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Abstract: Blushing has been identified as an indicator of deception, shame, 
anxiety and embarrassment. Although normally associated with the skin 
coloration of the face, a blush response also affects skin surface temperature. In 
this paper, an approach to detect a blush response automatically is presented 
using the Argus P7225 thermal camera from e2v. The algorithm was tested on a 
sample population of 51 subjects, while using visual stimuli to elicit a response, 
and achieved recognition rates of ~77% TPR and ~60% TNR, indicating a 
thermal image sensor is the prospective device to pick up subtle temperature 
change synchronised with stimuli. 
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1 Introduction 

The ability to detect deception is a highly desirable quality. The act of deception is 
prevalent and the consequences of concealing the truth cover a broad range of severity. 
At one extreme, a harmless white lie will have minimal repercussions. However, at the 
other extreme, human lives could be in danger. Therefore, research continues unabated in 
the pursuit of accurate identification of deceit. 

When a person is attempting to conceal the truth, the underlying emotional response 
can manifest in measurable physiological characteristics (Pavlidis et al., 2002). Blushing 
has been identified as one of these characteristics (Pollina et al., 2006) as has, among 
others, heart rate (Pavlidis et al., 2002; Vershuere et al., 2004), respiration rate (Gamer  
et al., 2006), perspiration (Gronau et al., 2005) and blink rate (Fukuda, 2001). Any 
combination of which can indicate deception. 

On the face of it, blushing seems a trivial task. Essentially, it is simply a matter of 
analysing the temperature or coloration of the skin with respect to the time a stressor (in 
this case, visual stimulus) is presented to the subject. In fact, there is much research 
regarding the blush response to a stressor in the fields of psychology and 
psychophysiology (Mulkens et al., 1997, 1999; DeJong et al., 2002; Shearn et al., 1990; 
Drummond and Lim, 2000). These approaches either require contact with the subject 
using transducers (commonly plethysmographic transducers) (Mulkens et al., 1997, 1999; 
DeJong et al., 2002; Shearn et al., 1990; Drummond and Lim, 2000) and/or thermisters 
(Mulkens et al., 1997; Shearn et al., 1990; Drummond and Lim, 2000). Even when 
thermal images are used, the region of interest (ROI) is often manually segmented 
(Pollina et al., 2006; Mulkenset al., 1999). 

Unfortunately, at present, there does not appear to be an abundance of fully 
automated segmentation methods available. This might suggest that researchers, at this 
time, are content with manual segmentation (i.e., where a practical implementation is not 
necessary). However, as the interest in the field and detection accuracy increases, fully 
automated systems will follow which will require a general-purpose segmentation 
algorithm. 

In order to develop a fully-automated segmentation algorithm, the ROI needs to be 
identified. In Kalra and Magnenat-Thalmann (1994), they state that the action of blushing 
is revealed more from the cheeks, ears and forehead than from any other body part. In 
Zhu et al. (2007, 2008), the supraorbital vessels of the forehead are extracted by 
employing the Hough transform in the forehead region to extract the approximate 
location of the vessels. An active contour method is then applied to determine the central 
lines of the vessels before extracting the boundaries. Whereas in Shastri et al. (2008) and 
Tsiamyrtzis et al. (2005), the periorbital region is extracted using the eye location as a 
point of reference to define the initial periorbital region that is then tracked throughout 
the footage. However, the problem with using the forehead, ears or periorbital regions is 
occlusion. The forehead and ears can easily be covered by hair and the periorbital region 
is often occluded by spectacles. 

In a typical real-life scenario, subjects will have varying hairstyles, headwear and 
spectacles. The most consistently visible ROI is the region around the maxilla. The 
maxilla region can also be visible in people with full beards. In Pollina et al. (2006), this 
region is used as the ROI. However, the exact method of segmentation is not described. 
Therefore, in this paper, an algorithm is outlined which can be employed to extract a 
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consistent ROI in thermal images. The next section of this paper presents the proposed 
ROI segmentation algorithm, subsequently followed by the proposed blush detection 
criteria. This is followed by the experimental results with respect to an application 
employing visual stimuli to elicit a blush response. Finally, conclusions are drawn with 
remarks about possible improvements. 

2 Proposed segmentation algorithm 

The detection of blush is essentially a segmentation problem. The behaviour of 
temperature during a blush response is well documented (Mulkens et al., 1997, 1999; 
DeJong et al., 2002; Shearn et al., 1990; Drummond and Lim, 2000) and therefore, given 
a consistent ROI, the temperature trend of that ROI can be analysed. However, ensuring 
that the same relative region is segmented in all frames is not as straightforward, 
especially if free head movement is permitted. In Figure 1, a basic framework is 
presented for segmenting the ROI. 

Figure 1 ROI segmentation framework 
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Figure 1 presents the major processes in the proposed blush detection framework. The 
‘segment face’, ‘wears glasses’, ‘find lens centroid’, ‘tracker’ and ‘find eyes’ processes 
can be substituted for any alternative approach. However, an explanation of the 
algorithms employed in this implementation is provided forthwith. 

2.1 Segment face 

Face segmentation is performed empirically and simply by employing Otsu’s (1979) 
threshold algorithm, followed by three dilations and three erosions. Otsu’s threshold 
selection method chooses the threshold to minimise the intra-class variance of the black 
and white pixels. In Otsu’s method, the threshold is searched exhaustively to minimise 
the intra-class variance, defined as a weighted sum of variances of the two classes: 

2 2 2
1 1 2 2( ) ( ) ( ) ( ) ( )w t t t t tσ ω σ ω σ= +  (1) 

weights wi are the probabilities of the two classes separated by a threshold t and 2
iσ  

variances of these classes. Otsu shows that minimizing the intra-class variance is the 
same as maximising inter-class variance: 

[ ]22 2
1 2 1 2( ) ( ) ( ) ( ) ( ) ( )b wt t t w t t tσ σ σ ω μ μ= − = −  (2) 

which is expressed in terms of class probabilities wi and class means ui. The class 
probability wi(t) is computed from the histogram as, 

1 0
( ) ( )

t
t p iω =∑  (3) 

while the class means u1(t) is, 

1 0
( ) ( )* ( )

t
t p i x iμ =∑  (4) 

where x(i) is the value at the centre of the ith histogram bin. Similarly, w2(t) and ui on the 
right-hand side of the histogram for bins greater than t. The class probability and class 
means can be computed iteratively. The algorithm based on Otsu’s method is available in 
Matlab as a standard function and has been used in this study. 

The binary morphological processes fill in small holes and reduce the width of the 
arms of the spectacles, sometimes the arms are removed completely. A connected 
components algorithm is then implemented and the largest component is retained while 
the others are neglected. 

2.2 Segment glasses 

In the proposed implementation, the centroid of each lens is returned if the subject is 
wearing glasses. Therefore, this process amalgamates the ‘wears glasses’ and ‘find 
centroids’ functions. 

The approach employed required filling in all holes in the segmented face. This is 
because glasses reflect the infrared emitted back, which causes glasses to be much darker 
than the rest of the face. This image was then xor’ed with the segmented face image, 
which creates another image where the background within the face is now the 
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foreground. Simply inverting the segmented face would not be suitable as the background 
surrounding the face is still present. 

In order to detect the centroid of each lens, a search for the largest ellipse, which does 
not extend into the background of the image, is performed. The ellipse must conform to 
certain size, orientation and eccentricity constraints. The search may be performed 
iteratively (using ellipse fitting methodologies or elliptical Hough transform) or 
evolutionary by means of a genetic algorithm. Once the largest ellipse is found, perform 
the search again but restrict the search to the other regions of the image. If only one 
ellipse that conforms can be found, then the subject is wearing glasses but may not be 
facing the camera. If two ellipses conform then the user is wearing glasses and the 
centroids are used for ROI placement. The subject is judged to not be wearing spectacles 
if no ellipses that conform are found. If more than two ellipses are found then the frame is 
skipped. 

An alternative, simpler, approach could be to erode the xor’ed image with a relatively 
large elliptical structural element (i.e., an ellipse that can fit within a lens but big enough 
to remove the nose). This should remove the mouth and nose, leaving blobs representing 
the internal of the lens. The centroid of which can be used as the centroid of the lens. 
However, the downfall of this approach is that it is not scale invariant. 

It is also interesting to note that segmenting the glasses and finding the centroids of 
the lenses on every frame can be omitted. This is because the Lucas-Kanade tracker 
(Baker and Matthews, 2004) can track the initially detected centroids just as well. 

2.3 Tracking 

In the proposed method, the eyes serve as reference points from which we can reliably 
position the ROI. It has been found that using feature-based eye detection methods do not 
migrate well between infrared images taken using different cameras. This is especially 
the case when images from a high-end, mid-wavelength infrared (MWIR) camera are 
compared with that of a low-end long-wavelength infrared (LWIR) camera, such as the 
Argus P7225 used in the trials. Therefore, the eye locations are initially detected when a 
subject blinks (further information is provided later). 

Using the eye locations, templates centred on each point are obtained from the image 
and are used for tracking by the Lucas-Kanade tracker (Baker and Matthews, 2004). It 
was found that small templates were susceptible to blinking and would therefore move up 
and down with the blink. This in turn moves the ROI even though the face has not 
moved. By increasing the size of the template, it improved the robustness to blinking. A 
template with a width and height equal to the distance between the two eyes was 
implemented to ensure minimal movement during blinks. 

2.4 Find eyes 

As aforementioned, the eyes are used as reference points for reliable positioning of the 
ROI in the proposed implementation. Initial testing employed a feature-based eye 
detection algorithm. However, the consistency of extraction reduced when switching 
between cameras and when the sample set was increased. This is why it was decided that 
the eye positions should be obtained from blinking as this was the only consistent 
characteristic across all videos. 



   

 

   

   
 

   

   

 

   

    Automatic blush detection in ‘concealed information’ test using visual stimuli 193    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Blinking is a spatio-temporal characteristic. The movement relating to blinking is 
localised in time and space (with respect to the head). This permits the blinking motion to 
be separated from head movement. The proposed algorithm employed a pre-existing 
blink detection algorithm (Gorodnichy, 2003), which determines the second order change 
in order to filter out the pixel changes attributed to head movement. 

2.5 Tracking lost 

Tracking is a crucial part of the algorithm so it is vital to know when the tracking has 
been lost. When tracking is lost, the feature values are being extracted from the incorrect 
region causing inconsistencies in the data. Many things can cause the loss of tracking, 
such as fast movements that have a high frequency of direction changes or occlusion 
(essentially removing the feature from view, which is akin to turning away from the 
camera). This is a significant challenge when free head movement is permitted as the 
subject can do anything spontaneously. 

A simple method for determining whether the tracking has been lost is to compute the 
Euclidean distance between the newly determined template and the previous template. If 
loss of tracking occurs, the templates will differ greatly as they will be from different 
regions of the image. A simple threshold can determine this. Failing which, some 
heuristic rules based on the old and new coordinates can be implemented. These rules 
could include a threshold on the distance between points in successive frames and the 
angle and distance between the two-eye positions. 

2.6 ROI Placement 

If performed successfully, the algorithm at this stage should produce a set of coordinates 
for both eyes. The approach to placing the ROI is trivial. Firstly, the angle and the 
distance between both eyes are calculated using equations (5) and (6), respectively. The 
angle is rotated by π / 2 to obtain its perpendicular, pointing down from the eyes 
[equation (7)]. 

1tan
y y
R L
x x
R L

E E
E E

θ − ⎛ ⎞−
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 (5) 

( ) ( )( )2 2y y x x
R LR LD E E E E= − + −  (6) 

where x
RE  and y

RE  are the x and y coordinates of the right eye, x
LE  and y

LE  are the x and 
y coordinates of the left eye. 

2p
πθ θ= +  (7) 

From these equations, the centre of the ROI can be determined by simply moving along 
the perpendicular from each eye. These positions are determined using equation (8). 

cos , sinx x y y
s s p s s pC E n C E nθ θ= + = +  (8) 
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where x
sC  and y

sC  are the x and y coordinates of the ROI centre, s is used to denote 
whether left or right eye, n is the distance to the centre of the ROI from the eye (e.g.,  
0.75 * D / 2). 

The ROI is an oriented, square window. This will provide robustness to roll rotation 
(tilt head either side) as this has been identified (empirically) as the most common 
rotation as most subjects tended to keep their eyes on the screen. The coordinates 
contained within the ROI are calculated using equations (9) and (10). 

cos sin
2 2

x x
s s

sz szP C d kθ θ⎛ ⎞ ⎛ ⎞= + − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (9) 

sin cos
2 2

y y
s s

sz szP C d kθ θ⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (10) 

where d and k range from 0 to sz, sz is the dimension size of the window (e.g., 15 pixels), 
x

sP  and y
sP  are the x and y coordinates of a pixel location belonging to s ROI (s denotes 

left or right). 
This algorithm provides a means to extract reproducible ROIs from images in both 

charge coupled device cameras (CCD) and thermal images from infrared cameras. 
Therefore, it can also be used to segment an ROI for determining change in coloration. A 
selection of screen dumps, as a result of the ROI segmentation algorithm, is provided in 
Figure 2. 

Figure 2 Example results of ROI segmentation algorithm 

   

   

   

   

   

Note: Lines and squares shown for illustration purposes. 



   

 

   

   
 

   

   

 

   

    Automatic blush detection in ‘concealed information’ test using visual stimuli 195    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

3 Proposed blush detection 

Once the ROI has been segmented, feature values need to be extracted. In this 
implementation, the mean value [see equation (11)] from each ROI is used. The mean 
value was used because it is more robust to slight transformations of the ROI. 

{ }, ,

1( ) ( , )
x y

s s

s
x y P P

f I x y
N

μ
∈

= ∑  (11) 

where I(x, y) is the greyscale value/temperature at the pixel located at (x, y), { , }x y
s sP P  

are the set of coordinates belonging to s ROI, N is the total number of pixels in the ROI, 
μs(f) is the mean value of s ROI (s denotes left or right) for frame f. 

The mean of both ROIs is determined for each frame of the video. As the base level 
temperature for each subject will vary, the proposed method employs an initial period 
from which baseline values can be determined. During the baseline period, the mean and 
standard deviations of each ROI for all frames within the baseline period is calculated 
[see equations (12) and (13)]. For all subsequent frames, the mean value obtained from 
each ROI is normalised using z-score normalisation [equation (14)]. 

1

1 ( )
bF

s
b s

b f

f
F

μ μ
=

= ∑  (12) 

( )2
1

1 ( )
bF

s s
b s b

b f

f
F

σ μ μ
=

= −∑  (13) 

( )( )
( ) ;

s
s b

s bs
b

f
z f f F

μ μ
σ
−

= ∀ >  (14) 

where Fb is the number of frames in the baseline period. 
It is assumed that the temperatures during the baseline period belong to one 

distribution and the temperatures during a blush response belong to another. Therefore, a 
simple threshold (h) based on the number of standard deviations from the baseline mean 
can be used. However, a blush response is not over instantaneously. In Kalra and 
Magnenat-Thalmann (1994), it is stated that blushing occurs within 2 seconds after 
presentation of the stimuli and can last up to 15 minutes, although the median was  
20 seconds. It is not necessary to know when the blushing ceases, only to ensure that the 
temperature exceeds a level for a significant period. This condition is presented in 
equation (15). 

1, if ( )
0, otherwise  

dT
blushing

τ>⎧
= ⎨
⎩

 (15) 

where dT is the time (continuous) above the standard deviation threshold (zs(f) > h) for 
either the left or the right ROI, τ is the duration threshold. 
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4 Experimental results 

For the experiments, the Argus P7225 from e2v was employed. This is a LWIR camera 
and operates near the plateau of the blackbody curve for temperatures around that of a 
human body. As it operates near the plateau, a small change in temperature will have less 
affect on the spectral radiance than that of a MWIR camera, which operates on a steep 
ascent. Therefore, MWIR cameras are better for measuring small changes where LWIR 
cameras are commonly used for firefighting activities. One reason for this is because the 
dynamic range automatically readjusts to the range of temperatures within the scene, 
which facilitates easy segmentation of extremely hot objects. LWIR cameras are also 
much cheaper than the MWIR cameras and it would be advantageous if the cheaper 
cameras can also detect changes in facial temperature. 

4.1 Experimental setup 

As the Argus P7225 is a microbolometer-based camera, all temperatures within the field 
of view are used to determine the range. The camera then readjusts to the new range 
every so often. Therefore, in the experiments, it was paramount to ensure that no external 
heat sources can enter the field of view. This step is essential as the camera used only 
outputs image data and not temperature data. If the range changes too much, the 
greyscale values will not represent the same temperature as before. It is assumed that the 
greyscale values represent some unknown range of temperatures, which change when the 
range readjusts. 

In order to test the proposed algorithm, the technique was implemented in 
conjunction with a psychophysiological experiment. The psychophysiological experiment 
attempted to determine the act of deceit by using visual stimuli to elicit a response. Prior 
to the experiment, individuals decided, in secret, whether they would try to deceive the 
system by concealing a banned object. In an attempt to elicit a response, the subject 
watched a video, which initially displayed calming images and audio (in order to obtain 
baseline values) prior to presenting images of many banned objects (the stressors), while 
the facial temperature was monitored throughout. Incentives and disincentives were also 
provided in an attempt to ensure the subjects made concerted efforts of deception and 
increased the emotional attachment to the object they were concealing. 

It is hypothesised that subjects, who chose to conceal a banned object, will have an 
emotional attachment to an image of the object and potentially to the threat of the 
disincentive if they fail. At the point at which these stressors are presented, it is also 
hypothesised that the emotional response attributed to these stressors will manifest as an 
increase in facial temperature. 

4.2 Results 

For the experiments, there were 53 subjects from which 27 did not try to conceal a 
banned object whereas 26 did. The subjects did not reveal whether they had attempted to 
deceive the system until after the experiment. The analysis was performed offline, 
although it can be adapted to be performed during the test. 

The analysis consisted of a multitude of permutations of the adjustable parameters. 
These parameters included the number of standard deviations (h – from 0.5 to  
10 standard deviations) for the temperature threshold, the threshold for the duration 
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above the temperature threshold (τ – 0.5 s to 3 s) and the duration of the period from 
which the baseline (blp – 5 s to 19 s) data was extracted. The threshold, h, is based on the 
assumption that blushing and baseline temperatures belong to separate distributions and 
provides a contextual element to the calculation. This is because the subject’s internal 
temperatures and blush responses are unique. In the event that the assumption seems 
wrong, additional tests were conducted whereby the values obtained during stimuli 
presentation were not z-score normalised but simply mean adjusted to the baseline mean. 
An incrementing threshold on the positive deviation from the mean was used to 
determine blushing. 

Figure 3 ROC curve – z-score threshold (see online version for colours) 

 

Figure 4 ROC curve – mean adjusted threshold (see online version for colours) 
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As the number of trials is too large to present in its entirety, the optimal receiver 
operating characteristic (ROC) curve, for both the z-score and mean adjusted threshold, is 
presented in Figures 3 and 4. Figure 3 is the ROC curve obtained when 15 seconds of 
baseline values were used and a continuous duration above the threshold of 2 seconds. 
Whereas, Figure 4 was the result of extracting 10 seconds of values to be used as baseline 
and a continuous duration above the threshold of 2.5 seconds. 

It is immediately obvious from both ROC curves that the results lay on the preferred 
side of the linear function x = y (as depicted on the graphs). This indicates that the 
classifier provides better classification than random selection. The optimum threshold 
from Figure 3 was three standard deviations, which resulted in ~77% true positive rate 
(TPR) and ~60% true negative rate (TNR). This gives an accuracy of the classifier as 
~67%. This is slightly better than the optimal results from Figure 4 (~65% accuracy). 

The accuracy is encouraging as it is better than expected. Previous trials with the 
P7225 thermal camera indicated that blushing can be detected, although this was when 
blushing was elicited through embarrassment. This resulted in a strong response. 
However, it is not known how strong the response will be from using visual stimuli and 
whether it would be detectable. Coupling this uncertainty with a low-end infrared camera, 
which is not designed for detecting small temperature changes, the original expectation 
was that the accuracy would be nearer 50% (i.e., not much better than random 
classification). As the optimal accuracy was 67%, the results are encouraging. However, 
additional enhancements can possibly improve the accuracy. 

4.3 Discussion 

In the experiments, a low-end long wave infrared (LWIR) thermal camera was 
implemented. As mentioned this is not the ideal camera for this application and the 
algorithm would benefit from a high-end medium wave infrared (MWIR) camera, 
although these currently are very expensive. A MWIR thermal camera will provide 
greater resolution, which will not only improve the accuracy of the readings, but also 
permit improved tracking and landmark localisation as the local structure will be better 
defined. Although the system will benefit from employing a more suitable infrared 
camera, the main contributor to anomalies is movement. 

Movement of the subject is the primary cause of reduced overlapping between ROI of 
different video frames. The ROI should overlap 100% to ensure the same relative region 
of the face is captured. However, ensuring optimal overlapping is a non-trivial task when 
there are no constraints placed on the user. During the trials, it seemed that the algorithm 
proposed was robust to translations and for roll rotations, which seemed more frequent in 
the trials, but was susceptible to yaw (‘no’ head movement) and pitch (‘yes’ head 
movement) rotations. 

An approach to improve robustness to these rotations could be to use the  
Lucas-Kanade tracker to estimate the warping of the image and apply to the shape of the 
ROI. Alternatively, the thermal image can be fused with an image from a video camera. 
Then active appearance models (AAM) (Cooteset al., 2001) can be used to model the 
warping of the face under movement and the ROI can simply be the triangle, in the 
triangulated mesh, that represents the upper cheek. The AAM approach would be more 
suitable than the Lucas-Kanade method as it uses landmarks to position the mesh and the 
ROI shape will have greater flexibility. However, it is more computationally complex and 
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it may not result in significant improvement with large rotations. This is because the vast 
majority of the ROI may not actually reside within the scene any longer. The only  
single-camera solution to capture the ROI under all rotations is to move the camera so the 
subject is always directly facing the camera. Alternatively, additional cameras can be 
employed at further expense. It should also be noted that this problem is being 
investigated in Zhou and Tsiamyrtzis (2008, 2009) where they are attempting to track 
facial tissue under varying orientations. 

On the other hand, visual elicited blush response often shows other detectable 
temperature cues in other regions of the face, side of the neck and measurable heart beat 
changes as well (Harmer et al., 2010). The presented method, which is developed 
empirically, has achieved a good detection rate; however, it is still far from the standard 
of actual applications. Systematic methods should be employed and compared to further 
investigate these critical cues in order to improve the overall detection rates to practical 
level. 

5 Conclusions 

An approach to automatic blush detection has been proposed in this paper. This algorithm 
has been applied to a psychophysiological experiment which investigated whether visual 
cues can elicit a blush response that will betray a subject’s intention. The underlying 
framework of the algorithm permits interchangeable modules which increases the 
flexibility. In its current form, the algorithm is robust to migration between different 
thermal cameras and CCD cameras as the act of blinking is detectable in all images (with 
the exception of bespectacled subjects). Therefore, the ROI segmentation method can be 
used to detect coloration or thermal activity within a consistent local area. 

From the experiments conducted, a classification accuracy of ~67% was achieved. 
This is somewhat encouraging as a low end thermal camera was implemented. Although, 
some of the errors are attributable to the type of camera employed, movement is still the 
main contributor to errors. The algorithm proposed seemed robust for roll rotations, 
which seemed more frequent in the trials, but was susceptible to yaw (‘no’ head 
movement) and pitch (‘yes’ head movement) rotations. This is due to the reduced 
overlapping between ROIs while the head undergoes these rotations. 

An approach to improve robustness could be to use the Lucas-Kanade tracker to 
estimate the warping of the image and apply to the shape of the ROI. Alternatively, the 
thermal image can be fused with an image from a CCD camera. Then AAM (Cootes  
et al., 2001) can be used to model the warping of the face under movement and the ROI 
can simply be the triangle, in the triangulated mesh, that represents the upper cheek. 
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