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Abstract—The paper presents a new system identification 

methodology for industrial systems. Using the original Mamdani 

fuzzy rule based system (FRBS), an adaptive Mamdani fuzzy 

modeling (AMFM) is introduced in this paper. It differs from the 

original Mamdani FRBS in that it applies different membership 

functions and a defuzzification mechanism that is ‘differentiable’ 

with respect to the membership function parameters. The 

proposed system also includes a back error propagation (BEP) 

algorithm that is used to refine the fuzzy model. The efficacy of 

the proposed AMFM approach is demonstrated through the 

experimental trails from a compressor in an industrial gas 

turbine system. 

Keywords—Mamdani fuzzy rule based system; adaptive 

Mamdani fuzzy modeling; back error propagation; industrial gas 

turbine. 

I. INTRODUCTION  

The use of industrial gas turbines is widespread, and range 
in size from truck-mounted units for mobile power plants to 
high power >100s MW complex systems for power generation. 
Essential parts of these complex systems are the control and 
monitoring units, which are required by legislation, and play an 
important role in ensuring system safety and performance. The 
adoption of predictive warning algorithms to identify emerging 
fault conditions has therefore attracted considerable recent 
attention due to widely recognized benefits of facilitating 
reduced down-time and assurance of safety [1].  

Data driven signal processing based techniques have been 
applied extensively in condition monitoring for industrial gas 
turbines [2-4]. However, such techniques can only give 
warnings after faults have occurred, i.e. when faulted data has 
been read. In this case, model-based system identification 
approaches have shown their advantages by providing early 
warnings from predictions of the complex dynamic systems 
through use of models.  

For large gas turbine systems, which are often custom-
designed to meet individual orders, the use of application 
specific materials and components to satisfy off-shore platform 
regulations, for instance, often make accurate dynamic models, 
i.e. white-box models, which capture the detailed physical 
properties of the operation, normally difficult to obtain.  By 
contrast, the use of black-box models, such as artificial neural 
networks (ANNs), has therefore been popular, albeit with a 

loss of knowledge about the physical underpinnings of the 
system’s operation. For instance, [5] has demonstrated ANNs 
for simulating a gas turbine engine used to a power commercial 
aircraft in order to control safe operating regions and governing 
the engine thrust. [6] has also presented the use of ANNs in 
condition motoring of engine gas generators to improve data 
quality and for performance trend change detection. Gas 
turbine health monitoring has been carried on in [7] using 
ANNs for a high bypass ratio military turbofan engine, where 
double-component faults have been presented to demonstrate 
the application of ANNs as a diagnostic tools, and [8] applied a 
feed forward ANN with a back propagation algorithm to a gas 
turbine equipped with a waste heat recovery section to simulate 
and predict various steady-state operating conditions. ANNs 
have therefore been demonstrably successful for modeling gas 
turbines — however, the black-box model provides little or no 
insight of the physical underlying attributes of such complex 
systems. Furthermore, an effective principle in the modeling 
field is to only estimate what remains unknown, in order to 
minimize computational overheads, which are not directly 
accommodated through black-box modeling [9]. 

To overcome the shortcomings of white-box and black-box 
models, here, a new grey-box model is proposed, which 
combines both human knowledge and black-box estimation to 
account for complex systems’ knowledge acquisition. A fuzzy-
rule based system (FRBS) is one of the grey-box models with 
an additional ability to integrate expert knowledge in the form 
of ‘vague’ statements. The Mamdani FRBS is a popular type of 
fuzzy inference systems [10] that is based on Zadeh’s fuzzy 
algorithms for complex systems [11]. It relies on the 
calculation of a relational matrix for each rule, and 
subsequently the overall relational matrix. Finally, the output 
fuzzy set can be elicited using the composition rule of 
inference. However, Mamdani FRBS has an inherent drawback 
that it is not differentiable with respect to membership function 
parameters, which prevents the use of the back-error-
propagation (BEP) algorithm to refine the fuzzy models [12]. 
Therefore, in this paper, an adaptive Mamdani fuzzy modeling 
(AMFM) is proposed to remove this limitation. The efficacy of 
the proposed AMFM approach is demonstrated using results 
from experimental trials of a compressor on an industrial gas 
turbine. 
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II. METHODOLOGY DESCRIPTION 

Denote mX  and my  being the inputs and output of the mth 

data point. AMFM uses Gaussian membership functions for 
the premises and bell-shape membership functions for the 
consequents: 
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where   is the membership degree that my  maps to iB , 

iB represents the ith bell-shape membership, 
y
ic  and 

y
i  are 

the centre and the spread of the ith membership function of the 

output y, where ki ,...,1 , and k is the number of rules. The 

Gaussian membership function is a smooth function which can 
introduce extra smoothness. And the final crisp function is: 
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where ib  is the centre of area of the membership function 

 y
iB  and is the peak 

y
ic  if  y

iB  is symmetric. crispy  is 

the final defuzzified output of the FRBS.  
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A Mamdani FRBS with the pre-specified number of rules is 
extracted from the numerical data. However, the initial fuzzy 
model is not ideal since the membership parameters need to be 
pruned for further accuracy. A constrained BEP algorithm is 
thus utilized to obtain a vaccine model, through the 
construction of which, in terms of its predictive performance, 
many generations of evolutional search can be saved. 

By taking the partial derivatives of (2) with respect to each 
parameter in  , the following parameter updating formulas are 

obtained: 

1) Centre of the consequent updating law: 
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2) Spread of the consequent updating law: 
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3) Centre of the premise updating law: 
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4) Spread of the premise updating law: 
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Here, 41 ~   and 41 ~  are user-specific parameters and 

are the step sizes and the gains of momentum terms, 
respectively. A problem with the BEP updating formulas 
derived above is that they include no constraints with respect to 
the updating mechanism of the parameters. Therefore, a 
constraint handling scheme is added which checks the 
boundary violation for centers during each iteration step, and 
the violated solutions are assigned to the boundaries [12]. 



III. CASE STUDY 

A. Problem Statement 

System identification via AMFM is applied to a compressor 
on an industrial gas turbine system—see Fig. 1. The 
compressor efficiency during a 3 month period, which contains 
a washing cycling of the compressor from relatively clean to 
dirty (efficiency dropping) and undergoing washing (restoring 
compressor to near optimum design efficiency), is shown in 
Fig. 2. Data measurements during the time period of a 
compressor just after washing are used as the training data to 
build up the model, and 3 sets of test data are collected for each 
situation with the compressor becoming progressively less 
clean, as shown in Fig. 2, with 1 day’s data in each set for 
training and testing. In this way, the resulting AMFM model 
can be used to predict the compressor efficiency trend. 

B. AMFM Results 

Compressor inlet temperature (°C), compressor inlet 
pressure (bar) and gas/fuel demand (kW) are considered as the 
modeling input parameters, and the compressor outlet pressure 
(bar) is selected as the output vector. The outlet temperature 
(°C), which can also be considered as an output, can be 
modeled and predicted through the same procedure. 

 

 

 
Here, the initial Mamdani FRBS is extracted by G3Kmeans 

clustering algorithm, which has been proved to be more robust 
than k-means clustering [13]. For the training data i.e. the input 
and output data collected from the time period marked 
‘Training’ in Fig. 2, the predictive performances of the initial 
Mamdani FRBS, in terms of the root-mean-square error 
(RMSE) of the predicted outputs and the actual outputs, are 
shown in Fig. 3, where 10 rules are selected to cover sufficient 
measurement distributions. 

For AMFM, 300 iterations are set, which are the empirical 
numbers that ensure the convergence of the BEP algorithm. 

Parameters 41 ~   and 41 ~  are all set to 0.03 in this paper 

without any loss of generality. Here, the input data are further 
split randomly into 2 sets, where 25% of the data are used for 
checking the performance of the model resulting from using 
the remaining 75% of the training data. Training performance 
and ‘checking’ performance are shown in Fig. 4 with respect to 
iteration number. The predictive performance of the refined 
Mamdani FRBS through constrained BEP algorithm, AMFM, 
is shown in Fig. 5. It can be seen that AMFM, after BEP 
tuning, provides an improved performance compared to 
original Mamdani FRBS by presenting smaller training and 
checking RMSEs. 

The refined Mamdani FRBS and its membership functions 
are shown in Fig. 6 showing the 10 rules for the 3 input 
parameters and the output. The knowledge gained from the 
distributions and combinations of the membership functions 
have demonstrated the advantageous properties of the AMFM 
method by expressing clear semantic meanings of its 
consequents. 

After the AMFM being built, the model is adopted to test 
the compressor during 3 operating situations, i.e. tests 1~3 in 
Fig. 2. And the predictive performances (average) of the built 
model for 3 tests are summarized in Table 1. The results have 
shown the capability of the proposed modelling method for a 
compressor efficiency trend changing detection in an industrial 
gas turbine system. 

 
Fig. 2.  Training data and test data sets according to compressor 
efficiency 

 

 
(a) 

 
(b) 

Fig. 1.  (a) Schematic of an industrial gas turbine system and 
position of the compressor; (b) Input and output sensor 

measurements for a compressor. 
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Fig. 5.  The predictive performances of the refined Mamdani FRBS 

 

 

 
Fig. 4.  The training and checking performance curves of the 

refined Mamdani FRBS 

 

 
Fig. 3.  The predictive performances of the initial Mamdani FRBS 

 



 

      
 

IV. CONCLUSION 

This paper has proposed a grey-box modeling 
methodology, which combines both rule based knowledge and 
black-box estimation. Specially, a refined Mamdani FRBS is 
proposed and adopted for system identification of a compressor 
on an industrial gas turbine. AMFM is proposed, where 
Gaussian membership functions are used for the premises and 
the bell-shape membership functions for the consequents, so 
that BEP algorithm can be used to refine the fuzzy models. It is 
shown that the BEP refined Mamdani FRBS model provides 
improved modelling performance compared to the original 

Mamdani FRBS. The efficacy of the proposed method is 
further demonstrated from the results of RMSEs for detection 
of compressor efficiency changes. 
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TABLE I 

THE PREDICTIVE PERFORMANCES OF AMFM FOR TRAINING DATA AND 

3 TESTING DATASETS 

 RMSE 

Training data 0.0355 

Test 1 0.1488 

Test 2 0.1676 

Test 3 0.2010 

 

 

 
(d) 

Fig. 6.  Associated membership functions of the refined Mamdani 

FRBS for (a) Input 1: compressor inlet pressure, (b) Input 2: 

compressor inlet temperature, (c) Input 3: fuel demand of gas 
turbine and (d) Output: compressor outlet pressure. 
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