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Abstract 

 

Kayakers have traditionally used a fixed seat but in 2005 a “swivel seat”, able to 

rotate in the horizontal plane, was approved for use in races. While anecdotal 

evidence has suggested that the swivel seat may improve performance, the available 

data are limited and mainly physiological. The aim of this study was to investigate 

the effect of the swivel seat on kinematics and trunk muscle activation during 

paddling on ergometer.  

 

Nine experienced kayakers volunteered for this study and each completed two 

maximal trials of 30 s on the ergometer, one with the swivel seat and the other with a 

fixed seat. Three-dimensional motion analysis and performance data were collected 

at 200Hz during the central 10 s of each trial. Surface electromyographic (EMG) 

signals were recorded at 2000Hz bilaterally from the rectus abdominis, external 

oblique, internal oblique, latissimus dorsi and the erector spinae muscles. 

 

The use of the swivel seat was observed to improve performance through a 

significant increase in peak flywheel RPM (p = 0.033), right paddle recovery time (p 

= 0.043) and paddle antero-posterior displacement (p = 0.015). Shoulder rotation 

increased when using the swivel seat but trunk rotation decreased significantly (p = 

0.019). In addition, EMG analysis suggested greater activation of the trunk muscles 

during the swivel seat condition, where body position was closer to the 

recommended upright orientation and the knee range of motion was increased (p < 

0.01).  
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1. Introduction 

 

The aim of flatwater kayaking is to cover a specific distance as fast as possible, 

crossing the finish line before your opponents (Begon et al., 2010). The paddling 

action is defined by cyclic movements performed by the upper limbs coordinated 

with pedalling movements of the lower limbs and trunk rotation (Plagenhoef, 1979; 

Logan and Holt, 1985). In addition to the requirement for great levels of 

physiological capacity, the performance of an elite kayaker is influenced by a 

complex combination of determinants involving the kinematics of the boat, paddle 

and paddler and the forces acting on all three (Robinson et al., 2002). 

 

Biomechanists have traditionally used cinematography to track athletes’ performance 

with 2D (two-dimensional) methodology employed to determine kinematic 

parameters on-water and on-ergometer (Plagenhoef, 1979; Campagna et al., 1982). 

However, a complete picture of the stroke could not be obtained until the 

introduction of 3D (three-dimensional) analysis (Kendal and Sanders, 1992; Ong et 

al., 2006). 

 

Physiology has traditionally dominated research in flat water kayaking, however, the 

importance of kinematics in performance has attracted the attention of researchers 

(Robinson et al., 2002). As for kinetics, investigation of drag and lift forces has 

provided valuable information concerning their relationship with boat movement 

(Jackson et al., 1992). To guarantee optimal performances minimising drag forces 

acting on the hull and maximising propulsion become essential. As far as regulations 

have permitted it, most of the traditional advancements in boat shape and blade 

design have focused on these factors to lead to the largest improvements in 

performance (Kendal and Sanders, 1992; Robinson et al., 2002). Recently, the 

influence of the seat and footplate has sparked investigation concerning setting-up 

and the forces applied by the kayaker (Ong et al., 2006; Petrone et al., 2006; Michael 

et al., 2009). However, no clear conclusions have been drawn in these areas. One 

particularly notable development was the introduction in 2005 of a new seat design – 

“the swivel seat” – that rotates about its vertical axis, facilitating the kayaker’s trunk 

movement. This revolutionary piece of equipment has not been widely studied with 
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the kinematic effects of this seat on performance having not been analysed in great 

detail. The only study to date on the effects of the rotational seat on performance has 

been from a physiology perspective (Michael et al., 2010). When compared with the 

traditional seat no changes in oxygen consumption were detected whereas the power 

output was significantly higher with the rotational seat. As similar values were 

obtained for physiological parameters (VO2, HR peak and lactate production) it was 

suggested that these improvements in performance might have come from kinematics 

(Michael et al., 2010). 

 

Further research is needed to determine the effects of different seat designs on the 

kinematics, muscle activation and kinetics of kayaking. Due to the practical 

difficulties associated with data collection during on-water paddling, ergometer-

based investigations are a logical starting point. Once the effects of the swivel seat 

have been determined in detail during ergometer paddling, subsequent on-water 

research can be attempted in order to confirm the findings of prior studies and 

identify the consequences of the swivel seat use on technique and on kayak 

movement under real conditions. Therefore, the aim of the present study was to 

analyse the kinematics and the trunk muscle activation comparing the use of two 

different seats, the swivel and the traditional fixed seat, while paddling on an 

ergometer. 
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2. Literature Review 

 

Kayaking is a cyclic sport composed of the combined actions of trunk, upper and 

lower limb muscles throughout a coordinated motion with alternating left and right 

strokes (Begon et al., 2010). Flatwater kayaking, the oldest discipline, has been an 

Olympic event since the 1936 Berlin Games. The final criterion which determines 

kayak performance is the time required by the paddlers to cover the only three 

Olympic distances of 200, 500, 1000 meters (Begon et al., 2008a; Michael et al., 

2009; ICF, 2011). To avoid direct contact between kayakers, nine different lanes are 

used in which the boats, individually, cover the distance at the same time without 

interacting with others (Alacid et al., 2010a). 

 

Optimal performance in kayaking is the result of a combination of anthropometric, 

physiological, biomechanical and psychological aspects which may be studied 

through scientific procedures (Mann and Kearney, 1980; Fry and Morton, 1991; van 

Someren et al., 2000; Ackland et al., 2003; Michael et al., 2010). The identification 

of relevant procedures, and the associated levels of the measured attributes, are 

essential for obtaining a successful performance (Bishop, 2000). 

 

Traditionally, research in kayaking has primarily focused on physiological testing of 

the athletes to determine fitness levels and to then tailor training programs to 

optimize physiological fitness (Aitken and Neal, 1992). Early studies analysed 

VO2max to monitor and assess the physiological capacity of elite kayakers (Tesch et 

al., 1976; Pendergast et al., 1979). Comparisons between elite and amateur flatwater 

paddlers identified greater peak rates of oxygen consumption in elite kayakers and 

significant differences between both groups in terms of anthropometric parameters 

(Fry and Morton, 1991; van Someren et al., 1999). Nevertheless, the measurement of 

the maximal oxygen consumption of paddlers was not the only possible determinant 

of performance investigated by physiologists. While race characteristics demand that 

kayakers paddle most of the race at or around peak VO2 (Bishop, 2000), requiring a 

high aerobic power, the anaerobic contribution is also quite important for successful 

performance and it should not be overlooked (Michael et al., 2008). The demands of 

the anaerobic and the aerobic systems have been studied under many conditions: 
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after performing different warm-ups (Bishop et al., 2001; Bishop et al., 2003), on 

ergometers (Tesch, 1983; van Someren et al., 2000; van Someren and Oliver, 2002) 

and at different pace strategies (Bishop et al., 2002). 

 

However in the past few years sports engineering and biomechanics have become as 

important to athletic performance as physical and psychological conditioning 

(Robinson et al., 2002). It is commonly believed that the analysis of kinematics in 

on-water sports such as kayaking or rowing developed from the procedures used in 

early studies in swimming (East, 1970; Craig and Pendergast, 1979). As a means of 

evaluating swimming technique, the velocity of swimmers was examined as the 

product of stroke rate and stroke length (Alacid et al., 2008a). In contrast to those 

studies in swimming which found that stroke length was the most determinant factor 

in obtaining high average velocities (Craig and Pendergast, 1979; Craig et al., 1985), 

most studies in kayaking performance have highlighted the stroke rate as the most 

important determinant (Mann and Kearney, 1980; Kendal and Sanders, 1992; 

Sanders and Baker, 1998). In terms of forces, the combination of two determinants 

defines the average velocity of the boat: the propulsive effort produced by the 

kayaker and the drag forces acting on the boat (Baudouin and Hawkins, 2002). By 

integrating the practical knowledge of the kinetics (forces acting on the craft and the 

paddler) with the study of kinematics (motion of the craft and paddler), kayak 

paddling performance would be enhanced through a better and more complete 

understanding of the effects determining boat velocity (Robinson et al., 2002).  

 

Although technique in flatwater kayaking has usually been analysed on water 

(Plagenhoef, 1979; Logan and Holt, 1985) and over Olympic distances (Issurin, 

1998), the number of kinematic studies undertaken indoors relating to kinematics has 

increased significantly due to the recent improvements in how accurately kayak 

ergometers simulate on-water conditions (Begon et al., 2009; Michael et al., 2012).  

 

2.1. On-water analysis  

The first on-water studies in kayak kinematics were carried out by tracking the 

athletes, using a single camera to provide a two-dimensional analysis (Plagenhoef, 

1979; Mann and Kearney, 1980). The camera was usually positioned to one side in 

order to record a short straight space which the kayakers passed through. Subsequent 
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manual digitisation of the performance of athletes was needed in order to provide 

appropriate data for analysis. Plagenhoef (1979) undertook an investigation to 

identify the determinants of performance by analysing the differences between the 

most and least successful flatwater kayakers. A subsequent study has investigated in 

greater detail the basic biomechanical parameters of Olympic flatwater paddlers and 

the bilateral asymmetries of the stroke in two-dimensions, focusing on the 

displacements and velocities of joint centres in the upper limbs and the relationship 

between the pattern of kayak movement and the movement of body segments (Mann 

and Kearney, 1980). 

 

However, a complete analysis of the paddling phases was not undertaken until 1985 

when Logan and Holt reported a detailed analysis of the muscles and segments 

involved in each part of the kayak cycle. To facilitate this analysis from a paddle 

perspective, the cycle was divided into four phases based on the motion of one of the 

paddle’s blades: (1) the catch, starting with the paddle horizontal and the blade 

forward and ending when the same side blade is completely submerged in the water; 

(2) the pull, starting with the blade buried in the water and ending when its removal 

from the water is initiated; (3) the exit, starting with the blade in the submerged 

position and ending when the paddle reaches the horizontal position in the air; and 

(4) the recovery, during which the selected blade is moved forward through the air 

from the backward horizontal paddle position to the forward horizontal forward 

position (Logan and Holt, 1985). 

 

The combined effect of the increasing role of sports biomechanics and the 

technological explosion associated with image processing and automated digitisation 

opened the doors to many more projects (Shapiro and Kearney, 1986). The use of 

two cameras, one camera with the lens axis perpendicular to the plane of motion 

(lateral) and another with the lens axis in the intended plane of motion of the kayak 

(frontal), was proposed by Kendal and Sanders (1992). A more complete picture of 

the movement pattern, including the paths of the paddle and the body segments, was 

obtained from the information provided by the lateral camera and the complementary 

data acquired from the frontal view. 
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In one of the first studies using a 3D system, Baker et al. (1999) digitised video 

footage of eight anatomical landmarks, two paddle markers, and two boat markers 

using the APAS digitizing system and reconstructed the 3D kinematics. However, no 

general conclusions could be drawn regarding the paddlers’ technique because their 

study was apparently an initial investigation limited in terms of participants to 

comparing technique between males and females (Baker et al., 1999, cited by 

Michael et al., 2009). Further 3D analysis was undertaken by Ong (2006) who 

investigated the effect of different boat set-ups on kinematics. By using a six-camera 

system the position of 10 non-collinear markers were derived prior to testing. Two 

synchronized NAC video cameras (50 Hz) positioned at 90° to each other, recorded 

the performance of three elite kayakers at maximum speed through a calibrated space 

(6 m x 1.2 m x 2 m) on a calm bay. The use of a larger number of cameras in 3D 

analysis facilitates the creation of full-body models and accurate estimation of the 

movement patterns through markers which may be placed directly on anatomical 

landmarks and that, otherwise, might be obscured if only one or two cameras were 

used. In combination with force data, 3D kinematic analysis has become a powerful 

instrument for estimating complex force moments and integrating the kinetics and 

kinematics from multiple planes (Michael et al., 2009, 2012) 

 

Despite the limitations of 2D analysis, it is still a useful tool for coaches and 

researchers to utilise in analysing kinematic parameters due to its relative ease of use 

and the more manageable amount of data that are generated. From such analysis 

valuable information concerning performance such as paddle entry and exit angles, 

stroke length, stroke rate, and in-water times can be determined (Sperlich and Baker, 

2002). Thus, in the recent years, some analyses of the changes in kinematics over 

long distances have been conducted in 2D from a vehicle moving perpendicularly 

alongside the crafts (Alacid et al., 2008b; Ho et al., 2009; Alacid et al., 2010b). The 

possibility of having a sagittal view of the kayaker during the whole performance 

allows the capture of a cycle (one side blade entry to same side blade entry). 

Kinematics, especially boat velocity, stroke frequency and stroke length, can be 

easily calculated by taking as a reference the buoys of the lanes which indicate the 

distance. However, whilst these techniques have permitted enhanced 2D analysis, it 

is questionable whether they provide a complete and sufficiently detailed picture of 

the whole stroke technique, which is very 3D in nature. 



 8 

2.2. On-ergometer analysis 

Most sports practised outdoors are usually dependent on weather conditions and 

athletes on occasion are unable to carry out their training programme under real 

conditions. Traditionally, in kayaking, in an attempt not to miss out on periods of 

training, paddlers were recommended to practise other physical activity such as 

cross-country skiing or swimming in order to improve or maintain their level of 

fitness. However, the muscles involved in those activities are not the same as the 

muscles used in flatwater kayaking (Campagna, 1986). To overcome this 

disadvantage, scientists tried to develop systems to focus more on conditioning the 

upper body muscles properly and to assess a kayaker’s performance. Pike et al. 

(1973, cited by Stothart, 1986a), modified a Monark bicycle ergometer to create 

ergometers for both canoeing and kayaking. Campagna (1982) developed an 

ergometer which attempted to reproduce on-water conditions more accurately by 

adapting a Biokinetic Swim Bench. Subsequent studies continued to introduce 

modifications in the ergometers to improve their similarities to on-water kayaking 

conditions and, therefore, provide athletes with a more appropriate method for 

training out of the water (Telford, 1982; Campagna, 1986; Stothart et al., 1986a; 

Witkowski et al., 1989). Larson (1988) developed a new kayak ergometer based on 

air resistance which consisted of a separate seat and a multi-purpose ergometer 

mounted on a braked flywheel. The flywheel, whose function was to simulate the 

water drag force on the paddle blade, was automatically rewound by two elastic 

wires placed in the rear of the ergometer. Although prior studies had already 

obtained digital data from an ergometer (Stothart et al., 1986a), the use of the 

flywheel allowed the acquisition of more detailed information about power output, 

maximum speed, distance and performance time. 

 

Conventional kayaking ergometers have been designed with a static seat and footrest 

(Begon et al., 2008a). Therefore, the loss of propulsive force transmitted to the 

paddler’s body is minimal (Elliott et al., 2002) as the paddler can push against a 

static footrest. However, in a real boat the seat-footrest system moves more than the 

blade (Elliott et al., 2002). Conscious of this problem, Begon et al., (2008a) designed 

a kayak ergometer based on a slide trolley which reproduced on-water dynamics 

more accurately. The trolley included the seat and the footrest and it was able to slide 

forward and backward along a static frame. 
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From a research point of view, the natural environment where flatwater kayaking is 

practised can make in-situ data collection difficult. Therefore, ergometers have 

become useful tools through which additional information could be obtained. 

Although kayak ergometers were originally designed for training under unfavourable 

outdoor conditions (Begon et al., 2009), they can offer two extra functions for the 

sport scientist. Firstly, they can be used to assess the physical working capacity of 

athletes by setting up an externally-specified stroke frequency, working time and 

power output. Secondly, they may function as tools for investigating the nature of 

kayak stroke technique and kinematics in general (Stothart et al., 1986a). In addition, 

the possibility of carrying out the studies indoor, without the movement of the boat, 

combined with the provision of immediate feedback allows a more effective 

approach as both kinematic and physiological measurements are performed. 

 

One of the most valuable parameters which can be obtained through the use of an 

ergometer is the power output generated when paddling. Sanderson and Martindale 

(1986) identified the determinants of the propulsive power in rowing as stroke length 

(SL), stroke rate (SR) and force applied on a rowing oar. Telford (1982) compared 

the maximal power outputs provided by ergometers in different sports. Maximum 

power outputs were obtained over 10- and 20-s trials, with the finding that the kayak 

ergometer produced the lowest values (352±50 W) while leg/arm cycling (985±162 

W) generated the largest. The power output required to maintain the boat velocity is 

assumed to be proportional to the cube of that velocity (Michael et al., 2010). 

Another approach to determining the relationship between velocity and power was 

carried out by Campagna et al. (1998). A regression equation to predict performance 

was obtained from two similar tests performed on-ergometer and on-water. 

Nevertheless, these equations are slightly inexact because other factors which may 

influence the velocity, such as water viscosity, were not taken into consideration.  

 

Resultant paddle and body kinematic parameters on an ergometer have not been 

studied yet in great detail. In an attempt to analyse the kinematics of the upper limbs, 

Kranzl et al. (1996) undertook the first study on a kayak ergometer using a 3D multi-

camera system. The forward stroke of ten elite whitewater kayakers was analysed 

using 21 passive markers and a 6-camera motion capture system usually employed in 

the analysis of clinical gait (Kollmitzer, 1994). Using a modified swimming bench as 
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a kayak ergometer, Wassinger et al. (2011) analysed the 3D scapulo-humeral motion 

in whitewater kayakers. Segment position and orientation were determined using 

electromagnetic tracking for the first time in kayaking. Further research with 

flatwater kayakers has used more traditional tracking systems with infrared cameras 

(Petrone et al., 2006) and digital video cameras (López and Ribas, 2011). 

Traditionally, kinematic and kinetic variables in kayaking have been investigated 

separately, with few relationships between the two being found in the literature. A 

recent investigation by Michael et al. (2012) has, however, attempted to consider 

both areas by simultaneously collecting paddle force and paddle angle data on an 

ergometer.  

 

Despite the efforts of biomechanists and engineers in improving the quality of 

ergometers in terms of how closely they reproduce the on-water conditions, the 

validity of the kinematic results obtained from on-ergometer investigations has been 

called into question (Begon et al., 2008a; Michael et al., 2012). Several studies have 

supported the use of ergometers as an effective representation of the kinematics and 

physiological demands of kayaking (Michael et al., 2010; Fleming et al., 2012). The 

exact correspondence between on-ergometer and on-water kinematics parameters 

remains unknown, however, and future research in this area will be warranted as on-

water data collection techniques advance. 

 

Regarding the relative physiological demands between on-water and on-ergometer 

kayaking, Barnes and Adams (1998) compared the physiological responses during a 

120-sec on-ergometer test with those during a 500-m maximal intensity water-based 

kayak paddle. In this case the physiological responses obtained indoors were not 

representative of those observed in the on-water sprint. Differences in response were 

also obtained by Alacid et al. (2006b), when 20-s tests were performed under both 

conditions. However, other studies that have investigated similar parameters over 

different distances and with more participants have reported similar responses when 

related tests are performed under on-water and on-ergometer conditions (Larsson et 

al., 1988; Cuesta et al., 1991; van Someren and Dumbar, 1997; van Someren et al., 

2000). 
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2.3 Muscle activation 

In terms of muscle activation little research has been conducted. Fleming et al. 

(2007, 2012) reported greater peak activity in the deltoids and triceps when paddling 

indoors and on-water respectively, attributing these results to the nature of the 

ergometer’s loading mechanism. In contrast to findings reported by Trevithick et al. 

(2007), shoulder muscle recruitment during the recovery phase increases to maintain 

shoulder position as a downward force is generated by ergometer recoil (Fleming et 

al., 2012). As previously reported in other sports involving upper body pulling 

motions such as swimming (Pink et al., 1991) the latissimus dorsi increases its 

activity during the pull phase, becoming the primary muscle of propulsion 

(Trevithick et al., 2007). Although no other significant differences in peak muscle 

activation between conditions have been identified, an earlier activation has been 

identified in the latissimus dorsi when paddling on an ergometer (Fleming et al., 

2012). Moreover, Brown et al. (2010) studied the bilateral differences of trunk and 

leg muscle activation, reporting the great importance of the abdominals during the 

entire paddling cycle.  

 

2.4 Differences in kinematics 

As for the differences between indoor and on-water paddling in terms of kinematics, 

contradictory results have been obtained. Campagna (1982, 1986), in two of the first 

kinematic studies involving an ergometer, found similar trajectories for the elbow 

and wrist. Supporting the similarity of the movement under the two conditions, 

Witkowski et al (1989) noted that very similar forces were measured by tensometric 

and rotation transducers. In rowing, similar studies comparing the equivalent 

conditions corroborated the similarity in leg and trunk kinematics (Lamb, 1989). 

However, subsequent studies that used more advanced technology to analyse 

differences in technique, found contradictory results. In a comparison of the upper 

joint paths between the conditions, Begon et al. (2008b) reported high correlation in 

all joints except for the shoulder. In addition, Begon et al. (2003, 2008b) found no 

differences in stroke phase times when ergometer paddling was compared with in-

situ performance. Conversely, the same studies reported significant differences when 

their ergometer values were contrasted with on-water values from prior studies. In 

kayaking it is known that the stroke frequency is one of the most influential factors 

determining paddlers’ performance (Mann and Kearney, 1980; Sanders and Baker, 
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1998). Barnes and Adams (1998) compared stroke frequencies between a 120-s 

maximal ergometer trial and a 500-m on-water trial, reporting significantly higher 

values indoors. Similar results were obtained by some later investigations, 

corroborating the difference in stroke rate (Alacid et al., 2006a; Alacid et al., 2006b). 

Recent studies have revealed contradictory results as Carrasco (2010) obtained high 

correlation between stroke rates on-ergometer and on-water. To date biomechanical 

studies have demonstrated quite similar parameters between the two conditions and 

stroke frequency has been the only variable showing significant differences in the 

majority of the investigations. However, more research about technique, joint paths 

and range of motions is needed in order to analyse how the technique changes under 

both conditions because little research have been undertaken until now (Begon et al., 

2003; Fleming et al., 2012). The situation is complicated further due to the wide 

range of ergometer designs available. In rowing, comparisons between ergometers 

with different mechanisms have reported significant differences not only in 

physiological variables but also in terms of stroke parameters and power outputs 

(Colloud et al., 2006; Benson et al., 2011). However while the different 

characteristics of each ergometer mean that the paddling kinematics cannot be 

assumed to be identical on each, no evidence to date suggests that ergometer 

paddling is fundamentally different from on-water paddling, and ergometers have 

become an effective tool for investigating kayak kinematics and physiology. 

 

2.5 Equipment 

Sprint canoeing and kayaking is a sport in which athletes particularly rely on the 

latest improvements in equipment to obtain good results in competition. In fact, 

performance improvements have been directly related to technological advancements 

rather than to changes in training regimes (Robinson et al., 2002). In the past 30 

years, hull shape, paddle and blade design have seen more marked modification than 

has the athlete’s preparation (Ackland et al., 2003). 

 

2.5.1 Boat 

One of the components which has changed the most since the first flatwater Olympic 

competition in Paris in 1924 has been the boat shape. In a historical look at the top 

performances in the Olympic K1 1000-m event, Robinson (2002) noticed the greatest 

improvements in performance as new boat designs were introduced. As an example, 
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Gert Fredriksson, with the introduction of the V-form at the Helsinki Olympic 

Games, was able to reduce his winning time by more than 25 s. Every new kayak 

design from the V-form to the most recent models has been focused on reducing the 

hull surface in contact with the water as well as the boat cross sectional area, in order 

to decrease the drag force. 

 

There are two types of resistive force - hydrodynamic and aerodynamic drag forces – 

but kayak movement is predominantly opposed by hydrodynamic drag (Jackson, 

1995). There are three hydrodynamic drag forces which act to decelerate the boat 

velocity: wave drag, pressure drag and friction drag (Pendergast et al., 2005; Michael 

et al., 2009). Hydrodynamic drag force increases approximately proportionally to the 

square of the velocity depending on the paddler mass (Hay, 1985; Caplan, 2009). 

Nevertheless, the most significant contributors to the total drag are friction force and, 

to a lesser extent, wave drag force. In an attempt to determine relative drag values, 

Jackson (1995) reported that the speed of the boat was reduced by 0.27% as friction 

was increased by 1%. It is known than the lower the friction coefficient of the 

surface in contact with the water, the smaller the friction drag acting over the hull 

(Jackson, 1995). Friction drag forces can also be reduced by minimizing the wetted 

surface area. The total weight (paddler and boat) combined with the boat shape are 

the main factors which determine the wetted surface area of the craft. Body and boat 

combined weight not only influences the friction drag but also affects the wave drag 

(Mann and Kearney, 1980; Jackson, 1995; Michael et al., 2009). Additional factors 

like the cross-sectional area of the hull, also play a key role concerning friction drag 

forces (Pendergast et al., 2005). This area varies with the oscillations in the net 

vertical force arising from the buoyancy force and the weight force (Michael et al., 

2009). An increase in the cross-sectional area submerged would result in an increase 

in the drag acting on the kayak. Finally, the kayak length may affect the total boat 

speed: for a given wetted area, an increase in boat length would lead to an increase in 

boat speed (Jackson, 1995). 

 

Taking into consideration the different factors which affect the drag force, sports 

engineers have sought to develop designs and advancements in equipment to 

minimise these forces, but their efforts have sometimes been limited by the 

regulations imposed by the International Canoeing Federation (ICF). For example, a 
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new boat design called the “peaked deck” was introduced in 2000 to circumvent the 

boat beam regulations. In order to comply with the minimum width restrictions, the 

widest point of the boat was elevated above the waterline allowing the boat to reduce 

the cross-sectional area submerged. Thus the rule was finally removed some time 

later as the width beam limitation became worthless (Robinson et al., 2002; Michael 

et al., 2009) Additionally, restrictions in terms of boat length have also been 

determined by the ICF (ICF, 2011), thus further investigation of the relationship 

between length and boat speed has become irrelevant for competition performance 

purposes. 

 

As was mentioned above, the friction coefficient combined with the hull wetted area 

are the main determinants of the friction drag. In an investigation of the friction 

coefficient, Goddard (1996, cited by Robinson et al., 2002), hypothesized that sanded 

surfaces might reduce the friction by the generation of laminar water flow between 

the water and the hull. The use of friction-reducing coatings based on hydrophobic 

molecules has been considered to reduce friction drag as well. However, the ICF has 

forbidden the use of the texture surfaces as well as the material coatings on the hull 

for competitions (ICF, 2011). Currently, it seems that the best way to minimise the 

drag coefficient is to keep the wetted surface of the hull as smooth as possible 

(Robinson et al., 2002) 

 

Wagner et al. (1993) examined the balance of a rowing boat through the movements 

generated along its three axes (Figure 1). They were defined as pitching (rotation 

around the mediolateral axis), rolling (rotation around the longitudinal axis) and 

yawing (rotation around the vertical axis). Additional movements of the boat which 

do not change the orientation of the boat’s axes were studied as “translational 

movements”. Travelling was classified as the forward movement, the principal 

objective of kayaking and rowing. Sideslipping was defined as lateral displacements 

of the boat and dipping was identified as the vertical movement (Figure 2). Mann and 

Kearny (1980) reported the importance of compensating with the body mass the 

changes in balance generated when paddling. The importance of maintaining the 

balance of the boat has been related to the amount of drag force generated. The 

majority of a boat’s movements increase the instantaneous wetted area of the hull 

leading, in turn, to larger drag forces acting on the boat hull (Baudouin and Hawkins, 
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2002). Thus the more boat movements the more instantaneous drag forces and the 

more changes in boat velocity as well. Moreover, optimal performances are 

associated with the maintenance of the boat velocity and the minimum instantaneous 

change in body centre of gravity position (Mann and Kearney, 1980; Sanderson and 

Martindale, 1986). It may be hypothesised that additional boat movements might 

produce changes in stroke technique as a result of the alteration in body position. 

Consequently, the propulsion would also be modified and the performance affected. 

 

 

 

 

Figure 1 - Plan view (a), and lateral view (b) of the kayak movements around its three axis: rolling 

(ωx), pitching (ωy) and yawing (ωz). 
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Figure 2 - (a) Plan view of the travelling movement (mx) of the boat, (b) plan view of the sideslipping 

movement (my) of the kayak and (c) lateral view of the dipping movement (mz) of the kayak of the 

boat . 

 

 

The minimisation of the factors which affect drag does not, by itself, guarantee good 

performances. To overcome the complex blend of drag forces which act on the boat 

it is also paramount to maximize the propulsive factors that contribute to reaching 

high power outputs (Jackson, 1995; Baudouin and Hawkins, 2002).  

 

2.5.2. Paddle 

In kayaking and canoeing the force necessary to propel the craft is provided by the 

athletes through paddling movements. The forward movement of the boat occurs as 

the result of the propulsive forces made by the water on the paddle blade during the 

water phase. This force is transmitted from the paddler to the boat through the seat 

and the footrest (Ong et al., 2005). The balance between propulsive forces and drag 

forces determines the distance per stroke and the boat velocity. Due to the 

discontinuous force transmitted to the water and the dynamic movement of the 

paddler the boat velocity fluctuates during each stroke (Pendergast et al., 2005; 
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Michael et al., 2009). There are two components of the net force, which act parallel 

and normal to the direction of the blade motion. The drag force acts parallel to the 

relative flow while lift force acts perpendicularly to the direction of the relative flow 

(Jackson, 1995; Michael et al., 2009). The lack of regulations regarding paddle 

dimensions and shape has made this element one of the most studied by engineers in 

the search for better performance. 

 

a b

 

 

Figure 3 – Wing paddle design (a) and traditional paddle design (b). Adapted from Jackson (1995). 

 

 

Traditionally, a “flat” paddle model has been used by elite athletes in flatwater 

kayaking and canoeing. The propulsive forces generated by the blade to propel the 

boat when a conventional paddle is used are mainly drag forces (Plagenhoef, 1979; 

Mann and Kearney, 1980). However, in the mid 1980s a new type of paddle based on 

the airplane wing was designed in Sweden (Figure 3) (Sanders and Baker, 1998). In 

contrast to the “flat” paddle, the properties of a “wing” paddle involve the use of lift 

forces, which can only be obtained by changing the paddling technique significantly. 

To create water flow over the blade, diagonal movements away from the longitudinal 

axis of the boat are needed (Figure 4; Kendal and Sanders, 1992). The superior 

performance attained by the wing in comparison with the conventional paddle is 

based on the greater effectiveness of lift forces in propelling the boat (Jackson et al., 

1992; Kendal and Sanders, 1992). It is known that the shape and design of the wing 
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paddle affect the production of lift forces (Sanders and Baker, 1998). However, the 

drag force acting on the blade is largely independent of the paddle design (Sumner et 

al., 2003). According to Robinson et al. (2002), Sanders and Kendal (1998) gathered 

from diverse authors possible explanations for the superiority of the wing paddle 

which are not contradictory to each other.  

 

 

x

y

Forward

movement

a b

 

 

 

Figure 4 – Plan view of a typical right paddle trajectory when using (a) a flat blade design and a (b) 

wing paddle design (“rounding out” technique). 

 

 

Firstly, when paddling with a traditional blade movements are performed parallel to 

the longitudinal axis of the boat. This creates some water movements in the direction 

of motion and part of the energy supplied by the kayaker is “lost” to the water 

(Sanders and Baker, 1998). With a “rounding out” technique, kayakers perform the 

paddling movement away from the craft where there is more “still water” (Figure 4). 

 

Related to the previous reason, another advantage of using wing paddles involves 

braking forces and the stroke time. When paddling parallel to the longitudinal axes of 

the boat some braking forces are generated. It is necessary to move the blade 
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backwards faster than the boat is moving forward to achieve propulsion forces and 

avoid braking forces (Sanders and Baker, 1998). The blade must start moving 

backward before the entry to circumvent braking forces in the first part of the stroke 

(between the entry and catch). Additionally, the withdrawal of the blade from the 

water must be produced prior to the completion of the whole pull phase. As a result, 

the pull time of each stroke is reduced and the recovery time increases to allow the 

blade entry to start the movement well forward of the kayaker (Sanders and Baker, 

1998; Robinson et al., 2002). 

 

Another reason for the superiority of the wing paddle concerns the generation of 

useful vorticity, which was examined by Jackson et al (1992, 1995) through a 

mathematical model. The flat paddle would produce a tiny U-shaped vortex while the 

use of the wing paddle would generate a continuous loop during the movement 

which might create twice the area of vorticity (Figure 5). The efficiency of the two 

paddles was estimated to be 89% and 74% for the wing and conventional paddle, 

respectively (Jackson, 1995). Additionally, the efficiency of a wing paddle increases 

in comparison with the flat model when using small angles of attack (between 20º-

30º) and an angle around 65º to the hull (Jackson et al., 1992). 

 

a b

z

y

 

 

Figure 5 – Sketches of the vortex ring formed at each paddle stroke for (a) the traditional blade design 

and for (b) the wing paddle design. Adapted from Jackson (1995). 

 

 

A fourth possible benefit from the wing paddle is related to the different 

physiological cost of the two techniques. The “rounding out” stroke technique 

reduces the energetic cost by allowing the paddler to perform more fluid and natural 

movements (Sanders and Baker, 1998). Conversely, with the conventional paddle the 

stroke movements are more intermittent as a result of the sudden reversal of direction 
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at entry and exit blade actions. Consequently the energy cost increases (Jackson et 

al., 1992; Sanders and Baker, 1998). 

 

The final proposed advantage of the wing paddle relates to the orientation of the 

blade during the pull phase of the stroke. Moving the paddle away from the boat 

directs the resultant force more in a forward direction and maintains a vertical 

orientation of the blade for longer (Sanders and Baker, 1998). Mann (1980) reported 

that the period when the paddle shaft is vertical is the most effective part of the 

stroke. Therefore, the more time the blade is pulling perpendicular to the water the 

more effective are the propulsion and peak horizontal acceleration obtained. For a 

flat paddle the vertical paddle position seems to occur between 20% and 26% of the 

stroke from the time of the blade entry to its exit (Plagenhoef, 1979). According to 

Mann (1980) the vertical position would be reached specifically at 23% of the stroke 

time. However, when using a wing paddle, the vertical position of the blade does not 

appear to correspond with the peak propulsion (Aitken and Neal, 1992) cited by 

Michael (2009). In disagreement with Sanders and Baker (1998), peak propulsion 

seems to occur slightly before the vertical position is reached (Aitken and Neal, 

1992; Fleming et al., 2012) 

 

From the first flat paddles used in the 1936 Berlin Olympic Games to the latest wing 

model, all the new paddle designs have been developed to enhance elite athlete 

performances. The improvements in paddle design have been accompanied by 

meaningful changes in flatwater technique in terms of blade trajectory and body 

segment paths (Kendal and Sanders, 1992; Sanders and Baker, 1998). However, it 

seems that the timing of the stroke phases followed by the wing and the flat paddle is 

quite similar. Although the stroke trajectories followed by these two paddles differ, 

the timings of the in-water phases seem to follow a similar tendency (Plagenhoef, 

1979; Mann and Kearney, 1980; Sanders and Kendal, 1992; Sanders and Baker, 

1998). 

 

Direct methods of measuring the force applied to the paddle during single strokes 

were developed originally in East Germany (Sperlich and Baker, 2002). In an 

attempt to reliably and accurately evaluate the paddle force production on-water, 

Stothart et al. (1986b) used a device based on strain gauges placed on the shaft of the 
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paddle. The system was capable of measuring and recording real-time changes in 

force production during paddling under real conditions. Subsequent studies analysed 

in further detail the forces generated by the paddlers, through the improvements 

developed in strain gauges systems (Aitken and Neal, 1992; Baker, 1998). Aitken 

and Neal (1992) acquired a complete picture of the force production over 500-m 

trials through analysis of boat velocity and stroke time combined with the main and 

peak force generated by the athlete. These studies reported peak forces at 36%-45% 

of the drive time, clearly before the peak velocity point identified by Mann and 

Kearney (1980) and Kendal and Sanders (1992) as being during the second half of 

the pull phase, at approximately 70-80% of the drive time. Combining kinematic and 

kinetic measurements on ergometer, Michael et al. (2012) found a slightly later time 

for peak paddle forces (43-46% of normalised drive time) than in situ. In a 

comparison between on-water and on-ergometer kayaking, Fleming et al. (2012) 

conversely reported a sooner time to peak forces and less force production when 

paddling on the ergometer. The recoil mechanism and the lack of tension on the 

ergometer ropes during the first part of the recovery phase are pointed out by the 

authors as a possible cause of force alterations. Baker et al. (1998) cited by Sperlich 

and Beaker, (2002) examined the two main functions of the strain gauges for the 

kayaking community. Firstly, they might be used for monitoring athletes’ 

performance, with peak and mean forces being compared from test to test. The 

second use would be related to technique control: force data associated with a time 

graph would allow the athletes to identify instants of low force production. 

Performance improvements could be attained by the use of stroke force curves. 

 

2.6. Other equipment and boat set-up 

Improvements in kayaking equipment lose some of their effectiveness if they are not 

appropriately configured in agreement with the kayaker’s characteristics. The 

equipment set-up not only plays a key role in the comfort of athletes when paddling 

but also is responsible for the prevention of potential injuries and effective 

production of force (Ong et al., 2005). 

 

Traditionally in kayaking body dimensions have been used for the determination of 

the initial paddle length and set-up (Toro, 1986). On the contrary, the selection of the 

blade size depends on other factors like age, individual force, technique and flat 
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water discipline (Alacid, 2009). Long blades increase the cost of paddling and tend to 

increase the recovery time, however, they generate greater forward propulsion 

(Gowitzke and Brown, 1986; Ong et al., 2005). 

 

Kinanthropometric variables of elite kayakers have been studied for many purposes. 

By using a battery of kinanthropometric and physiological tests, Fry (1991) 

identified the variables that most strongly influence performance, which included 

height, sitting height, body mass and the sum of eight skinfolds. Additionally, these 

variables have been analysed individually through different Olympic Games in an 

attempt to identify an elite kayaker profile (Ackland et al., 2001; Ackland et al., 

2003). Barrett and Manning (2004) examined the morphology of fifteen rowers in 

order to establish the relationship with kinematic, rigging set-up and performance 

parameters such as race time and oar peak force.  

 

Due to the restrictions in boat length and shape the only modifications which can be 

made by the athletes in the craft are the adjustments related to the seat height and the 

distance between seat and footplate (Toro, 1986; Alacid, 2009). Ong (2005) 

examined the physical dimensions and the equipment set-up parameters of elite 

slalom and flatwater kayakers. From those data, individual models for equipment set-

up were predicted through regression equations. A subsequent investigation analysed 

the effect of three different set-ups on kinematics by using these predictive equations 

(Ong et al., 2006). The results suggested that predicting boat set-up based on 

anthropometric parameters does not ensure significant performance improvements. 

Therefore, it is suggested that changing the preferred set-up occurs only in the case 

of having a good reason to do so, and doing it in off-season periods to allow 

familiarisation with those set-ups (Ong et al., 2005; Ong et al., 2006). 

 

2.6.1. Footrest and seat forces 

In kayaking, the athlete is seated while paddling with the knees slightly flexed (110-

120º) and the feet placed on the footplate (with a foot angle of approximately 60-70º 

relative to the horizontal) (Sánchez and Magaz, 1993). Both the seat and the footrest 

play an important role regarding kayak kinetics and kinematics. The force generated 

by the paddler is transmitted to the boat through the footrest and the seat (Ong et al., 
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2005), with the specific technique used when paddling generating internal contact 

forces applied to both elements (Begon et al., 2008a). 

 

A single stroke starts at the catch phase with a pushing action of the upper limbs. 

Subsequent actions involved trunk rotation combined with the pulling movement of 

the straightened upper limbs (Mann and Kearney, 1980; Logan and Holt, 1985). 

Additional pedalling actions against the footrest are performed by the lower limbs to 

facilitate the trunk rotation and the propulsion. During the pull phase of a single 

stroke the contralateral knee is slightly flexed meanwhile the ipsilateral knee is 

extended, generating internal forces against the footrest and contributing to the trunk 

rotation (Begon et al., 2008a; Begon et al., 2010) 

 

In rowing the oar has a mechanical connection with the boat and the force produced 

by the athlete is not only transmitted to the boat through the body as in kayaking but 

through the mechanical connection as well. Additionally, the slide trolley makes the 

foot stretcher especially important in terms of performance. The internal force 

produced by the feet in contact with the footrest and the influence of the foot 

stretcher when rowing has been widely studied (Elliott et al., 1993; Caplan and 

Gardner, 2005). In kayaking the seat is fixed to the boat and the forces applied to the 

seat and footrest can be in opposite directions (Begon et al., 2008a). However, little 

research has been undertaken related to forces internal to the paddler/boat system. 

Petrone et al. (1998) analysed in situ normal forces through a dynamometric system, 

obtaining values ranging from -128 to 6 N and from -152 to 444 N for the seat and 

footrest, respectively, where the positive direction is the race direction. Petrone et al. 

(2006) noticed that as the stroke pace and trunk rotation were increased on-ergometer 

the normal force applied to the footrest seemed to increase or maintain its values. 

Different contact force results were obtained by Begon et al. (2008a), apparently 

caused by the different-level of their kayakers and the use of a sliding ergometer 

instead. The normal force oscillated from -42 to 815 N for the footrest and from -116 

to 588 N for the seat. According to Begon et al. (2008a) the peak forces applied by 

the kayaker to their equipment peak in the sequence: paddle, foot and finally seat. 

The authors noticed that, in the first part of the stroke, those kayakers who used 

straps around the feet produced pulling actions in the footrest and seat allowing 

pelvis rotation. When the blade force attains its maximum value it is the decrease in 
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seat forces that facilitates pelvis rotation (Begon et al., 2008a). In subsequent studies, 

Begon et al. (2010) investigated the contributions of the lower limbs to performance. 

Due to the technical difficulties in measuring the lower limbs during paddling on-

water, pedalling motion was simulated from ergometer data. The lower limbs’ action 

was estimated to increase the propulsive forces and the boat velocity, with a 

performance increase of around 6% per stroke. However, an understanding of the 

coordination of the internal forces generated in the seat-footrest-paddle system would 

require further investigation because the relationship between performance and 

contact force is not clear so far (Begon et al., 2008a; Begon et al., 2010). 

 

2.6.2 Swivel seat 

As mentioned above kayaking technique involves the combined action of not only 

the upper limbs but also the lower limbs and trunk rotation (Mann and Kearney, 

1980). Although the forward motion is mainly generated by the upper limbs, trunk 

rotation significantly improves the propulsion during the pull phase of the stroke. 

The contribution from this rotation depends on the co-ordination of the pelvis with 

the upper and the lower limbs during the pedalling motion and on the time history of 

the pelvis angular velocity (Logan and Holt, 1985; Begon et al., 2010). Additionally, 

the “rounding out” stroke technique used with the wing paddle allows lateral paddle 

movements which involve the larger muscles of the trunk and make the action more 

physiologically economical (Sanders and Baker, 1998). Supporting this idea, Begon 

et al. (2010) calculated that the energy cost of each stroke increased by 20 J when the 

trunk remained motionless (around 4% of the total energy expenditure per stroke).  

 

To facilitate trunk rotation and improve the mechanics of the stroke technique, a new 

seat called the “swivel seat” was designed. Although the swivel seat was created 

before 2005 the ICF did not authorise its use until that year. In contrast to the 

standard “fixed seat”, the new design included a mechanism which allows it to freely 

rotate about its vertical axis, aiding the paddler’s pelvic rotation. It might be 

hypothesised that with the introduction of the swivel seat the pedalling motion 

becomes more physiologically efficient. The rotational movements of the seat about 

the vertical axis would facilitate a more fluid trunk rotation. Additionally, the new 

design would facilitate the natural curve path followed by the wing paddle (Figure 4) 
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and allow the entry of the blade to occur further forward (Michael et al., 2009; 

Michael et al., 2010). 

 

To date, little research concerning the effects of the swivel seat on performance has 

been conducted. Petrone et al. (2006) analysed the effect of the swivel seat on 

kinematics and kinetics in five elite kayakers on-ergometer. Both the knee range of 

motion and the footplate forces were larger with the rotational seat than the fixed 

seat. The authors reported a more consistent trunk motion by the more successful 

elite paddlers when paddling with the swivel seat. However, they did not undertake 

either a comparison of the trunk rotation when using the two seats or any statistical 

analysis of the variables they did measure. Another limitation was the restricted 

number of participants recruited, which means the results must be treated with some 

caution. Michael et al. (2010) examined the physiological responses related to the 

use of different seats over a two-minute ergometer test. The greater effectiveness of 

the swivel seat was corroborated by greater power outputs obtained than with the 

fixed seat, without a significant increase in oxygen consumption. Thus, an alteration 

in technique was suggested to be the cause of an increase in stroke efficiency when 

paddling with a rotational seat. 

 

Nevertheless, among the kayaking community there exist some disagreement about 

the real effect of the new seat design for on-water performance. It is commonly 

believed that the balance of the boat may be affected more than usual by the 

rotational movements of the swivel seat since its mechanism freely rotates and stop 

movements have to be performed. These movements may affect the body and hands’ 

positions at the start of the stroke and would upset the boat stability especially 

around the longitudinal (rolling) and vertical axes (yawing). The drag forces acting 

on the hull would increase as a result of the increase in the instantaneous wetted area 

of the craft. Consequently, the boat displacement would be affected negatively 

(Jackson, 1995; Michael et al., 2009) (see section 2.1). Further research is needed not 

only in this particular situation but also in other cases in which recent techniques for 

analysing kinematics and kinetics might be combined to provide a better 

understanding of flatwater kayak performance. Thus the aim of the present study was 

to compare the kinematics and the trunk muscle activation between paddling on an 

ergometer with a swivel seat and a fixed seat. 
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3. Methodology 

 

3.1. Participants 

Nine sprint kayakers (5 male and 4 female) volunteered for this study. The mean age, 

mass and height were 29 ± 11 year (17-43 years), 69 ± 12 kg (57-89 kg) and 1.74 ± 

0.06 m (1.67-1.84 m), respectively. All participants trained on regular basis, were 

experienced kayakers, including one who had competed at the World 

Championships, and were familiar with the use of kayak ergometers. Participants 

were asked to maintain their regular training sessions but to abstain from any other 

form of hard exercise for at least 24 hours before the test.  

 

The study was approved by the Ethics Committee of the School of Sport and 

Exercise Science at the University of Lincoln. Informed consent was obtained from 

all participants of 18 years age or older; where participants were under 18, assent was 

obtained from the participant and consent from a parent.  

 

3.2. Test procedure 

Participants completed two trials on a kayak ergometer, one using a fixed seat and 

the other using a swivel seat. The order in which the seats were used was 

counterbalanced as far as possible; the withdrawal from the study of a tenth 

participant meant that five participants used the swivel seat first, and four used the 

fixed seat first. Before using each seat the participants were allowed to adjust the 

position of the ergometer footrest and then to familiarise themselves with the 

equipment and warm up for ten minutes. For each seat condition, participants were 

then asked to paddle at maximum velocity for 30 s at their choice of stroke 

frequency. A rest of approximately ten minutes was provided to the paddlers between 

the two seat conditions in order to ensure appropriate recuperation before the second 

test. 

 

A free stroke frequency was selected for use during the trials as long as paddlers 

performed the test at maximum effort. Some previous research supports the idea of 

kinematic changes at different stroke paces (McGregor et al., 2004; Hofmijster et al., 
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2007; Sealey et al., 2011; Wassinger et al., 2011), thus imposing a pace on the 

participants might have influenced their technique. 

 

3.3. Experimental set-up 

All tests were performed in an indoor laboratory on a Lawler Paddling Machine 

kayak ergometer which consists of a paddle shaft with the cable running from each 

end back to either side of a flywheel (Lawler Engineering Ltd, East Moseley, Surrey, 

UK). The two kayak seats (Figure 6) that could be fitted to the ergometer were a 

standard, fixed racing seat (VASA; Essex, VT, USA) and a swivel seat which was 

able to rotate around the vertical axis (Nelo Rotating Carbon seat, M.A.R. Kayaks 

Lda, Vila do Conde, Portugal). During the maximum velocity tests, data regarding 

kinematic and muscle activity were collected simultaneously. 

 

a       b 

 

Figure 6 – Images of the (a) fixed seat and (b) swivel seat 

 

 

Retro-reflective spherical markers with a diameter of 16 mm were used (Qualisys, 

Gothenburg, Sweden). The 3D coordinates of reflective markers on the body, paddle 

shaft and ergometer were captured at 200 Hz using eight Qualisys ProReflex 

MCU500 cameras and Qualisys Track Manager (QTM) computer software 

(Qualisys, Gothenburg, Sweden). Before every data collection session, a wand 

calibration (500 mm in length) was performed to ensure the proper reconstruction of 

marker location, and a calibration was accepted if the tracking residuals were below 

0.4 mm. An L-shaped calibration frame was used to define an initial Global 

Reference Frame whose origin was at ground level below the centre of the 

ergometer. The Global Reference Frame was orientated so that the XG-axis ran 
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horizontal and parallel to the longitudinal axis of the ergometer, the ZG-axis was 

vertical and the YG-axis was the cross product of ZG and XG. 

 

Upper limb markers were attached bilaterally to the participant’s skin using double-

sided adhesive tape at the wrist (ulnar and radial styloid processes), elbow (medial 

and lateral humeral epicondyles), and shoulder (acromion process, anterior and 

posterior shoulder). Trunk markers were placed anteriorly at the jugular notch and 

posteriorly over the spinal processes of the C5 and T10 vertebrae. Pelvic markers 

were placed bilaterally on the iliac crest, ASIS and PSIS to reproduce the pelvis 

motion and determine its rotation relative to the trunk and the ergometer. Lower limb 

markers were placed at the hip bilaterally (greater trochanters), the knee (lateral 

femoral epicondyle) and the ankle (lateral malleolus). Two clusters of markers were 

attached to the paddle shaft, either side of the centre of the shaft and inside the hand 

positions. One of these clusters contained three markers and the second contained 

two; all five markers were attached to the end of 65 mm pegs extending from the 

shaft. Taking the ergometer seat as a reference, markers were placed anteriorly and 

posteriorly on the left and right ergometer beams to help define an ergometer-based 

reference frame. To accurately monitor paddling speed in terms of revolutions per 

minute, a marker was placed on the ergometer flywheel halfway between the edge 

and the centre. The time taken by the marker to complete three turns was used to 

calculate the revolutions per minute. 

a             b 

  

Figure 7 – Screen images of the marker positions during (a) the static and (b) the dynamic trials. 
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Prior to the dynamic trial for each seat, a static trial was recorded, during which 

supplementary markers were placed either side of the tip at each end of the paddle 

shaft (Figure 7). These markers were removed prior to the dynamic trials, where they 

would have been knocked off by the ergometer cable, but they were used in the 

subsequent reconstruction of the paddle tip motion during those trials (as described 

below). 

 

During the paddling trials, electrical activity of selected trunk muscles was measured 

simultaneously using a wireless surface electromyography system (Myomonitor IV 

Wireless EMG System, Delsys Inc., Boston, MA, USA). Single differential sensors 

with 1cm spacing between parallel bars (DE-2.1, Delsys Inc., Boston, MA, USA) 

were affixed over the skin of the muscles involved. The Common Mode Rejection 

Ratio (CMRR) of the amplifiers was >92 dB with an input referred mode of 1.5 rms 

and a gain of 1000. Data were collected at 1000Hz using EMGworks 4.0 software 

(Delsys Inc., Boston, MA, USA).  

 

Prior to placing the electrodes, the skin of the participants was prepared by dry 

shaving, as necessary, followed by vigorous rubbing with an alcohol swab and air 

drying. Electrodes were placed as follows, after McGill (1991) and Cram and 

Criswell (2010): on the erector spinae, 4 cm laterally from the T12 spinous 

processes; on the latissimus dorsi, 4 cm below the inferior tip of the scapula, at an 

oblique angle of 25º and half the distance between the lateral edge of the torso and 

the spine; on the rectus abdominis, 3-4 cm laterally from the abdominal midline and 

5 cm above the umbilicus; on the external obliques, half the distance between the 

anterior superior iliac spine and the ribs and at a slightly oblique angle with respect 

to the abdominal midline; and on the internal obliques, below and slightly medial to 

the external oblique electrodes and just superior to the inguinal ligament. All muscles 

were analysed bilaterally to allow identification of any potential differences between 

the body sides and for consideration alongside any observed bilateral differences in 

kinematics. Additionally, a ground electrode (Dermatrode HE-R, American Imex, 

CA, USA) of 5.08 cm diameter was situated on the patella. From pilot studies the 

selection of muscles was made based on the level of activation and their participation 

in trunk rotation. When the electrode placement compromised the paddler’s mobility 

during pilot tests these muscles were not selected for subsequent use. 
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3.4. Data analysis 

All markers were identified in the static and dynamic trials using Qualisys Track 

Manager (Figure 7) and their 3D coordinates were exported to MATLAB 7.0 

(MathWorks, Natick, MA, USA) for further processing. The (xG, yG, zG) coordinates 

were first transformed into an ergometer-based reference frame in which the positive 

X direction of the coordinate system was defined as horizontal, parallel to the 

longitudinal axis of the ergometer and pointing forward; the positive Z direction was 

vertically up; and the positive Y direction was mediolateral, pointing to the 

participant’s left. 

 

In each frame of the static trials, a virtual paddle tip at each end of the shaft was 

calculated as the point halfway between the two markers at that end of the shaft. The 

average positions of these mid-tip marker position were determined in a paddle-

based coordinate system defined using the five cluster markers on the paddle. These 

offsets and the instantaneous locations of the cluster markers were then used to 

reconstruct the position of the paddle shaft mid-tips in each frame of the dynamic 

trials. The mid-wrist and mid-elbow joint centres were calculated as halfway 

between the lateral and medial markers 

 

The three coordinate values for each marker were separately smoothed using a 

double-pass 4
th

-order Butterworth low-pass filter with zero phase lag and a cutoff of 

10 Hz. To facilitate the analysis of the stroke, two key events were identified: the 

“catch” defined by the instant at which the x-coordinate of the paddle tip reached its 

most positive value and the “exit” when the most negative value was reached by the 

paddle tip (Michael et al., 2010).  

 

Only ten cycles of each 30-s trial were selected to be tested (Petrone et al., 2006). 

The first 10 s were excluded from examination as they were considered to be an 

acceleration phase up to the steady competition velocity (Telford, 1982). The ten 

selected cycles started with the first “catch” with the right hand after this initial 10 s 

period. 

 

The mean and peak mean values of the flywheel speed, paddling stroke rate (SR), 

recovery time, drive time, paddle time to 90º (see below), paddle tip range of motion 
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(ROM) during the drive, paddle tip ROM to 90º and paddle tip lateral displacement 

were determined as a measurement of performance during the maximal test based on 

previous studies (Plagenhoef, 1979; Mann and Kearney, 1980; Kendal and Sanders, 

1992; Ong et al., 2006; Fleming et al., 2012; Michael et al., 2012) . The paddling 

stroke frequency was calculated in strokes per minute across ten cycles with the 

stroke defined as running from one side blade entry to opposite side blade entry. The 

drive phase was described as the phase between the paddle entry to same side blade 

exit. The 90  paddle event was defined for each stroke as the time when the 

projection of the shaft onto the XZ plane was perpendicular to the X axis in each 

stroke. Mean drive time and ROM, as well as mean time and ROM to 90º were 

analysed with reference to the reconstructed paddle tips. Additionally the  tip ROM 

was measured as the tip distance from paddle entry to same side exit 

 

The technique parameters were obtained bilaterally from paddle, elbow and knee 

angles. Mean paddle catch and exit angle relative to the XZ plane were obtained 

(López and Ribas, 2011; Fleming et al., 2012). Also knee and elbow angle at catch 

and exit were examined, along with their ROM over the cycle (Kranzl et al., 1996; 

Baker et al., 1999; Petrone et al., 2006; Espinosa, 2011; López-Plaza et al., 2012), 

the ROM between the catch and exit (Petrone et al., 2006), and the maximum and 

minimum values for each joint during drive phase. Since the anterior and middle 

elbow markers were partially obscured during the recordings, elbow joint angles 

were obtained from the posterior shoulder, the mid-wrist and mid-elbow points. 

Given the nature of the paddling motion, there was too much occlusion of the 

anterior shoulder and acromion markers, therefore, only the posterior shoulder 

markers was used for the determination of the elbow joint angle. Similarly, knee 

angle was calculated by the lateral markers situated on the malleolus, femoral 

epicondyle and greater trochanter. According to Petrone et al., (2006) trunk rotation 

was examined using a line between the posterior shoulder markers due to the 

technical problems with tracking the three trunk markers simultaneously. To define 

pelvis ROM, the two markers placed on the iliac crests were used to construct a 

pelvis line. All rotation angle calculations were determined from the angle between 

the Y axis and the projection of the shoulder or pelvis line onto the XY plane. 

 



 32 

To obtain the mean values for each parameter, the mean of the ten cycles was 

calculated for each participant and then the mean of these values was determined 

across all participants. The resultant mean values were used for comparisons between 

the two paddling conditions. 

 

Raw EMG signals were amplified, A/D converted and band pass filtered between 20 

and 450 Hz (roll-off of 80 dB/dec) by the hardware. All signals were smoothed in 

MATLAB using a double-pass 4
th

-order Butterworth low-pass filter with zero phase 

lag and a cutoff frequency of 10 Hz. The amplitude of each signal was determined 

for each trial using the root mean square (RMS) voltage across the ten cycles. To 

facilitate the comparison between conditions, each muscle’s activation during the 

swivel seat trial was represented as a percentage of the corresponding fixed seat 

activation. Sweating was a particular problem during the trials and complicated the 

adhesion of the electrodes. Where an electrode signal was compromised at any point 

in the recording period, that signal was excluded from subsequent analysis (14 out of 

90 EMG signals). Based on pilot studies, the use of Maximum Voluntary 

Contractions was rejected due to the possibility of electrode displacement during the 

process, which might have compromised the subsequent data collection during the 

paddling trials. Since the main focus of the investigation was the comparison of 

muscle activity between the two seats, rather than the comparison of muscles within 

each seat condition, it was decided that raw amplitudes would be compared.  

 

 

3.5. Statistical analysis  

All statistical analyses were conducted using SPSS v19 (SPSS Inc., Chicago IL). The 

normality of the distribution of the values for each variable was investigated using 

Shapiro-Wilk tests. Where the assumption of normality was not violated, the 

difference between the mean values for the two seat conditions was analysed using 

paired t-test; Wilcoxon’s tests were conducted for variables which showed a non-

normal distribution. Statistical significance was set at p < 0.05. Adjustment of the 

significance level for multiple testing was not undertaken so as to avoid an increased 

risk of Type II error (Perneger, 1998). Cohen’s d was used to measure the effect size 

of observed differences, with the standard deviation pooled from the swivel and fixed 
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seat data. The effect size was considered small between 0.2 and 0.5, moderate 

between 0.5 and 0.8, and large when the effect was > 0.8. 
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4. Results 

 

4.1. Performance variables 

Performance variable results are summarised for each condition (fixed and swivel 

seat) in Table 1. Peak flywheel RPM values were significantly higher (p = 0.033) for 

the swivel seat than the fixed seat, with a difference between means of 28.8 ± 33.6 

rpm. Although the difference between means of 18.25 ± 24.06 rpm did not reach 

statistical significance greater mean flywheel RPM in the swivel seat condition. 

Analysis of the mean paddle ROM until 90º and the drive ROM over both body sides 

indicated significant differences (p < 0.05), with greater right side ROM in both 

cases during the swivel seat trial but a relatively small size of the effects (d = 0.11 

and d = 0.27 respectively). Paired t-tests revealed shorter paddle recovery times with 

the use of swivel seat, especially for the right side (differences between means: 0.02 

± 0.02 s, p = 0.043). The use of the swivel seat also resulted in mean and peak stroke 

rate (SR) increases relative to the fixed seat but none of these differences were 

significant showing small  effect size values (Cohen’s d = 0.30 and 0.33, 

respectively). Mean drive time and paddle time to 90º are also presented for both 

right and left strokes in Table 1. Although the differences were non-significant 

except for the left drive (p = 0.049), slightly shorter stroke times can be noted for the 

rotational seat condition for both body sides. Similarly, shorter lateral displacements 

of the paddle were observed with the swivel seat, especially on the right side where 

the difference between means was 19.7 ± 39.6 mm. 
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Table 1 – Mean values of performance parameters during the ten analysed cycles from a maximal test on ergometer 
with the swivel and fixed seat 

 
Fixed seat 

(n=9) 
Swivel seat 

(n=9) 

Paired Differences 

p - 
value 

Effect 
size 

(Cohen's 
d) 

Mean ± 
SD 

Std. 
Error 
Mean 

95% Confidence 
Interval 

Lower Upper 

Mean flywheel 
speed (rev min 

-1
) 

1029.4 ± 117.5 1047.5 ± 116.7 
-18.3 ± 

24.1 
8.02 -3.67 0.25 0.052 0.16 

Peak flywheel 
speed (rev min 

-1
) 

1056.7 ± 127.0 1085.5 ± 129.7 
-28.8 ± 

33.6 
1.12 -5.46 -2.93 0.033* 0.22 

Mean SR (stroke 
min 

-1 
) 

125.0 ± 11.9 128.4 ± 11.1 
-3.39 ± 

4.81 
1.60 -7.08 0.31 0.067 0.30 

Peak SR (stroke 
min 

-1 
) 

128.5 ± 12.7 132.7 ± 12.6 
-4.15 ± 

6.72 
2.24 -9.32 0.01 0.101 0.33 

R recovery time 
(s) 

0.50 ± 0.05 0.48 ± 0.04 
0.02 ± 
0.02 

0.01 0.01 0.04 0.043* 0.44 

L recovery time 
(s) 

0.49 ± 0.06 0.48 ± 0.05 
0.01 ± 
0.02 

0.01 -0.01 0.02 0.225 0.18 

R drive time (s) 0.47 ± 0.06 0.46 ± 0.05 
0.01 ± 
0.02 

0.01 0.01 0.02 0.152 0.18 

L drive time (s) 0.48 ± 0.05 0.46 ± 0.04 
0.02 ± 
0.02 

0.01 0.01 0.03 0.049* 0.44 

Time to 90º - right 
stroke (s) 

0.19 ± 0.04 0.18 ± 0.04 
0.01 ± 
0.01 

0.01 -0.01 0.01 0.287 0.25 

Time to 90º - left 
stroke (s) 

0.20 ± 0.03 0.19 ± 0.03 
0.01 ± 
0.01 

0.01 -0.01 0.02 0.102 0.33 

R drive ROM 
(mm) 

1372.3 ± 86.4 1395 ± 83.8 
-23.15 ± 

22.63 
7.54 -40.55 -5.76 0.015* 0.27 

L drive ROM 
(mm) 

1437.7 ± 115.6 1411.4 ± 112.2 
26.33± 
33.35 

11.12 -0.7 51.97 0.056 0.23 

ROM to 90º - right 
stroke (mm) 

731.7 ± 149.2 752.3 ± 143.9 
-16.2 ± 

19.9 
6.65 -31.55 -0.89 0.041* 0.11 

ROM to 90º - left 
stroke (mm) 

766.6 ± 117.2 765.5 ± 117.5 
6.54 ± 
11.4 

3.79 -2.19 15.28 0.122 0.06 

R paddle lat 
displac. (mm) 

465.9 ± 124.2 446.2 ± 115.8 
19.7 ± 
39.6 

13.20 -10.76 50.11 0.174 0.16 

L paddle lat 
displac. (mm) 

485.8 ± 110.9 484.9 ± 99.0 0.9 ± 53.3 17.76 -40.06 41.86 0.961 0.01 

Group means ± SD, the difference between the means ± SD, the SE mean and the lower and upper bound 95 % 
confidence intervals for the differences between means.  
* indicates a significant difference p < 0.05 
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Table 2 - Percentage of each paddle phase within the cycle for the right and left side. 

 Drive phase (%) Recovery phase (%) Time to 90º (%) 

 Fixed Swivel Fixed Swivel Fixed Swivel 

Right side 48.5 47.9 51.5 52.1 19.6 19.1 

Left side 49.5 47.8 50.5 52.2 20.4 19.6 

  

 

4.2. Technique variables 

Table 3 presents the values of the paddle angle parameters for each seat condition 

and body side. No significant differences were found for paddle angle either at entry 

or exit. Conversely, paired t-test analysis of the knee angles in Table 4 revealed 

significantly more knee flexion at catch and more extension at exit on both sides with 

the swivel seat (p < 0.05). The effect sizes were 0.5 or more in all cases. Analysing 

the knee joint ROM from catch to exit, significantly larger ranges of motions were 

observed when using the swivel seat (p < 0.05). Additionally, significant differences 

also occurred for minimum knee angle for both body sides and for maximum right 

knee angle. Cohen’s d calculation revealed small and moderate effect sizes for all 

these parameters, which were observed to have more acute and more obtuse angles 

for minimum and maximum knee angle, respectively, under the swivel condition. 

Meaningful differences were found between the two seats for the elbow parameters 

(Table 5). Greater range of motion was observed in the swivel seat trials but none of 

these differences was statistically significant (74.5 ± 23.7 vs 79.8 ± 14.2 and 68 ± 

21.3 vs 75.5 ± 17.9º for the right and left elbow, respectively). Similarly, larger but 

non-significant values were found for maximum and minimum left elbow angle 

whereas lower angles were observed on the right side during the swivel seat trial. 

Figure 6 shows a typical example of how the timing of the paddle-defined stroke 

events relates to the timing of the knee angle events. 
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Table 3 - Mean values of technique parameters during the ten analysed cycles from a maximal test on ergometer 
with the swivel and fixed seat 

  

Fixed seat 
(n=9) 

Swivel seat 
(n=9) 

Paired Differences 

p - 
value 

Effect 
size 

(Cohen's 
d) 

Mean ± 
SD 

Std. 
Error 
Mean 

95% Confidence 
Interval 

Lower Upper 

Mean R paddle 
catch angle (º) 

-0.07 ± 2.31 0.42 ± 2.23 
-0.49 ± 

0.89 
0.30 -1.18 0.19 0.136 0.26 

Mean L paddle 
catch angle (º) 

1.20 ± 2.44 0.79 ± 2.15 
0.41 ± 
1.49 

0.50 -0.74 1.56 0.434 0.17 

Mean R paddle exit 
angle (º) 

3.56 ± 1.69 4.03 ± 1.43 
0.48 ± 
1.86 

0.62 -1.91 0.95 0.463 0.15 

Mean L paddle exit 
angle (º) 

6.72 ± 1.56 6.36 ±1.21 
0.36 ± 
2.11 

0.70 -1.26 1.98 0.624 0.26 

Group means ± SD, the difference between the means ± SD, the SE mean and the lower and upper bound 95 % 
confidence intervals for the differences between means. 
* indicates a significant difference p < 0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38 

Table 4- Mean values of knee parameters during the ten analysed cycles from a maximal test on ergometer with the 
swivel and fixed seat 

  

Fixed seat 
(n=9) 

Swivel seat 
(n=9) 

Paired Differences 

p - 
value 

Effect 
size 

(Cohen's 
d) 

Mean ± 
SD 

Std. 
Error 
Mean 

95% Confidence 
Interval 

Lower Upper 

Mean R knee angle 
(º) 

144.6 ± 4.9 144.6 ± 4.7 
0.03 ± 
1.95 

0.65 -1.47 1.53 0.962 0.00 

Mean L knee angle 
(º) 

143.4 ± 8.1 143.4 ± 7 
0.07 ± 
2.09 

0.70 -1.53 1.68 0.921 0.01 

Mean R knee ROM 
(º) 

40.0 ± 16.8 36.5 ± 9 
3.52 ± 
17.78 

5.93 -10.14 17.19 0.569 0.27 

Mean L knee ROM 
(º) 

39.0 ± 16.9 37.5 ± 6 
1.49 ± 
16.80 

5.60 -11.43 14.41 0.797 0.13 

Mean R knee catch 
angle (º) 

132.1 ± 4.9 129.3 ± 5.4 
2.76 ± 
2.71 

0.90 0.67 4.84 0.016* 0.54 

Mean L knee catch 
angle (º) 

130.4 ± 7.6 128.4 ±7.6 
2.04 ± 
2.22 

0.74 0.33 3.75 0.011* 0.27 

Mean R knee exit 
angle (º) 

157.1 ± 6.9 159.9 ± 6.2 
-2.82 ± 

2.06 
0.69 -4.40 -1.23 0.003* 0.43 

Mean L knee exit 
angle (º) 

155.7 ± 10.2 158.6 ± 9.1 
-2.89 ± 

3.53 
1.18 -5.60 -0.18 0.039* 0.30 

Mean R knee 
catch-exit ROM (º) 

25.1 ± 6.4 30.6 ± 4.7 
-5.53 ± 

2.99 
1.00 -7.80 -3.24 0.008* 1.01 

Mean L knee catch-
exit ROM (º) 

25.2 ± 6.6 30.2 ± 6.9 
-4.99 ± 

2.25 
0.75 -6.72 -3.26 <0.001* 0.74 

Max R knee drive 
phase angle (º) 

163.0 ± 8.3 165.4 ± 6.7 
-2.44 ± 

2.44 
0.81 -4.31 -0.56 0.017* 0.32 

Max L knee drive 
phase angle (º) 

161.8 ± 11.1 163.5 ± 9.5 
-1.71 ± 

2.64 
0.88 -3.74 0.32 0.088 0.17 

Min R knee drive 
phase angle (º) 

132.0 ± 5 129.3 ± 5.4 
2.74 ± 
2.68 

0.89 0.69 4.81 0.015* 0.53 

Min L knee drive 
phase angle (º) 

130.5 ± 7.5 128.3 ± 7.5 
2.18 ± 

2.2 
0.73 0.49 3.87 0.011* 0.29 

Group means ± SD, the difference between the means ± SD, the SE mean and the lower and upper bound 95 % 
confidence intervals for the differences between means 
* indicates a significant difference p < 0.05 
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Table 5- Mean values of elbow parameters during the ten analysed cycles from a maximal test on ergometer with 
the swivel and fixed seat 

  

Fixed seat 
(n=9) 

Swivel seat 
(n=9) 

Paired Differences 

p - 
value 

Effect 
size 

(Cohen's 
d) 

Mean ± 
SD 

Std. 
Error 
Mean 

95% Confidence 
Interval 

Lower Upper 

Mean R elbow 
angle (º) 

128.2 ± 5.6 126.7 ± 4 
1.67 ± 
3.85 

1.36 - 1.55 4.88 0.208 0.35 

Mean L elbow 
angle (º) 

129.1 ± 2.9 129.4 ± 3 
-0.34 ± 

0.94 
0.33 -1.13 0.45 0.343 0.11 

Mean R Elbow 
ROM (º) 

74.5 ± 23.7 79.8 ± 14.2 
-5.23 ± 
17.69 

5.90 -18.83 8.37 0.401 0.28 

Mean L Elbow 
ROM (º) 

68.0 ± 21.3 75.5 ± 17.9 
-7.5 ± 
16.64 

5.55 -20.29 5.29 0.213 0.38 

Mean R Elbow 
catch angle (º) 

153.8 ± 7.3 148.4 ± 12.3 
5.33 ± 
10.95 

3.65 -3.08 13.75 0.182 0.54 

Mean L Elbow 
catch angle (º) 

153.6 ± 9 154.5 ± 8.9 
-0.9 ± 

1.4 
0.47 -1.98 0.18 0.091 0.10 

Mean R Elbow exit 
angle (º) 

79.8 ± 12.7 82.15 ± 13 
-2.38 ± 

6.76 
2,25 -7.57 2.82 0.322 0.19 

Mean L Elbow exit 
angle (º) 

84.7 ± 12.1 84.8 ± 11.6 
-0.14 ± 

2.76 
0.92 -2.26 1.98 0.884 0.01 

Mean R Elbow 
catch-exit ROM (º) 

74.0 ± 17.6 66.3 ± 23.1 
7.71 ± 
16.81 

5.60 -5.21 20.64 0.206 0.38 

Mean L Elbow 
catch-exit ROM (º) 

68.9 ± 19 70.0 ± 18.6 
-0.76 ± 

3.47 
1.16 -3.43 1.90 0.529 0.04 

Max R Elbow drive 
phase angle (º) 

154.0 ± 7 151.6 ± 11.2 
2.44 ± 
6.45 

2.15 -2.52 7.4 0.289 0.27 

Max L Elbow drive 
phase angle (º) 

155.4 ± 7.9 155.7 ± 8.3 
-0.31 ± 

1.33 
0.44 -1.33 0.71 0.502 0.04 

Min R Elbow drive 
phase angle (º) 

79.8 ± 12.7 75.8 ± 14.6 
3.96 ± 
14.5 

4.84 -7.19 15.11 0.441 0.29 

Min L Elbow drive 
phase angle (º) 

84.7 ± 12.1 84.8 ± 11.6 
-0.14 ± 

2.76 
0.92 -2.26 1.98 0.884 0.01 

Group means ± SD, the difference between the means ± SD, the SE mean and the lower and upper bound 95 % 
confidence intervals for differences between means 
* indicates a significant difference p < 0.05 
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 Figure 8 – Example of the time course of right knee angle changes of participant 9 when using the 

swivel seat, to illustrate their relationship to the timing of key stroke cycle events. 

 

 

4.3. Trunk and seat rotation variables 

Mean ROM values for the pelvis line, shoulder line and seat are presented in Figure 

7 for each condition. Although a paired t-test revealed no significance (Table 6), 

mean shoulder ROM was greater in the swivel seat condition than in the fixed seat 

condition (108.7 ± 6.7 and 112.0 ± 6.6º, respectively). Significant differences 

between conditions occurred for the mean pelvis ROM, with larger values in the 

swivel seat condition (p < 0.001, d = 0.58). Analysing the shoulder-pelvis ROM 

difference when rotating to both sides, a significantly lower ROM was observed 

when using the swivel seat than the fixed seat (66.2 ± 4.9 and 63.0 ± 4.3º, 

respectively, p = 0.019, d = 0.46). Significantly lower pelvis-seat ROM values were 

detected by the paired t-test when paddling with the swivel seat (58.7 ± 11.9 and 36.6 

± 8.9º, respectively, p < 0.01, d = 2.13). 

 

 

 



 41 

 

 

 

Figure 9 - Mean ± SD extreme angles for rotation about the vertical axis of shoulders, pelvis, 

shoulder-pelvis difference (trunk rotation), seat-pelvis difference and seat for both sides during the 

maximal test on ergometer. There was no rotation of the fixed seat. 

* indicates a significant difference p < 0.05 

 

 

 

Table 6 - Mean values of rotation during the ten analysed cycles from a maximal test on ergometer with the swivel 
and fixed seat 

  

Fixed seat 
(n=9) 

Swivel seat 
(n=9) 

Paired Differences 

p - 
value 

Effect 
size 

(Cohen's 
d) 

Mean ± 
SD 

Std. 
Error 
Mean 

95% Confidence 
Interval 

Lower Upper 

Shoulder ROM (º) 116.4 ± 14.0 119.0 ± 14.0 
-2.55 ± 

4.31 
1.53 -6.16 1.06 0.076 0.18 

Pelvis ROM (º) 58.9 ± 11.9 65.6 ± 11.6 
-6.86 ± 

2.92 
1.03 -9.30 -4.41 <0.001* 0.58 

Shoulder-pelvis 
ROM (º) 

66.2 ± 6.7 63.0 ± 7.3 
3.19 ± 
2.67 

1.00 0.72 5.66 0.019* 0.46 

Pelvis-seat ROM (º) 58.9 ± 11.9 36.6 ± 8.9 
22.14 ± 

5.16 
1.82 26.45 17.82 <0.001* 2.13 

Group means ± SD, the difference between the means ± SD, the SE mean and the lower and upper bound 95 % 
confidence intervals for shoulder, pelvis, shoulder-pelvis and pelvis-seat range of motion. 
* indicates a significant difference p < 0.05 
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4.4 EMG variables 

The mean RMS amplitude of the selected trunk muscles involved in the trunk 

rotation during swivel seat paddling are shown in Figure 8 as percentages of the 

fixed seat values. Observing the back muscles (latissimus dorsi and erector spinae), 

meaningful differences were detected between conditions despite the right erector 

spinae amplitude in the swivel condition being more than 2.5 times that in the fixed 

condition.. As for the abdominals, during the swivel seat condition greater RMS was 

observed than during the fixed. The right and left external obliques in the swivel 

condition showed 171 and 122% of the fixed RMS respectively and the right and left 

internal obliques 104 and 107%. However, paired t-test analysis only revealed 

significant differences for the right rectus abdominis (p = 0.038). 

  

 

 

 

 

Figure 10 - Mean ± SD bilateral muscle activation of selected trunk muscles during the maximal test 

with swivel seat (red) normalized to the activation using the fixed seat (blue). 

* indicates a significant difference p < 0.05 

 

 

 

 

 

 



 43 

5. Discussion 

 

The main purpose of the current study was to determine whether a kayak swivel seat 

influences kinematic parameters during a 30-s sprint on ergometer. The muscles 

involved in trunk rotation while paddling were also analysed in order to identify the 

differences in terms of activation. The hypothesis that a seat which freely rotates 

along its longitudinal axis would significantly change the kinematic parameters 

during paddling was supported. However, the secondary hypothesis that a swivel seat 

would significantly alter the activation levels of trunk muscles was not completely 

supported. 

 

5.1 Performance parameters 

Significantly greater flywheel RPM was observed when paddling with the swivel 

seat. During a kayak race, the winner is the first boat to cross the finish line and the 

present study results suggests that the use of the swivel seat might be associated with 

faster boat movement. Previous research has used power output as a measure of 

performance (van Someren and Dumbar, 1997; Bishop et al., 2001) and according to 

Michael et al. (2010) the required power output is proportional to the cube of kayak 

velocity. However, the wide range of ergometers involved present different power 

measures and this makes comparison between studies difficult (Colloud et al., 2006; 

Steer et al., 2006; Benson et al., 2011). Therefore, the flywheel RPM was selected 

for use as a measure of speed as it provides instantaneous information guaranteeing 

accuracy and repeatability between trials.  

 

Another parameter which has been frequently studied as a determinant of optimum 

kayak performance is the stroke rate (Mann and Kearney, 1980; Michael et al., 

2010). Paddlers in the present study had higher stroke rates during the swivel seat 

trials. Despite the non-significant nature of the difference between the two 

conditions, the results revealed about 4 strokes per minute more in the swivel seat 

condition. Since kayak velocity is the product of stroke rate and stroke length (Craig 

and Pendergast, 1979; Craig et al., 1985), the meaningful rise in SR would result in 

increasing boat velocity as paddle catch-exit ROM does not decrease significantly. 

On ergometer the stroke length is measured through the displacement of the paddle 
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during the drive phase (catch-exit ROM) (Michael et al., 2012). In competition top 

performers have been seen to mainly use stroke rate rather than stroke length to 

increase velocity (Issurin, 1998). In addition better performances are traditionally 

associated with higher stroke rates as greater boat velocity is achieved (Sanders and 

Baker, 1998). However, overlooking stroke length while increasing stroke rate might 

be detrimental to boat displacement. The importance of the stroke rate is supported 

by the studies conducted by Hay and Yanai (1996) who found strong correlations 

between stroke frequency and boat velocity using a cross sectional design (r = 0.75) 

and also by Rath and Baker (1997) for 1000-m men (r = 0.79) and 500-m women (r = 

0.81). Comparing the stroke frequency results with those from Michael et al. (2010) 

similar patterns were found. Although non-significant, greater values were obtained 

by Michael et al. (2010) when paddling using the swivel seat over a 2-minute 

ergometer test (109.6 and 110.4 strokes min
−1

 for fixed and swivel seat respectively). 

No research has been conducted yet into performance and kinematic parameters 

using the swivel seat on water, however, the few studies that have analysed stroke 

rate using the fixed seat reported values ranging from 100 to 140 strokes min
– 1 

(Mann and Kearney, 1980; Logan and Holt, 1985; Ong et al., 2006), similar to those 

obtained here for the swivel and the fixed seat. In analyses of other on-water and 

cyclic sports, such as swimming, the same principle of a high correlation between 

stroke rate and velocity in elite performers can be observed (Klentrou and Montpetit, 

1991). 

 

Although few significant differences were detected in the parameters related to 

paddle timing, shorter phase times can be clearly observed from the swivel seat 

condition when compared with the use of the fixed one. The meaningful effect sizes 

support the importance of the differences especially for the right recovery time. 

Looking at both the greater stroke rates and shorter stroke phases both associated 

with the use of the swivel seat, a relationship between these parameters might be 

inferred. This is, the shorter the time taken to complete a stroke phase the greater the 

stroke rate and, as mentioned before, the faster the velocity. Additionally, Sanders 

and Kendal (1992) found negative correlation between all phase times and boat 

velocity. 
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The drive times, as a percentage of the complete cycle time, were lower in this study 

(values ranging from 47.8 to 49.5%) than those reported in the literature. Begon et al. 

(2008b) reported values ranging from 57 to 59% of the total cycle time for ergometer 

paddling. More variability is found in on-water investigations with a greater 

percentage (68-73%) observed from early studies (Plagenhoef, 1979; Mann and 

Kearney, 1980; Kendal and Sanders, 1992) and values closer to those in the present 

study identified in recent research (59-73%, Ong et al., 2006; 49%, Espinosa, 2011). 

According to Fleming et al. (2012) the moment when the paddle achieves the vertical 

position respect to the entry occurred slightly later on water (20-26% of the cycle 

time, Plagenhoef, 1979; Mann and Kearney, 1980); and 19-32% of the cycle time, 

(Ong et al., 2006) than on ergometer (22-24% of the cycle time, (Begon et al., 2003; 

Begon et al., 2008b). Also the results from the present investigation when using the 

swivel seat (19-20% of the cycle time) support the findings by Fleming et al. (2012) 

on ergometer. In canoeing (Caplan, 2009) and in kayaking this particular instant is 

especially important because the peak horizontal acceleration of the craft seems to 

occur near to paddle vertical position (Mann and Kearney, 1980; Logan and Holt, 

1985; Michael et al., 2009) and slightly after the peak paddle force instant at 

approximately 40-45% of the drive phase time (Aitken and Neal, 1992; Fleming et 

al., 2012; Michael et al., 2012). Moreover, how rapidly the paddle is able to reach 

this point and how long the acceleration can be maintained is central to the 

attainment of optimal boat acceleration as peak paddle force and paddle vertical 

position seem to be associated (Mann and Kearney, 1980; Michael et al., 2009; 

Fleming et al., 2012).  

 

The greatest difference from previous studies in terms of phase timing concerns the 

duration of the recovery phase between the exit and catch positions. Surprisingly, no 

other study has reported absolute and relative recovery times as long as those in the 

present investigation. Due to the sprint nature of the trials, shorter recovery times 

might be anticipated in order to reach higher stroke rates. It should be noted that 

stroke phase calculations were not determined by taking the same reference instants 

as most of on-water studies, thus, the comparison with those results should be made 

with caution. 

 



 46 

Few conclusions can be drawn from examination of the displacement of the paddle 

tip in the X (antero-posterior) and Y (medio-lateral) directions since very different 

results were observed for the right and left sides, especially in the antero-posterior 

translation. Significantly greater values were found in the swivel seat condition for 

the right side while, conversely, the left side showed smaller but non-significantly 

different values in the same condition. These particular results may be due to the fact 

that 8 out of 9 paddlers were right handed and the larger application of force by this 

side during the pull phase may be associated with shorter displacements in X and Y 

directions on the right side. Unfortunately, no strain gauges or any other method to 

measure paddle force application could be used, therefore, this possibility cannot be 

investigated further. Supporting this idea, Michael et al. (2012) found shorter stroke 

length on the right side (1.23 m for right vs 1.25 m for left stroke) which were 

associated with greater peak paddle force (307.9 and 299.2 N for right and left side, 

respectively), although whether the participants were right or left handed was not 

indicated. Analysing the current results, it appears that the use of the swivel seat 

reduces these differences between right and left sides in terms of antero-posterior 

translation. Previous studies also analysed the displacement of the paddle tip in X 

direction on water and reported different values than those from the present 

investigation (1.37-1.43 m). Kendal and Sanders (1992) and Sanders and Baker 

(1998) found values ranged from approximately 1.50 to 1.70 m and Espinosa (2011) 

shorter translations (1.25 to 1.40 m). However, these comparisons must be treated 

with some caution as the length of the paddles used in the studies was different.  

 

Similar medio-lateral paddle displacement was observed in the present study for 

swivel and fixed seat (0.45-0.49 m), with these values in agreement with those 

described by Kendal and Sanders (1992) on water (0.37 to 0.70 m) and López and 

Ribas (2011) on ergometer (0.33 m). Larger lateral displacements might be beneficial 

to propulsion as moving the paddle away from the boat directs the force more in a 

forward direction due to the lift forces acting on the blade and maintains a better 

blade vertical orientation for longer (Sanders and Baker, 1998; Robinson et al., 

2002). Nevertheless, comparisons among on-water and on-ergometer results should 

be analysed with caution because, during on-ergometer paddling hydrodynamic 

forces do not affect the displacement of the paddle in the same way as occurs on 

water.  
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5.2. Technique parameters 

The use of a predicted water surface height in the determination of paddle catch and 

exit angle was rejected due to the differences in boat set-up configurations and 

paddling positions among paddlers (Caubet, 1999; Ong et al., 2005). Following 

Michael et al. (2012), the “catch” and “exit” were defined as the instants at which the 

paddle tip reached its most positive and negative x-coordinates, respectively. The 

paddlers in the current study reached the most positive value (catch point) at the start 

of the stroke. Consequently, relatively low catch angles (the angle between the 

paddle and the horizontal at the most positive paddle x-coordinate) were obtained (0-

1º) which suggests a premature “anticipated catch” probably caused by this method 

of defining the events. Michael et al. (2012) also reported low entry values (9.4 and 

13.9º for left and right sides, respectively) by using the same method in the 

determination of paddle attack angles. In an attempt to define the optimal kayaking 

technique, Plagenhoef (1979) determined an angle of between 30 and 40º as optimal 

for entry on water while López and Ribas (2011) found it was 36º on ergometer. 

Similar values were observed from Fleming et al. (2012) when comparing on-water 

(43º) and on-ergometer (44º) paddle angles but water surface line estimation was 

used for their determination indoors. As was indicated before, one of the 

determinants in the generation of greater paddle forces is the paddle entry angle in 

the XZ plane. Previous studies have suggested changing the blade orientation with 

respect to the shaft to allow a more vertical angle of the blade for longer during the 

drive phase (Gowitzke and Brown, 1986; Robinson et al., 2002). During the first 

stages of the stroke this is even more important especially with the use of the wing 

paddle. The curvature of the wing blade causes separated flow from the blade tip 

resulting in high drag coefficients at large angles of the entry (Sumner et al., 2003). 

Therefore, higher attack angles would involve larger initial propulsive forces 

(Michael et al., 2012) and prevent large vertical forces that might result in 

detrimental pitching movements of the boat (Mann and Kearney, 1980). 

 

 As regards the paddle’s exit angle, Baker et al. (1999) reported that the shaft exited 

the water at approximately 26-27º, in contrast with the values described in the current 

study which did not exceed 7º. As has been indicated before concerning catch angle, 

these discrepancies might be due to the different method in the determination of 

these events. Although traditionally little further attention has been given to exit 
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angles in the literature, Mann and Kearney (1980) recommended withdrawing the 

paddle rapidly from the water once the blade has passed the vertical. No clear 

conclusions can be inferred from the present study’s results as the timings of the 

events at which the entry and exit paddle angles were measured seem to have been 

different from the on-water cases. 

 

No significant differences were found between the two seat conditions in the mean 

knee angles or knee ROM, in what appears to have been the first investigation of 

these parameters. Few authors have examined these variables as a determinants of 

performance but they have been mentioned as a part of paddling descriptions in 

manuals and technique guides (Sánchez and Magaz, 1993) and in descriptive studies 

(Petrone et al., 2006). Sanchez and Magaz (1993) pointed out that standard knee 

angle varied between 110 and 140º, giving range of motions ranged between 30 and 

40º. Despite the lack of statistical analysis, Petrone et al. (2006) reported higher 

ROM values when paddling on ergometer using a rotational than a fixed seat (65-72º 

vs 63-66º respectively).  

 

Although mean knee ROM showed no significant differences, further analysis of 

knee angle revealed that the use of the swivel seat resulted in significantly larger 

ROM from paddle entry to exit points. Lower knee angle values at entry combined 

with greater knee angle at exit resulted in approximately 5º ROM difference between 

the two seat conditions. Surprisingly, at paddle entry, knee angle has been the only 

kinematic variable where significant differences were found when paddling at 

different stroke paces (López-Plaza et al., 2012). This finding, in agreement with 

those reported in the current investigation, might suggest that knee joint angle may 

represent a parameter that is strongly affected if paddling action conditions are 

altered. The importance of the lower limbs alongside the upper limbs and pelvis 

rotation in a coordinated action, and their contribution to a fluid and synchronised 

stroke technique, has been widely stated (Mann and Kearney, 1980; Logan and Holt, 

1985). According to Logan and Holt (1985) maximum knee flexion occurs just after 

the paddle blade entry. This suggestion is corroborated by the present investigation 

as two parameters - knee angle at catch and minimum knee angle between entry and 

exit - are almost identical to each other for both sides and conditions (see Table 4). 

Begon et al. (2010) calculated the contribution of lower limbs to performance and 
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reported increases in about 6% in propulsion when their motions are properly 

coordinated with the trunk and upper limbs, especially in the central part of the drive 

phase. At this point the role of knee extensors associated with the abdomino-thorax 

rotators muscles become paramount in the generation of boat velocity (Begon et al., 

2010; Fleming et al., 2012) as they especially contribute to paddling motion then. 

Thus, not involving the legs in the paddling motion might be damaging to 

performance (Begon et al., 2010). 

 

In the determination of kayak technique, elbow angle has become one of the most 

important factors to look at when considering upper limb action (Mann and Kearney, 

1980; Logan and Holt, 1985). However, surprisingly few authors have analysed this 

variable either in 2D (Sperlich and Baker, 2002; López-Plaza et al., 2012) or 3D 

(Ong et al., 2006; Espinosa, 2011), and there has been more focus on the joint path 

(Plagenhoef, 1979; Campagna et al., 1982; Lamb, 1989; Kendal and Sanders, 1992; 

Ho et al., 2009; Wassinger et al., 2011). No significant difference between the seats 

was identified for any elbow variable described in the present study or in the 

kayaking literature (Baker, 1998; Ong et al., 2006; López-Plaza et al., 2012). 

However the bilateral differences in elbow kinematics merit further mention. Greater 

mean, maximum and minimum elbow angle were observed for the left than for the 

right side, perhaps caused by the preponderance of right-handed paddlers (8 out of 

9). These results are supported by Espinosa (2011) who described lower mean values 

not only for the right elbow (128.5º vs 137.9º for right and left elbow, respectively) 

but also for the right shoulder. Conversely, the elbow ROM was larger for the right 

side in the current investigation, which is also corroborated by Espinosa’s results. 

This might suggest that paddlers rely more on elbow flexors (brachialis, biceps 

brachii and brachioradialis) and extensors (triceps brachii) when paddling on their 

preferred side. However, when observing the elbow ROM from entry to catch no 

differences can be noticed between sides, therefore, the greater use of elbow muscles 

must occur mainly during the recovery phase. A similar pattern occurs when 

comparing between conditions. Higher elbow ROM values were observed in the 

swivel seat condition whereas equal or lower ROM values were seen between the 

entry and exit. These results might indicate greater use of back rather than elbow 

muscles during the swivel seat drive phase, involving in turn less energetic cost 

(Sanders and Baker, 1998). In whitewater paddling the ROM values during the cycle 
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reported by Kranzl et al. (1996) were quite similar (70º) to those reported in the 

current investigation.  

 

Further research on the elbow angle at entry was undertaken because of the 

importance of this event. Although no differences in this parameter were detected 

between conditions in the current investigation, the range of values from 148 to 154º 

were similar to those found in the literature. On water, Baker et al. (1999) reported 

angles ranged from 144 to 148º while on ergometer Lopez-Plaza et al. (2012) found 

values around 159º with both studies conducted in 2D. Regarding exit elbow angle, 

contradictory results can be observed when this study’s results are compared with 

those in the literature. Baker et al. (1999) in 2D and Ong et al. (2006) in 3D 

described on water values ranging 108 to 129º, quite different to those reported here 

(approximately 80-85º). These comparisons, however, should be treated with some 

caution because of the previously mentioned differences in the definitions of paddle 

entry and exit. 

 

5.3. Rotation 

Trunk rotation is another key element of the coordinated action which defines 

paddling (Logan and Holt, 1985; Begon et al., 2008a). The key feature that 

distinguishes the swivel seat from other seats is its ability to freely rotate about a 

vertical axis passing through its centre. In this study its use resulted in significantly 

greater rotational ROM of the pelvis than with the fixed seat and meaningfully 

greater ROM of shoulder rotation. This increase in shoulder rotation, especially at 

the right end of the range of motion, might be connected with the meaningfully larger 

paddle antero-posterior displacement previously noted in the same side. Comparing 

with prior research into shoulder rotation, lower ranges of motion (65-69º) were 

reported by Baker et al. (1999). As mentioned above, the use of the swivel seat also 

leads to an increase in both pelvis rotation and knee range of motion. Those 

parameters seem to be related to each other as both are determinants in the pedaling 

action performed by the lower limbs (Begon et al., 2010). 

 

Contrary to the concept described by Shephard (1987), where trunk rotation is only 

defined by shoulder rotation, the present investigation defines trunk rotation as the 

shoulder ROM relative to the pelvis ROM. In the current study significantly lower 
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values were observed for trunk rotation when using the swivel seat than the fixed 

seat (62.9 vs 66.1º). In further research on the trunk rotation during paddling on an 

ergometer with a swivel seat, Petrone et al. (2006) reported a wide range of trunk 

rotation values with the difference between shoulder and pelvis rotation ranging from 

60 to 98º when paddling at 90 strokes min
-1

. Elsewhere in the literature, upper body 

rotation about a vertical axis has been largely studied from an injury perspective 

(Veres et al., 2010; Chan et al., 2011). Too much torsion may cause excessively large 

torque to be applied to the spine, damaging the endplate and tubercular network of 

the vertebral body (Aultman et al., 2004). Furthermore, the long-term effects may 

include increases in nucleus pulpous pressure as well as the reductions in disc height 

(van Deursen et al., 2001). On the contrary, repeated cyclic torsion through smaller 

angles, as in the rotations observed when using the swivel seat, would involve 

improvements in nutrition and waste exchange that are beneficial to the intervertebral 

discs (Chan et al., 2011). Therefore, paddling using this type of seat might reduce the 

risk of spine injuries because of the lower trunk ROM values observed in comparison 

with the traditional seat. 

 

During the swivel trials the seat rotated along its longitudinal axis through 

approximately 24º relative to the ergometer, with an asymmetry displaying slightly 

larger values on the right side. This greater right rotation is suspected to be 

associated with the significant increase in paddle antero-posterior displacement 

occurring on the right side when paddling with the swivel seat. 

 

The only other study to date on the effects of the rotational seat on performance has 

been from a physiology perspective (Michael et al., 2010). When compared with the 

traditional seat no changes in oxygen consumption were detected whereas the power 

output was significantly higher with the rotational seat. As similar values were 

obtained for physiological parameters (VO2, HR peak and lactate production) it was 

suggested that these improvements in performance might came from kinematics 

(Michael et al., 2010). While the swivel seat appears to facilitate increased boat 

speed among experienced paddlers it has been suggested that rotational seats might 

also have a detrimental effect on balance. The stability of the boat-paddler system 

might be affected by the rotation movements of the seat (Paddling.net, 2010). In an 

attempt to keep the balance in the craft, stabilising movements would be performed 
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by the kayaker, involving additional energetic cost (Caplan and Gardner, 2008) and 

deviation from the paddling standard position. As a result, boat movements 

predominantly around the vertical (yawing) and longitudinal (rolling) axes (Wagner 

et al., 1993) might increase the instantaneous submerged area of the craft and 

generate detrimental drag forces acting on the hull (Baudouin and Hawkins, 2002). 

Maintaining a constant velocity of the boat has been seen to be the most efficient 

way to travel across the water (Mann and Kearney, 1980; Sanderson and Martindale, 

1986; Michael et al., 2009) but balance corrections arising from the use of a swivel 

seat could result in larger instantaneous drag forces and fluctuations in kayak 

velocity. 

 

5.4. EMG 

The EMG amplitudes from the swivel seat condition were presented as percentages 

of the fixed seat muscle activation to facilitate comparison between the two 

conditions. Large standard deviations were observed for most of the variables, 

probably caused by the different skin thickness and subcutaneous fat of the paddlers 

(Cram and Criswell, 2010). In environments where additional electrical equipment is 

being used at the same time external noise may also influence the signal (Payton, 

2008). Additionally, due to technical problems with skin adhesion and the high 

variability of EMG amplitudes more participants may be needed to investigate 

muscle activity properly. Further research in this area is needed with larger number 

of participants. 

 

The results from the current study suggest that the use of the swivel seat may be 

associated with greater trunk muscle activation, especially in the ride side muscles. 

Greater right trunk muscle activity may be associated with the significantly increased 

seat rotation and paddle antero-posterior displacement (paddle ROM) described, and 

with the decreased time taken to perform these actions. Supporting this suggestion, 

the decreased right elbow ROM during the drive phase when using the swivel seat 

suggests greater engagement of the trunk muscles rather than the elbow flexors in the 

paddling action on that side. Brown et al. (2010) only found significantly greater 

activity in the latissimus dorsi among all trunk rotators and leg muscles during 

paddling. Although little previous research exists concerning kayaking and EMG, 

some investigations into the activity of the torso muscles during non-paddling 
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activities have provided data for comparison. Marras et al. (1998) observed that the 

latissimus dorsi and external oblique abdominals decreased their activities during 

asymmetric twisting motions of the torso as the trunk flexion increased. Furthermore, 

the abdominals and erector spinae were more affected than any other torso muscle 

when the body position was modified, probably because they contribute to stabilising 

and balancing the trunk rather than generating axial torque (McGill, 1991; Marras et 

al., 1998; Urquhart and Hodges, 2005). Trunk rotator activity declined as the torso 

flexion and rotation increased probably because of shortening muscle length (Kumar 

et al., 1996, Aultman et al., 2004). These findings support those findings of the 

present study as in the swivel seat condition higher EMG was observed alongside 

significantly lower trunk rotation. In agreement with Marras et al. (1998) and 

Marchetti et al. (2011), the greater activity identified for the erector spinae and 

abdominals might suggest a change to a less flexed spine while paddling, associated 

with the use of the swivel seat. In addition, the nature of the swivel seat, with its free 

rotation about the vertical axis, might increase the role of the contralateral torso 

muscles. That is, the internal abdominals and erector spinae would contract 

eccentrically to stop the rotational movement of the seat and change direction. 

Further detailed research about timing and peak activity is needed to gain a better 

understanding of the trunk rotation process while paddling with the fixed and the 

swivel seat. Once again the results of the current project may suggest there is a 

greater activity in the muscles stabilizing the trunk while paddling with a rotational 

seat 

 

5.5. Limitations and delimitations 

A number of study delimitations arose from choices made in the design of the 

methodology: 

 

- Both male and female participants were recruited and they were not elite 

kayakers. However, all participants were experienced kayakers who were 

familiar with the use of an ergometer and who train regularly for competition. 

 

- The research was conducted indoors and on-ergometer rather than on the water 

because: a) the limitations of the biomechanical and the EMG equipment 
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available did not allow the data collection to be conducted outdoors. The 

ProReflex cameras become saturated by the IR light in sunlight and the EMG 

devices were not waterproof; b) 30 s of paddling at maximal effort were needed, 

which could not be tracked when the paddler is moving. Commonly in water 

sports, results obtained indoors are translated to outdoors use. 

 

- Although the Lawler ergometer used during the data collection was not equipped 

with a console to display any performance parameters digitally, this ergometer 

was selected rather than a KayakPro because it appears to better reproduce on-

water kinematics. Based on feedback from high-level coaches the Lawler allows 

a more natural paddling motion, especially at the end of the “pull” phase and exit 

from the water. The Lawler also allows access to the flywheel, enabling its 

motion to be tracked. This is not possible with the KayakPro. 

 

- Only a limited number of muscles were selected to be monitored. Possibly other 

muscles rather than the main trunk rotators could also have been affected by the 

choice of seat. Only the rotators were selected as it was anticipated that the 

swivel seat would more directly affect activity in these muscles. The location of 

certain electrodes would have interfered with body rotation and the paddling 

action by the arms. Additionally, the muscle activation was considered auxiliary 

information to support the kinematic findings. 

 

 

During the research process some further methodological limitations arose, which led 

to a number of adjustments that have been described above: 

 

-  Some markers (i.e. the frontal and lateral shoulder markers) were obscured 

during certain phases of the paddling cycle. Similarly, the fast actions performed 

by the athletes caused some markers to come off during the trials. During the data 

analysis process, modifications were needed in calculating parameters such as 

knee angle and shoulder rotation.  
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- The use of Maximum Voluntary Contractions was rejected due to the possibility 

of electrode displacement during the activities used to invoke maximal 

contraction. 

 

- Some participants sweated more profusely than had been observed with the 

paddlers used in pilot studies. Despite the electrodes being taped down, some 

problems arose with skin-electrode adhesion due to the intensity of the activity, 

and the data for some muscles had to be discarded. 

 

- Potential crosstalk from the lumbar multifidis muscles on the erector spinae 

might have occurred during the EMG collection 

 

5.6. Study implications 

The present study has enhanced the current understanding of how the use of different 

seat designs affects kayaking performance and kinematics. Its findings regarding the 

use of swivel seat have a number of implications for coaches and biomechanists: 

 

- For coaches, this is the first study to analyse the combined effects of the swivel 

seat on performance and kinematics. The use of this type of seat has been a 

controversial issue among coaches, and the data collected here will help to 

inform that debate. Moreover, some muscles heavily involved in the paddling 

motion have been confirmed and identified for targeting during strength and 

conditioning sessions. 

 

- The combination of kinematic and surface electromyography data has been 

investigated for the first time using the swivel seat. Despite the problems with the 

EMG data collection, the potential for examining the relationship between these 

two factors has been demonstrated. Biomechanists can build upon these results, 

and consider more detailed exploration of the timing of kinematics and muscle 

activation. 

 

- For athletes, this study has provided them with evidence about possible 

improvements in performance. Kayakers looking for new ways of enhancing 
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their paddling will be better informed about the advantages and disadvantages of 

different seat designs. 

 

- The results could encourage other manufacturers to start developing rotational 

seats, or allow those already producing this type of seat to improve their future 

designs.  

 

5.7. Recommendations for future research 

Future research should focus further on the temporal characteristics of the stroke: the 

coordination of kinematics and electromyography and how these parameters are 

temporally distributed along the cycle require detailed investigation. In addition, due 

to the difficulties encountered with the use of surface electromyography, the number 

of muscles studied was limited in the present study. For future investigations it is 

suggested that other muscles than just the main trunk rotators might be incorporated 

into any EMG analysis. As significant differences in knee angle parameters have 

been observed, leg muscles such as vastus lateralis or gastrocnemius might be 

examined. 

 

Ideally, a similar study should be conducted on water to corroborate the findings of 

the present research in the actual environment where kayaking is practiced. As a 

result of the destabilising movements that may be associated with the swivel seat, 

introducing gyroscopes to future investigations on water might help to better 

understand the boat’s behaviour. Additionally, valuable information might be 

provided by strain gauges placed on the paddle shaft. Force production data might be 

compared between conditions and between the two sides of the body, as some 

technique and performance parameters have been seen to be different between the 

dominant and non-dominant side. 

 

More skilled kayakers have been seen to perform more consistent strokes (Petrone et 

al., 2006). In the data analysis the standard deviation of the EMG amplitudes might 

be reduced if only elite paddlers were selected. Moreover, further comparison 

between novice, experienced and elite kayakers would reveal how the activity of the 

rotators differs between groups. 
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6. Conclusions 

 

The current study analysed the kinematics and torso muscle activation during 

paddling with two different types of racing seat, the traditional fixed seat and a 

swivel seat that is able to freely rotate about a vertical axis passing through its centre. 

Improvements in performance with the use of the swivel seat were detected through 

an increased flywheel RPM, peak stroke frequency and paddle horizontal 

displacement. Changes in technique were also observed, especially in the knee 

parameters. The rotational seat seems to significantly reduce the rotation of the trunk 

about its longitudinal axis (as measured by the rotation difference between shoulder 

line and pelvis) as well as to compensate the asymmetrical paddling technique 

differences in both sides determined during the fixed trials. Additionally, EMG 

analysis suggested greater activation of selected trunk muscles in the swivel seat 

condition, where the body position appeared to be modified to a more upright 

orientation. The reduced trunk rotation with the swivel seat may have benefits for 

paddler health alongside the performance enhancements observed in the present 

investigation. 

 

These findings have relevance for coaches and paddlers since they suggest that the 

swivel seat may offer advantages in terms of enhancing kayaking performance and 

reducing the stress on the paddler’s back. Additionally, this is the first study to 

statistically analyse the effects of the swivel seat on kinematics and the results 

obtained may help designers in further developing this type of seat. However, more 

detailed investigation on water is needed to determine whether the application of the 

swivel seat under real conditions would produce similar benefits to those observed 

on ergometer. Simultaneous monitoring of boat movement using gyroscopes and 

accelerometers should be conducted to determine whether the magnitude of those 

displacements may affect the travelling boat velocity. Further analysis of the relative 

timings of paddle force application and muscle activation would also help to identify 

in greater detail the effects of the swivel seat throughout the cycle. 
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Appendix 1. Participant Information Sheet 

 

Participant Information Sheet 

 
Study Title: The effect of the choice of seat type on forward kayak paddling. 

 
You are invited to take part in the above research project.  Before you decide to 
participate it is important for you to understand why the research is being done and 
what it will involve.  Please take time to read the following information carefully 
and discuss it with others if you wish.  Ask if anything is unclear or if you would like 
more information. 
 
What is the purpose of the study? 
The study will investigate how the choice of seat used influences kayak ergometer 
performance.  The trunk rotator muscles activation and the stroke and kinematic 
parameters will be investigated for a fixed seat and a swivel seat. 
 
What would be involved for me? 
At the start of the session 10 electromyography (EMG) electrodes will be attached 
to your body using adhesive tape. These electrodes passively record muscle activity. 
Approximately twenty spherical reflective markers will also be attached, to allow 
your motion to be tracked. 
 
Afterwards you will be asked to complete two 30-second forward paddling tests on 
a kayak ergometer at maximum intensity, one with a fixed seat and one with the 
swivel seat. Each test will be preceded by a period of relatively gentle paddling 
during which you will be able to get familiarising with the seat and the ergometer 
and then a warm-up. There will be a rest period of approximately 15 minutes 
between the two tests. During the paddling tests, your muscle activity and body 
movements will be recorded. 
 
The session should last approximately 50-60 minutes.  
 
Where will the research take place? 
All testing will occur in the Biomechanics Lab at the University of Lincoln’s Human 
Performance Centre. 
 
Why have I been invited? 
As an elite kayaker you will be familiar with the use of the kayak ergometer, and will 
be able to perform a maximum test in a consistent way.  
 
Do I have to take part? 
Your participation in this study is entirely voluntary. If you do decide to participate, 
you have the right to withdraw from the study at any point and to request that your 
data not be used.  
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What do I need to do if I wish to take part? 
Please read this Information Sheet and ask any questions that you may have 
relating to the proposed study. If you still wish to proceed then please read and sign 
the Consent Form, and return it to the investigator. The latter will ask you to 
complete a physical activity readiness questionnaire before confirming your 
participation.  
 
Will my taking part in the study be kept confidential? 
Your name will not be revealed in any report or publication, and no reference will 
be made which could link you to the study. All data collected will be handled in 
strict confidence, and will be seen only by the members of the research team. 
 
 
What are the possible disadvantages and risks of participation? 
There is a slight risk of injury associated with performing the test, similar to the risks 
encountered during a training session or a competition. These risks will be 
minimised by the warm-up and by a risk assessment carried out by the researcher 
prior to the testing session. 
 
Some people may experience minor skin irritation resulting from the adhesive tape 
used to attach the reflective markers or electrodes, or from the alcohol wipes used 
to clean the electrode sites. 
 
What are the possible benefits of taking part? 
The findings of the study will provide further knowledge about the effects of swivel 
seat in terms of technique, performance and muscle force. Your personal results 
will be made available to you on request, as will the findings of the completed 
study. This information may help you to figure out how your kayaking performance 
would be when using a swivel seat in comparison with a fixed seat. 
 
What if I have any concerns or queries? 
For issues relating to the project, please contact either the researcher (Daniel 
López-Plaza, 10195409@students.ac.uk, 07596174996) or the project supervisor 
(Sandy Willmott, swillmott@lincoln.ac.uk, (01522) 886651). 
 
If you would like to talk to someone about ethical issues relating to the project 
please contact Hannah Rigby (hrigby@lincoln.ac.uk, (01522) 837092) at the 
University of Lincoln. 
 
Thank you for taking the time to read this information. 
 
Daniel López-Plaza Palomo 
 
 
 

mailto:10195409@students.ac.uk
mailto:swillmott@lincoln.ac.uk
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Appendix 2. Consent form 

 

Consent Form 

Study Title: The effect of the choice of seat type on forward kayak paddling. 
 
I agree to take part in this research project, and acknowledge that I understand the 
following statements: 
 

 The full details of the research have been explained to me and I am fully 
aware of what is expected of me as a participant. 

 I am responsible for providing information relating to my health status 
and/or previous experiences of unusual sensations/reactions caused by 
physical activity.  

 I am not aware of any injury and/or illness that will affect my ability to 
perform the assessment. 

 I am also responsible for reporting any unusual feelings or discomfort felt by 
myself during the assessment. 

 I am aware that I am not obliged to complete the assessments and that I am 
able to stop at any point, for any reason. 

 I am aware that my research results and any information I provide are fully 
confidential and will only be communicated to others if agreed so in 
advance.  

 My participation in this study is completely voluntary. I understand that I 
may withdraw from the study at any time and may ask that any data 
concerning me that have been collected are destroyed. 

 

I have read and understand the information above, and any questions that I had 
have been fully answered. I agree to participate in this study. 
 
Name (Print): 

Signature of Participant:                 Date: 

 

If the participant is under the age of eighteen: 
 
Name (Print):          Date: 
 
Signed (Parent/Guardian) 
 

I declare that I have explained the testing procedure in full and have made myself 
available for any questions the participant may wish to ask. 
 
Name (Print): 

Signature of Researcher:       Date: 
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Appendix 3. Physical Activity Readiness Questionnaire (PAR-Q) 

 

 

Pre-Physical Activity/Laboratory Questionnaire 

 

Name: 
 
Date of Birth:  ____/____/____  
    
 
Age: ______   
 
The purpose of this questionnaire is to ensure that you are physically able to complete the 
exercise test(s) outlined to you in the Participant Information Sheet.  Please answer the 
questions below honestly and completely. All information provided is strictly 
confidential and will only be viewed by the appropriate departmental staff member. Your 
co-operation is greatly appreciated.   
 
*Please CIRCLE the most appropriate option/s and use BLOCK CAPITALS when 
providing further detail. 
 
1. How would you describe your present level of activity? 
 

Sedentary moderately active  active  highly active* 
 
2. How would you describe your present level of fitness? 
 

Very unfit  moderately fit  trained  highly trained* 
 
3. Have you had to consult your doctor within the last 6 months? Y/N* 
 
 If YES, please give brief details and alert the test/activity supervisor 
 _________________________________ 
 
4. Are you presently taking any form of medication?  Y/N* 
 
 If YES, please give brief details and alert the test/activity supervisor 
 _________________________________ 
 
5. Do you suffer, or have you ever suffered from, any of the following:  

 
Asthma? Y/N*  Diabetes? Y/N*  Bronchitis? Y/N* 
 
Epilepsy? Y/N*  High blood pressure? Y/N* 

 
6. Do you suffer, or have you ever suffered from, any form of heart complaint?  

Y/N* 
 
7. Is there history of heart disease in your family?    Y/N* 
 
8. Do you currently have any form of muscle or joint injury?  Y/N* 

 
9. Have you had any cause to suspend your normal training/activity during the past 

two weeks?                         Y/N* 
 

10. Is there anything to your knowledge that may prevent you from successfully 
completing the tests that have been outlined to you?   Y/N* 

 
 
 

OFFICE USE ONLY 

Date checked: 
____/____/____ 

Screened by:   

Status: (circle) Passed Flag 
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Declaration 
 
I have completed this questionnaire honestly and completely and all questions were 
answered to my complete satisfaction. I undertake to ensure that any change to my ability to 
participate in physical activity safely is communicated to immediately to an appropriate 
Department of Sport, Coaching and Exercise Science staff member. 
 
Signature of Subject: _____________________________Date: _________ 
  
I declare that I have reviewed this form in its entirety and have made myself available for any 
questions the student may wish to ask. 
 
Signature of Researcher:  __________________________Date: _________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


