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Abstract

This thesis addresses the problem of automatic detection and identification

of blemishes in digital images of potatoes. Potatoes are an important food

crop, with clear unblemished skin being the main factor affecting consumer

preference. Potatoes with defects, diseases and blemishes caused by other-

wise benign (to human) skin infections, are strongly avoided by consumers.

Most potatoes are sorted into different grades by hand, with inevitable mis-

takes and losses.

The currently deployed computer vision systems for sorting potatoes re-

quire manual training and have limited accuracy and high unit costs. A

further limitation of typical machine vision systems is that the set of image

features for pattern recognition has to be designed by the system engineer

to work with a specific configuration of produce, imaging system and op-

erating conditions. Such systems typically do not generalise well to other

configurations, where the required image features may well differ from those

used to design the original system.

The objective of the research presented in this thesis is to introduce an au-

tomatic method for detecting and identifying blemishes in digital images of

potatoes, where the presented solution involves classifying individual pixels.

A human expert is required to mark up areas of blemishes and non-blemishes

in a set of training images. For blemish detection, each pixel is classified

as either blemish or non-blemish. For blemish identification, each pixel is

classified according to a number of pre-determined blemish categories. Af-

ter training, the system should be able to classify individual pixels in new

images of previously unseen potatoes with high accuracy.

After segmenting the potato from the image background, a very large set

of candidate features, based on statistical information relating to the colour



and texture of the region surrounding a given pixel, is first extracted. The

features include statistical summaries of the whole potato and local regions

centred on each pixel as well as the data of the pixel itself. Then an adap-

tive boosting algorithm (AdaBoost) is used to automatically select the best

features for discriminating between blemishes and non-blemishes. The Ad-

aBoost algorithm (Freund and Schapire, 1999) is used to build a classifier,

which combines results from so-called “weak” classifiers, each constructed

using one of the candidate features, into one “strong” classifier that per-

forms better than any of the weak classifiers alone. With this approach,

different features can be selected for different potato varieties, while also

handling the natural variation in fresh produce due to different seasons,

lighting conditions, etc.

For blemish detection, the classifier was trained using a subset of pixels

which had been marked as blemish or non-blemish. Tests were done with

the full set of features, “lesion experiments” were carried out to explore

the impact of removing specific feature types, and experiments were also

carried out on methods of speeding up classification both by restricting the

number of weak classifiers and restricting the numbers of unique candidate

features which can be used to produce weak classifiers. The results were

highly accurate with visible examples of disagreement between classifier

output and markup being caused by human inaccuracies in the markup

rather than classifier inaccuracy.

For blemish identification, a set of classifiers were trained on subsets of

pixels marked as each blemish class against a subset of pixels drawn from all

other classes. For classification, each pixel was tested with all classifiers and

assigned to the classifier which returned the highest confidence of a positive

result. Experiments were again performed with methods of speeding up

classification as well as lesion experiments. Finally, to demonstrate how the

system would work in an industrial context, the classification results were

summarised for each potato, providing a high overall accuracy in detecting

the presence or absence of significant blemish coverage for each blemish

type.
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1

Introduction

This thesis investigates the problem of detecting and identifying blemishes on the sur-

face of potatoes using computer vision. A novel solution is developed, in which machine

learning classifiers are trained to detect and classify common blemish types affecting

potatoes. The key innovation of this approach is that the system developed is “train-

able” – allowing it to be applied to different potato varieties and different customer

requirements, while also handling the natural variation in fresh produce due to dif-

ferent seasons, lighting conditions, etc. In each case, the system will automatically

select the best image features (from a large set of candidate features) to distinguish

between the different blemish types, by learning from a set of sample images that have

been marked up by a human expert. This innovation should help to mitigate the high

costs of currently deployed industrial systems, requiring only low-cost “off-the-shelf”

components for digital imaging and minimal set-up costs for training and retraining

the system as required. As well as describing the technical developments, this thesis

also presents extensive experiments using real world datasets (collected in collabora-

tion with researchers at Sutton Bridge Crop Storage Research and the Potato Council,

a division of The Agriculture and Horticulture Development Board) to evaluate the

performance of the system developed.

1.1 Motivation

Potatoes (Solanum tuberosum), with an estimated worldwide production of over 374

million tonnes in 2011 (Food and Agriculture Organisation, 2011), account for 70-
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80% of the carbohydrate consumed in the UK. For the fresh market the main factor

affecting consumer preference is physical appearance and, to maximise return, great

effort is expended ensuring that the appearance best matches a particular market.

Most potatoes are still sorted by hand. Problems with manual sorting include the

subjectivity, fatigue and high cost of human inspectors (Narendra and Hareesh, 2010),

while currently deployed artificial vision systems require manual calibration and may

have limited accuracy, especially with varieties that the systems have not been pre-

calibrated to accommodate. So there is a clear motivation for providing a system which

can be quickly and easily trained to work with different lighting conditions, different

customer requirements, new varieties of potatoes, and new blemishes as they become

relevant. Potato blemish diseases present a variety of different coloured, sized and

textured symptoms on the skin surface. Such diverse visual information provides us

with a rich source of indicators (or features) that can be used for training an automatic

blemish detector.

Properly sorted potatoes can command a much higher price overall. A low quality

potato can be separated out and sent to a customer who requires only raw potato

material, e.g. for the production of chips or reformed potato goods, which can be made

by cutting out the bad parts of the potato and cutting up or mashing the remainder.

A good potato, meanwhile, will sell for a much higher price to a customer who would

not be willing to pay for the low quality product (Bowbrick, 1982). Individual retailers

often place specific requirements on which blemishes are allowed and the permitted

coverage per potato, typically expressed in terms of the percentage of surface area

affected.

Few systems exist for the purpose of automatically grading potatoes in this way. Ex-

amples of industrially-fielded systems include the Odenberg Titan Sorter, which takes

two photographs of each potato, front and back, in free-fall past a camera. The Herbert

Upgrader takes multiple photographs of potatoes rolling along a conveyor belt designed

to encourage this motion. The information from these images can then be combined

to produce summary statistics for a single potato, if no single image displays sufficient

blemish to automatically classify that potato as a reject. The existing industrially-field

systems use pre-programmed rules to reject the most obvious cases of blemish, such

as anomalously coloured pixels, particularly dark pixels or long edges, since the only

long edges in a good potato should be the outline. However, these systems do not
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attempt to identify the particular diseases or processes underlying the observed blem-

ishes (Barnes et al., 2010). Identification of blemish causes is an original contribution

of this thesis, as documented in Chapter 6. The existing industrially-fielded systems

are pre-programmed and require calibration for different species, e.g. white and red

potatoes (Maf Roda Group, 2008), making it difficult to adapt them for new potato

varieties or variations resulting from, for example, a particularly wet or dry growing

season (R.J. Herbert Engineering Ltd, 2008). This thesis introduces a trainable vision

system, allowing the system to be adapted to new varieties or new circumstances much

more easily.

There are a number of diseases affecting potato tubers that, although superficial and

of no health consequence to humans, strongly and negatively influence consumer choice.

These include black dot, silver scurf, powdery scab, common scab, and skin spot. The

fungal species of Rhizoctonia solani also causes significant skin blemish manifesting as

black scurf and elephant hide. The causes of blemish diseases are known (Fiers et al.,

2010). However, customer preference may be for susceptible potato varieties, and dif-

ferent environmental and field conditions during cultivation favour different diseases.

These inevitably lead to some crops being infected in a generally unpredictable fashion.

Other forms of blemish include physical damage, e.g. growth cracks, mechanical and

slug damage as well as physiological changes, e.g. greening and sprouting. Greening

and sprouting are examples of a healthy potato tuber attempting to grow. However,

there are serious concerns (Alexander et al., 1948) about the edibility of greened pota-

toes, which contain a harmful chemical named solanine, while in the case of sprouting

the texture and flavour of the potato flesh is negatively affected. These features are

therefore treated as any other blemish. Potatoes and their tubers are also susceptible

to more significant diseases, in particular blight, and other fungal and bacterial rots.

In thesis, a subset of the most commonly occurring blemishes was investigated,

and grouped into four distinct categories or classes, namely (i) black dot, (ii) silver

scurf, (iii) scabs, and (iv) greening and sprouting. Different types of scabs were merged

into a single category, and similarly, greening and sprouting were also merged into

a single category, due to their similarity in appearance and the limited frequency of

these conditions in the data sets used in the experiments presented. Figure 1.1 shows

examples of these classes, representative of the blemish types investigated in this thesis.
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(a) A potato blem-

ished by black dot.

(b) A potato blem-

ished by silver scurf.

(c) Potato blem-

ished by powdery

scab.

(d) Physiological

greening of the skin

of a potato.

Figure 1.1: Examples of the potato blemish types investigated in this thesis.

1.2 Overview of this thesis

This thesis describes the research underpinning the development of a system to de-

tect and identify blemishes in potatoes using computer vision and machine learning

techniques.

Chapter 2 begins with an introduction to computer vision systems for food and

agriculture. The topics covered include pattern classification, which is the problem

of identifying the class to which new observations belong, on the basis of a training

set of data containing observations whose class is known (Duda et al., 2000). In this

thesis, pattern classification techniques from the field of Machine Learning (a subfield

of Artificial Intelligence) are applied, referred to subsequently as “machine learning

classifiers” or simply “classifiers”. In this work, the input to a classifier consists of image

“features” comprising information extracted from an area surrounding a particular pixel

in an image, relating to the visual appearance of the potato. The classes assigned to

each pixel by the classifiers can be either “blemish” versus “non-blemish” in the blemish

detection stage, or one of the four blemish classes described above when identifying

blemishes.

The subsequent chapters describe the development of the computer vision system

presented in this thesis, following the general stages shown in Figure 1.2.

Chapter 3 describes the imaging set-up used for this research, including details

of the camera, lighting, and the image pre-processing steps, which include removal

of the image background to isolate the foreground objects/potatoes (the process of

image segmentation) and scaling of the image to a chosen resolution. The approach

for providing the correct category (class) data required for training the classifiers is
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also described, whereby an image is marked manually by a human expert so that the

object pixels are labelled as either “good potato” or the particular blemish type. The

term “ground truth” data is sometimes used to refer to the correct category data for

individual pixels, following the conventions used in the field of aerial imaging to relate

image pixels to actual features or materials (quite literally) on the ground. Examples

of manually marked-up (“ground truth”) images can be seen in the second column of

Figure 1.3.

Chapter 4 describes the subsequent processes of feature extraction, feature selec-

tion and pattern classification. The novelty of the approach presented in this chap-

ter involves the use of an adaptive boosting algorithm called AdaBoost (Freund and

Schapire, 1999) to automatically select good features for a particular pattern classifi-

cation task. A minimal set of features is selected from a very large set of candidate

features, which measure statistical properties of the colour and texture distribution of

the image region surrounding a given pixel. After the system training phase has been

completed, only these selected features then need to be extracted for the new images

presented to the system, and are then used to classify object pixels corresponding to

potatoes.

Chapter 5 describes the application of this system to the problem of blemish detec-

tion, i.e. classification of individual pixels as “blemish” or “non-blemish”. Examples of

the classifier output can be seen in the fourth column of Figure 1.3, as well as so-called

error images in the third column showing where the output of the trained classifier

differs from the “ground truth” data provided by a human expert. Experiments are

presented to evaluate the performance on the approach using two different data sets

corresponding to white and red potato varieties, respectively.

Chapter 6 describes the subsequent application of the same system to the prob-

lem of blemish identification, i.e. further classification of the individual pixels already

identified as “blemish” according to the different blemish types (using the four classes

described previously in Section 1.1). Again, experiments are presented to evaluate the

performance of the approach using the same data sets as in the previous chapter.

Finally, Chapter 7 concludes the thesis, presenting also open questions, limitations

of the system, and possible topics for future work.
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Figure 1.2: Overview of the computer vision system presented in this thesis. Left: during

the training phase, a human expert is required to mark-up the sample image data, in order

to give the machine learning classifier the correct answers (blemish categories), and the

system also learns to select the best image features for image pixel classification on a par-

ticular data set. Right: the trained system is then deployed, and will automatically carry

out the extraction of the previously selected features and blemish classification, including

both detection and identification of the common blemish types.
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Original Markup Output Disagreement

Figure 1.3: Example images, showing two examples of potatoes analysed by the blemish

detection system, one per row. From left to right: first an original photograph, then

a “ground truth” image labelled manually by a human expert, then the outputs of the

trained system, without any human editing, with blemishes in black and good potato in

white. The final image shows an error image, showing false positive results in red and false

negative results in green, for the detection of blemish.
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1.3 Contributions

This thesis presents a novel system for detection and identification of potato blemishes

in digital images, allowing coverage to be summarised by blemish type and potatoes

to be graded for quality according to customer requirements. The specific scientific

contributions of this thesis include:

• Automatic detection and identification of common blemishes in images of pota-

toes, by application of machine learning classifiers trained from sample images

marked by human experts.

• Automatic selection of image features for blemish classification from a very large

set of candidate features, based on statistical information relating to the colour

and texture of the region surrounding a given pixel.

• A comprehensive, quantitative evaluation of the whole system using real world

data sets.

1.4 Publications

Some of the work described in this thesis has been presented in journals and conferences.

Below is a complete list of publications arising during the course of this PhD study.

• Barnes, Michael and Cielniak, Grzegorz and Duckett, Tom (2010). Minimalist

AdaBoost for blemish identification in potatoes. In: Proceedings of the Interna-

tional Conference on Computer Vision and Graphics 2010, 20-22 September 2010,

PJIIT - Polish-Japanese Institute of Information Technology. pp. 209-216

• Barnes, Michael and Duckett, Tom and Cielniak, Grzegorz (2009). Boosting min-

imalist classifiers for blemish detection in potatoes. In: Proceedings of the con-

ference of Image and Vision Computing New Zealand (IVCNZ), 23-25 November

2009, Wellington, New Zealand. pp. 397 - 402

• Barnes, Michael and Duckett, Tom and Cielniak, Grzegorz and Stroud, Graeme

and Harper, Glyn (2010). Visual detection of blemishes in potatoes using min-

imalist boosted classifiers. Journal of Food Engineering, Vol. 98 No. 3. pp.

339-346. ISSN 0260-8774
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Background

This chapter contains an overview of significant concepts relevant to the use of computer

vision within the field of food produce production, grading and monitoring. The current

state of the art is explored along with key issues in computer vision relating to the

processes of image acquisition, preprocessing, segmentation, feature extraction and

classification.

2.1 Destructive inspection methods

Other existing systems for analysis of potato blemishes include destructive methods.

These include ELISA (Enzyme-linked immunosorbent assay) testing, whereby a dye or

similar substance is activated if a key antibody reacts with a specific pathogen. ELISA

is used by De Haan and van den Bovenkamp (2005), along with Polymerase Chain

Reaction (PCR), which enhances the DNA of the pathogen present. The DNA can

then be analysed for the presence of genes specific to a pathogen of interest. These

methods were compared to the effectiveness of inspecting visually by microscope. Tests

were done on 103 samples of 5 tubers from the harvest of 2003 along with another 15

samples from the harvest of 2002.

The Potato Operation (Pun et al., 1991) introduced an application of computer

vision into an ELISA-based potato analysis process in order to to automate the selection

and removal of potato pulp. This was done by locating the “germ” within the eye of

the potato, which will eventually form a sprout, since they were interested in detecting

diseases which are far more likely to infect the eye than other parts of the potato.
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Imported seed potatoes were assessed by Tsror et al. (2012), who again used ELISA

and PCR testing to detect the presence of Dickeya bacteria, the pathogen responsible

for the slow wilt and blackleg diseases in potato plants. Sub-samples of 50 tubers

were collected from each of 277 batches from 2006-2010. Tests using PCR provided an

accuracy of 74% in predicting the presence of the diseases in field crops grown from the

seed crop, with a false negative rate of only 1.3%. ELISA testing produced a higher

83.8% accuracy but a false negative rate of 6.5%, meaning that while PCR testing

falsely rejected more batches, it nonetheless resulted in improved removal of diseased

potatoes compared to ELISA.

In general, destructive methods can be used to provide an estimate of the quality of

a crop based on a small subset of the crop. This introduces many limitations, including

the number of times that a set of potatoes can be tested, since more potatoes are

destroyed every time. This increases waste, especially where supermarkets want to

test crops separately from farmers who may have different testing standards. A non-

destructive test is therefore cheaper in terms of waste, as well as being preferable since

potentially every potato in the crop can be inspected on-line.

2.2 Overview of computer vision systems for food product

analysis

This research looks into the application of computer vision methods to classify potato

blemishes by type and by coverage. The design of a computer vision solution requires

that a number of factors be considered for different stages of the solution. As indicated

in Figure 2.1, the typical stages of a computer vision system for food analysis include

image acquisition, preprocessing, segmentation, feature extraction and classification.

Some of the major issues relating to each stage are discussed below.

2.2.1 Image acquisition

The first stage in any computer vision based system is a method of obtaining the input

data, consisting of digital images obtained from a camera or other scanning device. The

main factors involved in designing such a system include the choice of image capture

sensor, the lighting and the portion of the electromagnetic spectrum being investigated.
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Figure 2.1: The general structure of a computer vision classification system and its typical

stages.

A large range of specialised imaging sensors exist, from X-ray and radar systems to

visible light or multispectral cameras. For this thesis the decision was made to work

with an off-the-shelf visible light camera to provide a low-cost solution, which simulates

the grading processes currently in use by trained quality control staff in the industry.

The means of illuminating the object under investigation can often be the one of

most important choices. An example of a judicious choice of lighting helping to solve the

major part of a computer vision problem is described by Uthaisombut (1995), who used

custom lighting to highlight anomalies in cherries, having observed that undamaged

cherry skin did not reflect green light. Damaged cherries and stems did reflect green

light, allowing a simple solution based on colour thresholding of the image into areas

with low levels of green reflectance that should appear in cherries and areas with high

levels of green reflectance that should not appear in cherries. Damaged cherries and non-
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cherries could then be identified by the level of green reflectance in the corresponding

image region.

A system intended to operate in changing lighting conditions, such as a system that

monitors produce in outdoor environments, needs additional software considerations to

allow a classifier to generalise over different lighting conditions. In contrast, a system

operating indoors, e.g. over a conveyor belt, makes it easier to control how the subjects

are illuminated rather than trying to compensate for changes in illumination in the

system software.

As well as lighting conditions, the portion of the electromagnetic spectrum detected

by a camera can be an important consideration. The majority of cameras detect light of

wavelengths between 400 and 700 nanometers, separated into three different bands, red

green and blue. These bands correspond to the wavelengths and colour bands detected

by the cones and rods of the human eye. However, there can be sound reasons to

work outside the visible light spectrum, or to work with customised wavelengths within

the visible spectrum. Hyperspectral cameras, or spectrographs, are devices which can

record light at a high number of different frequencies simultaneously. These devices

can be used to help choose which frequencies of light to incorporate into a system.

The hyperspectral camera itself is likely to have a frame rate too slow to integrate into

a real-time grading system, since there are limits to the number of frequencies which

can be captured at once, although current innovations are increasing the number of

frequencies per snapshot (Gorman et al., 2010).

Methods of capturing light at different spectral lengths vary, with some sensors

capturing the light directly on a custom sensor, while others use a wideband light

sensor behind a filter which blocks all light not of the wavelength of interest. The

result is effectively the same, but the filter option is usually easier to customise. Other

forms of filters can include polarisation filters, which will eliminate all vibration of the

electromagnetic waveform except in the direction in which the filter is oriented. This

technique is often used to reduce glare since reflected light tends to vibrate most in a

direction close to Brewster’s angle (Lakhtakia, 1989). Lighting and light wavelengths

in particular are significant considerations for any computer vision system, but in this

project there was a desire to remain as hardware-independent as possible, so this project

included an image acquisition set-up, described in Section 3.1, to provide an even white

illumination and an off-the-shelf RGB camera.
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2.2.2 Preprocessing

Once an image has been acquired, pre-processing algorithms can be applied to improve

the image quality, for example to highlight important features or to remove noise (Gon-

zalez et al., 2004). Examples of noise reduction can include blurring of an image to

reduce noise produced by randomness in the world or the sensor, or scaling the image

to reduce the impact of individual pixels which differ greatly from their immediate

neighbours. Image sharpening to increase the prominence of edges and other texture

details can be used on its own or in combination with blurring for noise reduction. The

choice of colour space can also affect how clearly individual features can be detected.

The choice of colour space is a major part of preprocessing. Colour is an interpreta-

tion of the frequencies and amplitude of a light wave. The human eye interprets these

frequencies in the red, green and blue frequency ranges. Depending on the task, it can

be preferable to interpret light using a different colour model. Several colour models

and their applications are described below.

The RGB colour space is based on the principle that every visible colour can be

produced from a mix of the three primary colours of red, green and blue, inspired by the

colour-sensitive cells in the human eye. Used for producing colour images in computer

monitors by means of red, green and blue light sources, this has become a popular

colour model in computer imaging as it does not need converting to display on screen.

The colour model can also be normalised in order to remove the brightness element.

This is done by turning the absolute values into fractions totalling 1. r = R
R+G+B , g =

G
R+G+B , b = B

R+G+B

The HSI colour space uses the three channels hue, saturation and intensity. These

channels represent concepts that are easy for a human to understand. The hue, which

represents the dominant frequency of the light, is referred to as the pure colour, while

saturation represents the amount of white light mixed in with the pure colour and the

intensity represents the overall brightness of the colour (Gonzalez et al., 2004).

The CIELAB colour space, also named L*a*b* or simply Lab (though Lab is am-

biguous) is a colour space intended to be close to the human perception of colours.

CIELAB uses three channels. L* represents the luminosity, or brightness of a colour,

a* represents its location on a scale from red to green and b* on a scale of blue to

yellow.
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(a) (b) (c)

Figure 2.2: Typical segmentation techniques: (a) thresholding, (b) edge- based segmen-

tation and (c) region-based segmentation (Brosnan and Sun, 2004)

The use of multiple colour spaces is common, often mixing RGB with another

chromaticity-based colour space, or mixing normalised and non-normalised versions of

the same colour space. This allows features to be observed that might only be obvious

in one such type of space.

A major benefit of different colour spaces is the access to raw sensor data, bright-

ness and chromaticity, which is the colour independent of brightness. Chromaticity

in particular is advantageous for handling variations in lighting. We chose to ensure

these three qualities were present in the image information used in this thesis, us-

ing the colour spaces RGB, normalised RGB and the intensity channel I, defined as

I = R+G+B
3 , giving a total of seven channels for subsequent processing.

2.2.3 Segmentation

Image segmentation is a method of partitioning an image into regions that have a strong

correlation with objects or areas of interest (Brosnan and Sun, 2004). In this thesis,

these areas are the potato and background areas. Unay and Gosselin (2006) provide

another example, where the stem and calyx, or flower, of apples were segmented in

order to remove them from consideration by a classifier which distinguished between

good and bad apple skin.

Three of the more common types of segmentation are, thresholding, edge-based and

region-based segmentation, as shown in Figure 2.2.

Thresholding is a simple form of segmentation. From a greyscale image, threshold-

ing can be used to create binary images (Gonzalez et al., 2004). This can be one of
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the fastest segmentation algorithms, since it does not require any additional prepro-

cessing. Edge-based segmentation involves the detection of discontinuities in the grey

level, colour or texture of pixels. Region-based segmentation involves the grouping

together of similar pixels to form regions representing single objects within the image.

The criteria for like-pixels can be based on grey level, colour and/or texture.

Background subtraction is a common method of region-based segmentation, where

the system can identify foreground objects versus background, for example, because

the background has a known appearance or the background is stationary while the

foreground objects are moving. In a system such as a potato grader the physical

material and colour of the background can be chosen specifically to provide a strong

contrast with potatoes. Industrial systems such as the Herbert Upgrader often use

blue conveyor belts for this purpose, because natural food products are rarely blue.

Pixels with a high blue value can then be removed by thresholding. Blasco et al. (2008)

compared a variety of different coloured backgrounds for segmentation of pomegranate

seeds, finding that blue or light green colours were most effective.

It is also possible for background removal to be aided by the use of sensor fusion, such

as an RGB-D image from the popular Kinect sensor, which includes a depth channel

(D), allowing items to be thresholded by distance or by locating a planar surface on

which an object of interest is placed (Heimann and Meinzer, 2009). A similar option is

to combine images under changing lighting conditions when the object is much closer

to the camera than the background, which causes a more pronounced effect on the

illumination of the object than the illumination of the background, as described by

Bolle et al. (1996).

2.2.4 Feature extraction

In computer vision, a feature, also referred to as a descriptor, refers to an abstrac-

tion of image information which represents individual measurable heuristic properties

for recognising some phenomena present in that image or a region within that image

(Gutierrez-Osuna and Hierlemann (2010), IBM (2012)). Features extracted from digi-

tal images can include information relating to the colour, texture and shape of an object

of interest. These features may be summarised statistically, such as by a histogram or

the statistical moments (mean, standard deviation, skewness, etc.) of a feature value

measured for individual pixels over a region of interest. Such “region features” can
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be constructed at different levels of granularity, with the lowest possible granularity

representing features of the whole image, then of an object within the image, then of

some other region such as a pixel neighbourhood or a so-called superpixel. Usually

a superpixel would be produced by oversegmenting an image and using each smaller

segment as a region. The smallest region possible is generally an individual pixel.

Munkevik et al. (2007) developed a pixelwise classifier as part of a system to de-

scribe meals based on the layout of different ingredients, specifically meatballs, gravy,

vegetables (potatoes, peas and carrots) and jam. The pixelwise classifier used features

relating to the colour of each pixel, as well as statistics describing the pixels in a 9× 9

square region surrounding each pixel of interest.

The beans classified by Kilic et al. (2007) give an example of a region representing

a whole object. The features used were the first four statistical moments of the red,

green and blue colour channels of all pixels comprising the bean, as well as the length

and width of the bean shape when segmented from the rest of the image. This system

was able to identify damaged beans with a 91% accuracy.

A similar set of features to those used in this thesis were used in Savakar and

Anamiy (2009) to classify pictures of grains, fruits and flowers by their contents. In

this instance, the colour features used were the mean, variance and range of the whole

image for the raw red, green and blue colour channels, as well as the hue, saturation

and intensity. In addition texture features were used, with a coocurrence matrix being

produced for each of the red, green and blue colour channels. As the coocurrence

matrices resemble grayscale images, they were treated similarly with statistics extracted

from them including the mean, variance, range, energy, maximum probability, contrast,

inverse difference moment and correlation. This resulted in a total of 18 colour features

and 24 texture features. These features were used to train a neural network, which was

then used to classify images of grains into ten categories, grapes into ten categories,

mangoes into five categories and flowers into ten categories, with accuracies ranging

from 84.0% to 94.1%.

Colour features are very common in computer vision systems since they are straight-

forward to obtain after selection of an appropriate colour space, as discussed in Section

2.2.2. In systems such as Guannan et al. (2009), which aimed to detect greening in

potatoes the colour features alone can be sufficient to achieve the required level of

system performance.
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Texture features include simple features, such as the range and gradient of a pixel

neighbourhood. These are both calculated from one colour channel at a time, with the

range being the difference between the highest and lowest pixels in the pixel neighbour-

hood, while the gradient is typically calculated by convolving the image with a matrix

in order to obtain a value indicating how quickly the pixel values are changing in a

particular direction, such as left to right. Other more processor-intensive features can

include features extracted from the image’s frequency domain (Henrici, 1993), which

is a means of representing a linear sequence according to how much of the sequence

changes at what frequency. The same approach in two dimensions is used to analyse

the textures of images, with the result that generally smooth images tend to give more

“compact” results than generally rough images. Two examples are given in Figure

2.3 for comparison. Textons are statistical representations of pixel neighbourhoods

which are typically sorted into clusters for classification purposes (Johnson and Shot-

ton, 2010). Textons were removed from our early experiments because they took much

longer to extract than the entire remaining feature set.

Figure 2.3: Frequency domain outputs, top, for three close-up images of potato skin,

bottom. From left to right these represent an area of good skin, an area of silver scurf

and an area of scab, respectively. The values further from the centre tend to be higher

the rougher the respective input images. Features describing this might compare the mean

values of different areas within the frequency domain output.

Shape features may also be used. The shape of an object might be analysed during

the segmentation phase. Some of the features that might be used include the difference

between the longest and shortest diameter, the length of the perimeter, the area and

the roundness, which can be defined as the ratio of perimeter to area. For instance,
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a typical potato should be a mostly rounded shape with no sharp corners. A sharp

corner might be detected by comparing the rate of change of the radius and would be

likely to indicate a damaged potato.

Sometimes a problem may initially appear to be colour based but a better solution

will be texture based, as in Quevedo et al. (2009). In this case, the best features

for detecting enzymatic browning in pears proved to be fractal dimension features,

describing the complexity of the L*colour channel in a specific area of the image. In

other tasks there may already be well known features in use by humans for visual

inspection. Mismi et al. (2007) developed a system to grade salmon fillets, a task that

had been previously carried out by human graders. The humans had been trained

using the colour chart in Figure 2.4, which also proved to be suitable for training a

machine learning classifier. Regions of the salmon were compared to the chart in both

the normalised RGB and CIELAB colour spaces, with the results corresponding to

those of human graders 95% of the time.

Figure 2.4: A guide for human salmon graders, used as training data by Mismi et al.

(2007).

It is common to include both colour and texture features in the input to a pattern

recognition system, as discussed in Munkevik et al. (2007). The VeggieVision system

(Bolle et al., 1996) used HSI-colour and texture histograms to classify different types of
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fruit and vegetables, with application to a supermarket check-out for automatic produce

recognition. Intending to supplement human classification rather than to replace it, the

system provides a list of four likely candidates for the produce class, with the correct

class appearing in the list 95% of the time. The operator can thus select a product with

no more than one keypress 95% of the time, while using the normal slower process the

remaining one time in twenty. The prototype system includes a camera below the glass

on which the product sits. In order to separate items on the glass with items above

the glass, the system first captures two images, one with no lighting and one lit from

below. Pixels which were significantly brighter when lit from below are considered to be

foreground pixels. These pixels are then segmented from the background pixels and used

to produce colour histograms as well as two histograms providing texture indicators,

one measured using two crossed bar masks and the other measuring the deviation of

pixel intensities from the intensities of pixels in a surrounding region. When classifying

all items on the shelf with ten test images of each product, the inclusion of the texture

indicators increased the probability of the correct item being in the top four list from

93% to 96%. Adding size and shape features further increased this success rate but

did so at the cost of slowing down the system below acceptable speeds for real-world

application, a problem we also found with some more complex features.

2.2.5 Feature Selection

When classifying data with a high number of available features, it can become necessary

to find ways to reduce the number of features which the classifier has to process. This

is because every additional feature increases the complexity of the classification. Most

methods of reducing the number of features either work by selecting a subset of features

from a larger candidate feature set, while others such as principal component analysis

(PCA) produce a smaller feature set composed of mathematical functions of the original

features (Forsyth and Ponce, 2003).

PCA works by performing an orthogonal transformation on a data set with multiple

possibly-correlated features, with the intention of producing a set of non-correlated

features, known as principal components. The algorithm used presents the data such

that the largest variance is along the first component, then the second largest is along

the second component, and so on. For example, Figure 2.5 shows a distribution with

two features, x1 and x2 best described by two principal components, pc1 and pc2.
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Figure 2.5: An example of principal component analysis, with two features represented

by two principal components.

Most other feature selection algorithms compare individual features and either

choose the next best for the classification problem at hand (forward selection) or re-

move the next worst (backward selection). For example, Sequential Forward Selection

(SFS) starts with an empty set of features, then does a greedy search for the next best

feature to add to the classifier, until either a preset number of features is reached or

adding new features stops improving the classification performance.

Sequential Backward Selection (SBS), is essentially the reverse of SFS. SBS begins

with a feature set consisting of every available feature, then does a greedy search for

the next best feature to remove, until either the classification accuracy drops below a

preset threshold or a target number of features is reached. Backward selection methods

such as SBS are extremely computationally expensive since they use more features per

iteration than forward selection.

Floating search (Pudil et al., 1994) is a method that can be applied to both SFS and

SBS to allow them to take back earlier choices if these are later shown to be suboptimal.

SFS begins with a random set of features, then performs a greedy search for the best

feature to add and the best feature to remove. If the least significant feature is the

one which was just added then it is kept in the selected feature set, otherwise the

least significant feature is removed from the selected feature set and returned to the

unselected candidate feature set. Sequential Backward Floating Selection employs the

same technique in reverse, reselecting the best discarded feature if it is not the one

most recently discarded. Pudil et al. compared the method to the older “Branch and
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Bound” feature selection algorithm and found Sequential Floating Selection to perform

similarly with less computational overhead.

Evolutionary algorithms (EA) can also be applied to feature selection (Duda et al.,

2000). An EA uses mechanisms inspired by biological evolution such as reproduction,

mutation, recombination and selection. The concept involves representing every possi-

ble classifier design as a binary number, with every single bit representing one aspect,

such as whether or not a specific feature is selected for use. The algorithm begins with

a selection of these binary numbers, known as “chromosomes”, each of which is rated

by a “fitness function” based on the classification accuracy. The fittest chromosomes

are then “bred”, which involves two random events. The first event, the “crossover”,

typically selects a random point in the chromosome to split. A new chromosome is then

produced by joining together the left side of the first parent and the right side of the

second. The second event, “mutation”, involves swapping bits at random. Which can

sometimes add beneficial modifications. The whole process is then repeated for other

high ranking pairs of chromosomes in order to produce a new generation of chromo-

somes, which are again ranked by fitness and bred until the system stops producing

improvements or a certain fitness level is met as a stopping criterion.

Sometimes a feature selection method is linked directly to the classifier used. For

example AdaBoost (Freund and Schapire, 1999), a method for combining weak classi-

fiers, can also be used to select features when trained using weak classifiers that each

use a single feature. This technique is further described in the following Section 2.2.6.

AdaBoost was chosen for feature selection in this thesis because it offers a single

efficient approach for both feature selection and classification. PCA was not used in

this thesis, because we were primarily interested in selecting a small subset of useful

features from a large set of candidate features of unknown importance, rather than

finding a set of linearly uncorrelated variables that summarise all of the original feature

values. The features selected for one variety, e.g. red potatoes, will usually be different

from those selected for another variety, e.g. white potatoes. The sequential methods

described above were not used due to their higher computational requirements. While

evolutionary algorithms can be effective, they are prone to local optima, whereby a

selection is returned that is only better than similar options, rather than an optimal

solution.
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2.2.6 Classification

In machine learning, the process of classification (Duda et al., 2000) refers to an algo-

rithmic process to assign a data point to one of a set of classes, for instance “clean”

vs. “dirty” for the area under a robotic vacuum cleaner, or “spam” vs. “non-spam”

for an email filtering application. The data point, also termed an instance or an ex-

ample, consists of a vector of features which together present all the information the

classifier has about the example in question. In this thesis a data point represents a

pixel in an image. Classification in machine learning is usually a supervised process as

the classifier will first be trained on a selection of data points for which a human has

already provided the correct results (or ground truth). The classifier can then deduce

relationships between the provided results and the features of the data points, which

it will then be able to make use of to provide a classification decision for a new data

point.

This thesis investigates the use of machine learning classifiers for analysis of potato

blemishes. Not all classifiers use machine learning, since a classifier to determine

whether someone is tall enough to join a profession with a height requirement need

only perform a simple comparison between their height and the requirement. The ben-

efit of a machine learning approach is that it can potentially handle more complicated

and less clearly defined problems.

In the following, we describe some of the most commonly used approaches to clas-

sification in the food engineering literature.

2.2.6.1 Minimum distance classifier

A minimum distance classifier, as described in Gonzalez et al. (2004), represents each

class of training examples by a mean vector. When classifying a new data point, the

class of that data point will be set to the class of the closest mean vector. The distance

may be calculated using a variety of metrics. Euclidean distance represents a gener-

alisation of Pythagoras’ theorem and is the most common metric used, alternatively

Mahalanobis distance, which applies weighting on different dimensions according to the

covariance of the sample group. Other metrics include Manhattan distance, which sim-

ulates travelling in each dimension sequentially, and Chebyshev distance, which is like

Manhattan distance but also measures orthogonal distances as equal to the distance
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moved in one dimension, meaning that the distance between two vectors is the greatest

of their differences along any coordinate dimension. Weightings may also be applied

to the training examples in order to reduce the impact of outliers (data points which

appear to deviate markedly from other members of the sample in which they occur) on

the mean vector for each class. A minimum distance classifier works best for classes

which form clusters and can benefit from a good choice of features.

2.2.6.2 k-Nearest neighbour

The k-nearest neighbour (kNN) classifier is a lazy learning algorithm, meaning that

most of the computation takes place when classifying data rather than when training.

When classifying, a datapoint is classified according to the closest stored training ex-

amples. As with minimum distance classifiers, the distance to nearby training examples

can be Euclidean or Mahalanobis, however no clustering is involved. Rather than find-

ing the nearest cluster center, the classifier finds the closest k training examples and

then chooses the class of the majority. k can be any number, usually odd in the case

of binary classification.

The only preprocessing required for a kNN classifier is normalisation of individual

features, usually by applying a linear rescaling to set their mean value to zero and their

standard deviation to 1. This is achieved by taking the mean x̄ and variance σ of the

training set i and then subtracting the mean from each example and dividing the result

by the variance as x̃ni =
xni −x̄i
σi

. Without this rescaling, some features may become

more significant purely because of the units used. Additional preprocessing methods

exist to speed up the search for nearby neighbours, for example, by subdividing into

regions such that the classifier can be sure that near neighbours must be in regions

adjacent to the region in which the data point falls, by using kd-trees or by accepting

some approximation in the results.

Due to the need to store all of the training data for each class, kNN has a high

memory requirement.

2.2.6.3 Bayes optimal classifier

The Bayes classifier for a 0−1 loss function (Gonzalez et al., 2004) has decision functions

of the form dj(x) = p(x|wj)P (wj)j = 1, 2, ...,W where p(x|wj) is the probability density

function (PDF) of the pattern vectors of class wj and P (wj) is the probability (a scalar)
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that class wj occurs. Given an unknown pattern vector, the process is to compute a

total of W decision functions and assign the pattern to the class whose decision function

yields the largest numerical value. Ties are resolved arbitrarily. When the probability

density functions are, or are assumed to be, Gaussian distributed, this n-dimensional

PDF can be presented as p(x|wj) = 1
(2π)n/2|Cj |1/2e

− 1
2 [(x−mj)

TC−tj (x−mj)] where Cj

and mj are the covariance matrix and mean vector of the pattern population of class

wj and |Cj | is the determinant of Cj .

Because the logarithm is a monotonically increasing function, choosing the largest

dj(x) to classify patterns is equivalent to choosing the largest ln[dj(x)], so the decision

function can be rewritten in the form dj(x) = ln[p(x|wj)P (wj)] = ln p(x|wj) + lnP (wj)

where the logarithm is guaranteed to be real because p(x|wj) and P (wj) are non-

negative.

2.2.6.4 Neural networks

An artificial neural network (ANN), also referred to as a neural network (NN), is a

mathematical model or computational model built from connected nodes, each com-

prising a very simple processing unit, that work in parallel. The design is inspired by

the structure and/or functional aspects of biological neural networks such as the brain.

These nodes, or artificial neurons, are employed to process information using a so-called

connectionist approach to computation. A neural network obtains knowledge stores in

the weighting of the connections between the nodes during the training process. They

have been shown to be able to model complex relationships between inputs and outputs

and to solve arbitrarily complex pattern recognition problems.

Neural networks come in a variety of forms and configurations, but the fundamental

building block is the neuron, which represents many features of biological neurons. In

Figure 2.6, the configuration of neurons produces the AND operator, since if either of

the two input neurons are firing, their weights will only provide an input of 1, which is

below the output neuron’s threshold of 1.5. For the output of this binary neural network

to be positive, both input neurons should be firing, giving an input to the output neuron

of 2, sufficient to trigger it. If the threshold were reduced this could produce an OR

gate instead, since just one input would be sufficient to produce a positive output. Thus

the main features defining the operation of a neural network are the weights, which are

all set to 1 in this example, the thresholds of neurons and their connectivity. Figure 2.7
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shows a far more complex multi-layer neural network, with four inputs to four input-

layer neurons. Only one of these input neurons directly affects an output neuron with

the others instead affecting mid-level “hidden” neurons, as well as one case where an

input neuron affects another input neuron. This model also necessitates the use of the

well-known back-propagation algorithm (Bishop, 1995) for training, where the output

neuron U3 affects the hidden neuron U6 as well as connectivity between neurons on

the same level and in the case of neuron U9, the output it gave the last time it was

calculated will affect its own output the next time it is calculated.

Figure 2.6: A simple neural network producing an AND gate.

Figure 2.7: An example of a complex neural network, from Stergiou and Siganos (2012).
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2.2.6.5 Support vector machines

A support vector machine (SVM) (Duda et al., 2000) is a supervised learning classifier

that constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional

space, typically formed from the features provided and from “support vectors”, which

are combinations of two or more features. This use of these support vectors addresses

classification problems whereby different classes may not be linearly separable in the

finite dimensions provided as input data. For this reason, it was proposed that the

original finite-dimensional space be mapped into a much higher-dimensional space, in

order to find a space which can make separation of the classes much easier.

2.2.6.6 AdaBoost

The AdaBoost algorithm (Freund and Schapire, 1999) is a boosted classifier. Boosting

is a method of combining weak classifiers, with a certainty greater than 50%, to produce

a single strong classifier with high classification accuracy. Given sufficient iterations

and sufficient training data, AdaBoost can always produce a strong classifier which

perfectly classifies the training data (Russell and Norvig, 2003).

AdaBoost and its variants take a group of weak classifiers, sort them by usefulness

and combine the best weak classifiers with specific weights to produce a single strong

classifier with a higher success rate than the available weak classifiers. Any classifiers

can be combined using this method. In this thesis, the weak classifier used was a

decision stump, which is a single level decision tree. Each decision stump provides

a single threshold classifier using a single feature. Using decision stumps like this,

the system will iterate through all available features, then investigate all the different

ways the training data can be subdivided using a single threshold on that feature.

Since a threshold can be any value, the candidate values are usually chosen to lie

halfway between consecutive values of the feature, so if a feature is represented by an

8-bit integer (0-255), there will be no more than 255 possible thresholds. The system

will then select the feature and threshold which best classify the training data. Once

a new classifier has been chosen it will then weight all training examples such that

misclassified examples are given more importance than correctly classified examples

and select another weak classifier until a stopping condition has been met, such as a

specific number of weak classifiers having been chosen. The re-weighting of training
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data provides a practical alternative to using an entirely new training dataset chosen

to include more of the misclassified data.

AdaBoost was chosen for classification in this thesis because it offers a single efficient

approach for both feature selection and classification. KNN classifiers were not used

due to the high computational requirements, requiring the storage of and comparison

with a large number of individual data points. Bayes and Minimum Distance classifiers

both make strong assumptions about the distribution of the data, so were not used

in this thesis. Other classifiers, such as the Neural Networks and Support Vector

Machines described above, could have been applied for classification in this thesis after

first selecting the relevant features using AdaBoost. However such an approach would

increase the complexity of the overall solution by using two algorithms instead of one.

Additionally, AdaBoost offers the ability for the user to see and understand which

features are important for solving a particular classification problem, for example, by

listing the top n features selected. See, for example, Table 5.2 giving the top 10 features

selected for detection of blemish vs. non-blemish in white potatoes.

2.3 Example food vision systems

This section summarises some of the major related food vision systems. Many of the

described systems are used not only for quality control, but also to monitor the lifecycle

of produce, such as the stages of a product being cooked, ripening on a tree, or going

bad. In the case of products cooking or ripening, the system could then be used to

choose the correct time to use the product because it is properly ripened or cooked.

Likewise, a system monitoring the process of going bad could make an optimal choice

of when to use a product, such as a potato, before it is no longer fit for use or saleable.

2.3.1 Systems for fresh produce

Hasankhani and Navid (2012) presented a per-potato means of classifying potatoes into

three grades by size and by colour. For purposes of locating the potato in an image and

of identifying the potato size, the image was first reduced to a single grayscale intensity

channel to speed up processing. Noise was removed using a Gaussian filter before the

boundary of the potato was identified using a Sobel filter. From this information it was

possible to accurately measure the area of a potato, which was one factor in choosing
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a grade for the tuber. Colour based classification was then carried out after manually

selecting features by brute force. Each feature set was compared based on the number of

pixels it identified as faults compared to the number of pixels an expert had marked as

faulty in the same potato. The best correlation involved using a logarithmic transform

in the HSV colour space. Finally the potatoes were graded into four classes according

to blemish, then regraded according to the qualitative grade and the size. The tests

were carried out using one set of 110 potatoes.

Wang et al. (2011) demonstrated the ability to accurately estimate the size of a

potato based on a single shape feature. First, the centroid was located followed by the

principal axis, which represents the longest straight line through the potato that passes

through the centroid. This took 1.38 seconds to calculate in MATLAB, compared

to 15.72 seconds to locate the more commonly used Minimum Enclosing Rectangle,

found by rotating the potato until the principal axis is horizontal and then fitting a

bounding box to the shape. The Centroidal Principal Axis was shown to have a stronger

correlation with the major and minor axes than the Minimum Enclosing Rectangle, with

a significantly smaller calculation time. Correlation coefficients were given as 0.9656

and 0.9166 for major and minor axis using the CPA, compared to 0.9226 and 0.8807

for the same features using the MER approach.

A support vector machine was used by Dacal-Nieto et al. (2011) to demonstrate a

method of using hyperspectral imaging to locate common scab in potatoes. Using a

sample set of 234 potatoes, they first produce hypercubes, which are images with 256

colour channels, for each potato. Trial and error was then used to locate the channel

best suited to segmenting the potato from the background, which was shown to be the

channel representing light at a wavelength of 980nm. After segmenting the potato from

the background, each pixel of the potato was then treated as a data point with 256

features consisting of the 256 colour channels. Human markup was used to divide the

data points into scab and non-scab sets, then SVM and Random Forest classifiers were

trained on both sets, with the SVM providing the highest accuracy at 97.1%

Hyperspectral imaging is still a slow technology compared to traditional 3 channel

imaging, but Ariana and Lu (2010) demonstrated a technique using a hyperspectral

image as a first step for detecting defects in cucumbers and pickles. Using a similar

hypercube to Dacal-Nieto et al. (2011), they used branch and bound feature selection to

select features from only four wavebands. By limiting the number of wavebands, it was
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practical to use real-time imaging with a CCD camera fitted with custom filters while

still benefitting from training on the slower system. The resulting image was classified

using K-nearest neighbour and with discriminant analysis, producing accuracies of up

to 94.7% for cucumbers and 82.9% for pickles.

Samanta et al. (2012) graded potatoes according to scab coverage using a method

involving histogram analysis. k-means clustering was used to segment the image for

background removal, using the Hue component of the HSI colour space. A histogram

was then produced of the identified potato pixels using a greyscale version of the original

image. This greyscale image used a grey component of Grey = R×0.299+G×0.587+

B × 0.114. The potato was then graded according to scab coverage by comparing this

histogram to histograms from a ground truth set of potatoes which had been sorted by

grade. Accuracy from different test sets ranged from 87.6% to 97.5% with a mean of

93.4%.

Pedreschi et al. (2004) classified potato chips by frying temperature and blanching.

Six classes existed in the sample set, blanched and unblanched with a frying temperature

of 120 degrees, 150 degrees and 180 degrees, respectively. The system used a mixture

of 36 geometric features, including the height, width and roundness, and the ratio of

both axes of the fitted ellipse as well as 368 each of red, green, blue and intensity

features and 3 L*a*b* features per sample. Overall the system achieved 90% accuracy

in assigning the samples’ blanching/temperature combination using a simple classifier

and selecting the best five features with sequential forward selection. Distinguishing

between blanched and unblanched samples at the same temperature produced a 100%

accuracy with only the best one or two features and a very simplistic classifier, while

using samples blanched at different temperatures and only identifying whether a sample

had been blanched, among all temperatures gave a 93% accuracy. The higher accuracy

when training and testing using samples blanched at the same temperature shows the

benefit of being able to re-train a classifier for a new set of conditions, which is the

approach adopted in this thesis.

As described in Section 2.2.1, the use of custom imaging equipment can simplify

the detection of blemishes in potatoes. Muir et al. (1999) recorded the intensity of

light at 73 different wavelengths in the range of 400-2000 nanometers to demonstrate

the different reflective properties of specific diseases at each wavelength. A spectropho-

tometer covering the frequency range was used to analyse the reflectiveness of several
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hundred potatoes over different classes of defects as well as unblemished skin. Measure-

ments showed clearly that specific defects reflected differently at specific wavelengths,

an example being that blight and healthy potato mostly reflected the same amount of

light, with the largest difference occurring at a wavelength slightly under 1200nm. Like-

wise, although bacterial soft rots and common scab tended to reflect differently, there

were frequencies in the 800-1100nm range where they are less distinct. The difference

between sensor readings for the different classes are shown in Figure 2.8. Spectropho-

tometers are slow, but the results attained using the spectrophotometer could then

be used to set up a multi-spectral camera, which would capture 16 different channels,

chosen based on the results of the spectrophotometer, at a much faster rate. This work

was commissioned in part by R.J. Herbert Engineering Ltd. for use in their Upgrader

product line.

Figure 2.8: Output from multispectral scans of different blemishes and unblemished

potato skin described in Muir et al. (1999).

Tao et al. (1995) described a method for identifying greened potatoes as well as

yellow and green apples using discriminant analysis on histograms produced from each

of the hue, saturation and intensity channels in the HSI colour space. The system
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was trained using 40 good and 40 bad examples of potatoes or apples as appropriate.

The best potato classifier correctly classified 95% of good potatoes as good and 87%

of greened potatoes as greened. The apple classifier was tested on a smaller sample set

and successfully classified 100% of both good and bad apples.

Guannan et al. (2009) detected misshapen potatoes by comparing the local rate of

change of the radius of a potato. In addition they detected sprouting using a thresholded

value for the difference GD between the green colour channel G and the average of the

three colour channels. If GD is higher than the threshold TD then the pixel is deemed

to be sprouting. The value of TD was calculated for a potato variety by comparing the

values of GD for each pixel across a group of good potatoes and placing TD at a value

higher than GD reaches in these good examples. The system achieved a success rate

of 88.0%. We also investigated the use of features that summarise the image content

across either the whole potato or a region within the potato. For example, we used

the mean of the red colour channel values in a particular region (see Section 4.1.2 for

further details).

Rios-Cabrera et al. (2008) presented a method for classifying potatoes by shape,

identifying scabs and cracks by shape and detecting greening by colour. The system

used a neural network to identify shapes in an image based on the Boundary Object

Function, a sequence of distances between the centroid of a region and points on the

perimeter. Similarly to Guannan et al. (2009), this allowed the system to identify

misshapen potatoes. Once the potato shape had been classified, the same segmentation

process used previously to separate the potato from the image background was then

run with a higher threshold to separate rough areas of potato skin from the rest of the

potato. These areas were classified into scab and crack using the same features used to

classify the potato shape, then greening was detected using the hue, since greening is

shown to have a hue within a range of 90 to 135. The system achieved a 93.8% success

rate for grading potatoes according to the amounts of these three blemishes and tuber

shape.

Zhou et al. (1998) developed a similar system, using HSV colour channels to detect

green defects (greening and sprouting) in potatoes by counting the number of pixels

with hue values in a specific range, chosen based on hand-selected training examples,

and classifying those with a high number of pixels in that range as greened. They also

analysed the shape of the potato by comparison to an ellipse template and in size and
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weight by measuring the minor axis and area respectively. This gave an overall success

rate of 86.5% with a false positive rate of 57.1%. For the shape classification alone,

the results were 90% success, with 17% false positives. This thesis also presents an

approach based on counting pixels in Chapter 6.

Mendoza and Aguilera (2004) used nine simple features to identify the ripening

stages of bananas. The first three features were the mean of the L*a*b* colour channels

across the entire banana, then the next two relate to a pixel-wise detection of brown

patches on the banana, followed by the homogeneity, contrast, correlation and entropy

of the banana’s texture. The background was removed using thresholding and the

features above were extracted from the banana. Features were selected using Sequential

Forward Selection resulting in a success rate of 98%.

As an alternative to inspecting a potato using multiple images, Noordam et al.

(2000) used mirrors to inspect potatoes from all angles as they passed a line-scan cam-

era. To achieve a high speed, the system used 11 dedicated Digital Signal Processor

(DSP) boards. The system used segmentation and Neural Networks, perfectly classi-

fying potatoes according to the presence or absence of rhizoctonia. The system also

detected growth cracks with 78-87% accuracy and correctly labelled scab blemishes

with 70% accuracy.

2.3.2 Systems for dairy products

Computer vision has been used in a number of cheese production methods. Wang and

Sun (2002) demonstrated the use of an image analysis approach to measure the way that

cheese melts. Melting cheese may spread or shrink, and measuring the surface area after

melting can prove non-trivial by other methods, while using a machine vision approach

this is simply a matter of counting the cheese pixels. The study was undertaken to

compare the effects of melting cheese over set time periods and at specific temperatures.

Cheeses were stored at 5◦C for 24 hours before being sliced into 3mm thick samples.

The slices were cooked for up to 20 minutes on a pizza tray and removed from the

oven periodically to capture images. The images were captured in a dark room with

illumination from two fluorescent lights. Both cheeses were shown to melt the most at

130◦C. At 70◦C, cheddar cheese melted by 20% but Mozzarella melted less than 3%

and even shrank back down to its original size by the end of the experiment. These

results can be used to inform choices for production of foodstuffs involving melted
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cheese, such as the amount and type of cheese as well as the cooking temperature.

Similarly, it could be of interest for this research to consider monitoring the change in

area of storage blemishes, such as silver scurf, which spread across potatoes over time

in cold stores. By monitoring this change in area, the producer could be warned before

a batch of potatoes developed too much coverage of these blemishes to be, allowing

those potatoes to be prioritised for sale before the blemish spreads enough to reduce

the sale price.

Everard et al. (2007) used colour analysis to monitor the syneresis, or separation, of

cheese curd during the cheese-making process, a stage which is usually accompanied by

expert monitoring to ensure the quality and yield of the resulting cheese. By observation

of the process, it was observed that the milk becomes increasingly yellow throughout

the process, so a system was used to monitor colour changes every minute over the 85

minute duration of syneresis. The results indicated a potential for this system to be

used for monitoring syneresis, however it was noted that if the milk was stirred too

slowly then there was a tendency for the curds to sink. It was suggested that this

problem might be resolved with submerged visual probes. If our research were to be

adapted to monitor the development of blemishes in storage then visibility might also

be a problem, depending on whether the potatoes at the top of a crate are likely to be

representative of the whole crate.

2.3.3 Systems for meat products

Zheng et al. (2006) produced a system to estimate the level of shrinkage in cooked

beef joints during the cooling process. The products were photographed and an ellipse

fitted to the shape of the beef joint. After deriving the major and minor axes from

this ellipse, the original 2-D joint shape was then divided into numerous parallel cross-

sections which were assumed to be cylindrical discs and used to calculate the volume

and surface area of the joint. The resulting measurements showed that the volume and

surface area reduction due to water loss during cooling could be reliably predicted based

on the original volume and surface area of the joint. This method of 3d reconstruction

might be of use for estimating blemish coverage in a potato from a flat image.

Jackman et al. (2010) used statistical moments of the red, green and blue raw colour

channels, of the whole image, for the purposes of analysing the likeability of meat. Rib-

eye steak samples were kept under the same conditions and allowed to “bloom” for an
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hour to ensure consistent colour development. Five high magnification photographs of

different areas of the steaks were then taken, each pixel representing 0.08mm2. Five sta-

tistical features (mean, variance, skew, kurtosis and interquartile range) were extracted

from these images along with features provided by a a form of 2-dimensional wavelet

decomposition, chosen by prior experimentation. A classifier was then produced using

an evolutionary algorithm, whereby a solution is chosen by testing multiple random

options and combining features from the most successful and producing a new random

set which include these features, in a method inspired by natural genetics. This clas-

sifier described the likeability, tenderness, juiciness and flavour of steaks, from images,

with accuracies of 86%, 76%, 69% and 78%, respectively.

2.3.4 Other systems

Many computer vision classification systems are developed for experimental purposes.

Unay and Gosselin (2006) developed a system to distinguish between blemishes in

apples and visible apple stem or calyx features with the intention of removing the stem

and calyx data from an apple image that would go on to another system. Images were

recorded using custom spectral frequencies, then various features including statistical

moments of the light intensities at specific frequencies as well as shape features were

used for pattern recognition. These features were then passed to AdaBoost to produce

a classifier from. The final AdaBoost classifier provided a true positive rate of 98% for

the whole data set with a false positive rate of 9%.

Hepworth et al. (2004) presented a system designed to help experiments aimed at

producing a perfect head on a pint of beer. The system worked by measuring the bubble

size distribution of what is known as “bubble haze” while the head is still settling. The

system was tested on a “synthetic” beer produced for the purpose, with the tests carried

out in a tank when it was established that the curvature of a beer glass complicated

the process due to image distortion.

2.4 Conclusion

Machine vision has much to offer the food industry, where much of the work currently

undertaken by humans could be handled more consistently and reliably by automated
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systems. Computer vision solutions already exist that could be adapted to the task of

detecting and identifying blemish diseases in potato images.

Given the cost to industry of potato mis-classification, at a time of rising food costs

and with the appearance being the most important factor for consumers in making

decisions about the purchase of potatoes, there are clear benefits to a machine learning

based potato QC tool.

Having reviewed the literature on machine vision in the food industry, we concluded

that there is an opportunity to produce a user-friendly trainable system for blemish

detection and identification in potatoes, which can be robust to changes in lighting and

in variations between potato varieties and also between different harvests.

The following chapters now describe our approach to the task.
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3

Experimental setup

This chapter describes the overall experimental framework common to all of the ex-

periments within this thesis. The details covered include the camera setup and image

acquisition, a summary of the data sets and the means by which a set of “ground-truth”

accepted correct answers is produced for comparison with the classifier output. Such

ground-truth data can be used to evaluate the classifier using performance metrics de-

scribed below. The code for the system software was implemented in MATLAB (The

Mathworks Inc., 2009b), making extensive use of the Image Processing Toolbox (The

Mathworks Inc., 2009a).

3.1 Image Acquisition

The experimental data in this thesis, consisting of images of potatoes, were acquired

using a colour camera (Sony DSLR-A350K) fixed above the tubers, which in turn were

placed on a white board. The camera was set to auto-focus at a distance of 60cm from

the camera objective to the base on which the subjects were placed, with a focal length

of 70mm and an aperture setting of F22. A pixel in such an image covers an area of

around 0.02mm2 To reduce the effects of shadows and changing light conditions the

potatoes were placed inside a white cylinder with daylight bulbs placed around the

top. The equipment used to capture these images is shown in Figure 3.1. These factors

may change in an industrial application, but given the machine learning approach the

only major requirement ought to be that the system uses the same setup for image

acquisition, including lighting, when being trained as when in operation.
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3.2 Data Sets

Figure 3.1: The camera setup for photographing the potatoes at a constant distance with

all-around lighting.

3.2 Data Sets

Two sets of data were collected, from potatoes provided by Sutton Bridge Crop Storage

Research, part of the Agricultural and Horticultural Development Board. The datasets

were for white and red potatoes, respectively, including potatoes affected by different

blemishes.

The white potato data set, collected from the harvest of 2007, consisted of 102

images including 19 images containing a single blemish type, 39 with two distinct

blemish types, 38 with three and 6 containing more than three blemish types. The

most frequently occurring blemishes were black dot and silver scurf, appearing in 69

and 53 images, respectively, while the least frequent were elephant hide and growth

cracks, with no more than 3 images of each. Powdery or common scab occurred in 45

images and green blemishes, either greening or sprouting, occurred in 20 images.

The red potato data set, from the harvest of 2008, consisted of 48 images of potatoes

specifically selected to represent between 10 and 21 examples each of five blemish types.

These included 11 potatoes with black dot, 18 with silver scurf, 21 with scabs and 13

with green blemishes, including both sprouting and greening. Note that greening of red

potatoes results in a blackening of the skin rather than the more obvious green colour

in white potatoes. Both datasets contain potatoes of multiple varieties.
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3.3 Ground truth data

Ground truth data are needed in experimental systems both to provide training data

and to verify that experimental results correlate with what should be expected, i.e.

to provide the machine learning classifier with examples of the desired input-output

mapping. A machine learning classifier is said to generalize well when the input-output

mapping computed by the trained classifier is correct for test data not used in creat-

ing or training the classifier; the term “generalization” is borrowed from psychology

(Haykin, 1998). Thus it is common practice to divide the experimental data into dis-

joint subsets, for the purposes of training and testing the classifier, respectively, with

a human markup providing the baseline correct classes for both training and testing

datasets.

Human-provided ground-truth data are prone to errors arising from the same human

inaccuracies that a machine learning classifier might be intended to resolve. Studies

have shown discrepancies from 5% (Clark et al., 1998) to 25% (Fletcher-Heath et al.,

2001) between human markup, whether from two different humans marking the same

image or by the same human using a different interface to mark the same image. In

a blemish detection system, areas marked as blemish or non-blemish may be slightly

larger or smaller than they should be (Clark et al., 1998), or multiple clustered blemish

areas can be accidentally marked as one solid blemish area. Approaches to resolve this

issue can include simply detecting the center of an area (Hafiane et al., 2008), using

multiple ground truthers and providing automatic feedback on areas which a computer

system suspects may be incorrectly marked (Kasturi et al., 2009).

Examples of potatoes with the corresponding ground truth image can be seen in

Figure 3.2. The images are colour coded so that the pixel colour, if provided, indicates

the correct class in the ground truth data. Black pixels represent background pixels,

while pixels of other colours are treated as unmarked. Any unmarked pixels which

were found to be of colours used by the ground truth markup were replaced with

nearby colour values.

3.3.1 Background removal

To train the classifiers and test their performance, the images need to be marked up

by hand to provide the ground truth information indicating the correct class of each
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pixel. The mark up process begins with a semi-automatic method for background

removal, using the Magic Wand tool in Photoshop (Adobe, 2010) to label the image

region surrounding the potato. This is achieved by manually clicking on the background

in Photoshop. The flood fill tool usually succeeds in selecting the whole background

from one click due to the fairly uniform colour which was deliberately chosen. In a

commercial product, the Herbert Upgrader (R.J. Herbert Engineering Ltd, 2008) also

relies on background characteristics to separate potatoes from the bright blue conveyor

belt on which they are carried. The use of a blue background would limit the potato

varieties that could be handled by this project, especially blue varieties such as Congo

or Blue Tomcat, so this approach was not used in this thesis.

Since the flood fill algorithm is prone to missing small areas of background, the

system was also made to detect all areas of non-background pixels, setting all but the

largest area to background. This approach works so long as the human supervision

is detailed enough to ensure that the potato is the largest non-background area in

the image, which is a simple requirement. Our image sets included a coin in each

image to verify camera settings, but this does not need to be included. This can pose

challenges for very small potatoes, or of a commercial environment where a line might

include other sizable debris. There is existing work, e.g. Al-Mallahi et al. (2008), on

distinguishing between potatoes and the most likely debris to need filtering out of the

image.

3.3.2 Manual ground truth

In this thesis, the potato area was then hand labelled by an industry expert into regions

corresponding to different types of blemishes as well as non-blemish. It is not necessary

to label all pixels in an image: some areas of high uncertainty or ambiguity were left

unmarked, which is inevitable since even under a microscope it can be impossible to

tell that, for example, a spot on a potato has swollen due to an insect digging into the

soil and losing a leg beside it. These unmarked pixels are ignored during training of

the classifier. Background pixels are also omitted from the subsequent calculations.

The process of manual markup consists of taking the digital image after the back-

ground has been removed and marking it using appropriate image editing software (in

this case Microsoft Paint). The human markers were asked to outline areas of blemish
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which were then flood-filled automatically with a solid colour corresponding to a spe-

cific blemish type. For non-blemished potato, an area was flood-filled with white pixels

after all blemishes had been marked. With practice, using a suitable input device (i.e.

a graphics tablet) a marker could typically complete a single potato in a minute.

In addition, to assess the impact of natural variation between human experts in-

volved in providing the ground truth data, we used a combination of markup data

obtained from three different humans for a selected subset of the original data for

white potatoes. First, 20 different images were selected from the original set. For test-

ing intra-marker consistency, two additional images were also added by taking one of

these 20 images and then taking its reflection in x and its tranpose. This resulted in an

image datset of 22 images, including 3 images with the same information content but

in different guises to allow assessment of the intra-markup consistency for each expert

in turn.

The first marker was the original expert (a potato pathologist at Sutton Bridge Crop

Storage Research) who also had access to the original potato samples when marking up

the data. The second marker was another potato expert (another employee at Sutton

Bridge Crop Storage) and the third marker was a computer vision researcher (from the

University of Lincoln). Neither the second or third marker had access to the original

potato samples, as these were no longer available due to natural decay – instead, these

markers only had access to the image data sets and a list of the blemish categories

present in each image.

This panel-based approach can be used to reduce noise by only accepting examples

(pixels in this thesis) which are marked as the same class by a majority of markers (i.e.

2 out of 3 markers in our case). This so-called “gold standard” markup was used for

assessing inter-marker variation in both the blemish detection and blemish identification

experiments. It was found that the marked-up images had up to 6% disagreement

between the same marker and up to 12% between different markers. When combined,

the voted-upon “gold standard” data set differed from the default, expert-marked data

set by 9% among marked pixels.

3.3.3 Post-markup resizing

The resolution of the images taken was 3072×2048 pixels. After the background sub-

traction and manual ground truthing. these images were then scaled down by a factor of
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2, to 1536×1024 pixels, in order to reduce the size of the classification task. Initial tests

showed that this down-scaling operation did not reduce the accuracy of classification,

with accuracy varying by no more than 0.1%.
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(a) Image showing a potato with silver scurf

and black dot.

(b) Ground truth image showing areas marked

up as background (black), unblemished

(white), black dot (red) and silver scurf

(green).

(c) Image showing a potato with silver scurf

and greening.

(d) Ground truth image showing areas marked

up as background (black), unblemished

(white), siver scurf (yellow) and greening

(green).

Figure 3.2: Ground truth images of potatoes, with the originals for comparison. More

examples can be found in Appendix B.
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3.4 Training and testing data

Expert marked training data are needed to provide a classifier with examples which are

known to be correct, so the classifier can deduce features which relate to the correct

classes by example. Likewise, expert marked testing data are required to adequately

assess how accurately the system classifies new examples.

When dividing the data set into training and testing data sets, it is necessary to

ensure that the human-marked data from any one potato image is only present in either

the training set or the testing set, never in both. Once the decision has been made

of which images to take training and testing data from, the examples in the training

images are then reduced to an equal number N of examples from each class, since an

imbalanced number of examples per class can result in the classifier becoming biased

in favour of one class over another. For instance if there were 100,000 examples, 90,000

belonging to class A and 10,000 belonging to class B, the classifier could achieve 90%

accuracy by classifying everything as class A. AdaBoost compensates for this by adding

weight to examples which are misclassified, but a particularly large imbalance can still

take several iterations to correct, while pre-selecting the training data can prevent such

corrections from being necessary. In this thesis, N is 30,000 per class for blemish

detection experiments or 10,000 per class for blemish identification experiments, using

a total training set of 60,000 or 50,000 examples per training data set. The number

of potato images involved compares reasonably to other studies such as Mendoza and

Aguilera (2004), who used data sets of 49 bananas and 6 bunches of up to 13 bananas,

respectively, and to Pedreschi et al. (2004) who tested on sets of between 20 and 60

potato chips.

Because pixels near to the boundary of the potato were generally out of focus, the

decision was also taken not to process pixels too close to the edge of the potato, defined

as having background pixels in the 65 × 65 region centered on the pixel. This was

done also to reduce the number of features that might be affected by the edge of the

potato, which tended to have a large impact on the gradient and edge length features.

This approach could be compensated for by using a technique such as that used by

the Herbert Upgrader (R.J. Herbert Engineering Ltd, 2008) to summarise the blemish

coverage of an entire potato from multiple images taken in different orientations. These

omitted pixels represented under 20% of the data set. As in Section 3.3.1, this puts a
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minimum size on a potato that can be classified, but this could be compensated for by

changing camera settings if the system is expecting a batch of small potatoes.

Once the training images have been selected, N pixels for each class are then se-

lected. These pixels are evenly distributed between all examples of that class from the

training images by taking every nth example of the class, where n equals N divided by

the number of examples of that class Xi. To allow the experiments to be repeated with

different training and testing data sets, the first pixel can be offset by up to n and still

produce a similarly representative training or testing set. For example, if a class has

100,000 examples in the training set from which the system requires 10,000 examples,

those 10,000 could be taken as every tenth example starting with the first example in

each file, or the set might be every tenth example starting from the third example, or

from anything up to the tenth example.

Testing data are produced in the same manner when testing performance on a pixel-

wise level. For those experiments which test performance on a whole potato level, by

detecting which blemishes cover more than a certain percentage of the visible potato,

every pixel is classified for each test image.

Using the training and testing data with ground-truth labelling, the output of the

classifier can be compared to the expected output from ground truth in order to produce

various metrics to evaluate the classifier’s performance, as discussed next.

3.5 Evaluation metrics

Once the classifier has been trained successfully and then tested on a given data set,

the actual outputs of the classifier can be compared to the ground truth data to obtain

a measure of how well the classifier performs. For the blemish detector, the output

of the classifier is a binary image with pixels indicating good potato or blemish. The

performance of the system can be measured by comparing the output image to the

ground truth information. The following statistics were calculated for each output

image:

• TP - true positive, number of pixels that were classified as blemish and matched

ground truth;

• FP - false positive, number of pixels that were classified as blemish but did not

match ground truth;
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• TN - true negative, number of pixels that were classified as good potato and

matched ground truth;

• FN - false negative, number of pixels that were classified as good potato but did

not match ground truth.

From these statistics we could calculate the following metrics:

• sensitivity = TP
TP+FN ;

• specificity = TN
TN+FP ;

• accuracy = TP+TN
TP+TN+FP+FN .

We represent the performance of our blemish detection classifier using the most com-

mon method based on Receiver Operating Characteristic (ROC) curves, which provide

detailed information about the relationship between the sensitivity and specificity with

respect to different parameter settings of the system (Fawcett, 2004). Figure 3.3 shows

ROC curves produced by varying the value of the parameter b in the AdaBoost algo-

rithm, which is the weighting factor that determines whether the classifier should err

on the side of false positives or false negatives. This choice can be important, say in

medical systems where it is preferable to err on the side of false positives, referring

people for further tests who are actually healthy, than to produce a single false nega-

tive, letting a diseased person go undetected. By varying parameter b a little at a time,

curves like those shown are produced.

For a multi-class classifier, such as the blemish identifier described in Chapter 6, a

popular method of visualising the classifier performance is a confusion matrix (Stehman,

1997). A confusion matrix, as seen in Table 3.1 is a table laid out in such a manner that

the correct classification results are shown on the main diagonal, often in bold, with

columns representing ground truth classes and rows representing classifier outputs.

Cells not on the diagonal represent the confusion between two classes, with higher

numbers representing more of the column class being wrongly classified as the row

class.

As well as confusion matrices, multi-class classifiers can also be summarised using

performance metrics designed for binary decisions. In the example summarised in

Table 3.1, a summary might be made for the accuracy when classifying blemished skin
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Figure 3.3: Examples of ROC curves representing experiments on blemish detection in

white potatoes. As can be seen, manually increasing the sensitivity (likelihood of a positive

result being classified as positive) results in the specificity (likelihood of a negative result

being classified as negative) reducing faster the closer the sensitivity is to 1, and vice-versa.

This example compares the performance of Minimalist AdaBoost, as described in Section

4.2.3, with different numbers of unique features (Fs) versus all of the available features

(Fc) in the feature set.

as blemished skin overall, or for the confusion between two classes, such as between

silver scurf and black dot. See also Section 6.2.1 where results for blemish identification

are presented.

When the experiments are repeated with different sets of training and testing exam-

ples, as described in Section 3.4, these results can be summarised using the mean and

standard deviation of the results from each training and testing set. A good classifier

should not only have a high success rate but also a low standard deviation of its success

rate, representing a consistently high success rate.

Finally it is often of interest to view which features are selected, for each class in

blemish identification or which features are selected for blemish detection. This can

give an insight into the kinds of features which best define a class. Visual inspection

can often provide a reasonable explanation of why these features are chosen and prompt

the inclusion of other features. As well as simply listing the features selected for each

classifier, we carried out a set of controlled experiments to determine the influence of
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Classifier output

black dot silver scurf scab green unblemished

M
a
rk

u
p

black dot 83.8± 1.3 3.7± 0.6 0.5± 0.2 2.2± 1.2 9.8± 0.4

silver scurf 5.7± 1.1 86.1± 1.0 0.8± 0.1 2.7± 0.7 4.7± 0.4

scabs 2.1± 0.3 2.8± 0.6 90.5± 0.6 1.6± 0.4 3.0± 0.2

green 1.1± 0.4 3.3± 0.4 0.3± 0.1 94.3± 0.5 0.9± 0.1

unblemished 14.5± 1.7 12.4± 0.7 1.3± 0.2 6.5± 2.6 65.3± 2.3

Table 3.1: Example confusion matrix, showing classification results for red potatoes.

different subsets of features on the overall system; these “lesion experiments” (Kosslyn

and Intriligator, 1992) were conducted by removing specific feature sets in turn and

assessing the change in performance.

3.6 Summary

This chapter has described the experimental setup used to investigate computer vision

algorithms for the purpose of detecting and identifying blemishes in potatoes. This

includes image acquisition, image pre-processing and the chosen regime for training

and testing including the human markup procedure.

The next chapter deals with the machine vision algorithms themselves, then Chapter

5 describes the experiments pertaining to the detection of blemishes and Chapter 6

describes the identification of five different classes of potato skin, including unblemished

skin and four blemish types.

47



4

Feature selection and

classification

This chapter describes the main computer vision algorithms investigated in this thesis.

The classifier used for blemish detection or identification is produced using a variant

of the AdaBoost algorithm (Schapire and Singer, 1999) to select and combine multiple

weak classifiers employing simple thresholds within the features described in Section

4.1, to produce a strong “combined” or “ensemble” classifier.

A machine learning solution was chosen due to the variety and evolving nature

of potato crops, potato blemishes and lighting conditions. New varieties of potato are

developed every year (Guo et al. (2009), Wu et al. (2010), Bizimungu et al. (2013)), and

so a system which can be quickly and easily trained to work with a variety which has not

been seen before has obvious advantages over one which requires expert intervention to

be able to cope with the unexpected. Blemishes may also change over time, with rarer

blemishes becoming commonplace or new strains emerging which the system would

have to detect. Lighting can change for a number of reasons, with examples including

legislation, such as the recent change in the regulation of filament lightbulbs and the

turn of the seasons. Being able to retrain quickly also gives the opportunity to apply

the approach to other types of produce.

After the images are obtained, they are first processed using a semi-supervised

background removal process and scaled down by a factor of 2, as described in Section

3.3. A human expert then manually assigns ground truth markup to each pixel, after

which the feature extraction process is begun.
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4.1 Feature extraction

For these experiments, we used a collection of features for each pixel of interest and

for a set of regions centered on the pixel itself. First a selection of pixel statistics were

produced for every pixel in the image. At this stage, every pixel ends up being repre-

sented by a total of 28 statistics. Each region surrounding the pixel is then represented

by five features summarising the pixels within that respective region. This allows the

system to identify a blemish based on nearby characteristics as well as the pixel itself.

This is of use when blemishes contain individual pixels that are similar but can be

distinguished by nearby pixels, such as scab vs. silver scurf wherein similar individual

pixels can be distinguished based on nearby pixel gradients. Square regions were used

for simplicity, as described in Section 4.1.2.

Figure 4.1: An overview of the process of extracting 728 features from an image.
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As shown in Figure 4.1, we used 7 colour channels, RGB, normalised RGB and

intensity × 4 feature types, colour, edge gradient, edge length and range × 5 regional

statistics, mean, variance, skewness, minimum and maximum, making 140 statistics for

each of 5 regions and 7 colour channels ×4 feature types = 28 features for the pixel

itself. All these 728 features are used to provide the candidate feature set. These are

described in detail as follows.

4.1.1 Pixel features

The proposed system uses the RGB colour space, the original colour format of the

camera output, as used in Wijethunga et al. (2009) and Guannan et al. (2009). An

alternative solution would be to use the HSV/HSI colour spaces as in Bolle et al. (1996)

and Tao et al. (1995), or possibly CIELAB, as used in Mendoza and Aguilera (2004).

CIELAB in particular is often chosen for its device-independent nature, but one of our

interests in this system is that the learning classifier can easily adapt to changes in

hardware, lighting or other conditions. For this reason we decided to try RGB before

considering whether it was worth introducing a new colour model. Other systems use

more complex hardware set-ups such as customised lighting, as is an option for the

Maf-Roda Agrobotic System (Maf Roda Group, 2008) or specific colour filters like in

Unay and Gosselin (2006).

Our system uses seven colour channels, which consist of red, green and blue; nor-

malised red, green and blue; and the intensity channel. Normalised red, green and blue

are produced by taking the three RGB channels from the original image and turning

their absolute values into fractional values as in Equation 4.1.

r =
R

R+G+B
, g =

G

R+G+B
, b =

B

R+G+B
, I =

R+G+B

3
(4.1)

From these seven colour channels we consider the following image properties:

Colour channels and intensity. Intensity is especially of relevance for dark blem-

ishes, e.g. black scurf or skin spot, while the most obvious blemish to be detected by

other colour channels would be greening in white potatoes. Each pixel has seven fea-

tures provided by the colour channels. Figure 4.2 shows an example of colour features

highlighting a green blemish.
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Gradient filter. An edge detector determines the rate of change of pixel values in a

given neighbourhood in a specific direction. Some blemishes tend to coincide with high

rates of change, such as powdery scab when the skin splits. The Sobel edge detector

was used in this case with a standard 3× 3 kernel size. The Sobel filter can be used to

detect horizontal or vertical gradients depending on the orientation of the kernel. The

gradient formulas for horizontal and vertical gradients, respectively, can be represented

as follows:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗A, Gy =

−1 −2 −1
0 0 0

+1 +2 +1

 ∗A, (4.2)

where ∗ is the convolution operator and A is the matrix being processed, in this case

one channel (e.g. colour channel) of a given image.

The two orientations can also be combined to give an overall gradient by summing

together the absolute output of both orientations G = |Gx|+ |Gy|. This is of use when

seeking rotational invariance since rotating a potato through 90 degrees would otherwise

swap the horizontal and vertical gradients. The non-directional gradient filter was run

on the same seven colour channels listed above, providing another seven features for

each pixel. Figure 4.3 shows an example of gradient features for scabs.

Edge length. Using the gradient feature, the edge length is determined by first

detecting edges by thresholding the output of the Sobel filter. Pixels are first labelled

as edge (high gradient) or non-edge (low gradient), then pixels marked as edge are used

to form connected components. Each pixel within a connected region is then given

a final value equal to the number of pixels which form that component. Non-edge

pixels are given a value of zero. Larger edge components tend to be found around

edges in particular. We used MATLAB’s default threshold calculation of T = 4 ∗√
mean(gx2 + gy2) where gx and gy are the gradients in x and y axes, respectively.

This operation provides another seven features per pixel. Figure 4.4 shows an example

of edge length features for scabs. It can be seen that, while much of the image is dark,

since non-edge pixels all have a value of 0, the longer edges are brighter since they have

a higher value corresponding to their larger pixel count.
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4.1 Feature extraction

(a) Example white potato affected by greening

(b) The red colour channel can be isolated to highlight the lack of red-

ness in one area of the image.

Figure 4.2: Colour channels work best on blemishes such as greening.
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4.1 Feature extraction

(a) Example white potato affected by scab

(b) The gradient feature highlighting the scabs.

Figure 4.3: Gradient filter output for scabs.
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4.1 Feature extraction

(a) Example white potato affected by scab

(b) The edge length feature makes the scabs more visible.

Figure 4.4: Edge length feature for scabs.
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4.1 Feature extraction

(a) Example white potato affected by black dot

(b) The output of the range filter makes it easy to spot the individual

patches of black dot.

Figure 4.5: Range filter output highlighting patches of black dot.
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4.1 Feature extraction

Range filter. The range filter is a basic texture filter which determines the maximum

difference between pixel values in a given neighbourhood indicating the roughness of

the texture. This neighbourhood is relative to each pixel, in this case a 5 × 5 square

centered on the pixel. The output of the range filter is a matrix the same size as

the input image, with each pixel value replaced with the range of its neighbourhood.

Higher values tend to correspond to rougher, potentially damaged areas of the image.

The range of the seven colour channels provides another seven features per pixel. Figure

4.5 shows an example of range features highlighting patches of black dot.

4.1.2 Regional statistics

Figure 4.6: A section of an image showing regions of 33 × 33 and 65 × 65 on a potato

affected by silver scurf, slug damage and scabbing.

Features extracted from a region of interest, such as those used in Kilic et al. (2007)

or Savakar and Anamiy (2009) can contain more information than a single pixel. In

early experiments, using only pixelwise features, classifiers often confused lenticels, tiny

corky patches which allow air into a potato, with silver scurf. Lenticels, however, are

very small and surrounded by an area of normal potato skin. Using regional statistics

to add spatial context information from surrounding pixels made mis-classifications of

this type far less common.

Other systems have summarised regions using only the mean of the region such as

Tsai and Tsai (2002) or histograms as in Bolle et al. (1996).

For each pixel, the 28 pixelwise features described in Section 4.1.1 are combined

with another five statistics for each of five regions centered on the pixel. These regions

are squares of 33 × 33, 65 × 65, 97 × 97, 129 × 129 and 161 × 161. Examples of these
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regions are shown in Figure 4.6. The question of regions which overlap the image edge is

not an issue since only potato pixels are processed and none of these come close enough

to the image boundary. However the choice was made to exclude pixels which had been

identified as background from regional calculations. The region sizes were chosen as

multiples of 32, plus one in order to have a central pixel. Each of these regions was

summarised using the mean, variance and skew as well as the minimum and maximum

values within the area. Figure 4.6 shows the area of the first two examples in a potato

image.

4.2 Classification

A classifier is an algorithmic process to assign a data point to one of a set of classes.

The classifier will be presented with features pertaining to a datapoint to be classified,

in this case a pixel from a potato, and it will return a classification decision, such as

which kind of blemish is present if any. A machine learning classifier learns this decision

function based on previously presented examples known as training data.

The classifiers used in our experiments are based on the Real AdaBoost algorithm

(Schapire and Singer, 1998). In this thesis an extension of the Real AdaBoost algorithm

was developed to reduce the number of overall features required to be extracted from

every image. This provides an alternative control for reducing the complexity of the

AdaBoost-based classifier instead of simply reducing the maximum number of weak

classifiers. By reducing the number of unique features used instead of the number of

weak classifiers, we achieve a higher speed with a lower reduction in accuracy than

would be achieved by reducing the number of weak classifiers.

4.2.1 AdaBoost

Real AdaBoost proposed by Schapire and Singer (1998) is a generalisation of the Ad-

aBoost algorithm that provides a lower error rate by allowing weak classifiers to vote

by their individual degree of certainty instead of simply voting “yes” or “no”. In addi-

tion, Real AdaBoost supports a bias so that, for example, if false negative results are

considered less desirable than false positive results, then the classifier can be adjusted

accordingly. This bias b is also used to generate the ROC curves as described in Section

3.5.
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4.2 Classification

Algorithm 1 Real AdaBoost learning algorithm.

Given a dataset S = {(x1, y1), ...(xm, ym)} where xi ∈ X and yi ∈ {−1,+1}, the weak

classifier pool K, containing all possible weak classifiers from Fc candidate features,

a specific number of weak classifiers to be chosen T

Initialise the sample distribution D1(i) = 1/m

For t = 1, ...T

1. For each weak classifier h in K do:

a. Partition X into several disjoint blocks X1, ..., Xn

b. Using the weights in distribution Dt calculate

W j
l = P (xi ∈ Xj , yi = l) =

∑
i:xi∈Xj ,yi=l

Dt(i)

Where l = ±1

c. Set the output of h on each Xj as

∀x ∈ Xj , h(x) =
1

2
ln

(
W j

+1 + ε

W j
−1 + ε

)

d. Calculate the normalisation factor

Z = 2
∑
j

√
W j

+1W
j
−1

2. Select the ht, minimising Z i.e.

Zt = min
h∈K

Z

ht = arg min
h∈K

Z

3. Update the sample distribution

Dt+1(i) = Dt(i)exp [−yiht(xi)]

and normalise Dt+1 to give a probability distribution function.
The final strong classifier H is

H(x) = sign

[
T∑
t=1

ht(x)− b

]

The confidence of H is defined as

ConfH(x) =

[
T∑
t+1

ht(x)− b

]
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As described in Algorithm 1, Real AdaBoost applies weights to training examples in

order to simulate using a different training set each iteration. Weights are increased for

wrongly classified examples and reduced for correctly classified examples. This provides

a similar effect to selecting a new training dataset containing more examples which are

harder to classify.

As described in the algorithm, the Real AdaBoost algorithm used in this thesis takes

a set of training examples and assigns each example an equal weight. These weights

are all set to 1, then normalised to produce a probability distribution function (p.d.f.)

by dividing each weight by the sum of all weights.

At this point, the system begins its first iteration. The system iterates through each

feature in turn, testing potential weak classifiers representing every way the data set can

be subdivided using one threshold on that feature. For example, a data set containing

the feature values 1, 1, 4, 6 would be tested using thresholds at 2.5 and 5, these

numbers being the midpoints between consecutive unique values. For each potential

weak classifier, the system calculates the error produced in terms of the weighting of

all misclassified examples.

If an exit condition is met, in this case the training error being zero, then this is

where the system will exit. If not then the weighting is recalculated as Dt+1(i) =

Dt(i)exp [−yiht(xi)], where yi is the classification ground truth and ht(xi) is the result

of classifying the datapoint xi using the new weak classifier. The weighting is then

normalised as before and another iteration is carried out.

When the exit condition is met or a predefined maximum number of iterations has

been reached, the final hypothesis is defined as H(x) = sign
[∑T

t=1 ht(x)− b
]
, with

the bias value, b, defaulting to zero, which can be adjusted up or down if false negatives

are considered to be better or worse than false positives. A positive b will tend to result

in more false negative results and fewer false positives, while a negative b will have the

opposite result.

4.2.2 Multiclass AdaBoost

AdaBoost has been used in a variety of methods to produce a multi-class solution.

Examples have included adapting binary classifiers to produce a multiclass approach,

most commonly either by producing binary trees which use a selection of binary clas-

sifiers to progressively reduce the number of classes that can be the correct one before
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finally reaching a binary decision that only leaves one possible class. Another method

involves a “one-against-all” approach, whereby one classifier is produced for each class,

with each classifier’s output somehow compared to each other classifier’s output to find

the most likely class (Allwein et al., 2000).

As there are many binary AdaBoost variants, there are also many explicitly multi-

class AdaBoost variants. Three of these, AdaBoost.M1, AdaBoost.M2 Freund and

Schapire (1996) and SAMME Zhu et al. (2009), each work by testing each available

weak classifier’s effect on the overall weighted error of the current combined classifier.

SAMME and AdaBoost.M1 are both very close to the original AdaBoost algorithm ex-

tended to allow for the possibility that a weak classifier now has more than two possible

outputs. SAMME features a change in calculation of weights which will allow classifiers

to be combined so long as they are better than random guesses, rather than better than

50% accuracy as specified in AdaBoost and preserved in AdaBoost.M1. AdaBoost.M2

is designed to respond to many of the limitations of AdaBoost.M1, including the need

for weak classifiers which only output a class decision. Under AdaBoost.M2 each weak

classifier returns a vector of confidences, with each representing how likely the weak

classifier considers each class as being correct. It is these vectors which are combined to

produce a final set of likelihoods for each class, and for calculating the new weighting

of training samples between iterations of AdaBoost.M2.

At the time of choosing a multiclass approach, initial tests that were performed on

the smaller set of features in use at the time did not find any one multiclass AdaBoost

approach to be significantly better than all of the others, with several implementations

giving results of around 79% for white potatoes and nothing outperforming that bench-

mark at the time. From these top performers, the decision was made to continue using

a modified version of the blemish detection framework, adapted to use multiple classes

by means of a one-against-all implementation of Real AdaBoost, since it required the

least modification of our approach. Additionally, the initial tests for this prototype

took less than half the time of the next fastest top performer, which was an important

consideration.

The one-against-all approach is commonly used with binary classification tech-

niques, comparing the certainties of different binary classifiers to provide a multi-class

approach (Bishop and Nasrabadi, 2006). Most classifiers, including Real AdaBoost and

other variants produce a “confidence value” which is higher the more likely the result
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is of being positive and lower the more likely it is negative. This confidence value then

allows the decision to be weighted, for instance if a false negative is considered a much

worse result than a false positive, adding a constant to the confidence value will increase

the required certainty that a result is negative before returning a negative result. In

a one-against-all multiclass solution, the multiclass decision involves returning as a re-

sult the class associated with the binary classifier that produces the highest confidence

value.

4.2.3 AdaBoost and classification speeds

The option to limit the number of weak classifiers that AdaBoost combines into a

single strong classifier offers a method for increasing the overall speed of a classification

process. Several other methods have been developed to speed the training stages of

AdaBoost, usually by reducing the size of the training data set, whether by selecting

a random subset each iteration, or through means such as Weighted Novelty Selection

(Seyedhosseini et al., 2011) which produces a reduced summary with higher initial

weights applied to examples representing more datapoints.

In this thesis we observed that over 99% of the processor time involved in the

use of the trained system was for the process of feature extraction, so we focussed on

approaches that could reduce the number of features used. This included limits on

the number of weak classifiers, but also an approach we call “minimalist AdaBoost”

whereby the system is allowed to continue to train once it has reached a limited number

of features, but can only then select weak classifiers which re-use features already

selected.

This approach was inspired by the observation that tests using only ten weak clas-

sifiers often used less than ten features. Additionally, AdaBoost had been explored as

a feature selection method for Support Vector Machines (SVM) by Littlewort et al.

(2006), in research relating to facial expression classification. They observe compara-

ble performance between AdaBoost and a SVM, with some results showing AdaBoost

outperforming the SVM and others not. When training the SVM only on features

selected by AdaBoost, referred to as AdaSVM, the classification accuracy increases in

all experiments. Their research also compares the time and memory requirements of

an SVM trained on all features versus an SVM trained on AdaBoost selected features,

with the latter being at least 450 times faster and requiring only 3.6% of the memory
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requirements (90 seconds vs. 0.2 seconds and 90 megabytes vs. 3.3 megabytes, respec-

tively). Our research suggests that it can also be helpful to use AdaBoost to select

features for AdaBoost itself.

Since this approach was first published, Mathanker et al. (2011) has shown that

a minimalist AdaBoost approach can also give good classification rates for identifying

defects in pecan nuts. Rather than simply employing the approach of reducing the

pool of weak classifiers to those using features which have already been selected once

the feature count reaches Fs, Mathanker tries experiments using the features selected

using five iterations of one classifier to train another classifier. Ultimately, AdaBoost

based systems are shown to produce similar results (92.2% - 92.3%) compared to SVM

(90.1% - 92.7%), but ten times faster.

4.3 Summary

Now the main computer vision algorithms have been described, looking at the process

of turning a potato image into a set of features and the automatic selection of features

to create a classifier which can be used to describe the amount of blemish affecting the

skins of different potatoes.

The next chapter describes experiments pertaining to the detection and measure-

ment of potato blemishes, with Chapter 6 exploring processes to differentiate between

five different blemish types as well as unblemished potato skin.
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Blemish detection

This chapter describes the experiments undertaken to distinguish potato blemishes from

good potato skin. For this purpose, sample images were obtained from which a selection

of features were extracted for every pixel. The images were segmented according to an

expert markup system and only those pixels known to be either blemish or good potato

were used. The potato sets were then divided by images into sets of 10 to 12, with

each set in turn used as a testing set for a classifier trained using all the other sets.

The overall accuracy of classifying pixels as blemish or non blemish was 91.3% ± 0.2

using white potatoes and 88.9% ± 0.4 using red potatoes. After obtaining this result,

experiments were done into the effects of using a reduced number of features, both by

the traditional method of restricting the number of iterations used by AdaBoost and by

the minimalist AdaBoost approach. In addition, “lesion experiments” were undertaken

whereby specific feature types were removed from the feature set. When restricting

AdaBoost to a maximum of n features, minimalist AdaBoost outperformed regular

AdaBoost. When excluding certain feature types, the best results were obtained using

colour and gradient features for white potatoes or colour and range features for red

potatoes.

5.1 Experiments

These experiments were performed using a hold-one-out strategy described in Devroye

et al. (1996) and implemented as follows. The white potato data was divided into

10 groups (9 groups containing 10 images and 1 containing 12 images), while the red
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potato data set was divided into 4 groups of 12 images. For each group, 3,000 positive

and 3,000 negative examples was randomly selected. Then, each group was used in

turn as a testing set for a classifier trained on examples from all remaining groups.

The training data for both red and white potato experiments consisted of 27,000

positive and 27,000 negative examples. For the white potato experiments, this consisted

of 3,000 positive examples and 3,000 negative examples from each of 9 out of the 10

groups of images, with testing data being 3,000 positive and 3,000 negative examples

from the remaining group. For red potatoes the training data consisted of 9,000 positive

and 9,000 negative examples from each of 3 out of the 4 groups. This process was carried

out once for each groups with a different group being used for testing each time. The

decision to use groups of 10-12 images was taken to provide a good selection of blemish

types in both training and testing sets for all experiments.

Since this training data involved less than 10% of the total data, it was possible

to run the experiment again with different data by applying an offset to the subset of

data selected from the total available potato data. The results in Section 5.2 show the

mean and standard deviation of experiments using ten different subsets of the available

training and testing data.

In this stage of the experimentation we examined the impact of different experi-

mental setups on detecting blemish pixels versus non-blemish pixels using ground truth

image data marked up by an operator following the guidance of a potato expert. In

terms of the classifier itself we compared the effect of changing the number of iterations

of a Real AdaBoost classifier and the number of unique features used by a minimalist

Real AdaBoost classifier.

As well as studying the specific features chosen by AdaBoost classifiers, there were

also “lesion experiments” to examine the impact of removing specific feature types. A

full list of feature categories and the results of testing with each subset can be found

in Tables 5.4 and 5.5 for white and red potatoes, respectively.

5.2 Results and discussion

The results of these experiments are given in Table 5.1, as well as ROC curves in Figure

5.1. The sensitivity and specificities represented in the ROC curves can also be found,

along with graphical representations of the accuracies, in Appendix A.1. These results
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Feature Non-minimalist Minimalist

limit White Red White Red

1 0.807 ± 0.005 0.777 ± 0.003 0.807 ± 0.005 0.777 ± 0.003

2 0.807 ± 0.005 0.785 ± 0.004 0.869 ± 0.002 0.802 ± 0.002

5 0.873 ± 0.006 0.821 ± 0.004 0.902 ± 0.001 0.858 ± 0.004

10 0.896 ± 0.002 0.858 ± 0.004 0.911 ± 0.002 0.886 ± 0.004

40 0.913 ± 0.002 0.889 ± 0.004 0.913 ± 0.002 0.889 ± 0.004

Table 5.1: Accuracy of these experiments comparing two methods of restricting the

workload of the classifier, by selecting a smaller number of weak classifiers (up to 40) or by

selecting 40 weak classifiers with a restricted number of unique features. For the last row

the results show no difference since the restriction of 40 unique features does not change

the features selected by only 40 weak classifiers.

indicate that, by allowing AdaBoost to re-use features, the accuracy of a classifier using

a smaller number of features can be increased over and above that of simply limiting

the number of weak classifiers as is standard across AdaBoost variants. This allows

a higher accuracy to be obtained at a similar classification speed. The main cost of

such an approach would be in the time taken to train the system, which would be of

less concern in a real world industrial application than the time saved when classifying

potatoes since it would be expected that the system should be trained once at the

beginning of a batch and then left for several hours to classify tonnes of produce.

5.2.1 Speed

Because of the extra system overhead of running in the MATLAB environment, this

prototype system runs much slower than would be required in a commercial system.

However it is still of interest to investigate algorithmic approaches that can be used to

speed up classification. Table 5.1 and Figure 5.1 already show the effects on classifi-

cation rates of reducing the number of features. The difference in speeds between the

minimalist and non-minimalist AdaBoost approaches is shown in Figure 5.4 for white

and red potatoes.

For white potatoes, minimalist AdaBoost using 5 features provides a better classifi-

cation rate than non-minimalist AdaBoost using 10 weak classifiers, with the minimalist

approach achieving a 97% increase in speed (396 pixels per second vs. 201 pixels per
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(a) White potatoes

(b) Red potatoes

Figure 5.1: ROC curves describing the error rates of blemish detection in white and red

potatoes, using the error rates given in Appendix A.1, Tables A.1 and A.2. Dashed lines

represent success rates for minimalist AdaBoost, solid lines non-minimalist. Red, green,

blue, black and grey represent 1, 2, 5, 10 and 40 features or weak classifiers, respectively.

The ROC curves indicate the false positive and false negative rates available by weighting

the result. The dashed lines being higher than the solid lines in all but the lowest number

of features indicates that minimalist AdaBoost makes more effective use of fewer features

than non-minimalist AdaBoost. As discussed in Section 5.2.1, the number of features

presents most of the CPU overhead in this system and thus minimalist AdaBoost is shown

to produce a better result at an equivalent speed to non-minimalist AdaBoost.
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Original Markup Output Disagreement

Figure 5.2: Images showing (left to right): first an original photograph, then a “ground

truth” image labelled manually by a human expert, then the outputs of the trained system,

without any human editing, with blemishes in black and good potato in white. The final

image shows an error image, showing false positive results in red and false negative results

in green, for the detection of blemish.
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Original Markup Output Disagreement

Figure 5.3: Zoomed-in view of the middle of the first image set in Figure 5.2 indicating

that the classifier output is possibly a better match to the blemish than the ground truth.
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(a) White potatoes

(b) Red potatoes

Figure 5.4: Graphs showing the classification accuracy versus the combined speed of

feature extraction and classification for minimalist and non-minimalist approaches using

(a) white and (b) red potatoes.
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second) and minimalist AdaBoost using 2 weak classifiers achieves a speed increase

of 748% over non-minimalist AdaBoost using 5 features with no significant drop in

accuracy.

For red potatoes, minimalist AdaBoost using 5 features provides a similar classifi-

cation rate to non-minimalist AdaBoost using 10 weak classifiers, with the minimalist

approach achieving a 100% increase in speed (75 vs. 151 pixels per second)

For both red and white potatoes, the difference in accuracy between a minimalist

approach and the best performance using 40 weak classifiers is within one standard

deviation but the increases in classification speed are 304% for white potatoes and

141% for red potatoes, increasing from 36 to 147 and 31 to 75 pixels per second,

respectively. The minimalist approach only becomes worse than the non-minimalist

equivalent when restricted to a single feature.

5.2.2 Features selected

The selected features listed in Table 5.2 for white potatoes and Table 5.3 for red pota-

toes show some interesting correlations and obvious distinctions. To begin with, red

potatoes use colour as an indicator of blemish a lot more than white potatoes, with

twice as many of the top ten selected features being colour data. In both red and

white examples, the pixel colour provides the second most important feature, while

the most important feature is related to the intensity of the immediate area. In both

cases, normalised colours are selected three times. Intensity is used more for red pota-

toes which may relate to the fact that green blemishes tend to appear black on red

potatoes. Classifying the red potato set, the edge length feature is not used, while for

classifying white potatoes the range filter does not get used. The regions used tend to

be the smaller ones, with only one feature region above 65× 65 for white potatoes and

three for red potatoes. In each case the larger region is 161× 161.

Tables 5.4 and 5.5 describe the impact of specific feature groups on classification

rates. The features are divided up by feature type and subsets of features are used in

these lesion experiments. These subsets are referred to by up to four letters, repre-

senting the presence of colour (c), range (r), gradient (g) and edge length (l), so the

full feature set is referred to as crgl. For both potato varieties, the lowest accuracy of

any combination of colour and texture features is higher than the accuracy for colour
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Order Region Feature Channel Statistic

selected type

1 33× 33 Gradient Intensity Mean

2 Pixel Colour Red

3 65× 65 Gradient Normalised Green Skew

4 Pixel Gradient Red

5 65× 65 Colour Normalised Green Skew

6 33× 33 Gradient Red Max

7 65× 65 Colour Green Mean

8 161× 161 Edge Length Normalised Blue Var

9 33× 33 Edge Length Red Skew

10 65× 65 Edge Length Red Skew

Table 5.2: The first ten features selected for detecting blemishes in white potatoes.

features which is higher than any combination of only texture features. The highest ac-

curacy for white potatoes is from a combination of colour and gradient features, while

the highest accuracy was achieved for red potatoes using colour and range features.

Figures A.3 and A.4 show these results as bar charts.

5.2.3 Evaluating the impact of variations in ground truth markup

To assess the impact of natural variation between human experts involved in providing

the ground truth data, we used a combination of markup data obtained from three

different humans for a selected subset of the original data for white potatoes. The

details of the experimental procedure involved were as explained in Section 3.3.2

Table 5.6 shows the overall accuracy of classification obtained using the selected

data for blemish detection. Note that the highest result was obtained with the original

expert who had access to the original potato samples. The next highest result was

obtained with the second potato expert, who only had access to the images. The

lowest result was obtained with the computer vision researcher, who only had access

to the images and a more limited knowledge of potatoes. The ”gold standard” result

obtained from the agreement of at least 2 markers on each pixel is similar to the result

for the original expert (marker 1). The percentage of pixels in the panel refers to the

agreement between the gold standard and the human marker on those pixels for which
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Order Region Feature Channel Statistic

selected type

1 33× 33 Colour Intensity Min

2 Pixel Colour Red

3 65× 65 Gradient Normalised Blue Skew

4 161× 161 Range Intensity Skew

5 33× 33 Range Red Mean

6 33× 33 Colour Normalised Red Skew

7 65× 65 Colour Red Skew

8 Pixel Colour Normalised Green

9 161× 161 Colour Red Mean

10 161× 161 Range Intensity Var

Table 5.3: The first ten features selected for detecting blemishes in red potatoes.

Feature Accuracy Sensitivity Specificity

subset

c 0.891 ± 0.001 0.890 ± 0.001 0.890 ± 0.001

r 0.875 ± 0.002 0.880 ± 0.002 0.880 ± 0.002

g 0.891 ± 0.002 0.889 ± 0.001 0.889 ± 0.001

l 0.841 ± 0.002 0.847 ± 0.001 0.847 ± 0.001

cr 0.911 ± 0.002 0.910 ± 0.002 0.910 ± 0.002

cg 0.913 ± 0.002 0.912 ± 0.001 0.912 ± 0.001

cl 0.904 ± 0.002 0.903 ± 0.001 0.903 ± 0.001

rg 0.888 ± 0.002 0.890 ± 0.002 0.887 ± 0.002

rl 0.880 ± 0.001 0.875 ± 0.002 0.885 ± 0.002

gl 0.890 ± 0.003 0.887 ± 0.001 0.887 ± 0.001

crg 0.912 ± 0.002 0.915 ± 0.002 0.910 ± 0.003

crl 0.911 ± 0.002 0.911 ± 0.002 0.911 ± 0.002

cgl 0.913 ± 0.003 0.911 ± 0.002 0.911 ± 0.002

rgl 0.889 ± 0.003 0.886 ± 0.002 0.886 ± 0.002

crgl 0.913 ± 0.003 0.912 ± 0.002 0.912 ± 0.002

Table 5.4: A comparison of different feature groups for detecting blemishes in white

potatoes, comprised from colour(c), edge gradient(g), edge length(l) and range(r), where

the bold font is used to indicate the best results for each performance metric.
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Feature Accuracy Sensitivity Specificity

subset

c 0.878 ± 0.004 0.905 ± 0.003 0.851 ± 0.009

r 0.817 ± 0.003 0.843 ± 0.002 0.790 ± 0.005

g 0.820 ± 0.002 0.845 ± 0.004 0.795 ± 0.005

l 0.791 ± 0.002 0.825 ± 0.005 0.757 ± 0.003

cr 0.889 ± 0.002 0.917 ± 0.002 0.862 ± 0.006

cg 0.886 ± 0.004 0.912 ± 0.002 0.859 ± 0.008

cl 0.876 ± 0.003 0.904 ± 0.003 0.848 ± 0.006

rg 0.824 ± 0.004 0.845 ± 0.003 0.804 ± 0.008

rl 0.818 ± 0.002 0.848 ± 0.003 0.788 ± 0.005

gl 0.816 ± 0.004 0.841 ± 0.006 0.791 ± 0.005

cgl 0.884 ± 0.004 0.914 ± 0.003 0.855 ± 0.009

crg 0.886 ± 0.003 0.914 ± 0.003 0.858 ± 0.006

crl 0.889 ± 0.004 0.915 ± 0.003 0.862 ± 0.008

rgl 0.823 ± 0.003 0.850 ± 0.003 0.797 ± 0.005

crgl 0.886 ± 0.003 0.914 ± 0.003 0.858 ± 0.006

Table 5.5: A comparison of different feature groups for detecting blemishes in red pota-

toes, comprised from colour(c), edge gradient(g), edge length(l) and range(r), where the

bold font is used to indicate the best results for each performance metric.

Human Marker 1 Marker 2 Marker 3 Panel

Accuracy 0.913 ± 0.002 0.906 ± 0.005 0.902 ± 0.003 0.911 ± 0.004

Average marked pixels 134502 122323 115585 135989

Pixels in panel markup 99.4% 96.0% 93.9% 100.0%

Table 5.6: Accuracy for three different markers and for a “gold standard” mark-up pro-

duced from the combination of all three markers, as well as the number of marked pixels

per image and the percentage agreement with the gold standard. Marker 1 is the same

markup used for the main set of experiments in this thesis.
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both list a value. The highest agreement is between the original expert and the gold

standard, while the marker with less experience of potatoes has the lowest agreement

with the panel.

5.3 Conclusions

Since this system required much more time for feature extraction than for classifica-

tion, the minimalist AdaBoost approach allows a system to provide a higher classifier

accuracy at a faster speed compared to a similar non-minimalist system, providing a

speed increase of 4 times and 2.5 times for white and red potatoes, respectively. The

difference is most apparent when five features are used, indicating that this would be

a suitable choice for applications where classification performance and computational

cost are both important. The use of minimalist AdaBoost using ten features reduced

accuracy by one standard deviation from the use of non-minimalist AdaBoost using 40

weak classifiers.

The most important feature sets overall are a combination of colour and texture

features, which always outperform a subset of either colour or texture features alone.

The exact choice of feature type is less significant, but the highest performance is always

achieved with a combination of colour and texture features, rather than either colour

or texture features taken alone. The list of selected features reflects the differences

between red and white potatoes, most notably with twice as many colour features

being used for white potatoes, since blemishes can cause a greater overall change in the

colour of white potatoes than red.

As shown in Figures 5.2 and 5.3, a portion of the error rate is visibly due to disagree-

ments with the exact pixel boundaries of blemishes rather than objective misclassifica-

tion. This is because the blemishes do not always have clear and precise boundaries,

which makes a decision on the “correct” ground truth category quite subjective.
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Blemish identification

Having succeeded in detecting which areas of potatoes were blemished, the next stage

of this research was to distinguish between the blemishes commonly present in our data

sets. We decided to separate the blemishes into the subcategories of black dot; silver

scurf; green blemishes, which consisted of both pathological greening and sprouting; and

scabs. Both powdery scab and common scab were combined into a single class since

they are physically similar, often requiring high levels of magnification or chemical

analysis to tell the two apart (De Haan and van den Bovenkamp, 2005).

Experiments were also undertaken looking at the trade-offs for time and accuracy

with limits on feature numbers. As well as minimalist AdaBoost approaches, exper-

iments were tried using AdaBoost trained on the features previously selected for all

classes by minimalist AdaBoost. This provided a higher success rate than a similarly

fast minimalist AdaBoost classifier, both of which were several times faster than a

general non-minimalist classifier.

6.1 Experiments

For these experiments, each data set was divided into two subsets. The white potato

images were divided into subsets of 50 and 52 images, respectively, while the red potato

images were divided into two subsets of 24 images each. This was done instead of

the previous hold-one-out approach in order to ensure sufficient representation of all

blemishes in both the training and testing sets. As previously, it was necessary to

manually check the white potato set for those cases where the same potato had been
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photographed more than once, in order to make sure that different potatoes were used

for training and testing of the classifier, while the red potato set only contained one

image per potato. 34 cases were found where a white potato had been imaged twice

from different side. The two groups for each data set were chosen using alternating

images to provide a uniform sample for each group. Both groups were then used for

training and testing in turn.

When implementing minimalist AdaBoost for multi-class blemish identification, a

binary classifier was trained for each class with 10,000 positive examples and 10,000

negative examples, being uniformly sampled from the entire training data set. The

10,000 negative examples were selected from all other blemish types, resulting in 2500

examples per class. The final classification decision was determined by the classifier

with the highest confidence, which is also known as a one-against-all approach.

6.1.1 Non-minimalist classifier

The use of five standard Real AdaBoost classifiers, trained on all available candidate

features for 40 iterations for a one-against-all approach provides a good general per-

formance, albeit the slowest. This is treated as a default, tried and tested classifier

approach.

6.1.2 Minimalist classifier

As with the detection approach, limiting the number of features selected by a classifier

without applying a similar limitation to the number of iterations provides a much better

speed to performance ratio than simply limiting the number of iterations. Experiments

were run using both 5 and 10 unique features per classifier. In the same way as described

in Section 4.2.3, this was achieved by keeping separate counts of the number of features

and the number of iterations and, once the number of features exceeded the selected

limit, by limiting further iterations to training from those features which had already

been used.

6.1.3 Preselected features, the best of both worlds?

The use of Minimalist AdaBoost presented an interesting opportunity. While the sys-

tem restricted the number of features available for speed purposes, this speed gain
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would be mostly seen in the classification stages. A typical approach using 5 features

per classifier would give a total of between 18 and 22 unique features, so by adding

another stage to the training process, the system could be trained on a number of

features equivalent to 5 per class, while providing a more complete feature set for each

class individually.

To implement this feature-sharing approach, the training process had to be extended

significantly, which was deemed acceptable since only a small fraction of the system’s

time would be spent training and the additional time savings extracting features at

classification time would amply make up for the loss. The result is a combination

of the non-minimalist and minimalist one-against-all classifiers described above. First

the minimalist classifier was trained and discarded, keeping only the lists of features

used. These lists were then combined and duplicates removed, then the list was used

to restrict the features used for training in the same manner as the lists used in the

lesion experiments.

For completeness, these lists were used both with a non-minimalist classifier and

with a minimalist classifier trained using 10 unique features from the selected list.

After determining that the use of pre-selected features gave comparable performance

to minimalist AdaBoost at a significantly higher speed, further lesion experiments were

performed, testing the effects of removing entire feature types from the data set. Silver

scurf and black dot were best classified using a mixture of colour and texture features,

while green blemishes in white potatoes were classified best using only colour, and scabs

by using all texture features.

6.2 Results

As before, we were interested in both the actual classification rates and the features

selected by our AdaBoost-based classifier.

6.2.1 Classification rates

Table 6.1, and Figure A.17, show the accuracy and speed of different classification meth-

ods, with the most accurate and slowest being the use of a non-minimalist AdaBoost

classifier using the one-against-all approach described above. There is no significant
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Classifier White Red

Accuracy Pixels/s Accuracy Pixels/s

Non-minimalist 86.0 ± 0.5 7.1 ± 0.7 84.6 ± 0.5 6.6 ± 0.5

Minimalist (10) 84.6 ± 0.4 24.4 ± 3.4 83.3 ± 0.7 16.9 ± 2.0

Minimalist (5) 82.5 ± 0.9 46.6 ± 9.0 79.4 ± 1.1 33.6 ± 8.4

Selected features 84.9 ± 0.8 46.6 ± 9.0 82.6 ± 0.8 33.6 ± 8.4

Selected features minimalist 84.6 ± 0.8 46.6 ± 9.0 82.5 ± 0.8 33.6 ± 8.4

Table 6.1: Overall accuracy for red and white potatoes using minimalist and non-

minimalist AdaBoost, as well as using a minimalist and non-minimalist AdaBoost trained

on the features selected by minimalist AdaBoost.

difference between the classification rates for minimalist AdaBoost using 10 weak clas-

sifiers per class or non-minimalist AdaBoost using preselected features. As shown in

Figures 6.1 and 6.2, the difference between AdaBoost using preselected features and

using all features is equally spread across all classes, with the largest difference being

for classes with the largest standard deviations in results from experiments using the

same classifier.

The highest overall accuracy for both red and white potatoes uses a non-minimalist

classifier, achieving accuracies of 86.0% ±0.5 for white potatoes and 84.6% ± 0.5 for

red potatoes, respectively.

Figure 6.1: Bar charts indicating the percentage of each blemish type correctly identified,

per pixel, for white potatoes, using minimalist (white) and non-minimalist (grey) classifiers.
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Figure 6.2: Bar charts indicating the percentage of each blemish type correctly identified,

per pixel, for red potatoes, using minimalist (white) and non-minimalist (grey) classifiers.

Classifier output

black dot silver scurf scab green unblemished

M
ar

k
u

p

black dot 83.8± 1.3 3.7± 0.6 0.5± 0.2 2.2± 1.2 9.8± 0.4

silver scurf 5.7± 1.1 86.1± 1.0 0.8± 0.1 2.7± 0.7 4.7± 0.4

scabs 2.1± 0.3 2.8± 0.6 90.5± 0.6 1.6± 0.4 3.0± 0.2

green 1.1± 0.4 3.3± 0.4 0.3± 0.1 94.3± 0.5 0.9± 0.1

unblemished 14.5± 1.7 12.4± 0.7 1.3± 0.2 6.5± 2.6 65.3± 2.3

Table 6.2: Confusion matrix for red potatoes using features preselected by minimalist

AdaBoost

Tables 6.2 to 6.5 are confusion matrices showing how each experiment errs in classi-

fying individual pixels of one class as another class. The rows of each matrix represent

the classes according to human markup while the columns represent the classes accord-

ing to the classifier, the cells along the diagonal that contain bold text are therefore

the correctly classified examples, while all off-diagonal cells contain errors. In white

potatoes, both minimalist and non-minimalist approaches have the same general error

trends, towards the confusion of black dot with silver scurf, both of which tend to be

silvery blemishes, as well as the confusion of black dot with unblemished potato in both

directions. The confusion matrices for red potatoes, in comparison, show most of the

pixel-wise mis-classification being between black dot and unblemished skin.

Intuitively, the lower confusion between silver scurf and black dot on red potatoes
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Classifier output

black dot silver scurf scab green unblemished

M
ar

k
u

p

black dot 88.6%± 0.8 2.9%± 0.6 0.5%± 0.2 1.4%± 0.3 6.7%± 0.5

silver scurf 5.3%± 0.9 88.9%± 1.2 0.5%± 0.1 2.3%± 0.5 2.9%± 0.2

scabs 1.6%± 0.3 2.4%± 0.3 93.0%± 0.5 0.8%± 0.3 2.3%± 0.2

green 0.7%± 0.2 3.3%± 0.6 0.1%± 0.1 95.1%± 0.6 0.8%± 0.1

unblemished 15.6%± 1.3 11.5%± 0.8 1.3%± 0.1 5.1%± 0.8 66.6%± 1.0

Table 6.3: Confusion matrix for red potatoes using non-minimalist AdaBoost trained on

all features

Classifier output

black dot silver scurf scab green unblemished

M
ar

k
u

p

black dot 76.7± 1.1 7.6± 0.6 5.3± 0.7 2.6± 0.5 7.8± 0.2

silver scurf 8.5± 0.4 81.4± 1.2 6.8± 0.9 0.7± 0.3 2.6± 0.1

scabs 1.2± 0.2 5.9± 0.5 90.8± 0.7 1.1± 0.5 1.0± 0.1

green 0.8± 0.1 0.2± 0.1 0.2± 0.1 96.6± 0.3 2.3± 0.2

unblemished 8.6± 0.5 3.3± 0.2 1.4± 0.1 5.2± 1.3 81.6± 1.4

Table 6.4: Confusion matrix for white potatoes using features preselected by minimalist

AdaBoost

Classifier output

black dot silver scurf scab green unblemished

M
ar

k
u

p

black dot 78.6%± 0.5 7.0%± 0.7 4.2%± 0.5 2.6%± 0.3 7.6%± 0.3

silver scurf 7.2%± 0.4 83.1%± 1.4 6.5%± 1.2 0.7%± 0.2 2.4%± 0.1

scabs 1.0%± 0.1 5.6%± 0.3 91.6%± 0.5 0.8%± 0.2 1.0%± 0.1

green 0.6%± 0.1 0.1%± 0.1 0.1%± 0.0 97.3%± 0.3 1.9%± 0.3

unblemished 8.8%± 0.5 3.4%± 0.2 2.0%± 0.2 4.4%± 0.9 81.5%± 1.1

Table 6.5: Confusion matrix for white potatoes using non-minimalist AdaBoost trained

on all features
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compared to white potatoes, is most likely to be because silver scurf generally has a

different colour on red potatoes, making it easier to distinguish. As seen in Tables 6.2

and 6.3, the amount of black dot misclassified as silver scurf was 3.7% using preselected

features or 2.9% using all features. Likewise in those experiments, silver scurf was

misclassified as black dot at a rate of 5.7% and 5.3%, respectively. This compares to

the same experiments using white potatoes, as shown in Tables 6.4 and 6.5, where

black dot was misclassified as silver scurf in 7.6% and 7.0% of examples and silver scurf

was misclassified as black dot in 8.5% and 7.2% of examples when using preselected

features and all features, respectively. The confusion between good potato and black

dot is at least partly due to the limitations of the human ground truth data, as shown

in Figures 5.2 and 5.3 where black dot especially, as a speckled blemish, is prone to

being incorrectly marked by hand. The first example classified both by hand and

using this classifier shown in Figure 6.3 is a good illustration of this. In this case the

human has overlooked the slight darkening to the right of the potato which may have

been caused by the black dot blemish, which the classifier reports as the case. Aside

from the small patches of scab toward the edge of the potato this can be seen as a

successful classification, however it only has a pixel-wise accuracy of 84.1% due to the

disagreement over the exact extent of black dot coverage.

Table 6.6 supports the idea that inaccurate ground truth may be reducing success

rates. When detecting the presence or absence of blemishes comprising 10% of the

pixels of each potato, the results of the first non-minimalist experiment provides a

much higher success rate per image than per pixel. The only class which is worse

represented is silver scurf, which suffers from false positives due to the confusion with

black dot, which tends to cover very large areas of an affected potato, allowing a smaller

amount of confusion to still equate to 10% of the potato. Overall, detecting blemish

types per potato provides an accuracy of 93% for white potatoes and 97% for red

potatoes, respectively, compared to per-pixel accuracies of 86% and 84%, respectively.

Figure 6.4 shows the performance of the classifier on three more example images. In

the first two of these the main causes of errors are the ambiguity of the exact blemish

coverage, along with one missed area of greening in the first potato. The third example

also mis-classifies a particularly sparse area of black dot as a mixture of scab and

unblemished skin.
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White Potatoes Red Potatoes

Black dot 95% 100%

Silver Scurf 75% 92%

Scab 99% 100%

Green 100% 94%

Good potato 95% 100%

Overall 93% 97%

Table 6.6: Detecting significant (10%) coverage per class is more accurate than detecting

blemish in each pixel individually.

Table 6.1 shows the results in terms of accuracy and speed for different classifier

types. For both red and white classifiers, a non-minimalist classifier gives the best

performance, however a significant speed increase is possible for a relatively small com-

parative loss of accuracy. Should a final system require such a speed increase, the use

of preselected features appears to offer the best combination of speed and accuracy.

(a) Original potato (b) Ground truth done by

hand

(c) Classifier output

Figure 6.3: A potato classified by the system, showing the similarity between classifier

output and ground truth, with differences in the exact boundaries of blemished areas. Red

= black dot, green = green, white = unblemished, black = background
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Original potato Ground truth markup Classifier output

Figure 6.4: Three potatoes classified by the system, showing the similarity between

classifier output and ground truth, with differences in the exact boundaries of blemished

areas. Red = black dot, cyan = silver scurf green = green, white = unblemished, black =

background.
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6.2.2 Speed

As with blemish detection, experiments were run to compare the speed increases

achieved by restricting the number of features used by the classifier. For this reason

we chose five different sets of parameters.

As well as using non-minimalist AdaBoost, minimalist AdaBoost with 10 and with

5 features per class, experiments were also undertaken using Non-minimalist AdaBoost

but restricted to the features selected by minimalist AdaBoost when restricted to 5

features per class.

As shown in Table 6.1, the speed of minimalist AdaBoost restricted to five fea-

ture per class and that of non-minimalist AdaBoost when allowed to train each class

on any of those five features per class, is effectively the same. The performance of

non-minimalist AdaBoost on this reduced feature set, however, is within a standard

deviation of that of minimalist AdaBoost using 10 features per class, with a speed

increase of 91% for white potatoes and 99% for red potatoes. Compared to the Non-

minimalist approach, this represents a speed increase of 556% using white potatoes and

409% using red potatoes.

A further test using minimalist AdaBoost allowing 10 features per class from the

5 selected features gave similar results to the same approach using non-minimalist

AdaBoost, within 0.4 standard deviations, with the only noticable difference being

in training times that would be insignificant in any real-world application classifying

thousands of potatoes.

6.2.3 Features selected

Tables 6.7 to 6.16 show the respective choices of features for identifying the class of

blemish, or non-blemish in red and white potatoes using a representative set of training

data.

Some of the choices of features are intuitively understandable to a human observer.

When classifying black dot in white potatoes and to a lesser extent in red potatoes,

features relating to the blue colour channel are prominently featured. As shown in

Figure 6.5, black dot is somewhat easier to see with the naked eye in the blue colour

channel than in grayscale. Classifying silver scurf mostly uses colour features, which

is understandable as it is primarily a silvery blemish, while the feature selection for
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scabs mostly selects edge and range features. In white potatoes, gradient features are

prominently used in detecting scabs. As shown in Figure 6.6, scabs can be clearly

seen with the naked eye in the output of an edge detector. In red potatoes, however,

the colour and especially the red colour are the first features selected, representing the

fact that scabs usually have a very different colour to that of red potato skin. It is

quite self-explanatory that the first features selected for green blemishes is the green

or normalised green colour channel. In red potatoes, skin greening results in darker,

almost black patches which may indicate why the intensity channel is ranked second

when detecting green blemishes in red potatoes.

Region Type Channel Moment

1 161× 161 colour red max

2 161× 161 gradient normalised blue mean

3 65× 65 edge length normalised blue variance

4 161× 161 colour normalised blue variance

5 33× 33 gradient intensity mean

6 161× 161 gradient intensity skewedness

7 33× 33 colour normalised red variance

8 Pixel colour normalised green -

9 161× 161 gradient red mean

10 161× 161 edge length blue min

Table 6.7: Top ten features selected for identifying black dot in white potatoes.
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Region Type Channel Moment

1 161× 161 colour blue mean

2 161× 161 gradient intensity skewedness

3 161× 161 colour red max

4 161× 161 range green max

5 129× 129 colour green max

6 161× 161 colour blue max

7 161× 161 range intensity skewedness

8 65× 65 range normalised green mean

9 161× 161 colour blue skewedness

10 161× 161 range blue min

Table 6.8: Top ten features selected for identifying black dot in red potatoes.

(a) Example white potato affected by

black dot.

(b) Clearer to the human eye in the blue

colour channel.

Figure 6.5: Example illustrating how the black dot blemish can be easily seen in the blue

colour channel, explaining the blue colour channel being selected for the top two features

in Table 6.7.
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Order Region Type Channel Moment

selected

1 161× 161 colour intensity mean

2 Pixel colour normalised green -

3 65× 65 range normalised green variance

4 33× 33 colour normalised red variance

5 33× 33 gradient red variance

6 33× 33 edge length normalised red variance

7 97× 97 colour normalised green skewedness

8 161× 161 gradient normalised blue mean

9 97× 97 edge length normalised blue min

10 161× 161 gradient intensity variance

Table 6.9: Top ten features selected for identifying silver scurf in white potatoes.

Order Region Type Channel Moment

selected

1 161× 161 gradient normalised blue variance

2 65× 65 colour normalised blue variance

3 33× 33 colour green mean

4 161× 161 gradient normalised blue skewedness

5 161× 161 colour blue variance

6 65× 65 colour normalised green variance

7 33× 33 colour green variance

8 161× 161 colour normalised blue min

9 Pixel colour green -

10 161× 161 edge length intensity skewedness

Table 6.10: Top ten features selected for identifying silver scurf in red potatoes.
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Order Region Type Channel Moment

selected

1 33× 33 gradient intensity mean

2 161× 161 gradient blue variance

3 161× 161 edge length blue min

4 161× 161 range blue min

5 161× 161 gradient normalised blue min

6 161× 161 edge length intensity variance

7 33× 33 edge length blue min

8 129× 129 colour normalised green skewedness

9 161× 161 range blue mean

10 33× 33 range red min

Table 6.11: Top ten features selected for identifying scab in white potatoes.

Order Region Type Channel Moment

selected

1 33× 33 colour normalised red max

2 161× 161 colour intensity variance

3 97× 97 range red mean

4 65× 65 gradient blue skewedness

5 Pixel colour normalised blue -

6 161× 161 gradient blue mean

7 Pixel colour normalised green -

8 97× 97 edge length red mean

9 161× 161 gradient normalised blue variance

10 33× 33 range blue skewedness

Table 6.12: Top ten features selected for identifying scab in red potatoes.
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(a) Example white potato affected by

scab

(b) edge detector output can be clearly

seen to correlate with the presence of

scabs in a potato image, explaining the

prevalence of edge features among the se-

lected features in tables 6.11 and 6.12

Figure 6.6: The classifier uses edge features extensively for detection of scabs, these edges

can be seen with the human eye.

Order Region Type Channel Moment

selected

1 65× 65 colour green min

2 129× 129 gradient normalised red skewedness

3 Pixel gradient blue -

4 129× 129 colour green skewedness

5 161× 161 colour blue mean

6 65× 65 gradient green min

7 33× 33 colour blue skewedness

8 33× 33 colour intensity min

9 161× 161 edge length green min

10 161× 161 edge length blue min

Table 6.13: Top ten features selected for identifying green blemishes in white pota-

toes.
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Order Region Type Channel Moment

selected

1 65× 65 colour normalised green skewedness

2 161× 161 edge length intensity variance

3 Pixel colour red -

4 97× 97 gradient normalised blue skewedness

5 161× 161 colour normalised blue max

6 129× 129 colour green variance

7 97× 97 colour normalised red variance

8 129× 129 gradient normalised green max

9 33× 33 gradient normalised red variance

10 65× 65 range normalised blue skewedness

Table 6.14: Top ten features selected for identifying green blemishes in red potatoes.

Order Region Type Channel Moment

selected

1 Pixel colour red -

2 33× 33 range blue mean

3 65× 65 colour normalised green skewedness

4 33× 33 edge length normalised red skewedness

5 65× 65 colour green min

6 Pixel gradient red -

7 161× 161 gradient red mean

8 33× 33 range blue skewedness

9 33× 33 colour intensity mean

10 161× 161 colour intensity skewedness

Table 6.15: Top ten features selected for identifying unblemished skin in white pota-

toes.
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Order Region Type Channel Moment

selected

1 33× 33 colour intensity min

2 129× 129 gradient normalised green skewedness

3 Pixel colour red -

4 33× 33 colour normalised red skewedness

5 161× 161 edge length intensity skewedness

6 Pixel colour normalised green -

7 97× 97 colour normalised green mean

8 97× 97 colour intensity skewedness

9 65× 65 edge length normalised blue skewedness

10 161× 161 range red variance

Table 6.16: Top ten features selected for identifying unblemished skin in red potatoes.
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As before, tests were also performed to investigate the impact of the main feature

types available to the classifiers. Table 6.17 presents the overall accuracy for each subset

of features, with Tables 6.18 to 6.19 providing breakdowns according to class. The

overall results are also presented as bar charts in Appendix A.2, Figures A.5 and A.6,

with the breakdowns according to class represented in Figures A.7 to A.16. Notably,

while all classes have a lower accuracy with colour channels removed, green blemishes

fare the worst in both red and white potatoes, while using only colour features in white

potatoes only reduces the accuracy for green blemishes by half a standard deviation.

Similarly, silver scurf on red potatoes is such a distinctive colour compared to all other

classes means that using only colour features reduces the accuracy even less. In common

with the results from blemish detection, detecting unblemished potato tends not to

change much so long as the feature set contains colour features and some texture-based

features. Scabs, being mostly marked out with broken skin, are the blemish least

affected by the removal of colour features in white potatoes, although in red potatoes

this is not the case due to the marked difference between skin and flesh colours. Overall,

the best classification rate for red potatoes occurs with the combination of colour and

gradient features (cg), while the best classification rate for white potatoes is from the

combination of colour, range and edge length features (crl).

6.2.4 Evaluating the impact of variations in ground truth mark-up

To assess the impact of natural variation between human experts involved in providing

the ground truth data, we used a combination of markup data obtained from three

different humans for a selected subset of the original data for white potatoes. The

details of the experimental procedure involved were as explained in Section 3.3.2

Table 6.20 shows the overall accuracy of classification obtained using the selected

data for blemish identification. Note that the highest result was obtained with the

original expert who had access to the original potato samples. The next highest result

was obtained with the second potato expert, who only had access to the images. The

lowest result was obtained with the computer vision researcher, who only had access

to the images and a more limited knowledge of potatoes. The “gold standard” result

obtained from the agreement of at least 2 markers on each pixel is similar to the result

for the original expert (marker 1). The percentage of pixels in the panel refers to the

agreement between the gold standard and the human marker on those pixels for which
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6.2 Results

Feature red white

subset

c 0.806 ± 0.012 0.793 ± 0.005

r 0.636 ± 0.012 0.731 ± 0.011

g 0.647 ± 0.010 0.739 ± 0.014

l 0.496 ± 0.008 0.642 ± 0.009

cr 0.826 ± 0.013 0.843 ± 0.004

cg 0.828 ± 0.009 0.843 ± 0.010

cl 0.822 ± 0.006 0.805 ± 0.004

rg 0.650 ± 0.009 0.726 ± 0.014

rl 0.633 ± 0.009 0.707 ± 0.006

gl 0.646 ± 0.008 0.704 ± 0.006

crg 0.823 ± 0.008 0.834 ± 0.006

crl 0.825 ± 0.012 0.849 ± 0.004

cgl 0.828 ± 0.009 0.845 ± 0.007

rgl 0.636 ± 0.009 0.712 ± 0.005

crgl 0.825 ± 0.008 0.846 ± 0.008

Table 6.17: Overall accuracy for all classes using different feature sets, as defined in

Section 5.2.2, where the bold font is used to indicate the best results for each blemish type.
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6.2 Results

Feature Black dot Silver scurf Scab Green Unblemished

subset

c 0.807±0.013 0.856±0.008 0.965±0.007 0.909±0.002 0.859±0.006

r 0.637±0.013 0.484±0.033 0.935±0.003 0.384±0.066 0.719±0.009

g 0.646±0.021 0.534±0.023 0.933±0.004 0.423±0.039 0.685±0.011

l 0.473±0.015 0.324±0.029 0.824±0.012 0.155±0.018 0.676±0.013

cr 0.834±0.002 0.858±0.015 0.936±0.005 0.923±0.002 0.874±0.006

cg 0.843±0.002 0.856±0.010 0.968±0.002 0.932±0.001 0.863±0.005

cl 0.831±0.009 0.861±0.008 0.964±0.004 0.924±0.002 0.867±0.004

rg 0.631±0.021 0.546±0.026 0.939±0.004 0.415±0.037 0.704±0.010

rl 0.617±0.017 0.529±0.026 0.948±0.004 0.329±0.031 0.721±0.010

gl 0.660±0.019 0.513±0.019 0.949±0.005 0.373±0.030 0.715±0.009

crg 0.844±0.011 0.847±0.012 0.967±0.003 0.922±0.018 0.869±0.006

crl 0.839±0.016 0.857±0.008 0.968±0.002 0.930±0.021 0.862±0.006

cgl 0.844±0.015 0.858±0.011 0.970±0.003 0.930±0.016 0.864±0.007

rgl 0.801±0.010 0.724±0.008 0.951±0.002 0.663±0.015 0.733±0.006

crgl 0.838±0.016 0.857±0.005 0.971±0.002 0.927±0.020 0.862±0.005

Table 6.18: Accuracy using different feature sets, as defined in Section 5.2.2, for red

potatoes, where the bold font is used to indicate the best results for each blemish type.
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6.2 Results

Feature Black dot Silver scurf Scab Green Unblemished

subset

c 0.817±0.004 0.841±0.005 0.876±0.009 0.942±0.009 0.882±0.004

r 0.691±0.017 0.701±0.015 0.896±0.006 0.560±0.060 0.801±0.008

g 0.702±0.010 0.688±0.005 0.882±0.007 0.595±0.070 0.823±0.007

l 0.745±0.005 0.547±0.009 0.793±0.023 0.386±0.040 0.729±0.006

cr 0.863±0.006 0.886±0.004 0.917±0.006 0.945±0.010 0.898±0.003

cg 0.865±0.006 0.884±0.006 0.914±0.007 0.945±0.020 0.901±0.003

cl 0.856±0.004 0.840±0.006 0.867±0.008 0.940±0.011 0.890±0.003

rg 0.698±0.015 0.693±0.013 0.893±0.007 0.518±0.070 0.821±0.005

rl 0.742±0.010 0.732±0.013 0.873±0.010 0.375±0.024 0.799±0.005

gl 0.738±0.015 0.726±0.010 0.869±0.009 0.364±0.019 0.812±0.008

crg 0.868±0.004 0.892±0.004 0.911±0.005 0.943±0.012 0.894±0.004

crl 0.870±0.005 0.885±0.006 0.922±0.007 0.949±0.008 0.902±0.002

cgl 0.870±0.005 0.885±0.009 0.912±0.007 0.950±0.008 0.900±0.002

rgl 0.834±0.004 0.836±0.005 0.915±0.003 0.687±0.015 0.825±0.004

crgl 0.872±0.003 0.886±0.007 0.916±0.012 0.945±0.006 0.899±0.002

Table 6.19: Accuracy using different feature sets, as defined in Section 5.2.2, for white

potatoes, where the bold font is used to indicate the best results for each blemish type.

Human Marker 1 Marker 2 Marker 3 Panel

Accuracy 86.0% ± 0.5 84.3% ± 0.6 84.0% ± 0.5 85.2% ± 0.3

Average marked pixels 134502 122323 115585 135989

Pixels in panel markup 90.8% 95.6% 88.1% 100%

Table 6.20: Accuracy for three different markers and for a “gold standard” mark-up

produced from the combination of all three markers, as well as the number of marked

pixels per image and the percentage agreement with the gold standard. Marker 1 is the

same markup used for the main set of experiments in this thesis.
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6.3 Conclusions

both list a value. These are lower than in Chapter 5 because there are more classes to

disagree on. The highest agreement is between the second potato expert and the gold

standard, while the marker with less experience of potatoes has the lowest agreement

with the panel.

6.3 Conclusions

With five binary AdaBoost classifiers we were able to compare the signed confidences

of each classifier to choose the class which a pixel belonged to. By using minimal-

ist AdaBoost to select five features per class then training all five classifiers on the

combination of the five subsets, the speed of classification was improved by a factor

of 6.5 for white potatoes and 4.1 for red potatoes. This provided a higher accuracy

than using minimalist AdaBoost itself to reduce the number of features to the same

amount with no loss of speed. For red potatoes using minimalist AdaBoost to extract a

larger number of features, ten per class, provided a higher classification rate than using

fewer preselected features, for white potatoes the higher classification rate is from the

smaller number of preselected features. In both cases, the use of ten features per class

was around half as fast as using five per class.

As shown in Figure 6.4, the error rates are still inflated by ambiguity in human

markups, although the third example shows a sparse area of black dot being partly

missed, probably due to being sparser than other examples, with part of it being mis-

classified as scab. This is a challenge posed by blemishes with diverse appearances.

The per-potato accuracies listed in Table 6.6 compare favourably with those ob-

tained by Samanta et al. (2012) for scabs as well as Guannan et al. (2009) for green

blemishes and Rios-Cabrera et al. (2008) for both scabs and green blemishes. Also it

should be noted that the system presented in this thesis not only outperforms these

existing approaches, but also offers much greater flexibility because it can be easily

retrained to work with many different blemish types.
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7

Conclusions and future work

7.1 Conclusions

This thesis presents a machine learning approach for blemish detection and identifica-

tion in potatoes. Potatoes differ greatly, variety and from one season to the next, as

well as by factors such as the amount and timing of rainfall changing the development of

a tuber in the field, or the length of time since harvesting. These factors can all change

the appearance of certain storage blemishes such as black dot as well as the overall

texture of good potato skin. This presents a clear motivation for a machine learning

based system to detect, measure and identify blemishes in potatoes. Additionally, the

trainable nature of the system allows extension into fields such as blemish treatment,

where a user might only be interested in differences in the coverage of a single blemish

on treated and untreated potatoes. In such an application, the binary classifier could

be retrained to only detect that blemish vs. not that blemish.

In order to speed up the classification process, minimalist AdaBoost can provide

an alternative way of reducing the number of features used by AdaBoost when using

simple weak classifiers such as decision stumps. When feature extraction takes a large

portion of the processing time, as in this research, the more traditional method of simply

reducing the number of weak classifiers has been shown to require more processing time

to produce comparable accuracy. In particular, using minimalist AdaBoost restricted

to ten unique features resulted in a mean accuracy within one standard deviation of

the mean accuracy of not reducing features at all, with a speed increase of 304% and

151% for white and red potatoes, respectively.
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7.2 Future work

Some disagreements between ground truth and classification results can be seen in

Figure 5.2 to be around the edges of blemishes where ground-truthing may be less ac-

curate. This ambiguity as to the exact extent of a blemish between human markup and

classifier output is partly symptomatic of the problem this research sets out to solve,

that of human inaccuracy in the grading process. Ultimately, a machine learning based

system could be developed to combine the best of both worlds, with the computer’s

consistency in locating blemishes and the human ability to intuitively spot when some-

thing is wrong. The results per-potato support this idea since there is a much higher

accuracy for identifying the significant blemish areas in individual potatoes compared

to identifying each pixel.

Different feature sets work better for different blemishes and also for different potato

varieties. For example, scabs are better classified with texture features while greening

is better classified using colour.

To the best knowledge of the author, the system presented in this thesis is currently

the only available system in the literature capable of learning many different blemish

categories from examples.

7.2 Future work

The use of square regions is very much as a proof of concept only. Since rotation-

invariance is desirable, circular regions might provide an alternative. Some investigation

has also been done into superpixels to provide alternative regions. As shown in Figure

7.1, superpixels are a method of dividing an image into small areas of similar pixels, thus

providing guidelines for ground truth and natural areas to classify in one go, reducing

the problem of ambiguous blemish boundaries and also reducing the processing time

involved in extracting features, which could be extracted per-superpixel instead of per-

pixel.

Real-time operation is a necessary development in this software if it is to be used

in an industrial application. Superpixels can help to streamline the code. It can also

be sped up by using a more efficient runtime written in, for example, C++, with much

of the repetitive number crunching taking place on a Graphics Processing Unit (GPU,

a processor designed to process large numbers of simple mathematical operations in

parallel) for further speed improvements.
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7.2 Future work

Figure 7.1: An image of a baseball player divided into superpixels, from Mori (2005).

Every superpixel can be seen to only contain a single type of content, be that content leg,

arm, hat, shoe, grass etc.

While the minimalist AdaBoost approach demonstrably provides faster processing

with a lower cost to accuracy than a non-minimalist approach, there could be room

for development of an algorithm which will prefer features that have a lower overhead,

or consider prerequisites. For instance, to obtain the skewedness of the gradient of the

normalised green colour channel in a 66 × 66 region requires calculating the following

prerequisites:

1. the normalised green colour channel.

2. the gradient of the normalised green colour channel.

99



7.2 Future work

3. the mean of feature 2 in a 66× 66 region.

4. the variance of feature 2 in a 66× 66 region.

Any of these can then provide additional features, which require no extra processing

time to extract.

The research presented in this thesis utilised the RGB colour space almost exclu-

sively, while using normalised RGB and the intensity channel to allow the system to

judge chromaticity and intensity features independently. Other colour spaces, such as

HSI or YCrCb (Gonzalez et al., 2004) ought to be tested at a later date. In addi-

tion, other possible feature sets might include the use of shape features, especially if

superpixels are to be used to locate areas of blemish.

For this research, a pixelwise approach was taken in order to identify the amount of a

potato which is covered with blemish. No attempt is currently made to translate pixels

into surface area, which can be approached in a variety of ways. One approach which

is used in industry is to take multiple images of a single potato, possibly omitting areas

which are close to the potato borders, then average the series of classified images to

gain an overview of the entire potato (R.J. Herbert Engineering Ltd, 2008). Alternative

approaches include using 3D sensors, such as photonic mixer devices, or imperceptible

structured light to reconstruct the 3D surface of the potato.

These experiments were run separately on both red and white potato varieties. At

a later stage it would be possible to run them on other varieties or on multicoloured

potatoes such as King Edward, which is both red and white, or Catriona, which is a

white and blue variety.

In developing this system, only the most common blemishes in our feature sets were

used. This was a deliberate choice since it was not plausible to include a blemish such

as elephant hide, of which we had three examples in the entire white data set and none

in the red data set. Since it is impractical to produce an exhaustive sample set of all

possible potato blemishes, some decision will need to be made about how to handle

unknown blemishes.

There would also need to be longer-term tests, probably in an industrial setting,

to assess the performance of the system over a whole harvest if not multiple harvests.

Questions to explore will include how quickly potato features change from harvest to

harvest and how frequently it is necessary to retrain the system.
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7.2 Future work

Finally, a complete product based around this research would require an accessible

interface allowing a semi-skilled user to quickly and easily mark up new training data

and modify classification parameters as well as monitoring the classification process.
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Appendix A

Further representation of results

A.1 Blemish detection

Feature Non minimalist Minimalist

limit White Red White Red

1 0.824 ± 0.004 0.763 ± 0.007 0.824 ± 0.004 0.763 ± 0.008

2 0.824 ± 0.004 0.843 ± 0.006 0.882 ± 0.002 0.760 ± 0.009

5 0.865 ± 0.011 0.793 ± 0.006 0.901 ± 0.001 0.814 ± 0.004

10 0.890 ± 0.005 0.840 ± 0.006 0.911 ± 0.003 0.858 ± 0.006

40 0.914 ± 0.006 0.917 ± 0.010 0.914 ± 0.006 0.917 ± 0.010

Table A.1: Specificity for blemish detection in red and white potatoes, used to produce

the ROC curves in Figure 5.1.
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A.1 Blemish detection

Feature Non minimalist Minimalist

limit White Red White Red

1 0.790 ± 0.008 0.790 ± 0.008 0.790 ± 0.008 0.790 ± 0.008

2 0.790 ± 0.008 0.728 ± 0.009 0.856 ± 0.005 0.844 ± 0.006

5 0.881 ± 0.004 0.850 ± 0.006 0.901 ± 0.003 0.903 ± 0.004

10 0.901 ± 0.005 0.876 ± 0.004 0.913 ± 0.003 0.914 ± 0.003

40 0.911 ± 0.003 0.862 ± 0.004 0.911 ± 0.003 0.862 ± 0.004

Table A.2: Sensitivity for blemish detection in potatoes, used to produce the ROC

curves in Figure 5.1.

Figure A.1: A bar chart describing the accuracy of blemish detection in white potatoes,

as described in Table 5.1.
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A.1 Blemish detection

Figure A.2: A bar chart describing the accuracy of blemish detection in red potatoes, as

described in Table 5.1.

Figure A.3: A bar chart describing the accuracy of blemish detection in white potatoes

using restricted feature sets, as described in Table 5.4. Colours indicate sets involving only

colour (red), only texture (yellow) and both (grey)
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A.1 Blemish detection

Figure A.4: A bar chart describing the accuracy of blemish detection in red potatoes

using restricted feature sets, as described in Table 5.4. Colours indicate sets involving only

colour (red), only texture (yellow) and both (grey)
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A.2 Blemish idenfication

A.2 Blemish idenfication

Figure A.5: Overall accuracy rates for correct identification of blemish types in white

potatoes using AdaBoost trained with preselected features from different feature sets.
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A.2 Blemish idenfication

Figure A.6: Overall accuracy rates for correct identification of blemish types in red

potatoes using AdaBoost trained with preselected features from different feature sets.

Figure A.7: Accuracy rates for detection of black dot in white potatoes using Ad-

aBoost trained with preselected features from different feature sets.

117



A.2 Blemish idenfication

Figure A.8: Accuracy rates for detection of silver scurf in white potatoes using

AdaBoost trained with preselected features from different feature sets.

Figure A.9: Accuracy rates for detection of scabs in white potatoes using AdaBoost

trained with preselected features from different feature sets.
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A.2 Blemish idenfication

Figure A.10: Accuracy rates for detection of green blemishes in white potatoes using

AdaBoost trained with preselected features from different feature sets.

Figure A.11: Accuracy rates for detection of good potato skin in white potatoes

using AdaBoost trained with preselected features from different feature sets.
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A.2 Blemish idenfication

Figure A.12: Accuracy rates for detection of black dot in red potatoes using AdaBoost

trained with preselected features from different feature sets.

Figure A.13: Accuracy rates for detection of silver scurf in red potatoes using Ad-

aBoost trained with preselected features from different feature sets.
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A.2 Blemish idenfication

Figure A.14: Accuracy rates for detection of scabs in red potatoes using AdaBoost

trained with preselected features from different feature sets.

Figure A.15: Accuracy rates for detection of green blemishes in red potatoes using

AdaBoost trained with preselected features from different feature sets.
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A.2 Blemish idenfication

Figure A.16: Accuracy rates for detection of good potato skin in red potatoes using

AdaBoost trained with preselected features from different feature sets.

Figure A.17: Comparison of results for different types of minimalist and non-minimalist

classification using red and white potatoes
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Appendix B

Example images from data sets
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(a) White image 4

(b) Ground truth of White image 4

Figure B.1: Image 4 from the white data set. Red = Black dot, Green = Silver scurf,

Blue = sprouting
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(a) White image 7

(b) Ground truth of White image 7

Figure B.2: Image 7 from the white data set. Red = Black dot, Green = greening, Blue

= sprouting
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(a) White image 44

(b) Ground truth of White image 44

Figure B.3: Image 44 from the white data set. Red = Black dot, Green = silver scurf
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(a) White image 47

(b) Ground truth of White image 47

Figure B.4: Image 47 from the white data set. Red = silver scurf, Green = scab, Blue

= damage
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(a) White image 59

(b) Ground truth of White image 59

Figure B.5: Image 59 from the white data set. Red = silver scurf, Green = scab, Blue

= damage
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(a) White image 67

(b) Ground truth of White image 67

Figure B.6: Image 67 from the white data set. Red = black dot, Green = silver scurf,

Blue = common scab, Yellow = damage
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(a) White image 68

(b) Ground truth of White image 68

Figure B.7: Image 68 from the white data set. Red = black dot, Green = common scab
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(a) Red image 3

(b) Ground truth of Red image 3

Figure B.8: Image 3 from the red data set. Blue = black dot, Green = greening, Yellow

= silver scurf, Cyan = scab
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(a) Red image 10

(b) Ground truth of Red image 10

Figure B.9: Image 3 from the red data set. Blue = black dot, Green = greening, Yellow

= silver scurf, Cyan = scab
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(a) Red image 13

(b) Ground truth of Red image 13

Figure B.10: Image 13 from the red data set. Blue = black dot, Green = greening,

Yellow = silver scurf, Cyan = scab
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(a) Red image 25

(b) Ground truth of Red image 25

Figure B.11: Image 25 from the red data set. Blue = black dot, Green = greening,

Yellow = silver scurf, Cyan = scab
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(a) Red image 27

(b) Ground truth of Red image 27

Figure B.12: Image 27 from the red data set. Blue = black dot, Green = greening,

Yellow = silver scurf, Cyan = scab
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(a) Red image 38

(b) Ground truth of Red image 38

Figure B.13: Image 38 from the red data set. Blue = black dot, Green = greening,

Yellow = silver scurf, Cyan = scab
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(a) Red image 47

(b) Ground truth of Red image 47

Figure B.14: Image 47 from the red data set. Blue = black dot, Green = greening,

Yellow = silver scurf, Cyan = scab
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