer function:

K9 =ky + 10 (@)

-

Both the error and its integral are used for control. The action of a Pl controller is to reduce the
steady state errors by increasing the type of the system by 1, and its use is very common in process

control or regulating systems. The next section presents the procedure to design an optimal PID
controller.
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3.3.3 Proportional plusintegral plusDerivative (PID) Controller
PID controllers, also known as three term or process controllers, are one of the most common type

of controllers used commercially. The transfer function of a PID controller is the following:
_ Ki
K pia () =kp +T+kds (36)

The aim is to adjust the three gain factors (proportional, integral and derivative control) according
to the dynamics of the plant, so that both the degree of error reduction (if not error elimination) and
the dynamic response will be acceptable. In the frequency domain the PID controller introduces
phase lag to the nominal open loop (reaching almost —90°) at low frequencies due to the dominance
of the integral term and phase lead (reaching almost 90°) at high frequencies due to the dominance
of the derivative term. In intermediate frequencies the introduced phase is either negative (due to
integral term) or positive (due to derivative term), the proportional term having 0° phase introduces
only gain [Ref.5,7]. To illustrate, figure 3.3.3.A shows the Bode plots of a PID controller with the

following transfer function:

K},id(s)=1+§+3s

-

1[:”:' i R i IR EEELiL H i i LEERELL

1 0 el Ean 1 [ ATy 1 I R
s s d ok JAddbtde c s b cbhdddbbe c s s b A bW
I R R 1 oL e 1 I EETET

Wagnitude (dBs)
n
=

3
Hi |
o "
I [ Y ' Y
Pai] Ny I O R T
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I IR R ' Y
623 it
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o [ ' O R T
]
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O '
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Figure 3.3.3.A: Bode plots of aPID controller
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In the context of this project, the design constraints that the PID controller has to satisfy are:

2. IL(a)ke = f(w) ,forali=1,2,3,......N

2. L(jw) O B, fordli=123,...... N

Asin the case of the PD controller, the open loop gain must be a minimum (subject to satisfying the

above congtraints, see Section 3.3.2). The asymptotic gain of the nominal open loop is given by:

Iim{
W — 00

(kp+.k—i+kdjwjxeo<jw>‘} (37)
jw

Suppose that:

. A
Go(j@)| 0
(43

a very high frequencies. (Assume that p=2, where p is the pole/zero excess of the nominal plant).

Then the asymptotic gain of the nominal open loop is:

A

Lo(ia)] 05

X [Kq]

at high frequencies. Since A and p are fixed from the plant, |Lo(j|w=nigh IS Minimised by

minimising |Kq|. Hence the following optimisation problem is formulated:

Minimise |kq| subject to the following constraints:

IL(jw)|2 f (@), foral i=1,23,......N

(where ¢4 = OL(j w))

AND L(jw)OB, forali=1,23,......N
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The frequency response (s=j &) of the controller (from equation (36)) is:.

. k. .
Koia (Jo) =k, +j_clu+kdja)

or
. - k; .

Kpid(Ja)):kp_Jz-'-kdja) (38)

In terms of magnitude (linear):

k
‘Kpid(ja))‘: ks "'(kdw_zlj (39)
In terms of phase:
kda)_k7i

w (40)

OK g (jo) = glw) =tan™ ”

p

Note that the sign of the phase ¢(«) can be either positive or negative (always ¢ [1[-90,90]) and this
depends on the three terms (i.e. it depends on the dominance of the derivative or the integral term,

provided that all terms have the same sign).

In contrast to the PD controller, the phase of the PID controller will be fixed at any two specified
frequenciesi.e. w and ap. The phase of the controller at al other frequencies will then also be fixed
according to the combination of the two fixed phases at the two specified frequencies. Using

equation (40), ¢ (fixed phase for ay) isgiven by:

@w) =g =tan™

Then,
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Kgoo, ———

'§7\-

tan(g, ) =
or

ke L =K, tan(@)

d a)l p r

which implies

K.
kg, —— -k tan(g ) =0
d a)l p
Thus
. k, tan
kd_k_lz_ p (@) _
W Wy

Similarly, ¢; (the fixed phase for a) is given by:

Aw,) =g, =tan | —— 2
kp
then
« _k_i_ k, tan(g;) _
d 0)22 w,

) L]
wf “ Ik =0
1 tan(¢;) =
1= k
0)2 a)z P

(41)

(42)

(43)

Provided that the first frequency @ is not equal to the second frequency «, the rank of matrix A is

equal to 2. Equation (43) then implies that the vector [ kg ki ko ]" lies in the (one dimensional)
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Kernel of matrix A, i.e. that the three gains kg, ki and k, are fixed (up to scaling). Asimple method
of calculating the Kernel of A is provided by the Sngular Value Decomposition (SVD) [Appendix
Cl.

Applying the SVD to matrix A in equation (43), we get

o 0
0 o,

0l v (44)
0] |V,

where the range of A (/7 (A)) is equal to the range of U; (/7 (Uy)) and the kernel of A (Ker(A)) is

A=b1|qu[

equal to the range of V. (£7 (V2)). It is also known that,

Axk=0 (45)

where

Kq
k=| ki
k

p

and k[Ker(A) which is equal to /7(V2). Then, vector k can be expressed as.

K :\é x A
Ky Va
Ki |=|Vqp |*xA
kp V23

where A is an adjustable gain factor. Moreover, kq , ki and k, can be associated with Va1, V2, and Vas
respectively. Thus the magnitude and the phase of the controller from equations (39) and (40) can

be written as;

Magnitude (linear):
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2
. V.
‘K pid (Jw)‘ = |/]|\/V223 + (V21w - %j (46)
Phase:
Vo - Va
0K g (jo) =tan™ ——— & (47)
Vos

Note that equation (47) implies that the phase of the controller (and thus also the phase of the
nominal open loop) is now fixed at every frequency w. Clearly, |Kq| will be minimised when |[AVy4| is
minimum. The optimal value |Kq| (subject to the constraints given in page 41 and ¢(w)=¢; and

@(ap)=¢; can be found from the following consideration.

The robust performance objectives are satisfied if’
Lo (jo)| g = f (@, ¢), fordl i=1,2,3,...,N
where
Lo (1)] g =IGo (10| g * K pia ()]
Thus
Kpa(i@)| , 2 1@ 4)~[Go(j@)|  forall i=1,23,...N

Here N isthe number of frequencies of interest. Substituting from equation (46),
2
201 A = f ) =[G (i ~10l0g,| V2 +| Vi -2
0910(| |)— (W, &) | o(la%)|d5 0J10| V23 pally w
forali=1,23,...... ,N, which is equivalent to

2
20l0gy, (A) = max ¢ f(@.¢) =[G (@) g —10|ogm[v2% + (vmw. 'ZJ }

or

’ Note that constraint L (jwi) O B can also be formulated in the form |L(ja)| > f (aw, ¢4).
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\V}
max 22

f(w @) _|Go(jw|)|d5 _10|0910[V223 +(V21w| -

50

A =100

20

Multiplying both sides of the above equation with [V2],

[AV,y| =V, 100

iD{ng)..(.,N} f(w,¢;) - |Go(ja)| )|dB _10|0910[V223 + (V21a)| -

5

20

This equation says that provided |Kq| is chosen to be larger than the RHS term, the constraints are
satisfied. Hence the optimal |Kq| is given by,

‘kd_min

=V, 107

max
i1,2,3,..,N}

2
i \%
f(@,¢:) =[G (i) g —10Iog10[V223 +{V21w. _aﬂ }

20

Note that throughout this analysis, the phases of [1L,(jci) and OL(j ap) are fixed as,

and

Yn=0Lo(j )= ¢;

Yp=ULo(j a2)= ¢

(49)

Clearly, the overall optimal value of |kg| (i.e. the minimum value of |kg| which satisfies the robust

performance constraints) can be obtained by taking the minimum over all combinations of phases

OLo(jad) and [Lo(j ap) as these vary within their allowable ranges.

The following algorithm, which obtains the optimal PID controller, was implemented in MATLAB:
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Algorithm PID,

1. Find the phase of the nominal open loop (K(s)=1), for thefirst frequency .

2. Find the phase of the nominal open loop, for the second frequency .

3. Set the range of thefirst fixed phase ¢, for i (due to the action of the PID controller in the
interval [-90%+ L o(j a),90%+ [ o(j an)])-

4. Set the range of the second fixed phase @ for ap (again due to the action of the PID controller
in theinterval [-90+ [Lo(j ap),90+ [ o(j ap)]).

5. Initialise arraysto store the optimal values of kg, ki, k for all combinations of ¢ for fixed ¢a.

6. Initialise arraysto store the optimal kq, ki, kp for all combinations of phases (¢4 and ¢»).

7. Outer loop (runs n times, where n is the number of discretised points for the first fixed phase
#r).

7.1 Intermediate loop (runs k times, where k is the number of discretised points for the second
fixed phase ¢)).

7.1.2 Perform SVD for matrix A (for each combination of ¢, and ¢ ).

7.1.3 Hold the values of vector Vs.

7.1.4 Initialise matrix to store the phase of the nominal open loop for all frequencies of

interest (it initialises each time a SVD is performed).

7.1.5 Initialise arrays to store local minimum kq and corresponding k; and k, for each time

the inner loop runs (these initialise each time the combination of phases change).

7.1.6 Inner loop (runs N times, where N is the number of frequencies of interest).

a7
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1.2

7.1.6.1 For the first two frequencies (i=1,2), the phase of the nominal open loop is

fixed by assumption.

7.1.6.2 For therest of the frequencies find the phase of the nominal open loop using:

W= [Go(j )+ [Kpia(j @), for all i=34,...,N
These are fixed because every time the loop runs the phase of the nominal plant is fixed
and known and the phase of the controller is also known (via the SVD). For all
frequencies of interest the magnitude of the bounds is obtained approximately via linear

interpolation.

7.1.6.3 For each i find the gain A using equation (48) that satisfies the requirements
and temporary store it. Then find kq , ki and k, by multiplying them with the associated
element of V. (force k, positive so that the phase of the controller will always be in the
interval [-90°,907%).

End of Inner loop.

7.1.7 Find the local minimum of kq for the current combination of phases and store it, store

also the corresponding ki and k.

End of Intermediate loop.

Find the minimum kg of all minima obtained in 7.1.7 and store it. Also store the

corresponding k; and Kp.

End of Outer loop.

8. Find the global minimum kq and also the corresponding ki and kp.

End of Algorithm
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The above algorithm (was implemented in Matlab function pid_op2()), works as expected and finds
the optimal PID controller which gives the solution to the design problem. In order to get the ‘best’

controller, which gives the solution the following considerations were made:

(). The above procedure is followed only when the all elements of vector V, have the same sign.
Thisimplies that all controller gains (kq, ki, ko) will be positive and the phase of the controller will
always be in the range [-90°, 90°]. The controller will introduce phase lag at low frequencies and

phase lead at high frequencies as desired.

(2). If the elements have different sign, then all gains are set to infinity (and so they are discarded

when the minimum is chosen).

(3). It isa good practice to fix the phase of the nominal open loop at the first and the last frequency
of interest. By following this approach the sensitivity of the solution is improved. This also allows
the phasein the last frequency vary in a range outside the U-contour, which means that the number

of combinations is reduced.

(4). The two fixed phases are independent and as a result different number of discretisation points
can be used for each one. This helps to determine the magnitude of the bounds more accurately via

linear interpolation.

-Example 1.

Consider the plant given in equation (1). Here a PID controller is needed in order to help the system
meet the tracking and disturbance rejection specifications given in Sections 2.3 and 2.7. Figure
3.3.3.B shows the nominal open loop with the selected frequencies, the U-contour and the
corresponding maximum bounds. Moreover, it shows the new nominal open loop corresponding to
the optimal PID controller.
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Figure 3.3.3.B: PID optimal design (initial nominal open loop (green line) and new nominal

open loop after the design of the controller (blue line). The circles represent the frequencies of
interest

The optimal PID controller obtained is given by:

4.53 +39s

Koig_opt(S) =12.5+

<

o

From figure 3.3.3.B it can be seen that at low frequencies due to the dominance of the integral term,
phase lag is introduced to the nominal open loop while at high frequencies due to the dominance of
the derivative term, phase lead is introduced. Note also that the shaped optimal open loop lies on or
above the bounds, with four frequencies of interest (i=1,3,4,6) lying exactly on the bounds. To
illustrate the action of the PID controller, figure 3.3.3.C shows its Bode plots (gain and phase

introduced by the controller). The frequencies of interest are marked with acircle.
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Figure 3.3.3.C: Bode plots of optimal PID controller (gain and phase introduced)

-Example 2:

Consider the system:

where k(J[1,4], al1[1,5] and b[J[1,4]

k
(s+a)(s+b)’

G(s)

The design of an optimal PID is needed so that the system will satisfy the tracking specifications

given in the previous example (there is no disturbance rejection included). Moreover, in this case

the chosen frequencies are w={0.1, 0.5, 1, 2, 3, 5, 10, 60} rads/s. The optimal controller was

designed following the procedure of Section 3.3.3. Figure 3.3.3.D shows the NC with the nominal

open loop, the U-contour, and the Horowitz templates (which are the corresponding bounds) and the

51

new nominal open loop after the design of the optimal PID controller.
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Figure 3.3.3.D: PID optimal design for G(s)=k/(st+a)(stb), where the nominal open loop
before the design of the controller isin green and the new nominal open loop after the design of
the controller isin blue, the frequencies of interest are represented by circles.

From the above examples, the design of an optimal PID controller for realisable systems following
the procedure discussed in this section was successful. In order to complete the design procedure,

an appropriate pre-filter will be designed. This is discussed in the next chapter.
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CHAPTER FOUR

PRE-FILTER DESIGN

4.1 Introduction

The design of an appropriate nominal open loop L(j &) guarantees only that the variation (‘ spread’)
of the magnitude response of the control ratio [Tr(j )| is within the allowed specifications (i.e. less
or equal than Jr(j w)) [Ref.1]. Therole of apre-filter in acontrol systemisto place

L(ja;)

LmT(ja%)=m

within the given specifications in the frequency domain (see Section 2.3, figure 2.3.B). That is, the
variation of [Tr(j a)| must lie within the bounds B, and B,. Figure 4.1.A shows the bounds B, and B,
with the variation of |Tgr(j w)| for the example considered in equation (1) with parameter range of
k={1,5,10} and a={1,5,10}. Note that in order to find the maximum spread of the variation of
|Tr(j )|, the minimum and maximum values for each uncertainty parameter must be included, i.e.

the ‘best’ and the ‘worst’ case-combination.
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Figure 4.1.A: Frequency responses of CL system without pre-filter and the desired range of
acceptable CL frequency responses
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The next section discusses the design procedure of an appropriate pre-filter, which will adjust the

CL system responses within the desired range.

4.2 Pre-filter Design

1. Firgt, the CL system responses without the pre-filter are determined by taking various

combinations of the uncertainty parameters of the plant (including at least the maximum and the

minimum values of each of the parameters to ensure maximum spread).

2. From the responses determined in step 1, the maximum and minimum bounds are obtained

shows the desired range of bounds

(their difference gives the maximum spread). Figure 4.2.A

and the maximum spread of the CL system responses.
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Figure 4.2.A: Desired range of bounds and maximum spread of CL system responses

without the pre-filter

3. From steps 1 and 2 above, we obtain the differences [By -LmTma] and [B) -LmTyn]. These

differences represent the maximum acceptable bound and the minimum acceptable bound of the

magnitude frequency response of the pre-filter. Figure 4.2.B shows the range in within the

bound of the pre-filter must lie in order to satisfy that the CL system responses will lie within

the given specifications.
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Figure 4.2.B: Allowable frequency response (magnitude) range of pre-filter

4. Using straight-line approximations (usually by inspection from the graphs), F(s) can be

lim{F(s)} =1

s-0

synthesised such that LmF(jaw) will lie within the range of allowable bounds from step 3.

is enforced so that the s.s.eto step inputs is zero.

Moreover for step forcing functions,

5. The pre-filter F(s) obtained from above procedure ensures that the CL system responses lie

within the specified range shown in figure 4.2.A (B, - B)), for all combinations of the uncertain

parameters [Ref.1].

Note that for this example, as can be seen from figure 4.2.B the frequency response of F(s) at

certain frequencies can vary more than at other. This can be verified from figure 4.2.A where we

can seethat at frequencies w, s the CL system responses have a greater range of adjustment because

the specifications are not tight. In addition in frequencies w 267 the specifications are very tight and

therefore the pre-filter bounds are limited (i.e. only one straight-line approximation can be chosen).
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4.3 Types of Pre-filter

Usually a second order pre-filter suffices; this has the following transfer function:

Ay

Y. (49)
a)cl a)cz

where, Aq is an adjustable gain (usually 1), w, and w,, are the first and second cut-off frequencies,

F(s) =

respectively. These constants can be found via the procedure presented in Section 4.2.

Higher order pre-filters can be used in order to give a more accurate result. Nevertheless, higher

order pre-filters are more complex and thus the minimum-order possible pre-filter is desired.

4.4 Design example (for PID controller)

The design of an appropriate pre-filter is the same for all types of controllers, i.e. phase lead/lag
cascade networks, PDs, PIDs. For illustration purposes of the procedure, the system described in
equation (1) and the optimal PID controller, obtained in Section 3.3.3.

Figure 4.1.A shows the desired range of tracking bounds and the CL system responses without the
pre-filter, and figure 4.2.A shows the maximum spread of the CL responses without the pre-filter
and the given specifications. Moreover figure 4.2.B, shows the allowable range of bounds, within
which the response of the designed pre-filter hasto lie.

By inspection, an appropriate 2™ order pre-filter for this system was found to be:

1

Yy 0
25 11.3

Its magnitude frequency response can be seen in figure 4.4.A. Clearly this lies within the allowable

F(s) =

range given in figure 4.2.B.
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Figure 4.4.B: CL bounds after the introduction of the designed pre-filter F(s)



Chapter Four Pre-ffilter Design

From the above, it follows that the system will meet both the given tracking specifications and also
the disturbance rejection specifications. This can be seen in the next Chapter, which includes the
simulation results of the system, described in equation (1), for the three types of controllers used in

this project.
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CHAPTER FIVE

SIMULATION RESULTS

5.1 Introduction

This chapter presents the simulation results of the overall system including the phase lead/lag
cascaded networks (from the graphical design), the PD controller, and the PID controller, which
were obtained in this project. Note that the pre-filter for each one of the overall systems was
designed by following the procedure of Section 4.2. The system, which was used to illustrate the

final results of the design, is given in equation (1).

5.2 Tracking Performance-Simulations
First the tracking performance of the system was obtained for each controller and appropriate pre-
filter. Figure 5.2.A shows the tracking response (step responses for certain combinations of the

uncertain parameters) of the system including the phase lead/lag cascaded networks.
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=
a

o
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o
.
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M SRR
':J:' B i i

Time (secs)

Figure 5.2.A: Step responses of CL system with appropriate pre-filter including phase
lead/lag cascaded networks.
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Chapter Five Simulation Results

Figure 5.2.B shows the step responses of the CL system including the PD controller.
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Figure 5.2.B: Step responses of CL system with appropriate pre-filter including PD controller.

Finally, figure 5.2.C shows the step responses of the CL system incorporating the PID controller.
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Figure5.2.C: Step responses of CL system with appropriate pre-filter including PID controller.
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Chapter Five Simulation Results

From the figures above it can be seen that the step responses of the system for all controllers
designed were acceptable. The system responses to a unit reference input lie within the given

specifications in all cases. Thus, its behaviour will be within the specified allowable range.

5.3 Disturbance reg ection-Simulations

The system must also satisfy the disturbance rejection specifications (given in section 2.7). Figure
5.3.A illustrates the response of the system with the phase lead/lag cascaded networks to a unit step
disturbance at the output of the plant G(s).
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Figure 5.3.A: Disturbance rejection of system with phase lead/lag networks in cascade

Figure 5.3.B shows the response of the system using the PD controller to a unit step disturbance
input at the output of the plant.
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Figure 5.3.B: Disturbance rejection of system with PD controller

Finally, figure 5.3.C shows the response of the system incorporating the PID controller to a unit
step disturbance input at the output of the plant.
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Figure 5.3.C: Disturbance rejection of system with PID controller
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Chapter Five Simulation Results

Thus, the system satisfies the disturbance rejection for all values of uncertain parameters of the

plant in all cases of controllers.

Overall, it has been seen from the tracking and disturbance simulation results that all designs met
both the tracking and the disturbance rejection specifications.
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CONCLUSIONS

This project report includes the full work done on the design of a system characterised by a large
uncertainty due to the variation of uncertain parameters of the plant. The work involved
familiarisation with Matlab and extensive reading on QFT theory, software design and design
examples. The frequency responses and the simulation results have shown that the design of a SISO
system (including external disturbance inputs) proved to be successful for all controllers obtained.

Thus, the least complex controller can be chosen as it satisfies the given specifications.

Future work includes implementation of the software with the use of GUIs and user interface
menus. This design can be also extended to MIMO systems with large uncertainty. Moreover, the
optimisation techniques can be applied for the design of more complex optimal controllers and also

for the design of an optimal pre-filter.



APPENDIX A

TRACKING SPECIFICATIONS

The tracking specifications (in the form of bounds in the frequency domain) are obtained from the
tracking control ratio, which is found from the desired tracking performance specifications usually
for a step reference input. These characteristics are divided into transient (settling time ts, peak
overshoot Mp, and the peak time t,, and the steady-state characteristics (gain A) [Ref.1,5].

The control ratio usually is approximated by simple first or second order models (over-damped or
under-damped depending on the type of the response in the time domain ). The transfer function of
asecond order systemis:

2
Wy

M(s) =
s + 20w, s+ W’

where a) and ¢ can be obtained from the peak and settling time, i.e.

and
t. = ——
p
w,1-{?
Note that even if there are four input characteristics (ts, My, tp, A) only two parameters need to be
found, thus if the above equations do not suffice to derive a, and ¢ the following equation can be
also used:

_ -1

Of course, the derived tracking control ratio must be such that will satisfy the set requirements. In
addition, the spread of the maximum and minimum tracking bound in the frequency domain at high
frequencies has to be wide, such that the specifications will be met (the spread of the tracking
bounds has to be larger than the actual variation at the plant at high frequencies) [Ref.1]. Thus

either a zero or a pole has to be inserted in the control ratio (the zero to the upper tracking control



Appendix A Tracking Specifications

ratio and the pole at the lower tracking control ratio). To illustrate, consider the following two

second order models:

X
M S) =
upper (S) 2 +ys+c
and
M o0 (8) = ——
fover s?+ls+ f

Because the two models are 2™ order they have the same slope at high frequencies (40 dBs). To
modify the asymptotic characteristics at high frequencies, they can be transformed to the following
models, so that the variation of the system at high frequencies can be fit within the bounds, i.e.

X(s+ %)
M S)=—=
upper() sz+ys+c

and

r

Miower (S)z(sz +ls+f)x(s+1,)

where x; is a zero which reduces the asymptotic attenuation rate of the upper model and r; is a pole
which increases the attenuation rate of the lower model. As a result the spread between the two
corresponding bounds will become wider at high frequencies and it will tend to infinity as w — o

(see figure below).

A A
Bupper BUDDG’
> >
Blower
Blower
Before introduction of poles/zeros After introduction of poles/zeros

Figure A.1: Comparison of spread before and after the introduction of poles/zerosin the models
B
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Note that the derived models have to be consistent with the degrees of the numerator and the
denominator of the uncertain plant used (i.e. have to be realisable)[Ref.1]. Thus in certain occasions
a suitable first or second order system cannot be found in order to satisfy simultaneously all
gpecifications. In this case a higher order model control ratio is desired and usually it is given
according to the input specifications ( e.g. see the tracking specifications in Section 2.3) [Ref.1].
The analysis and design of high order model control ratios is not a purpose of this project.



APPENDIX B

M-CIRCLES
Consider the feedback system in figure B.1,
+
Input R Output Y
Controller p Plant >
— K(s) G(s)
Feedback
Element H(s) [

Figure B.1: Feedback (negative) system

The CL transfer function between the input (reference) and the output signal is:

G(s)K(s)

= eoKE

Note that H(s) is usually unity (i.e. H(s)=1). The frequency response of T(s) is given by,

i) = CULKG)
1+G(jw)K(jw)
The magnitude of T(j &) isthen given as,
T(ja) = |-CUDKGS) |
1+ G(jw)K (jw)|
The locus of all points where,
T(jw)=M

is known as M-circles of values M.

The equations of M-circles in the Nyquist plane are given below:
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Let G(j WK(j )=x+]y (complex co-ordinates description on the NP). Thus,

_| GliwK(j@) |._
11+ G(jw)K (jw)|

T(jo)

or

VA+X)? +y?

Taking squares of both sides,

2 _ x* +y?
@+x)?+y?

which can written,

le(1+x)2 +y2J=x2 ry?

Rearranging,

x2[1-M?)+y?[1-M2)-2xM2 =M ?

Dividing by (1-M?) we have,

M 2 M 2
x2+y2—2x(1_M2) (1—M2)

2

2
. M .
and adding the term (—) to both sides,

<ol i)

which can be written,
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M2 Y 2 MY b.1
(X_l—sz i _(1—M2j S

2
This equation represents a circle on the Nyquist plane with centre at point (NW ,Oj and radius

=YE In figure B.2 various circles of M-values are plotted. Note that the circles to the left of

point g:(— % ,Oj have values M>1 and the circles to the right of point g have values M<1. In the

case of M=1 the circle becomes a straight line (‘circle with infinite radius’) as can be seen from
equation (b.1) [Ref.5].

M=1
| A
I Imag.
|
|
M=1.5 } M=0.7
|
////// | P N
//// \\\\ I // \\\\
// =2___ \\ I // _ \
- ~ | / // ~<
/ 7 \ % M= \
/ // (_1’0) N\ | // M 0.5 \
I \\ Vol / \ \
{ L o I b | >
\ \ /1 VN (0,0 / |
\ N\ A \ ~ yd /
\ S~ 1N ~—__~ / Real
\ y | \ /
\ / | \ //
AN s/ | ~ s
N i | N i
\\\\\ - | ~—_ ——
|
(-0.5,0)

Figure B.2: Nyquist Plane with constant M-circles

Unlike the representation of M-circles on the Nyquist plane, the representation on the Nichols chart
is different. M-circles on the NC depend on their M-value, i.e. when M>1 the M-circles on the NC

are closed contours while for M<1 they are open contours tending to straight lines as M decreases.



Appendix B M-circles

In the case of M=1 the M-circle is an open contour which tends to infinity. Figure B.3 shows the

NC with various M-circles.

4[:' T T T T T T T

20 db
— | -J3db
s 0f - 46 db
B 2 -412 db
L e Sl o g e —e=-and 30 db
o
el
end
R ) T T T TR memmenaes R ~40 db
)

B0 aaee e an e e e e s en e 60 db

- D 1 1 1 1 i 1 1 _8[:] db

2350 -300 -250 200 -150 100 -50 0

Dpen-Loop Phase (deg)
Figure B.3: NC with arange of M-circles

In order to convert the constant M-circles, defined at given phases, from the Nyquist plane to the

NC, functionsm_cir() and m_grid1() are used. The procedure followed is the following.

In order to represent the M-circles in the NC we have to solve simultaneously two equations,

M2 Y L, (MY
(X_l—sz i _(1—M2j (b2

V=X (b.2b)

and

where yis the slope of the line y =y x for each angle of the phase vector (-360,0). The phases

rotate anticlockwise.

In order to find a solution to the above set of equations, the line in (b.2b) must be either atangent to

the circle (then there is a double solution x;=x, and it isreal), or it must cross the circle (then there

G
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M-circles

are two real solutions x;2x). In the case where x; and x, are complex the line is neither tangent nor

crosses the circle.

There are three possibilities for the M-circles:

(D M>1

In this case the M-circle is a closed contour in the NC because it does not contain the origin (0,0)

and there are solutions only for a given range of slopes ). Figure B.4 shows such an M-circles.

Nyquist plane
4 Imag.
w12 e 0o &
\ (10) / phase, 6
-

Figure B.4: Conversion of M-circle (M>1) from NPto NC

(2) M<1

v\/Rotati on

Nichols Chart

40

20-;; db
- L
3 0f- 46 db
.% __________ 412 db
T S 420 db
s ]
E
T
Q ADfevesnsnsnsnstnnnrssensnsnssnnnsnsarnnnssnnes ST 440 db
@]

;1] TSR S metmmssesssssmisscmsnssssassssesare 460 db

80 L 1 L L 1 L L 20 db

350 300 250 200 -150 100  -50 0

Open-Loop Phase (deg)

The resulting M-circles in the NC are open contours and tend to straight lines as M decreases. Note

that since the origin lies within the circle in the Nyquist domain, there exists a unique magnitude for

each phase (i.e. a directed straight line through the origin intersects the M-circle a a unique point).
As a consequence the M-circles in the NC are open contours.
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Nyquist plane Nichols Chart

~1db
—e-==43 db
96 db
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2120 db

T mmmmamees e 40 db
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| e e ~60 db
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Figure B.5: Conversion of M-circle (M<1) from NPto NC

(3) M=1

In the case M=1 the M-circle is a straight line in the NP with real part x= -0.5. The resulting M-
circle in the NC is an open contour which tends asymptotically to infinity at phases —270° and —90° .
This is because (as can be seen from figure. B.6) the phase of the M-circle in this case is always in
the interval (-270°,-90°).

Nyquist plane Nichols Chart
M=1
;A I mag.
} db
! . ee-e- P db
| 8 “46 db
| = $
-1 o 20 db
*— > S
| &
| Phase, 6 LB S —— v m e ——— 40 db
| (=]
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/| B R e ~+60 db
| Y=\
- 2 35 300 250 -200 150 100 50 080 -
('0-570) Open-Loop Phase (deqg)
Rotation

Figure B.6: Conversion of M-circle (M=1) from NPto NC
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APPENDIX C

SINGULAR VALUE DECOMPOSITION

A matrix A O R™, i.e. A is an nxm matrix (n rows and m columns where n < m) with real

elements, can be written as:

a, A, e ... A,
A= Y
a'nl anm
Therange of A, //(A), is defined as,
1 R(A) ={A{x OR"} OR"

Then JJ(A) is a subspace of R ". To see this take any two vectorsy; and y» in ZJ(A), i.e. let
y, OR(A), wherey, = Ax,, for somex, OR"™

and
y, OR(A), wherey, = Ax,, for somex, OR"™
Then it follows that,
ay, + By, = Alax, + Bx,) OR™

@ Ker(A) ={X|Ax =9n} OR™

Ker(A) isasubspace of R™. To seethistake any x; and x, in Ker(A), so that

Ax, =0,Ax, =0
Then
Alax, + B X;) = Aaxy + AB X, =0

which means that ax;+ax, [1 Ker(A) [Ref.8].
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We can also define the following:

(@ If SOR™, wedefine S” asthe s,
s’ :{z‘zTy:OforalI yDS} OR™

Thisalsoisasubset of R ™.

(b) For the matrix Anxm, it can be shown that

[R(A)]” = Ker(AT) OR"

and also

R(AT) =[Ker(A)]"

Singular Value Decomposition (SVD)
Any matrix Anxm Where, A 0 R" ™ can be expressed as,

SR

in which U=[U; U] and V=[V; V;] are orthogonal and Z,, is a diagonal matrix with positive

diagonal entries (these are known as the singular values of A) [Ref. g].
A, can be written alternatively as,
A=UzzV]
The Range and Kernel of A can be easily obtained from relations:
R(A)=R(U,)
and

Ker (A) = R(V,)

In Matlab the singular value decomposition can be performed by using function svd() which hasthe
following form, [U,SV ]=svd(A).
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