
Mathematica
implementation of

output-feedback pole
assignment for uncertain

systems via symbolic
algebra

Citation: ZHENG, X., ZOLOTAS, A.C., WANG, H., 2006. Mathematica
implementation of output-feedback pole assignment for uncertain systems via
symbolic algebra. International Journal of Control, 79 (11), pp. 1431-1446.

Additional Information:

• This is an electronic version of an article published in the International
Journal of Control [c? Taylor & Francis]. Information for the final version
of the article as published in the print edition of the journal is available
at: http://dx.doi.org/10.1080/00207170600726428

Version: Accepted for publication

Publisher: c? Taylor & Francis

Please cite the published version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/29176062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mathematica Implementation of Output-Feedback

Pole Assignment for Uncertain Systems via Symbolic

Algebra

X. Zheng∗, A.C. Zolotas∗, and H. Wang†

Abstract

This paper presents the application of symbolic algebra techniques to the

MATHEMATICA implementation of a set of output-feedback pole assignment al-

gorithms, for systems characterised by parametric uncertainty. For multivari-

able systems there may be more than one feedback matrix solutions leading

to the same closed-loop poles based on the same algorithm used. Thus over-

parameterised solutions are sought by generalising the existing algorithms with

extra degrees of freedom retained in the symbolic variables. The general paramet-

ric form of output-feedback compensators is developed in terms of the uncertain

parameters and symbols representing the extra degrees of freedom. The imple-

mentation of three output-feedback pole assignment techniques is presented, with

the theory brie�y introduced and examples illustrating the effectiveness of the

algorithms described.

∗Control Systems Group, Department of Electronic and Electrical Engineering, Loughborough

University, Loughborough, LE11 3TU, UK, {x.zheng, a.c.zolotas}@lboro.ac.uk; corresponding

author : X. Zheng.
†Control Systems Centre, School of Electrical and Electronics Engineering, The University of

Manchester, P.O. Box 88, Manchester M60 1QD, UK, hong.wang@manchester.ac.uk.

1

Author final version (International Journal of Control, Vol. 79, No. 11, November 2006, 1431-1446)

Notation

n Number of states

m Number of inputs

l Number of outputs

A n× n system matrix

B n×m input matrix

bi ithcolumn of the input matrix

C l × n output matrix

[A,B] A system defined by A and B matrices

[A,B,C] A system defined by A, B and C matrices

Φ Controllability matrix of a system

In n× n identity matrix

i The imaginary number of
√
−1

q Order of the output-feedback compensator

q r × 1 uncertain parameter vector

r Degree of uncertainties

At Transpose of matrix A

A−1 Inverse of matrix A

|A| Determinant of matrix A

Adj(A) Adjoint matrix of matrix A

⌊x⌋ The nearest integer lower than or equal tox

⌈x⌉ The nearest integer greater than or equal tox

Γ The set of desired closed-loop poles

ϕi Constants defined as ϕi =
?

max (m,l)
min (m,l−i+1

?

ϕ A constant defined as ϕ =
?min (m,l)

i=1 ϕi

G(s) Transfer function matrix of the open-loop system

F (s) Output-feedback compensator matrix

SISO Single Input Single Output

SIMO Single Input Multi Output

MISO Multi Input Single Output

MIMO Multi Input Multi Output

2

1 Introduction

The Pole Assignment problem relates to moving all or a portion of the poles of a given

time-invariant linear system, to a specified set of prescribed locations in the complex

plane by means of state or output feedback. State-feedback methods are easy to solve

and rather straightforward to implement if all states of the system are accessible. This

however is hardly what happens in reality with states been difficult to measure or even

inaccessible or significantly corrupted by noise, and usually observers are included to

provide the necessary estimates in the expense of increasing overall complexity [7, 13].

Output-feedback compensation is necessary for the aforementioned reasons. How-

ever, since calculating output-feedback compensators involves solving high nonlinear

equations [11], it is important to develop methods which can render the calculations

easier. Another objective for the output-feedback pole assignment is, to reduce the

least order of the compensator assigning all the closed-loop poles arbitrarily, which is

equal to saying design a fixed-order compensator which increases the maximum number

of poles that can be assigned arbitrarily.

Pearson [2, 8, 9] found the relationship between the minimum order of the output-

feedback compensator and the controllability and observability indices. In addition,

Seraji [4] improved the methods by Chen [3] for designing dyadic (rank one) dynamic

compensators to cover both complete and partial pole assignment. Moreover, Munro

and Novin-Hirbod [6] further improved Seraji’s method to full-rank output-feedback

compensators, having better disturbance rejecting properties. Recently, Soylemez and

Munro [14, 15] introduced a method of partial output-feedback pole assignment, to

further improve the maximum number of poles that can be assinged with a fixed order

compensator. The necessary order of the synthesized output-feedback compensator

is the lowest for arbitrary assignment of all the closed-loop poles using Soylemez and

Munro’s method.

The implementation of algorithms for output-feedback pole assignment in a numer-

ical environment is usually complicated and also deficient in accuracy. However, in

a symbolic environment the computation becomes simpler, more straightforward, and

easier to handle in a mathematical programming sense. Many engineering methods

3

that were considered impractical when implemented numerically, actually turned out

being practical when implemented in a symbolic algebra computing environment [5].

There is no doubt that implementation using symbolic computation based on sym-

bols and fractional numerical forms with infinite precision yields improved accuracy

(avoiding accumulative computation errors in a numerical environment).

There are quite a few software packages for symbolic computation, such as DE-

RIVE, MAPLE, MATHEMATICA, MuPad. These systems have a similar set of basic

commands for algebraic manipulations, e.g. the transformation (simplifying, expand-

ing, factorizing) of expressions and solving equations. They also have commands for

selecting different parts of an expression (e.g. Last and First in MATHEMATICA),

very useful for realizing various algorithms [16]. DERIVE offers less capabilities com-

pared to the other programs. MATHEMATICA is considered to be the best system [1],

based upon various criteria of power, purpose, availability, flexibility etc. Moreover,

MATHEMATICA offers great flexibility for programming, i.e. capable of functional

programming, object-oriented programming, and rule based programming in addition

to the traditional procedural programming. Thus, MATHEMATICA can be a useful

tool for realizing a variety of algorithms.

This paper presents the implementation of three output-feedback pole assignment

algorithms: (i) dyadic method by Seraji [4], (ii) full-rank method by Munro and Novin-

Hirbod [6] and (iii) constant [15] and dynamic [14] partial-pole placement by Soylemez

and Munro; using symbolic algebra computation in MATHEMATICA for parametric un-

certain systems, i.e. systems whose uncertainties are represented by symbols in their

models. Symbolic Algebra computation offers an advantage for realizing, and extend-

ing the above algorithms for parametric uncertain systems. The compensators are

obtained in a general parametric framework by retaining the extra degrees of freedom

as symbols (also referred to as free parameters) in their structure. These free parame-

ters can be then optimised to achieve specific internal stability and/or robustness of the

resulting closed-loop system. Another useful merit of utilising symbolic computations

is that the repetitive calculation required by numeric computations for the process of

optimization of the free parameters can be avoided.

4

2 Pole assignment for parametric uncertain systems

Parametric uncertain systems are systems characterised by uncertainty in their pa-

rameters. The uncertain parameters are commonly represented by a vector as q =

[q1 q2 · · · qr], where qi is the uncertain parameter bounded as q−i ≤ qi ≤ q+i , r is the

dimension of the uncertain vector. The state space representation of the model of a

parametric uncertain linear system can be written as

ẋ(t) = A(q) + B(q)u(t) (1)

y(t) = C(q)x(t) (2)

where A,B,C are matrix functions of q. Moreover, the nominal operating condition

for q is denoted by qn.

Soylemez and Munro [12] presented a reasonable approach for finding a solution to

robust output-feedback pole assignment problem: Given a pre-specified set of numbers,

Γ = {γ1, γ2, · · · , γp}, closed under complex conjugation, where p is the number of closed-

loop poles to be assigned. Firstly, find the general parametric form of the compensator,

F (k) of order q, where k is the vector of free parameters, such that the poles of the

resulting closed-loop system, [A − BFC, B, C], are equal to Γ under nominal working

conditions; then find the set of k vectors that satisfy pre-specified performance criteria

for all possible perturbations q. However, the approach adopted in this paper is, instead

of finding F (k) for the nominal working conditions qn, to find the general compensator

F directly in terms of both the uncertain parameters q and the free parameters k, i.e.

F (s,q,k).

3 Dyadic design method

Seraji’s algorithm [4] introduced a simple frequency-domain method for the design of

physically realizable dynamic output-feedback compensators to achieve pole assignment

in single-input or single-output systems, i.e. SISO, SIMO or MISO. In terms of MIMO

systems, pseudo single-input or pseudo single-output systems can be obtained using

the dyadic technique before calculating the output-feedback compensator with Seraji’s

algorithm.

5

The Dyadic method for output-feedback pole assignment can be stated as follows:

Given a multivariable system [A,B,C], whose transfer function G(s) = C (sI −A)−1
B

is an m × l matrix, find the output-feedback compensator matrix F (of rank one) in

the form of outer product of two vectors f and mt 1

F = f mt (3)

where mt(s) is an l-row vector of order q given by:

mt =
N(s)

pf (s)
=

1

sq + dq sq−1 + · · · + d1

[N1(s) · · ·Nl(s)] (4)

where

Ni(s) = bqi s
q + bq−1,i s

q−1 + · · · + b0i, i = 1, 2, · · · , l (5)

f is a predefined constant m-column vector such that the resulting pseudo single-

input system [A, Bf , C] is completely controllable, which equally means that the

corresponding m-column vector, g(s) = G(s)f , is completely controllable. mt(s) is

designed for the pseudo system so that the resulting closed-loop system poles are moved

to the desired set of poles, Γ = {γ1, γ2, · · · , γp}, where p is the number of closed-loop

poles to be assigned. The open-loop transfer function of the pseudo single-input system

is given by

G(s) = C[sIn −A]−1(Bf) (6)

=
w(s)

p(s)
=

1

sn + an−1sn−1 + · · · + a0




W1(s)
...

Wl(s)


 (7)

where p(s) is the open-loop system characteristic polynomial, w(s) is the numerator

matrix, andWi = mnis
n−1+. . .+m1i. The closed-loop system characteristic polynomial

can be written as

pc = pf (s)p(s) + N(s)w(s) (8)

1Note that the output-feedback compensator can also be considered as F = m
t
f . Here, f is a con-

stant l-row vector pre-sepcified such that the corresponding pseudo single-output system [A, B, fC]

is completely observable.

6

From the given desired set of closed-loop poles Γ, the closed-loop characteristic poly-

nomial can also be expressed as

pc = (s− γ1)(s− γ2) · · · (s− γp) (9)

Equating coefficients of like powers of s in equation (8) and equation (9) gives

Ec = h (10)

where E is an (n + q) × (ql + q + l) matrix, h is an (n + q) column vector and c is

the (ql + q + l) column vector formed by the unkown parameters in mt(s). It can be

comprehended that there are (q+l(q+1)) elements that can be used to assign the closed-

loop poles to desired positions. Hence depending on the order of the compensator, q,

some or all of the poles of the (n + q)th order closed-loop system can be positioned

arbitrarily. If ql + q + l ≥ n + q, it is possible to assign all the (n + q) poles of the

closed-loop system and there are ql + l − n free parameters out of the parameters of

the compensator; If ql+ q+ l < n+ q, only ql+ q+ l closed-loop poles can be assigned

arbitrarily at most. In a more accurate way, the number of closed-loop poles that can

be assigned arbitriliy is determined by the rank of matrix E.

4 Full-rank design method

Munro and Novin-Hirbod [6] introduced a method that generates full-rank output-

feedback compensators for multivariable systems. This method finds the output-

feedback compensator as summation of a sequence of dyadic compensators expressed

as

F =
i=1?

µ

f (i)m(i)

= Fc Fo (11)

where Fo = [m1 · · ·mm]t, Fc = [f1 · · · fm], µ = min (m, l), m and l are the number of

inputs and outputs of the system respectively. In each step except for the first step,

f (i) = [f
(i)
1 · · · f (i)

i 0 · · · 0]t, which picks up the first i inputs, is designed to render as

many poles assigned in the previous steps as possible uncontrollable (retained) from the

7

pseudo single-input system considered in its current step, by satisfying the following

equation

Adj(γj In −A
(i−1)

cl
) Bf (i) = 0 (12)

where A
(i−1)

cl
is the state matrix of the resulting closed-loop system after (i− 1) steps,

γj is the pole assigned in the past (i − 1) steps, In is identity matrix of the same

dimension as matrix A. For the first step, there is no pole to be retained, so f
(1)
1 is a free

parameter. Due to the fact that if an f vector yields a closed-loop solution for dyadic

pole assignment, then ρ f yields the same solution, where ρ is a nonzero scalar. Let

f
(1)
1 = 1 for simplicity. In each step, the pseudo single-input system [A

(i−1)

cl
,Bf (i),C] is

considered. m(i) is designed so that at least one more closed-loop pole is to be moved

to the specified location.

To make the algorithm more practical, it is assumed that the set of desired closed-

loop poles, Γ = {γ1, γ2, · · · , γp}, can be partitioned into m disjoint subsets 2, Γ =

Γ1 ∪ Γ2 ∪ · · ·Γm, such that each subset, Γi has ni elements closed under complex

conjugation as

Assumption 1.

m?

i=1

ni = p

ni = 1 (for i = 1, 2, · · · , m− 1)

nm = p−m + 1 (13)

Constant dyadic design is used for the first (m−1) steps making sure that one more

closed-loop pole is assigned in each step. For the final step, there should be (m − 1)

closed-loop poles to be rendered uncontrollable. If l+(m−1) ≥ n, the constant dyadic

compensator is sufficient to assign all the remaining closed-loop poles. If l+(m−1) < n,

a dynamic dyadic compensator of order q ≥
?

n−(m+l−1)
l

?
is needed to assign all the

remaining closed-loop poles.

2Here,we assume that m < l

8

5 Partial pole assignment method

Soylemez and Munro developed a new technique for partial pole assignment using

constant [15] and dynamic output-feedback [14].

The technique, for either constant or dynamic assignment, consists of m steps for

multivariable systems of m inputs and l outputs assuming that m ≤ l (see 3), to

assign as many poles as possible to desired locations. This technique is also called

Pole Assignment by Pole Retention from Inputs (PAPRI) because in each step, ϕi =?
max(m,l)

min(m,l)−i+1

?
poles can be assigned and retained simultaneously. It is almost always

possible to arbitrarily assign min (n, ϕ) closed-loop poles by a static linear output-

feedback compensator, or to arbitrarily assign all the closed-loop system poles using

a compensator of order ⌈(n− ϕ)/max(m, l)⌉, where ϕ = max(m, l) +
?

max(m,l)
2

?
+

· · · +
?

max(m,l)
min(m,l)

?
. To make the algorithm more practical, it is assumed that the set of

desired closed-loop poles, Γ, can be partitioned into m subsets given as Γ = Γ1 ∪ Γ2 ∪
· · ·Γm, where each subset, Γi, closed under complex conjugation has ni elements, and

ni satisfies the following

Assumption 2.

m?

i=1

ni = p

ni ≤ ϕi (for i = 1, 2, · · · , m− 1)

nm ≤ ϕm + q(l + 1) (14)

For each step of the first (m − 1) steps, one input of the system is selected such

that system has at least ni controllable modes through this input. Then the constant

output-feedback compensator via the chosen input is designed such that ni closed-loop

poles are assigned to the specified locations and simultaneously rendered uncontrollable

through the remaining inputs of the system, which means that the following steps do

not affect the already assigned poles. For the last step, the remaining nm closed-

loop poles are assigned and no further pole retention is required. If nm ≤ l, the

constant compensator is sufficient to assign these nm poles; else if nm > l, a dynamic

3If m > l, then everything said can be applied to the dual system [At, Bt, Ct], and the

compensator found at last can be transposed to find the compensator for the original system

9

compensator of order q =
?

nm−l
l+1

?
is necessary. In the following, we will briefly introduce

the connection between pole assignment, partial pole assignment and pole retention.

For more details the reader is referred to [15, 14].

5.1 Pole assignment

Assume a single-input system [A,b,C], with the objective being to assign all poles.

In this case, the technique for output-feedback pole assignment developed is based

on the mapping approach [17]. It was found that the mapping approach is fast and

hence sufficient when implementing symbolically due to the simplicity of the equations

involved, although has poor performance if implemented in a numerical environment

[13]. For constant compensation, the output-feedback constant vector ky is given as

ky = [XΦtCt]−1δ (15)

= Z−1δ (16)

where Z = XΦC, Φ is the controllability matrix of the system,i.e.

Φ = [b Ab . . . An−1b] (17)

δ is the difference vector given by the coefficients of the difference polynomial, δ(s) =

pc(s) − p(s), i.e.

δ = [αn−1 − an−1 αn−2 − an−2 · · · α0 − a0]
t (18)

where ai are the coefficients of the open-loop system characteristic polynomial,

p(s) = |sIn −A|

= sn + an−1s
n−1 + · · · + a0 (19)

αi are the coefficients of the desired closed-loop system characteristic polynomial,

pc(s) =
n?

i=1

(s− γi) (20)

10

X is a lower-triangular Toeplitz matrix given as

X =




1 0 0 . . . 0

an−1 1 0 . . . 0

an−2 an−1 1 . . . 0
...

...
...

. . .
...

a1 a2 a3 . . . 1




(21)

For dynamic compensation, the following equation is given instead of equation (16)

f = Z−1δ (22)

where f , as defined in equation (4), is a (ql+ q + l) elements vector that consists of all

the parameters of the dynamic compensator F (s) of order q , i.e.

f =
?
d1 . . . dq b01 b11 . . . bq1 · · · b0l b1l . . . bql

?
(23)

Here, δ is the difference vector given by the coefficients of the polynomial, pc(s)−p(s)sq.
Z is a (n+ q)× (ql + q + l) matrix formed by the coefficients of the open-loop system

characteristic polynomial, p(s), and coefficients of the numerator polynomial matrix of

the open-loop system transfer function matrix w(s) as defined in equation (7)

Z =




a0 0 . . . 0

a1 a0 . . . 0
...

...
. . .

...
...

...
... a0

an−1 an−2
...

1 an−1
...

0 1
...

...
...

...

0 0 an−1

0 0 1

??????????????????????????????

m11 0 . . . 0

m12 m11 . . . 0
...

...
. . .

...
...

... m11

m1n

...
...

0 m1n

...
... 0

...
...

...
...

...
...

...

0 0 m1n

??????????????????????????????

ml1 0 . . . 0

ml2 ml1 . . . 0
...

...
. . .

...
...

... ml1

mln

...
...

0 mln

...
... 0

...
...

...
...

...
...

...

0 0 mln




(24)

5.2 Partial pole placement

For each step, only part of the closed-loop system poles are assigned to the desired

positions, Γi, through one chosen input using the technique of partial pole placement .

11

Again consider the previous assumed single-input system [A, b, C], with an

output-feedback compensator of order q is to be designed so that p of the (n+q) closed-

loop poles are assigned to desired locations. The closed-loop characteristic polynomial

is separated into two parts

pc = pd(s)pe(s) (25)

where pd(s) is the achievable part formed by the p poles assigned

pd(s) = sp + dp−1s
p−1 + . . .+ d1s+ d0 (26)

pe(s) is the residue polynomial formed by the rest of the closed-loop poles

pe(s) = st + et−1s
t−1 + . . .+ e1s+ e0 (27)

where t = n + q − p
It is known that

δ(s) = pc(s) − p(s)sq (28)

and it is possible to write

pc(s) = pd(s)st +
t?

i=1

pd(s)et−is
t−i (29)

where e is a vector formed by the unknown coefficients in polynomial pe(s). Then we

can get

δ = δ0 + Dpe (30)

where δ0 is a vector formed by the coefficients of pd(s)st−p(s)sq,Dp = [d1 d2 . . . dt],

where di is the coefficient of pd(s)et−is
t−i.

To assign p closed-loop poles with a compensator of order q, there are ql+ q+ l− p
free variables available out of the compensator parameters. Thus, partition f into two

parts

f =



 f1

f2



 (31)

where f1 is a vector that contains ql+ q+ l− p elements formed by the free parameters

of the compensator and f2 is a vector that contains p element formed by the parameters

12

of the compensator to be determined. Accordingly, matrix Z is partitioned as

Z = [Z1 Z2] (32)

Then, it is possible to get

?δ = ?X ?f (33)

where ?X = [Z2 −Dp] is a square matrix, ?δ = δ0 −Z1f1, ?f = [f2 e]. In this way, the

p elements in f2 and the t = n + q − p coefficients of the residue polynomial pe can be

found in terms of the ql + q + l − p free parameters in f1

?f = ?X
−1 ?δ (34)

It should be noted that the system [A bi C] should have at least p controllable and

observable modes.

5.3 Pole retention

In each step except the final step of this algorithm, a constant compensator is applied

and pole assignment is carried out by pole retention, that is simultaneous pole assign-

ment and retention. The free variables in ky1 that occurs in partial pole assignment

are used to make the assigned closed-loop poles uncontrollable (retained) from the rest

of the inputs (pole retention) [15]. Combined with equation (34), the output-feedback

compensator vector can be written as

ky =



 ky1?
Ip 0

?
?k



 (35)

=



 ky1?
Ip 0

?
?X

−1
(δ0 −Z1ky1)



 (36)

To make the assigned poles uncontrollable (retained) from the rest of the inputs of the

system, it needs to satisfy

Adj(γkIn −Acl)bj = 0 (37)

where i ?= j, Acl is the closed-loop system state matrix given by

Acl = A− bik
′

yC (38)

13

It’s been proven that ky1 enters into equation (37) linearly [15]. Moreover, the rank of

adjoint matrix in equation (37) is 1. Therefore, matrix equation (37) can be satisfied

by loosing m − 1 degrees of freedom, that is only pick up any nonzero row of the

equation. For step i, where i = 1, 2, · · · , m − 1, to make all the p poles assigned in

this step uncontrollable from the rest (m− i) inputs, ky1 has to satisfy (m− i)p linear

equations. In order to find a solution for ky1, the length of ky1 should be greater or

equal to the number of equations, i.e.

l − p ≥ (m− i)p (39)

Thus there will be l − p− (m− i)p extra degrees of freedom from ky1.

6 Symbolic computation in MATHEMATICA

MATHEMATICA, offering the capabilities of a symbolic computational environment, can

handle the problem of output-feedback pole assignment in a rather straightforward

way. Most of the inbuilt MATHEMATICA functions use natural names for the operations

considered. Note that MATHEMATICA distinguishes between upper-case letters and lower-

case letters, for example MatrixForm is different from matrixForm. To represent a

parametric uncertain system given as

A =




1 0 0

0 −2 0

0 0 −3


 B =




q1 0

0 1

1 0


 C =

?
1 0 0

0 1 1

?
(40)

the code in MATHEMATICA is

Amx = {{1, 0, 0}, {0, -2, 0}, {0, 0, -3}};

Bmx = {{q1, 0}, {0,1},{1, 0}};

Cmx = {{1, 0, 0}, {0, 1, 1}}

To calculate the transfer function of the system by using the relationship of

G(s) = C(sI −A)−1B + D (41)

with the relevant code being

14

g = Cmx.Inverse[s IdentityMatrix[n]-Amx].Bmx+Dmx

The package Control Systems Professional provides a convenient way for solving

common problems in control design, which is applicable for both symbolic and numeric

models. An alternative way to get the transfer function matrix model for the state-

space system in equation (41), is the following

TransferFunction[StateSpace[Amx,Bmx,Cmx]]

Both methods involve the inverse operation of (sI −A)−1, which can be computation-

ally expensive (based on the size of matrix A). Caution must be taken when using

matrix inverse operations especially for large parametric systems because it significantly

slows down the solution process.

In addition, the command ControllabilityIndices (available in the Controllability

package [10]) can be used to find all possible conditional controllability indices for para-

metric uncertain systems. For example, to find the controllability indices for a system

described by equation (40), the code required is

ControllabilityIndices[Amx,Bmx]

and returns the following result

{{{2,1},q1!= 0},{{1,2},False}}

meaning that the controllability indices of the system are µc = {2, 1} when q1 ?= 0. The

command ObservabilityIndices was developed based upon ControllabilityIndices

for finding observability indices

ObservabilityIndices[amx_,cmx_]}:=Module[{a,b}, a=amx;

b=Transpose[cmx]; ControllabilityIndices[a,b]]

However, it is essential to write packages when implementing big algorithms in

MATHEMATICA, either to be used standalone or to complement currently available ones.

It is an efficient way to collect all algorithms/routines in a toolbox framework for easy

use in problem solving. In this work separate packages were built for implementing the

algorithms listed in section 1, and these are described in the following sections.

15

6.1 Dyadic method package

This package provides a set of commands to find a general output-feedback compensator

for parametric uncertain systems (SISO, SIMO, MISO, MIMO) via Seraji’s approach

to dynamic compensator design.

First the package OFBDyadic needs loading

<<OFBDyadic‘

which returns the available commands

OFBDyadic toolbox is loaded.

Available commands:

Seraji,SerajiMIMOToMISO, SerajiMIMOToSIMO,SymDyadicObser,SymDyadicContr

Help on any of the command can be obtained by typing ?Command_Name, for example

to get help on the Seraji command type

?Seraji

returning the full explanation on its usage

Seraji[amx,bmx,cmx,r,polescls,sQ] implements Seraji’s dynamic output

-feedback compensator design method, for single-input or

single-output systems given by ’[amx,bmx,cmx]’, to assign the

closed-loop poles to the set of desired positions ’polescls’,e.g

{-1,-2,-3+2i,-3-2i}; ’r’ is the order of the dynamic compensator, it

returns the generalised compensator and the conditions required for

the equations to have solutions. If [amx,bmx,cmx] is an uncertain

system with symboles in it, set ’sQ’ to 1, or set sQ to 0

The following example illustrate the usage and the effectiveness of the developed

packages.

Dyadic Compensator Example

Consider the system given by equation (40). We seek to design a first-order output-

feedback compensator to place the poles of the resulting closed-loop system to the

desired set Γ = {−1 ± i,−4,−5}. Let f = [1, f1]
t,

16

in[1]:= fmx={{1},{f1}}; % fmx is a column vector

Bmx.fmx

out[1]= {{q1},{f1},{1}}

Vector f has to be pre-specified (if using a numerical environment), albeit this is not

necessary in the symbolic computation as the solution of the final compensator is given

in a symbolic (generic) form (symbols rather than numbers). Then we must check for

the conditional controllability and observability indices of the corresponding pseudo

single-input system [A,b, C], where b = Bf . Thus write,

in[2]:= ControllabilityIndices[Amx,Bmx.fmx]

in[3]:= ObservabilityIndices[Amx,Cmx]

out[2]= {{{3},f1q1!= 0}}

out[3]= {{{2,1},False},{{1,2},True}}

The above confirms that the pseudo single-input system is completely controllable when

f1q1 ?= 0. Next the solution for mt is to be found. Firstly, we represent mt in symbolic

form as defined from equation (4).

in[4]:= coeff1 = Array[f, {2, 2}]

out[4]= {{f[1,1],f[1,2]},{f[2,1],f[2,2]}}

in[5]:= coeff2 = Array[g, {1}]

out[5]= {g[1]} in[6]:= pt = Table[s^i, {i, 0, r}]

out[6]= {1,s}

in[7]:= NN = pt.coeff1; % the numerator Matrix

polycom = coeff2.pt; % characteristic polynomial of the

% compensator

compensator = NN/polycom;

The resulting compensator from the above code is

? f?1, 1? ? s f?2, 1?
???

s ? g?1? ,
f?1, 2? ? s f?2, 2?
???

s ? g?1? ?

where the variables f[1,1],f[2,1],f[1,2],f[2,2], i.e. the parameters of the

compensator, are to be determined. These can be determined by calculating the closed-

loop characteristic polynomial from equation (8), by first obtaining w(s) and p(s).

17

in[8]:= G = TransFunction[Amx, Bmx.fmx, C];

p = Det[s IdentityMatrix[3]-a];

w = Flatten[Simplify[G p]];

Hence the open-loop transfer function is given by and the numerator matrix w(s) of

?? q1
???????????????

?1 ? s
?, ? 2 ? s ? f1 ?3 ? s??

6 ? 5 s ? s2
??

the open-loop transfer function is

{q1(s+2)(s+3),(-1+s)(2+s+f1(3+ s))}

Thus, the closed-loop characteristic polynomial is calculated by using

in[9]:= pc = Simplify[Expand[p polycom + w.NN]]

and the solution obtained is

According to the set of desired closed-loop poles Γ, the closed-loop characteristic poly-

nomial can be also given as

pc = (s+ 4)(s+ 5)(s+ 1 − i)(s+ 1 + i) = s4 + 11 s3 + 40 s2 + 58 s+ 40 (42)

Matching the coefficients of like powers of ‘s’ in equation (42) and out[9] gives a set

of linear equations, which can be solved to obtain the parameters of the compensator.

The associated code is

in[10]:= equations = Map[(# == 0)&,CoefficientList[(pc - polyclsD),s]];

% polyclsD is (s+4)(s+5)(s+1-i)(s+1+i)

With the command LinearEquationsToMatrices, we can transfer the set of linear

equations into the form of equation (10).

18

in[11]:= {matrixE, columnh}=

LinearEquationsToMatrices[equations,columnC]

out[11]= {{{-6,6,q1,-2-3 f1,0,0},

{1,5 q1,1+2 f1,6 q1,-2-3 f1},

{4,q1,1+f1,5 q1,1+2 f1},

{1,0,0,q1,1+f1}},{40,64,39,7}}

where columnC= {g[1],f[1,1],f[2,1],f[1,2],f[2,2]} is the vector containing the

variables to be determined. It is known that q = 1, n = 3 and l = 2, so ql + q + l >

q + n = 4, thus one free variable is available from mt. g[1] can be selected as the

free variable so that we can choose the pole of the compensator freely, thus columnC

changes to {f[1,1],f[2,1],f[1,2],f[2,2]}. The matrix E and vector h should be

modified accordingly by dropping the first element of vector c

in[12]:= {matrixE, columnh}=

LinearEquationsToMatrices[eq,Drop[columC,1]];

in[13]:= matrixE

out[13]= {{6 q1,-2-3 f1,0,0},

{5 q1,1+2 f1,6 q1,-2-3 f1},

{q1,1+f1,5 q1,1+2 f1},

{0,0,q1,1+f1}}

in[14]:= columnh

out[14]= {40+6 g[1],64-g[1],39-4 g[1],7-g[1]}

The command SymFullRankQ [10] is used to find the conditions for the symbolic matrix

E to have full rank

in[15]:= SymFullRankQ[matrixE]

out[15]= f1q1?= 0

Then the solution to equation (10) is found

in[16]:= solv=Solve[equations, columC]

The Dyadic output-feedback compensator is the outer product of vectors f and mt, i.e.

f and compensator in the MATHEMATICA environment. Finally, substitute solv into

the expression of the compensator

19

in[17]:= comp = Simplify[Outer[Times, Flatten[f],

Flatten[compensator]]];

compensator /. solv

which returns the following result for the compensator

?

?

??????

8 ??1?s??5 f12 ??1?s??f1 ??2?27 s?2 g?1??2 s g?1??
??

2 f1 q1 ?s?g?1?? ?
5 f1 ?2?s??8 ?3?s?
?????????????????????????????????

2 f1 ?s?g?1??

8 ??1?s??5 f12 ??1?s??f1 ??2?27 s?2 g?1??2 s g?1??
??

2 q1 ?s?g?1?? ?
5 f1 ?2?s??8 ?3?s?
?????????????????????????????????

2 ?s?g?1??

?

?

??????

The compensator obtained above is a general parametric solution. The extra degrees

of freedom are remained as a symbolic variables ,f1 and g[1] in the compensator. Now

it remains to check the position of the poles of the resulting closed-loop system which

is

in[18]:= Solve[Det[s IdentityMatrix[3]-Amx+Bmx.comp.Cmx] == 0, s]

out[15]= {{s -> -5}, {s -> -4}, {s -> -1-i}, {s -> -1 + i}}

and confirms that they are placed in the exact position required from the specification

given in the example.

The developed package for the Dyadic method provided an efficient way to get

the general output-feedback matrix F in terms of uncertain parameters (q1) and free

parameters (g[1] and f1) based upon over-parameterization along with the conditions

for the compensator to exist, i.e. the union of all the conditions found during the design

process such that all the closed-loop poles could be exactly assigned to the prescribed

positions.

6.2 Full-rank method package

The purpose of this package development is to find general compensators for parametric

uncertain systems via Munro’s full-rank method [6] based on output-feedback pole

assignment. As in the previous package case, the first step is to load the associated

commands of the current package using

in[1]:= <<OFBFullRank‘

OFBFullRank toolbox has been loaded.

20

available commands:

DegreeDetermine,MunroFullRankCheck,MunroFullRank,poleCombinFullRank.

Full Rank Compensator Example.

Lets consider the system given from equation (40), as in the case of the Dyadic com-

pensator example. The command DegreeDetermine[n_,l_,m_] was developed based

on the principles discussed in section 4 to find the minimum order of the compensator

capable of assigning all closed-loop poles arbitrarily. To determine the order of the

compensator we need the following,

in[2]:= DegreeDetermine[3,2,2]

out[1]= 0

This implies that a constant compensator (order 0) is sufficient to assign all the closed-

loop poles for the system having 3 states, 2 inputs and 2 outputs. Next we choose

the set of prescribed closed-loop pole locations Γ = {−4,−1 ± i}. The controllability

indices of the system are µc = {2, 1} under the condition that q1 ?= 0. Also checking

the observability of the system

in[3]:= ObservabilityIndices[Amx,Cmx]

out[2]= {{{2,1},False},{{1,2},True}}

returns two possibilities, i.e. (i) the situation of having 2 states observable from the first

output and one state observable from the second output is impossible {{2,1},False},

while (ii) the case to have one state observable from the first output and two states

observable from the second output is true {{1,2},True}. Overall, the above sim-

ply means that the system is fully observable although the command lists all possible

cases of observability indices. Next we need to partition the set of desired closed-loop

poles to m subsets, Γ = Γ1 ∪ Γ2 ∪ · · ·Γm, according to Assumption 1. Command

poleCombinFullRank[poles_List,m_] was developed for that particular operation

returning several subset combinations. It is required that each subset should be closed

under complex conjugations, which implies that complex pairs can only be assigned

in the final step. Note that different compensators will be obtained under the consid-

eration of different combinations. Designers have the freedom to choose any possible

21

combination. However, in the case of this example only one combination is possible,

i.e.

in[4]:= polescls= poleCombinFullRank[{-4,-1+I,-1-I}]

out[3]= {{-4},{-1+I,-1-I}}}

Next, construct the full-rank compensator according to equation (11) as

in[5]:= Fc = Table[If[i >= j, fc[i, j], 0], {i, 2}, {j, 2}]

Fo = Array[fo, {2, 2}]

out[4]= {{fc[1,1],0},{fc[2,1],fc[2,2]}}

out[5]= {{fo[1, 1], fo[1,2]}, {fo[2, 1], fo[2, 2]}}

Now, let the first element in matrix Fc, fc[1,1], be equal to 1

in[6]:= Fc[[1,1]]= 1

then the assignment will be carried out in two steps as follows:

Step 1.

The first input of the system b is chosen by Fc[[1]]={1,0}

in[7]:= b = Partition[Bmx.Fc[[1]], 1]

out[6]= {{1},{0}}

Next Fo[[1]]={fo[1, 1],fo[1, 2]} is to be determined to assign one pole to Γ1 =

{−4}. Fo[[1]] can provide one free variable, say, fo[1,1] and it is required that

fo[1,1]?= 0. The corresponding c vector is simply {fo[1,2]} and a similar procedure

as in the Dyadic method is used to obtain the solution.

{fo[1,2]→ 1 − 1
5
q1 fo[1,1]}

Step 2.

in this step the system under consideration is

[A
(1)

cl
,B,C] (43)

where A
(1)

cl
is the closed-loop system state matrix, i.e. the result of pole assignment in

the first step

A
(1)

cl
= A−B f (1) m(1) C (44)

The related code for calculating (44) is given below

22

in[8]:= Acl=Amx-Apply[Plus, Table[Bmx.Outer[Times,Fc[[1]],Fo[[1]]].C{i, 1, j}]

/. Flatten[Append[solvo, solc]]]

Now we can determine Fc[[2]]={fc[2,1],fc[2,2]} which renders the pole at

position {−4} uncontrollable by substituting s = −4 into equation (12). Next, one free

variable is provided by Fc[[2]], say, fc[2,2] and it is also required that fc[2,2]?= 0.

Due to the fact that the adjoint matrix Adj(.) is of rank one, matrix equation (44)

can be solved by using just one nonzero row. In MATHEMATICA this is structured using

in[9]:= pp=AdjointMatrix[s IdentityMatrix[n] - Acl].B.Fc[[2]]/. s->-4;

For[i=1, i<=2, i=i+1, % find one nonzero row

If [pp[[i]]=!= {0},

t=i; Break[]

]

];

equation=pp[[t]]==0;

Solve[equation, Drop[Fc[[2]],-1]]

out[7]= {fc[2,1]-> 1
10
(-5fc[2,2]+q1fc[2,2]fo[1,1])

The above command AdjointMatrix according to the mathematical definition of ad-

joint matrices. Finally, Fo[[2]]={fo[2,1],f[2,2]} is to be determined in order to

assign the remaining portion of the closed-loop poles to Γ2 = {−1 + i,−1 − i} using

the same procedure as in the dyadic design method. The resulting general full-rank

compensator F, which is the outer product of Fc and Fo, is obtained as

?? 25 ? 5 q1 fo?1, 1?
??

20 q1 ? 4 q12 fo?1, 1?
,

5
????

4
?, ?? 5 ?25 ? 15 q1 fo?1, 1? ? 4 q12 fo?1, 1?2?

??

2 q1 ??5 ? q1 fo?1, 1??2
,

5 ? 4 q1 fo?1, 1?
???

2 ??5 ? q1 fo?1, 1?? ??

F is a general parametric solution with one extra freedom represented by the variable

fo[1,1]. Finally, check the poles of the resulting closed-loop system

in[10]:= Solve[Det[s IdentityMatrix[3] - Amx + Bmx.F.Cmx]== 0, s]

out[7]:= {{s->-4},{s->-1+i},{s->-1-i}}

confirms that all of the poles are correctly assigned to the desired locations using the

output-feedback compensator F.

23

6.3 Partial pole assignment package

The partial pole assignment package for implementing the algorithms by Soylemez

and Munro [15, 14] to find the general output-feedback compensator for parametric

uncertain systems. Again we first need to load the package,

in[1]:= << PartialPoleAssign‘

PartialPoleAssign toolbox has been loaded.

available commands:

compenDegree,poleArrange,inputPermutation,ModCond,ModObs,

PartailConstant,PartialDynamic.

Example 3. Consider the following system

A =




−1 + q1 0 0

0 −2 0

0 0 3 + q2


 B =




1 0

0 1 + q3

1 0


 C =



 1 0 0

0 1 1





(45)

where q1, q2 and q3 are uncertain parameters (additional uncertain parameters com-

pared to the previous cases). The matrices in MATHEMATICA are structured as

in[2]:= Amx={{-1+q1,0,0},{0,-2,0},{0,0,3+q2}};

Bmx={{1,0},{0,1+q3},{1,0}};

Cmx={{1,0,0},{0,1,1}};

The command compenDegree, developed particularly for this package, returns the least

order of the compensator required to assign the poles of the system.

in[3]:= compenDegree[Amx, Bmx, Cmx, 1]

out[1]= 0

The result illustrates that a constant compensator assigns all the closed-loop poles

arbitrarily. The required set of closed-loop pole locations is Γ = {−4,−3 + I,−3− I}.

According to assumption (2), Γ can be partitioned as {{−4}, {−3 + i,−3− i}}, being

the only possible combination.

Next, it is important to check both controllability and observability indices of the

system by using

24

in[4]:= ControllabilityIndices[Amx,Bmx]

out[2]= {{{2,1},(-4+q1-q2)(1+q3)!= 0},{{1,2},False},{{3, 0},False}}

in[5]:= ObservabilityIndices[Amx,Cmx]

out[3]= {{{2,1},False},{{1,2},5 + q2!=0}}

According to the controllability indices, we can only choose to assign one pole, Γ1 =

{−4}, through the second input in the first step and then assign the rest of the closed-

loop poles, Γ2 = {−3 + i,−3 − i}, via the first input. The observability indices reveal

that the system is fully observable as far as q2 ?= −5. Next the assignment problem is

solved in two steps,

step 1. Take the second column of the input matrix B

in[6]:= b = TakeColumns[Bmx, {2}]; out[4]= {{0},{1 + q3},{0}}

The system given by [Amx,b] is under consideration. To find the lower-triangular

Toeplitz matrix according to equation (21), we use command XMatrix built as

XMatrix[poly_] := Module[{co, a}, co =

Reverse[CoefficientList[poly, s]]; a = Table[Which[i == j,1,

i > j,k=i-j;co[[k + 1]],

i < j, 0],

{i,Length[co]-1},{j,Length[co]-1}

]];

Then we can find the lower-triangular Toeplitz matrix for the open-loop characteristic

polynomial by using

In[7]:= n = Length[Amx];

Po = Det[s IdentityMatrix[n] - Amx];

X = XMatrix[Po]

out[5]= {{{1,0,0},{-q1-q2,1,0},{-7+ q1-3q2+q1q2,-q1-q2,1}}

The controllability matrix of the open-loop system is found by [A b]

in[8]:= W = ControllabilityMatrix[StateSpace[Amx,b,Cmx]]

out[6]={{0,0,0},{1+q3,-2(1+q3),4(1+q3)},{0,0,0}}

25

Note that command ControllabilityMatrix is available in the Control Systems

Professional package of MATHEMATICA. Matrix Z in equation (16) can be calculated

as

in[9]:= Z = X.Transpose[W].Transpose[Cmx]

Partition matrix Z according to equation (32)

in[10]:= p=1;

l=Length[Cmx];

Z1=TakeColumns[Z, l-p];

Z2=TakeColumns[Z, -p];

Matrix Dp is calculated based on the mathematical definition in equation (30)

in[11]:= Pd = s+4 ;

Dp = Transpose[Table[Reverse[Flatten[Append[CoefficientList

[Pd s^(n-p-i),s], Table[0, {i - 1}]]]], {i, n - p}]]

out[6]= {{1, 0},{4, 1},{0, 4}}

and the matrix ?X in equation (33) is obtained by

in[12]:= XX = Simplify[AppendRows[Z2, -Dp]]

out[7]= {{1+q3,-1,0},

{-(2+q1+q2)(1+q3),-4,-1},

{(-1+q1)(3+q2)(1+q3),0,-4}}

Because inverse operation is used on matrix ?X , it is important to check for full rank

conditions of matrix ?X

in[13]:= SymFullRankQ[XX]

out[8]= (3+q1)(7+q2)(1+q3)!= 0

For the output-feedback compensator vector, given in (35), let ky1 initially be described

in symbolic form as

in[14]:= Ky1=TakeRows[Array[ky, {l, 1}], l - p] out[9]= {{ky[1, 1]}}

26

According to equation (35-37), ky1 is obtained

ky1 = [− 2(3 + q1)

(7 + q2)(1 + q3)
] (46)

therefore the second row of the feedback matrix Ky =



 kt
(1)

kt
(2)



, is determined by

equation (35) as

kt
(2) =

?
− 2(3+q1)

(7+q2)(1+q3)
2

(1+q3)

?
(47)

Step 2. In this step, the rest of the closed-loop poles, Γ2 = {−3 + i,−3 − i}, are

assigned. The system considered in this step is [A
(1)

cl
, b1, C], where A

(1)

cl
= A −

b2k
t
(2), bi is the ith column of matrix B. Since this is the final step, pole retention is

no longer needed. There are two remaining poles to be assigned, thus k(2) contains no

extra degrees of freedom. Therefore, k(2) is determined from equation (15) as

kt
(1) =

?
99+29q2+2q2

2
+4q1(5+q2+q2

1
(5+q2)

(−4+q1−q2)(5+q2)
, − (7+q2)(37+12q2+q2

2
)

(−4+q1−q2)(5+q2)

?
(48)

Therefore the final compensator matrix F is

?? 99 ? 29 q2 ? 2 q2
2
? 4 q1 ?5 ? q2? ? q12 ?5 ? q2?

???4 ? q1 ? q2? ?5 ? q2? , ?
?7 ? q2? ?37 ? 12 q2 ? q22?
??4 ? q1 ? q2? ?5 ? q2? ?, ?? 2 ?3 ? q1?

???7 ? q2? ?1 ? q3? ,
2

???????????????

1 ? q3
??

In the above example, the general compensator obtained through the partial pole

placement method doesn’t have extra degrees of freedom. Finally checking the poles

of the resulting closed-loop system

in[10]:= Solve[Det[s IdentityMatrix[3] - Amx + Bmx.F.Cmx]== 0, s]

% F is the final output feedback compensator

out[7]:= {{s->-4},{s->-3+i},{s->-3-i}}

shows that all poles are successfully moved to the desired locations.

Note that single commands can be used to get the final compensator for all of the

above packages,although the details aim to present the way of package development in

MATHEMATICA and also to illustrate the usefulness of incorporating symbolic algebra to

the output-feedback assignment problem. Finally, a more complex example is to be

considered.

27

Example 4. The open-loop system is

a =




−2.12 1.31 −2.8 2.23 0.1 6.8 1.41 4.623

3.2 0.21 5.6 −4.55 1.94 −8.57 1.13 −5.32
0 0.2 −3.25 −6.5 0 0 −5.6 0

3.23 0 5.7 −4.21 0 0 3.42 −5.23
5 1.31 −2.7 2.23 −0.825 0.51 5.54 −1.375
0 0 0 0 3.23 −6.8 0 −3.23

−4.3 0 0.5 0 0 0 −6.77 4.13

4.7 1.29 −2.75 2.13 0.09 7.1 5.61 −2.125




(49)

b =




1 0.5

0 0

0 2

−2 −1
−2.2 −1.5
2.7 −1
3 1

0 −0.5




c =




1 3 0 −5 0 3 −2 1

5 −1 −2 0 0 8 −1 −5
1 2 2 0 2 3 1 1

0 0.3 0 0 −2 2 1 2




(50)

To assign all the poles of the system by the partial pole assignment method, a first-

order dynamic feedback compensator is needed. And it is required to assign the closed-

loop system poles to

Γ = {−10,−2 + I,−2− I,−3 + 2I,−3− 2I,−5 + 3I,−5− 3I,−8 + 5I,−8− 5I} (51)

Use the command PartialDynamic in package PartialPoleAsssign

In[1]:= F = PartialDyanmic[a,b,c,{{-7 + 5I,-7-5I},{-9,-1+I, -1-I,

-3+2I,-3-2I, -5+3I, -5-3I}},1,{2, 1},0][[1]]

The poles Γ1 = {−7 + 5I,−7 − 5I} is assigned first through the second input and the

poles Γ2 = {−9,−1+I,−1−I,−3+2I,−3−2I,−5+3I,−5−3I} is assigned through

the second input. Thus, the general compensator F is obtained.

There are two extra degrees of freedom in the compensator, f[1,1] and g[1]. Because

floating point numbers are used in the open-loop system, the numbers in the resulting

compensator are of machineprecision, which is the machine-number precision.

28

Although Symbolic Algebra techniques offer advantages, it is worth noting that the

computational effort increases as the dimensions of the system (the number of system

states n, number of inputs m, and number of outputs, l) increases. Moreover, the

number of uncertain parameters involved and the number of free variables undoubtedly

have a large influence on the speed of computation and related memory usage. A

large number of free variables and of uncertain parameters in the system will result

in large intermediate expressions, having a detrimental effect on the speed. When

numerical computations are also involved, this problem usually becomes more difficult

with numerical tolerance and accumulating error issues. Advancing computer systems

technology, i.e. faster processor capability, multi-processor systems, increased memory

capability, can accommodate this. Another solution is to carefully setup the problem,

reduce system size and complexity, in cases of large systems if possible, or to further

manipulate the generalised algorithms to accommodate the computational burden for

the large systems.

7 Conclusion

The paper presented a way of using symbolic algebra to efficiently implement three

output-feedback pole assignment algorithms for parametric uncertain systems: dyadic

method, full-rank method and partial pole placement. The objective is to obtain

general over-parameterized compensators in a symbolic computation environment. It

is seen that, based on symbolic computations, the algorithms can be realized in a

29

straightforward way when translated into the MATHEMATICA environment. The useful

merit is the elimination of round-up errors by employing symbols with infinite precision

such that the closed-loop poles can be assigned to the exact desired positions. The final

compensators are obtained in terms of their free (symbolic) variables and the uncertain

(symbolic) parameters of the system. The generic form of the resulting compensators is

very useful for optimization procedures over the free variables usually to satisfy certain

specifications associated with robustness of closed-loop systems.

8 Acknowledgement

This paper is written in memory of Professor Neil Munro who, very unfortunately,

passed away in July 2004. For many years Professor Munro had dedicated his research

in Computer Aided Control Systems Design, in particular robust control design for lin-

ear systems using symbolic techniques with their novel applications to control systems

design including pole assignment algorithms. This is indeed the area originated by him

and has received a wide-spread attention in our control system research community. In

the late days of his life he was working very hard to formulate a toolbox for use with

MATHEMATICA.

For many years Professor Munro had been the director of the UMIST Control Sys-

tems Centre. He made significant contributions to the development of the centre and

was highly respected by the international control research community. His contribu-

tions and papers on Multivariable Control Theory, Computer-Aided Control Systems

Design and Robust Design Methods have been highly regarded by the community and

his papers have been very widely cited. He will be remembered as an excellent scientist,

a wise mentor, a conscientious colleague and a reliable friend.

References

[1] Deliverable 4.1: Survey of existing tools for formal mkm. Mathematical Knowledge

Management Network,http://monet.nag.co.uk/mkm//index.html.

30

[2] F. M. Brash and J. B. Pearson. Pole placement using dynamic compensators.

IEEE Transaction on automatic control, 15(34):43, 1970.

[3] C. T Chen and C. H Hsu. Design of dynamic compensators for multivariable

systems. Proceedings of Joint automatic control conference, pages 893–900, 1971.

[4] H.Seraji. An approach to dynamic compensator design for pole assignment. In-

ternational Journal of Control, 21(6):955–966, 1975.

[5] N. Munro. Symbolic algebra tools for control teaching. IEE Colloquium on Sym-

bolic Computation for Control (Digest No: 1996/078), pages 1–7, 1996.

[6] N. Munro and S. Novin-Hirbod. Pole assignment using full-rank output-feedback

compensators. International Journal of systems science, 10(3):741–748, 1975.

[7] Rajnikant V. Patel and N.Munro. Multivariable system theory and design. Perg-

amon, Oxford, 1982.

[8] B. Pearson and C. Y. Ding. Compensator design for multivariable linear systems.

IEEE Trans. Automat.Contr., 14:130–134, 1969.

[9] J. B. Pearson. Compensator design for dynamic optimization. International Jour-

nal of Control, 9(4):473–482, 1969.

[10] M. T. Soylemez. Robust pole assignment using symbolic algebra. Control systems

center, UMIST,UK, 1994.

[11] M. T. Soylemez. Pole assignment for uncertain systems. Research studies press

Ltd. Baldock, Herfordshire, England, 1999.

[12] M. T. Soylemez and N. Munro. Development of a robust eigenvalue toolbaxi using

a kharitonov based approach. IEE Colloquium, (380), 1997.

[13] M. T. Soylemez and N. Munro. Pole assignment and symbolic algebra: a new

way of thinking. Control ’98. UKACC International Conference on, 2:1306–1310,

1998.

31

[14] M. T. Soylemez and N. Munro. A parametric solution to the pole assignment

problem using dynamic output-feedback. Automatic Control, IEEE Transactions

on, 46(5):711–723, 2001.

[15] M.T. Soylemez and N. Munro. A new technique for partial pole placement using

constant output-feedback. Proceedings of the 37th IEEE Conference on Decision

and Control, 2:1722–1727, 1998.

[16] Eno Tonisson. Step-by-step possibilities in different computer alge-

bra systems. Proceedings of ACDCA Summer Academy: Recent Re-

search on DERIVE/TI-92-Supported Mathematics Education, page

http://www.acdca.ac.at/kongress/goesing/g toniss.htm, 1999.

[17] P. C. Young and J. C. Willems. An approach to the linear multivariable servo-

mechanism problem. International journal of control, (5):961–979, 1972.

32

Citation: ZHENG, X., ZOLOTAS, A.C., WANG, H., 2006. Mathematica
implementation of output-feedback pole assignment for uncertain systems via
symbolic algebra. International Journal of Control, 79 (11), pp. 1431-1446.

