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Highlights 

• 

We model mechanical properties of heat treated alloy steel using interpretable fuzzy models. 

• 

We demonstrate how to locate the ‘best’ processing parameters and chemical compositions. 

• 

We demonstrate how to achieve certain mechanical properties. 

• 

We demonstrated a holistic systems approach to achieve ‘right-first-time’ production. 

• 

We unravel the power of multi-objective optimisation and interpretable fuzzy modelling. 

Abstract 

The primary objective of this paper is to introduce a new holistic approach to the design of alloy 
steels based on a biologically inspired multi-objective immune optimisation algorithm. To this aim, a 
modified population adaptive based immune algorithm (PAIA2) and a multi-stage optimisation 
procedure are introduced, which facilitate a systematic and integrated fuzzy knowledge extraction 
process. The extracted (interpretable) fuzzy models are able to fully describe the mechanical 
properties of the investigated alloy steels. With such knowledge in hand, locating the ‘best’ 
processing parameters and the corresponding chemical compositions to achieve certain pre-defined 
mechanical properties of steels is possible. The research has also enabled to unravel the power of 
multi-objective optimisation (MOP) for automating and simplifying the design of the heat treated 
alloy steels and hence to achieve ‘right-first-time’ production. 

 

Abbreviations 

Abs, antibodies; AIS, artificial immune systems; Al, aluminium; BEP, back-error-propagation; C, 
Carbon; Cr, chromium; FRBS, fuzzy rule-based systems; IMOFM, an immune inspired multi-objective 
fuzzy modelling approach; Mn, manganese; Mo, molybdenum; MOP, multi-objective optimisation 
problems; Ni, nickel; PAIA2, a modified population adaptive immune algorithm; RMSE, root mean 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/29175969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


square error; ROA, reduction of area; S, Sulphur; Si, silicon; UTS, ultimate tensile strength; V, 
vanadium 

Keywords 

Multi-objective optimisation; Fuzzy modelling; Artificial Immune Algorithm; ‘Right-First-Time’ 
production of alloy steels 

1. Introduction 

As stated in the Steel Industry Technology Roadmap: Barriers and Pathways for Yield Improvements 
(Energetics, Inc., 2003) “making the steel and internal products correctly the first time minimises 
waste oxide generation, in-plant returns and, most importantly, customer rejects”. Nearly 1% of all 
production is returned from the customers because it does not meet certain specifications, and in-
house scrap represents another 8 million tons per year that must be reprocessed. Both types of 
scrap represent significant yield loss since the energy consumed in the production of these is lost 
(Energetics, Inc., 2003). Faced with increasing competitive markets and economic demands, metal 
producers are forced to ‘rethink’ their short and long term strategies when it comes to producing 
metal in order to meet tighter customers’ specification and to more efficiently provide steels with 
more consistence and higher quality. Therefore, more research work is required to improve 
microstructure control and reduce defects. 

 

The properties of the end product can be improved mainly through: (a) heat treatment process and, 
(b) thermomechanical processing. In this paper, we will focus on the first method which involves 
using specialist heat treatments to develop the required mechanical properties in a range of alloy 
steels. Traditionally, a heat treatment metallurgist would attempt to balance these factors using 
their metallurgical knowledge and experience in a bid to obtain the desired mechanical properties. 
However, due to the increasing complexity of the underlying system, this may still prove difficult 
even for the metallurgists to tune these parameters. Given the lack of mathematical models which 
can account for these complex systems and a large amount of available industrial process data 
associated with the systems, data-driven modelling becomes more and more vital for assisting the 
metallurgist to predict the mechanical test results without actually doing it. Based on these models, 
further operations of optimisation of the heat treatment process can also be developed, which is 
envisaged to be able to automate the steel design process and reduce the experimental costs (Chen, 
2009). 

 

In the light of the above considerations, finding out a suitable optimisation framework, which is 
more flexible to accommodate multiple objectives and more effective in search towards the new 
optimal design methodology is key to steel design. A more holistic framework is proposed to deal 
with these problems, which is based upon a modified Population Adaptive Immune Algorithm 
(PAIA2) (Chen, 2009 and Chen and Mahfouf,). An Immune inspired Multi-Objective Fuzzy Modelling 
(IMOFM) approach (Chen and Mahfouf, 2012) for prediction of steel properties is also devised based 
on PAIA2. The elicited mechanical property models are then incorporated into the framework of 
PAIA2 to automate and simplify the design of the heat treated alloy steels. The overarching aim of 



this research is to unravel the powers of multi-objective optimisation for automating and simplifying 
the design of the alloy steels and hence to achieve ‘right-first-time’ production. The work was part of 
the research activities which were previously carried out in the Institute for Microstructural and 
Mechanical Process Engineering: The University of Sheffield (IMMPETUS). 

 

The paper is organised as follows: Section 2 introduces PAIA2, which gives the basis and framework 
for further alloy design tasks; also in this section, PAIA2 is applied to multi-objective fuzzy modelling 
for prediction of steel properties; Section 3 is devoted to the optimal design of heat treated alloy 
steels in a multi-objective optimisation sense; experimental results relating to the prediction of 
mechanical properties, such as Ultimate Tensile Strength (UTS) and Reduction of Area (ROA) of the 
end product, are presented; with such a knowledge and PAIA2 in hand, simultaneous optimisation of 
several conflicting objectives, such as the strength, the ductility of steels and the costs of the heat 
treatment process, is carried out; finally, discussions and conclusions are given in Section 4. 

 

2. Bio-inspired multi-objective optimisation and modelling 

The increasing interest in applying biological inspired optimisation to real engineering problems lies 
in the fact that the apparently simple structures and organizations in nature are capable of dealing 
with most complex systems and tasks with relative ease. Compared to classical optimisation 
techniques which aim at exact optimal solutions, bio-inspired (heuristic) search methods propose 
instead to locate the near optimal solutions and do not rely on availability of analytical models. The 
flexible structure of such a search mechanism can not only handle different knowledge 
representations in a single framework, but can also provide pragmatic solutions in a more efficient 
way. Given the fact that optimal alloy design problem requires different types of models to fully 
describe the whole process and is more often than not of a multi-objective nature, a heuristic search 
method represents a salient tactic to fuse different models and produce Pareto solutions. Among 
many biological optimisation paradigms, Artificial Immune Systems (AIS), as a relatively new 
research area dating back to Farmer and Packard (1986)’s paper, lends itself to represent a viable 
candidate to the problems investigated in this paper for its more flexible structure and enhanced 
search power. 

 

2.1. A modified population adaptive immune algorithm (PAIA2) 

In (Chen, 2009 and Chen and Mahfouf,), Chen and Mahfouf proposed a modified Population 
Adaptive Immune Algorithm (PAIA2) for Multi-objective Optimisation Problems (MOP). The 
algorithm is the synthesis of the four human immune metaphors for the creation of novel solutions 
to real world problems, which are the Clonal Selection Principle (Burnet, 1959); the Network 
Hypothesis (Jerne, 1974 and Perelson, 1989); the adaptive antibody׳s concentration (Chen and 
Mahfouf, 2006), and the vaccination and the secondary response (Chen and Mahfouf, 2006). The 
main stages of PAIA2 are shown in Fig. 1. 

 



Full-size image (32 K) 

Fig. 1.  

Main stage of PAIA2 for MOP solving (NCR: the number of current non-dominated Abs; NPR: the 
number of non-dominated Abs in the last iteration; IN: the initial Abs size; Stop: at least one iteration 
step is executed). 

Two types of fitness evaluation methods (Activation) are used in PAIA2 so that the algorithm 
receives environmental information from both the objective space (through non-dominated sorting) 
and the decision variables space (through the distance measured in the variable space between the 
two chosen solutions). Such information combined with the density information in the decision 
variable space provides adequate selective pressure to effectively advocate the most promising and 
evenly distributed solutions into the next iteration. On the one hand, the Clonal Selection and Clone 
prefer good solutions by providing them with more chances to be cloned so that they always 
dominate the whole population. On the other hand, the Clone itself contributes significantly to the 
diversity of the population. Affinity Maturation includes hypermutation, receptor editing and 
recombination. The former two increase the diversity of the population so that more objective 
landscape can be explored. The hypermutation rate of the cloned solutions decreases when the 
optimization process evolves so that a more focused search is introduced in the later iterations. This 
decreasing rate can be controlled through a predefined Dirac׳s parameter. The Simulated Binary 
Crossover (SBX) (Deb and Agrawal, 1994) is utilised as the recombination operator which efficiently 
uses the information contained in the solutions so that fine search can be executed in the late stage 
of the optimization. Reselection ensures that good mutants are inserted into the memory set and 
bad solutions apoptosis. Network Suppression regulates the population so that it is adaptive to the 
search process. Newcomers are used to further increase the diversity of population. For more details 
of the implementation of PAIA2, readers are referred to ( Chen, 2009 and Chen and Mahfouf,). 

 

As argued in (Chen, 2009, ch. 3), an ineffective search could be introduced in the MOP context due 
to many search attempts being wasted to locate more dominant solutions in the current non-
dominated front rather than progressing to a more optimised front. Therefore, the most efficient 
way to deal with MOP problem is to divide the search process into two separate stages. In the first 
stage, a single objective optimization algorithm is used to locate any solution on the Pareto front. 
The solution which is identified in the first stage serves as the vaccine (initial population) in the MOP 
stage to quickly expand the rest solutions on the Pareto front. In doing so, one maximises the 
possibility of choosing the right direction for the mutants in both stages, hence, saving precious 
computational resources. Such a mechanism has been adopted in Section 2.2 in the search for the 
optimal fuzzy models, where the search space is relatively large. 

 

PAIA2 possesses the following strengths which cannot be found in the conventional evolutionary 
algorithms (Chen, 2009). 

 



(1) 

Adaptive population. PAIA2 possesses an adaptive population size which can be adjusted to an 
adequate size according to need of the problem. This adaptive rather than a fixed population leads 
to the following two advantages: (a) Initial population size is not problem dependent; and (b) more 
solutions can be obtained without significantly increasing the number of evaluations by tuning the 
network suppression threshold. 

(2) 

Good jumping-off point. By using the multi-stage optimization procedure, an optimized solution can 
be included in the initial population to bias the search process, which reduces the computational 
load of the whole optimization process. 

(3) 

Good and fast convergence. A good balance between exploitation and exploration, due to the 
adoption of Hypermutation operator, and an adaptive population size make good and fast 
convergence possible for PAIA2. 

A comprehensive experimental study has been carried out in (Chen, 2009) to compare PAIA2 with 
other state-of-the-art MOP algorithms, such as NSGAII (Deb, 2002), SPEA2 (Zitzler et al., 2001) and 
VIS (Freschi and Reetto, 2005). The results confirmed that PAIA2 outperformed its counterparts in 
most cases in terms of the convergence and distribution measures. In the following section, PAIA2 is 
applied to multi-objective fuzzy modelling with the aim of finally automating the steel design process 
based on the elicited models. 

 

2.2. An immune inspired multi-objective fuzzy modelling (IMOFM) 

In order to account for the enlarged search space due to the simultaneous optimization of the fuzzy 
rule-base structure and its associated parameters, Chen and Mahfouf (2012) adopted a multi-stage 
optimisation procedure as discussed in Section 2.1 and a variable length coding scheme. Due to 
space constraint, only Mamdani Fuzzy Rule-based Systems (FRBS), namely IMOFM_M is presented 
here. A typical rule in a Mamdani FRBS reads as follows: 

 

equation(1) 

 

where, View the MathML source is the ith linguistic value (fuzzy set) for the j  th linguistic variable 
(input) xj defined over the universe of discourse ℧j; the function View the MathML source associated 
with View the MathML source that maps ℧j to [0, 1] is the corresponding membership function; Ri 
represents the i  th rule in the rule base, and yi is the output of the i  th rule. Zi is the linguistic value 
of the output, and its associated membership function is μBi(y). In this paper, IMOFM_M uses 



Gaussian membership function (2) and (3) for the premises View the MathML source and bell-shape 
membership function (4) for the consequents Zi. 

equation(2) 

 

equation(3) 

 

equation(4) 

 

Hence, a Mamdani FRBS after centre of gravity defuzzification can be formulated as follows: 

 

equation(5) 

 

where, bi is the centre of area of the membership function μBi(y) and is the peak (View the MathML 
source) if μBi(y) is symmetric. View the MathML source denotes the area under View the MathML 
source over the output interval View the MathML source. View the MathML source is the parameter 
vector in which each individual parameter is linked directly to centres and spreads of the 
corresponding membership functions. This parameter vector is extracted initially from data via 
G3Kmeans clustering algorithm ( Chen et al., 2012) and is refined further using a constrained Back-
Error-Propagation (BEP) algorithm ( Chen and Mahfouf, 2012). These first two stages are 
implemented to improve prediction accuracy so that a ‘vaccine model’ can be obtained for the MOP 
stage. 

The FRBS extracted via G3Kmeans and the constrained BEP need further a multi-objective 
optimisation to simultaneously simplify its structure and tune the corresponding parameters. To this 
aim, two objectives are formulated. 

 

equation(6) 

 

where, Nrule is the number of fuzzy rules in FRBS; Nset   is the total number of fuzzy sets; RL is the 
summation of the rule length of each rule. Simplifying FRBS structure will result in a variable-length 
parameter vector θ, and tuning parameters in θ will cause a so-called ‘unordered sets of rules’ 
problem ( Cooper and Vidal, 1994 and Magdalena, 1998). In both cases, the decision variable space 
is constantly changing. Therefore, a fixed-length coding scheme, which comes very naturally in most 
heuristic search algorithms, may not be feasible anymore in this case. In order to still utilise PAIA2, a 
variable length coding scheme is needed along with a new distance index ( Chen and Mahfouf, 



2012). The basic idea is to find the distance of the closest rules in different FRBSs rather than the 
distance of corresponding rules. Such a distance measure forms the basis for the fitness evaluation 
(Activation) step in PAIA2 so that one can freely delete or merge rules and move membership 
functions without noticing the changing nature in each candidate solution caused by such 
manipulations. The whole framework of IMOFM_M is shown in Fig. 2. 

Full-size image (31 K) 

Fig. 2.  

The Proposed IMOFM_M Framework. 

Figure options 

IMOFM_M does not suffer from the curse of dimensionality and a set of FRBSs representing the 
trade-offs between interpretability and accuracy are obtained through a single run, and only the 
maximum allowable number of rules is required a priori, which reduces any user intervention during 
the whole design process to a minimum level. For more details of IMOFM_M, readers are referred to 
( Chen and Mahfouf, 2012). In the next section, the detailed results of UTS modelling are presented, 
where, IMOFM_M is used to predict mechanical properties of alloy steels which serve as the 
objectives to be minimised in PAIA2 in order to automate the heat treated alloy steel design process. 

 

3. Optimal design of heat treated alloy Steels 

3.1. Problem description 

The mechanical properties of the alloy steels depend on several factors of which the following are 
believed to represent the most crucial ones: tempering temperature, quench type, chemical 
compositions (alloying elements) of the steel, the bar size, test sample location on the bar (test 
depth), batch distribution in the furnace, measurement tolerances and variations in the process 
equipment and operators (Tenner, 1999), of which the last dependent factor is mostly dependent on 
the treatment site. Due to the limited physical knowledge, computing the mechanical properties, 
such as Ultimate Tensile Strength (UTS) and Reduction of Area (ROA) of the end product, based on 
these dependent factors is proved to be hard. However, having such a relationship is vital in deciding 
the optimal heat treatment regime and weight percentage of chemical compositions. In the past, 
several mechanical property models were developed which were mainly based on linear regression 
methods (Pickering, 1978) or artificial neural networks (Tenner, 1999). The linear models are only 
designed for specific classes of steels and specific processing routes, and not sophisticated enough 
to account for more complex interactions, while neural networks are black-box modelling 
techniques and one cannot have a deep insight into the model. Hence, a transparent data-driven 
modelling framework for material property prediction, such as IMOFM_M presented in Section 2.2, 
is still needed so that further design of weighted chemical compositions and heat treatment regime 
can be developed. The prediction performances of IMOFM_M are presented in Section 3.2. Due to 
space constraints, only the UTS modelling is presented. The optimal design of heat treated alloy 
steels is discussed in Section 3.3. 



 

3.2. IMOFM_M modelling results 

The UTS data set consists of 3760 data samples and includes 15 inputs and one output as shown in 
Table 1. 

 

Table 1. 

The inputs and output of Tensile Strength data set. 

Inputs Test depth Size Site C (%) 

Max. 140 381 6 0.62 

Min. 4 8 1 0.12 

 

Inputs Si (%) Mn (%) S (%) Cr (%) 

Max. 0.35 1.72 0.21 3.46 

Min. 0.11 0.35 5e-4 0.05 

 

Inputs Mo (%) Ni (%) Al (%) V (%) 

Max. 1 4.16 1.08 0.27 

Min. 0.01 0.02 5e-3 1e-3 

 

Inputs Hardening temperature Cooling medium Tempering temperature 

Max. 980 3 730 

Min. 820 1 170 

 

Output Tensile strength 

Max. 1842 N/mm2 

Min. 516.2 N/mm2 

To test the efficacy of IMOFM_M, the UTS data set is randomly divided into two parts: 75% of the 
data are used for training and the remaining data are used for testing. Another 12 more recent 
samples are used as the unseen data set to validate the generalisation properties of the model. The 



maximum number of rules is set to 12. The number of iterations for the constraint BEP and PAIA2 
are set to 500 and 1200 respectively. As shown in Fig. 3, without any prior knowledge as to how to 
simplify the model and to what degree, the proposed method provides a set of 47 Pareto FRBSs, 
which represents various degrees of simplification. 

 

Full-size image (67 K) 

Fig. 3.  

The Pareto fronts obtained using IMOFM_M. 

Among these options and after the investigation of the trade-off of these elicited FRBSs, the steel 
designers can finally decide their preferred degree of model simplification. For the illustration and 
further steel design purposes, a 7-rule simplified Mamdani FRBS has been chosen for its good 
prediction accuracy and interpretability. Fig. 4 shows the performance of the initial 12-rule FRBS and 
the simplified 7-rule FRBS. 

 

Fig. 4.  

The prediction performances of the initial 12-rule FRBS and the simplified 7-rule FRBS for the 
training and testing data using IMOFM_M. 

Fig. 5 shows the prediction performances of the ‘vaccine FRBSs’ and the simplified FRBSs on the 12 
validation data (an unseen 12-data set independently obtained from a Tata-steel Europe Site in 
Sheffield-UK). As indicated by the graph, the refined FRBSs obtained from the second modelling 
stage (constrained BEP) could not fit the newly collected samples as some predictions are very close 
to or even outside the ±10% error bands. Conversely, the generalization capability of the simplified 
FRBSs is very much improved due to the simultaneous optimisation of the two objectives. 

Fig. 5.  

The prediction performances of the 12-rule FRBSs after the constraint BEP and the 8-rule and 7-rule 
simplified FRBSs after the multi-objective optimisation. 

Figure options 

Fig. 6 shows 3 selected rules from the 7-rule simplified FRBS. This rule-base reveals certain heat 
treatment knowledge relating to the UTS, which may or may not be fully understood by the 
metallurgist, although it is reckoned to be transparent enough. 

Fig. 6.  

The selected rules from the 7-rule simplified Mamdani FRBS. 

To facilitate the metallurgist to further understand the hidden knowledge, the three-dimensional 
response surfaces of the UTS model can be employed by plotting two varying input variables against 



the output while keeping other input variables constant. The constant variables are set to the 
‘median’ values of the dominant steel grade. Using this method, one insight gained by inspecting Fig. 
7 is that the strength of the modelled steel is greatest at low tempering temperature and high 
carbon content, and is lowest at high tempering temperature and low carbon content. Furthermore, 
with high carbon content, the effect of tempering temperature is much more non-linear than the 
one with low carbon content. A similar analysis can be conducted using the other variables and 
mechanical properties. 

 

Fig. 7.  

Response surfaces of the 7-rule simplified Mamdani UTS model. 

Table 2 summarises the prediction performance of the simplified Mamdani FRBSs for the UTS, and 
ROA. The ROA data includes 3710 data samples. It has 15 inputs, which are the same as the UTS data 
with the same ranges, and 1 output, which is the ROA in the range of 21.8–79.4%. A randomly 
selected 75% of data samples are used as the training set and the rest as the testing set. The models 
listed in Table 2 are chosen for their good interpretability and prediction accuracy. These models will 
be used later in Section 3.3 to locate the optimal heat treated regime and weighted percentage of 
chemical compositions. 

 

Table 2. 

The prediction performance of IMOFM_M for UTS and ROA. 

IMOFM_M models No. of rules Training (RMSE) Testing (RMSE) Validation (RMSE) 

UTS 7 34.70 36.44 37.80 

ROA 6 3.30 3.40 – 

3.3. Optimal design of heat treated alloy Steels 

Well-designed alloy steels often need to satisfy a set of targets, such as the desired mechanical 
properties, the economic cost and the environmental concerns. Sometimes, a solution is not as good 
as one may think it initially to be if the whole set of targets has to be considered simultaneously. For 
example, as discussed in Section 3.2, lower tempering temperature and higher carbon content often 
deliver higher tensile strengths. However, as shown in Fig. 8, if the ductility reflected by the ROA of 
the end product needs to be considered as well, a high carbon content and a low tempering 
temperature make the product less ductile. 

Fig. 8.  

Response surfaces of the 6-rule simplified Mamdani ROA model. 

Furthermore, the steel making process is highly nonlinear. Hence, the interactions between different 
targets, such as the costs and the mechanical properties, are even more involved and often difficult 



to analysis. The cost for production depends on the amount of the added chemical compositions and 
the temperature for the heat treatment. Increasing the use of certain chemical compositions and 
temperature will significantly level up the cost, hence, being in contradiction with the target values 
of the UTS and ROA. The challenging task of designing alloy steels lies inherently in its multi-
objective nature, and can only be elegantly dealt with in a MOP framework. MOP offers more 
flexibility and also reduces the necessary level of expertise in understanding complex interactions 
between different objectives, hence, the weights setting to integrate different objectives. In the 
following two case studies, we show how PAIA2 is exploited to simultaneously achieve different 
mechanical properties, and also in a cost-effective way. 

 

3.3.1. Case study 1: the optimal design of both UTS and ROA 

To achieve certain alloy steels with a predefined target UTS value and a predefined ROA value, PAIA2 
together with the 7-rule UTS FRBS and the 6-rule ROA FRBS shown in Section 3.2 are employed here 
to search for the optimal weighted chemical compositions and the heat treatment regime. However, 
these two often competing objectives are not always in conflict. This can be observed from the 
response surfaces in Fig. 9. 

Fig. 9.  

Normalised response surfaces of the UTS and ROA with respect to carbon content and tempering 
temperature (all other variables are kept as the mean value in their respective range). 

Fig. 9 shows the normalised response surfaces with respect to the carbon content and the tempering 
temperature for the UTS and ROA. The UTS and ROA values have been normalised to better 
illustrate the intersection between the two. The intersection shown in Fig. 9 indicates that there may 
exist some region in which both objectives can be met simultaneously. In the above case, both 
mechanical properties can be improved simultaneously within the normalised range between 0.25 
and 0.42. This effectively means as long as the target UTS value is between 847.65 N/mm2 and 
1073.04 N/mm2 and the target ROA value is between 36.2% and 46.0%, both objectives can be 
improved all at once. However, when more variables are taking into account, such a region can be 
very hard to understand and visualised. Due to a very high dimensionality normally involved in the 
heat treatment process, such as 15 inputs in this paper, identifying such a region is not a 
straightforward task. Zhang (2008) proposed to use a MOP algorithm to obtain the lower and upper 
boundaries of this region by simultaneously optimising two sets of objectives. In this paper, the 
same method is employed. In order to find out the lower mechanical property boundary of this 
region, the following two objectives are formulated: 

 

equation(7) 

 

To obtain the higher mechanical property boundary of this region, the following two objectives are 
considered instead: 



 

equation(8) 

 

The most interesting weighted chemical compositions and heat treatment conditions in this work 
are: weighted percentages of Carbon (C), Manganese (Mn), Chromium (Cr), Molybdenum (Mo) and 
tempering temperature. All other input variables are kept as constant to their respective mean 
values. The parameters of PAIA2 are set to: initial population size is 7, Clonal selection threshold is 
0.4, network suppression threshold is 0.005, the maximum clone size is 95, and the Dirac׳s effect 
parameter is 1. Due to the stochastic nature of PAIA2, 10 independent runs were executed for both 
the lower and upper boundaries. Empirically, 200 iterations are set in order for PAIA2 to fully 
converge for this problem, which is equivalent to an averaged 42,336 evaluations for the lower 
boundary and 31,498 for the upper one. The algorithm is implemented in MATLAB and executed on 
a standard computer (Intel(R) Core(TM) i5 CPU, 2.27 GHz). The average execution time is 5.19 s for 
the lower boundary and 2.92 s for the upper boundary. The speed of convergence of PAIA2 is far 
more satisfactory for the off-line optimisation task like this. Fig. 10 shows the obtained Pareto fronts 
from one of the 10 typical runs. 

Fig. 10.  

The upper and lower boundaries (Pareto fronts as depicted by circles) and design regions for the 
simultaneously design of the UTS and ROA. 

Figure options 

Comparing to the results reported in (Zhang, 2008), Fig. 10 reveals a wider Region I, where both the 
UTS and ROA can be improved simultaneously. Due to more accurate predictions in mechanical 
properties by using IMOFM_M and the enhanced search power given by PAIA2, the lower boundary 
has been pushed to the extreme and both boundaries have been extended to cover the whole range 
of the UTS and ROA. This effectively means that the UTS and ROA only compete with each other 
when they are above the upper boundary and in Region II. Also, caution must be taken for regions 
close to the boundaries as small variation in optimised decision variables may cause big variation in 
either the ROA or UTS. Hence, when designing a metal alloy, these regions should be avoided for a 
more robust design. The graph with different regions shown in Fig. 10 gives a clear indication to 
metallurgists for their initial assessment with respect to the feasibility of a potential steel design and 
the compromise which they may face if the target design falls into Region II. 

 

As an illustration example, we demonstrate two steel design solutions, where the first design with 
the target UTS value is 900 N/mm2 and the target ROA value is 70% and the second design with the 
target UTS value is 900 N/mm2 and the target ROA value is 50%. For both designs, the objectives can 
be described as follows: 

 

equation(9) 



View the MathML source 

 

The first design is above the upper boundary and in Region II. Hence only a set of trade-off solutions 
can be obtained. 10 independent runs have been executed and an average of 10,000 evaluation 
times is adequate for this problem. The average execution time is 0.72 s. The results obtained from 
different runs are consistent and one random result from the 10 runs is shown in Fig. 11. Table 3 
provides details of one set of Pareto solutions from the 10 runs. 

Fig. 11.  

The obtained Pareto solutions when the View the MathML source and ROATarget=70%: (a) Objective 
View the MathML source; (b) UTS vs. ROA; and (c) all solutions found during the search process. 

Table 3. 

The details of the Pareto solutions for the first design problem. 

Pareto solutions C (%) Mn (%) Cr (%) Mo (%) Tempering Temperature (°C) UTS 
(N/mm2) ROA (%) 

1 0.1200 1.2130 1.4518 0.2112 723.32 899.27 67.24 

2 0.1200 1.2487 1.4897 0.1935 730.00 898.12 67.56 

3 0.1200 1.2154 1.4876 0.2105 730.00 894.05 67.67 

4 0.1200 1.1885 1.4830 0.1911 729.99 888.41 67.85 

5 0.1200 1.1434 1.4831 0.1922 730.00 881.67 68.07 

6 0.1200 1.0994 1.4934 0.2123 730.00 876.69 68.25 

7 0.1200 1.0592 1.4863 0.1918 729.99 869.58 68.69 

8 0.1200 1.0265 1.4793 0.1907 729.99 865.09 68.66 

9 0.1200 0.9731 1.4856 0.1915 729.99 858.13 68.93 

10 0.1200 0.9188 1.4921 0.2111 729.78 852.98 69.17 

11 0.1200 0.8748 1.4543 0.1788 730.00 844.79 69.46 

12 0.1200 0.8303 1.4832 0.2153 729.99 842.66 69.65 

13 0.1200 0.7785 1.4558 0.1903 729.98 835.08 69.95 

The Second design is within Region I. Therefore, both design targets can be achieved simultaneously. 
Again, 10 independent runs have been executed and, on average, 10,000 evaluation times are 
adequate. The averaged execution time is 0.68 s. The results are shown in Fig. 12. For this design, all 



candidate solutions finally converged to one point in the objective space and the details of the 
solution are shown in Table 4. 

Fig. 12.  

The obtained Pareto solutions when the View the MathML source and ROATarget=50%: (a) Objective 
View the MathML source; (b) UTS vs. ROA; and (c) all solutions found during the search process. 

Table 4. 

The details of the Pareto solutions for the second design problem. 

Pareto Solutions C (%) Mn (%) Cr (%) Mo (%) Tempering Temperature (°C) UTS 
(N/mm2) ROA (%) 

1 0.1584 1.6430 0.4653 0.2745 633.20 900.00 50.01 

3.3.2. Case study 2: the optimal design of both mechanical Properties and the cost 

Economic factors form another important objective which may be in conflict with the predefined 
mechanical properties. As stated in (Mahfouf et al., 2006), the production costs of heat-treated 
steels include the costs of the addition of alloying elements, such as Mn, Cr, Mo and Tempering 
Temperature, although other composites and temperatures could also be included. The factors 
contributing to the cost of heat treatment operation are summarised in Table 5 (Mahfouf et al., 
2006). 

 

Table 5. 

Contribution of composites and tempering (annealing) to the cost of heat treatment. 

Composite and Annealing Cost (US$ per tonne or US$ 1.3 GJ/tonne at 600 °C) 

Mn 18 

Cr 42 

Mo 52 

Annealing (tempering) 4.88 

Table options 

Therefore, the production costs can be formulated as follows: 

 

equation(10) 

View the MathML source 

 



By taking into account such economic consideration, the problem of designing an alloy steel with the 
predefined target UTS and ROA properties becomes a three-objective optimisation problem 
described as follows: 

 

equation(11) 

View the MathML source 

 

Fig. 13 displays the obtained Pareto front for an alloy steel design with the predefined View the 
MathML source and ROATarget=70%. Again, 10 independent runs have been executed and, on 
average, 60,000 evaluation times are adequate for this problem. The average execution time is 11 s. 

 

Full-size image (57 K) 

Fig. 13.  

The obtained Pareto solutions when the View the MathML source and ROATarget=70%: (a) Objective 
View the MathML source; (b) UTS vs. ROA vs. production cost; and (c) all solutions found during the 
search process. 

Figure options 

Table 6 provides details of one set of Pareto solutions from 10 runs. As can be seen from Fig. 13 and 
Table 6, the most costly solution appears when both mechanical properties are close to the target 
values. In such a scenario, in order to produce metals with high toughness more Cr needs to be 
added. Furthermore, the metal needs to be tempered at a relatively high temperature in order to 
achieve high ductility. Both aforesaid factors increase the production costs. 

 

Table 6. 

The details of the Pareto solutions for optimal design of mechanical properties and the cost. 

Pareto solutions C (%) Mn (%) Cr (%) Mo (%) Tempering Temperature (°C) UTS 
(N/mm2) ROA (%) Cost ($) 

1 0.1200 1.0331 1.5902 0.2185 710.90 881.29 67.31 102.52 

2 0.1200 1.0301 1.4750 0.2125 715.64 878.83 67.69 97.36 

3 0.1200 1.0332 1.2837 0.2158 726.12 867.58 68.34 89.64 

4 0.1200 0.8772 1.2893 0.1925 720.19 850.71 68.89 85.80 

5 0.1200 1.1985 0.9454 0.1937 720.35 865.71 67.16 77.21 



6 0.1200 0.9496 0.9586 0.1465 660.23 884.99 63.87 70.34 

7 0.1200 1.2041 0.6754 0.1950 725.36 823.26 67.50 66.08 

8 0.1200 1.2104 0.6432 0.1603 661.30 870.82 62.48 62.52 

9 0.1200 0.8844 0.6754 0.1950 726.72 787.57 69.32 60.34 

10 0.1200 0.8907 0.6432 0.1603 662.66 830.29 64.84 56.77 

11 0.1202 0.8521 0.6116 0.1252 596.88 899.42 57.73 52.39 

12 0.1200 0.9147 0.5486 0.1375 692.54 786.32 67.25 52.29 

13 0.1200 0.4399 0.6233 0.1495 646.01 795.69 66.03 47.13 

14 0.1200 1.2108 0.2409 0.1607 661.88 786.03 63.16 45.65 

15 0.1200 0.3967 0.6037 0.1501 581.70 868.79 57.36 45.03 

16 0.1200 0.3826 0.6227 0.1374 552.25 916.95 53.21 44.67 

17 0.1200 1.2634 0.0799 0.1934 714.87 731.17 66.91 41.97 

18 0.1200 0.8474 0.0957 0.1676 593.56 805.47 58.73 32.82 

19 0.1200 0.4403 0.2195 0.1493 645.52 735.38 66.66 30.16 

20 0.1200 0.3913 0.2377 0.1441 555.55 828.52 55.47 29.04 

21 0.1200 0.5659 0.0557 0.0151 447.90 927.97 50.40 16.95 

22 0.1200 0.3586 0.0887 0.0117 566.14 736.34 57.94 15.39 

23 0.1200 0.3598 0.0597 0.0119 709.50 674.85 71.64 15.37 

24 0.1200 0.3518 0.0559 0.0141 285.54 1154.92 57.28 11.73 

Table options 

By investigating Table 6, one can also identify the most influential variables are Cr and tempering 
temperature. A variation in these two variables delivers a compromise between end product 
mechanical properties and normally change significantly the production cost. Hence, using PAIA2, a 
set of trade-offs could be obtained which provides metallurgists valuable information with regards 
to how to design steels in a more cost-effective way. Also, that by comparing Table 6 with Table 3, 
due to the addition of J3, it can be concluded that more diverse solutions can be found, from which 
more insights into the impact of different factors on the final product can be extrapolated. 

 

4. Conclusions 



Every scientific endeavour tries to find answers to the problems at hand and in doing so, raises 
several others. The work presented in this paper is not an exception. Since it proposed to answer the 
following 3 questions: 

 

(1) 

How to use bio-inspired paradigms to account for the problems involving multiple conflicting goals? 

(2) 

How to automate the process of acquiring transparent knowledge from high dimensional data 
without too much damage to the predictive performance of the extracted knowledge base? 

(3) 

How to automate the design of heat treated alloy steels in a holistic framework and achieve ‘right-
first-time’ production? 

To answer the first question, a new modified Population Adaptive based Immune Algorithm (PAIA2) 
and a multi-stage optimisation procedure for solving MOP were proposed. These two together form 
the basic framework of the whole work and provide answers to the rest two questions. A multi-stage 
immune based multi-objective fuzzy modelling (IMOFM) method was proposed in response to the 
second question and demonstrated abilities of not only being able to elicit accurate models but also 
revealing hidden knowledge which might not be noticed by the metallurgists. Also, due to structure 
simplification, the generalisation ability of the elicited model is greatly improved. With the accurate 
prediction and the heuristic search algorithm, ‘right-first-time’ production of steels is achievable. 

 

As discussed in Section 3.3.1, some regions close to the identified boundaries are very sensitive to 
the small variation in optimised decision variables as it may cause big variation in the objective 
space, i.e. the UTS and ROA. This effectively means that a design falls into these areas may not be 
robust and reliable in practice. Hence, more research effort should be carried out for a MOP 
algorithm to produce reliable solutions through the study of the relationship between the decision 
variable space and the objective space. Also, as mentioned by Beyer and Sendhoff (2007), as the goal 
(objective) function always represent models and/or approximations of the real world, the question 
arises whether it is desirable to locate isolated, singular design point with a high precision. More 
research into robust optimisation should be carried out in future. 
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