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ABSTRACT 

A novel application of Monte Carlo permutation testing that improves the calculation of the 

peptide match significance levels and detection rate in database search programs is demonstrated. 

Novel k-permuted decoy databases (where k denotes the type and number of permutations) were 

evaluated for accurate computation of match significance levels. K-permuted decoy databases were 

generated by: (a) complete permutations of peptide sequences (Whole), (b) permutation of terminal 

positions of peptide sequences (End), and (c) permuted peptides that fall within a certain mass 

tolerance of the tandem mass spectra (Mass-based). The ‘Whole’ and ‘End’ based permutation 

tests were performed using various indicators of peptide match quality in OMSSA, Crux, and X! 

Tandem on manually annotated neuropeptide tandem mass spectrometry spectra. Permutation p-

values were calculated as the fraction of the permutations in the k-permuted databases with match 

indicator score as extreme as the original spectra match in the target database. The ‘Whole’ k-

permuted decoy databases identified most (up to 100%) neuropeptides, while the ‘End’ k-permuted 

decoy databases provided better discrimination of the performance between the match indicators. 

The permutation test based p-values using the hyperscore (X! Tandem), E-value (OMSSA) and Sp 

score (Crux) match indicators outperformed the other match indicators in the database search 

programs. The simple indicator of match “the number of matched ions” provided performance 

comparable to the best match indicators in the OMSSA, X! Tandem, and Crux.  Databases of least 

10
5
 k-permuted decoy peptides per spectra provided accurate p-values. Overall, the ‘Whole’ and 

‘End’ k-permuted decoy databases improved the consensus among the database search programs. 



 

 iii 

The ability of the k-permuted decoy databases to improve the classifications among correct 

and incorrect peptide matches was evaluated with ‘Mass-based’ k-permuted decoy database using 

best match indicator in the OMSSA (i.e., E-value). The evaluation was performed by searching 

5806 tryptic tandem mass spectra (671 with annotated peptide entries) against the standard target 

and combined target-decoy databases. False discovery rate estimates based on the target-decoy 

approach and known identities of the annotated spectra were used to filter the peptide-spectrum 

matches. The k-permuted decoy database approach enabled the detection of up to 89% and 87% 

annotated peptides relative to the OMSSA’s E-value with 82% and 84% identifications in the 

target database and target-decoy database, respectively. Improvements in performance was due to 

better performance of the k-permutation decoy database on small and large peptides with less than 

13 matched fragment ions and large (insignificant) OMSSA E-values.  
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CHAPTER I: LITERATURE REVIEW 

1.1 NEUROPEPTIDES 

Neuropeptides are a complex class of endogenous peptides containing both 

neurotransmitters and peptide hormones.
1
 Neuropeptides perform multiple functions including 

communication between cells, and regulation of various biological processes such as growth, 

memory, learning, behavior, sleep, and circadian rhythms.
1, 2

 Neuropeptides are present in the 

central nervous system and peripheral organs including pancreas, adrenal gland, and in the immune 

system.
3
 Given the same primary amino acid sequence, some neuropeptides can act both as 

neurotransmitter and as a peptide hormone. Neuropeptides are functionally active molecules that 

are derived from larger inactive precursor proteins known as prohormones after complex 

proteolytical processing. A prohormone may contain one copy of the neuropeptide, multiple copies 

of the same neuropeptide, or multiple distinct neuropeptides.
1
 

Most prohormones follow a common mechanism for the proteolytic processing.
1
 

Prohormones include an N-terminal signal peptide that guides the sequence through the ribosome 

and into the lumen of rough endoplasmic reticulum. Here, the signal peptide is cleaved by the 

signal peptidase enzymes followed by the transfer to the trans-Golgi apparatus. In the Golgi 

apparatus, the prohormones are packed into the secretory vesicles along with various processing 

enzymes.
4, 5

 Formation of functionally active neuropeptides from prohormones in the secretory 

vesicles is a multi-step process. First, endoproteolytic cleavage by convertase enzymes generates 

intermediate neuropeptides. This cleavage occurs C-terminal from the dibasic or multiple basic 

residues (i.e., lysine or arginine), or less frequently from single basic residues, or rarely on from 



 

2 

 

non-basic residues.
6
 Other factors that can influence the processing of prohormones into 

neuropeptides include the organism developmental stage and the environment such as pH.
7
 

Second, C-terminal basic residues are removed from the intermediate neuropeptides by the 

carboxypeptidases enzymes. Previous studies have shown that defects in the prohormone 

processing and failure to remove basic residues leads to obesity in humans and rodents.
8, 9

 Third, 

the neuropeptides undergo further post-translational modifications (PTMs) including acetylation, 

phosphorylation, and amidation.
1, 10

 Figure 1.1 depicts the steps involved in neuropeptide 

processing. N- and C-terminal PTMs are the most common among neuropeptides and are 

important for optimal functional activity and low degradation of the neuropeptides.
6
 

The resulting neuropeptides that are released into extracellular space are short in length, 

usually ranging between 3-40 amino acids.
1
 Neuropeptides interact with G-protein coupled 

receptors located on the surface of the target cells. The receptors consist of seven membrane 

spanning alpha helices. The binding of the neuropeptide to the G-protein coupled receptors 

changes its conformation leading to activation of coupled G-protein, which then mediates 

intercellular signal transduction. So far approximately 100 different neuropeptide receptors have 

been reported in C. elegans.
11

  

Several methods are available to identify neuropeptides from the biological samples 

including: Edman degradation, immunocytochemistry, enzyme-linked immunosorbent assay 

(ELISA), radioimmunoassay (RIA), and mass spectrometry (MS). Among these methods, MS has 

gained much popularity for the peptide and protein identification. 
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1.2 MASS SPECTROMETRY BASED PROTEOMICS AND PEPTIDOMICS 

The disciplines of Proteomics and Peptidomics deal with the characterization of protein and 

peptide content within an organ, tissue or cell of the organisms, respectively.
12

 MS is an analytical 

technique that has gained much popularity for the analysis of proteins and peptides present in the 

complex biological samples mainly due to improvement in separation techniques, availability of 

sequence databases, and soft ionization techniques (that transmit little residual energy onto the 

molecules to avoid too much degradation of molecules) such as electrospray ionization (ESI) and 

matrix assisted laser desorption ionization (MALDI).
13

 

A mass spectrometer contains three regions: an ion source, a mass analyzer, and a detector 

region. The ion source converts proteins or peptides in a sample into ions for MS analysis. ESI and 

MALDI are the two common methods that vaporize the molecules out of solution and dry samples, 

respectively. ESI coupled with MS is most commonly used for complex protein mixtures, while for 

large number of relatively simple protein mixtures MALDI-MS is used. The mass analyzer region 

measures mass-to-charge (m/z) ratio of the ionized molecules. Various types of mass analyzers are 

available for the proteomic research that differs from each other in terms of sensitivity, mass 

resolution, mass accuracy, and ability to generate informative mass spectra. The basic types of 

mass analyzers include ion trap, time-of-flight, quadrupole, and Fourier transform ion cyclotron. 

The detector region determines the intensity value associated with each m/z value.
13

 

Figure 1.2 shows an overview of the tandem mass spectrometry. A tandem mass 

spectrometer contains more than one mass analyzer regions that are separated by the collision 

chambers.
13

 Upon injection of sample into the mass spectrometer, the ion source converts 
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molecules into ions that are analyzed by the first mass analyzer and an MS spectrum is generated 

that contains m/z values of the peptide ions and their relative abundance. The selected peptide ions 

undergo further fragmentation to generate a MS/MS or MS2 spectrum that contains information 

about the primary structure of the peptides.
13, 14

 The downstream analysis of MS or MS/MS spectra 

provides information about the identity of the peptides or proteins. In MS-based analysis, 

characterization of the protein of interest is conducted either through bottom up approach or top 

down approach.
14, 15

 Neuropeptides are endogenous peptides that are already present in the sample 

and do not require sample preparation by enzymatic digestion (bottom up approach) or MS-based 

fragmentation (top down approach) of proteins.
16

 However, due to their typical short length the 

performance of the database search programs was tested on neuropeptides such that these peptides 

can be generated in the course of some protein experiments by protein digestion or fragmentation. 

Hence such approaches are described briefly.  

TOP-DOWN APPROACH 

In the top down approach, proteins in the complex mixture are separated and then intact 

proteins are subjected to ionization by ESI or MALDI. The ionized proteins are fragmented by MS 

to generate fragment ions. This provides molecular masses of both intact proteins and their 

fragment ions that can be used to identify protein of interest with more complete amino acid 

sequence coverage and information about PTMs.
15

 For the top down approach, the fragmentation 

methods such as electron capture dissociation (ECD) and electron transfer dissociation (ETD) are 

more effective in fragmenting large peptides and proteins.
14, 15

 Provided enough number of 

fragment ions are detected in MS for the protein of interest, the top down approach enables 
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identification of protein isoforms in much better fashion due to better sequence coverage.
14, 15

 

Furthermore, protein quantification using the top down approach is more reliable because 

abundance of proteins is measured directly rather than estimating it from the abundance of 

constituent peptides.
14

 Another advantage of the top down approach is that the masses of intact 

proteins are dispersed over a wider mass range unlike the peptide mixture obtained from the 

enzymatic digestion of proteins, thus reducing the complexity associated with the requirement to 

separate peptides prior to MS/MS analysis.
17

 Drawbacks of the top down approach include 

limitations associated with the separations methods, low sensitivity, and need for the large volumes 

of the sample relative to the bottom up approach.
14

 The masses of intact proteins and their 

fragments ions are queried against the proteomic databases
18

 or de novo approach can be used to 

identify the protein.
14

  

BOTTOM-UP APPROACH 

The bottom up approach is most commonly used to identify proteins present in complex 

biological samples in high throughput experiments. This approach starts with the protein 

purification step that is carried out either using gel based methods or gel free methods.
14

 The 

separated proteins are enzymatically digested to generate complex set of peptides. Among several 

proteases, trypsin is most commonly used that digests proteins at carboxyl-terminus of arginine or 

lysine residues unless these are followed by the proline residue. The resulting peptides mixture is 

separated using single or multidimensional separation techniques. The separated peptides are 

ionized by MS using ESI or MALDI ionization sources to generate peptide ions.
15, 19

 The mass 

analyzer region of the MS records the m/z values of the peptide ions (producing MS spectra).
13

 In 
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bottom up studies mostly the peptide ions are further fragmented in tandem MS by Collision 

Induced Dissociation (CID) to generate product or fragment ions containing information about 

amino acid sequence and PTMs.
14

 Figure 1.3 depicts the general scheme of a typical bottom up 

experiment. 

The bottom up approach has several advantages over the top down approach for the large 

scale protein identifications. The bottom up can deal with samples of high complexity and the 

peptides resulting from the enzymatic digestion are more easily separated than the intact proteins 

with the current front end separation techniques. Furthermore, bottom up needs lesser volume of 

the sample and is widely used for the quantification of peptides and proteins through chemical 

modifications of peptides with techniques such as ICAT or O
18

 labeling. However, quantification 

using the top down approach is more reliable.
14

  

Several limitations are also associated with the bottom up approach. The digestion of 

proteins with enzyme such as trypsin results in peptides that fall within a relatively narrow mass 

range, which increases the difficulty to isolate these individual peptides for the downstream 

analysis.
17

 Another challenge is the under sampling of peptides representing less abundant proteins 

and mostly proteins with high abundance are detected.
20

 In the bottom up approach not all peptides 

from a single protein sequence are detected (usually 50-90% are detected) which leads to limited 

protein sequence coverage, which makes it less ideal choice to identify splice variants and PTMs.
21

 

Typically, only few peptides that provide sufficient information are used to identify the parent 

proteins in the bottom up analysis.
15
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Various computational methods are available to identify protein sequences using MS or 

MS/MS spectral data. For the MS scan, Peptide Mass Fingerprinting (PMF) can be used to identify 

the protein of interest by comparing masses of observed peptides with the masses of peptides 

generated from each protein sequence in the database. However, PMF is useful when the sample 

only contains pure proteins.
17

 For the MS/MS data, the sequence database searching is the most 

efficient method to identify peptides. The magnitude of the correlation between the experimental 

and theoretical spectra in the database receives a statistical significance p- or E-value. 

Subsequently peptides are used to identify the precursor proteins by peptide-protein mapping and 

statistical confidence scores are assigned to peptide-protein mappings.
22

 Several databases include 

information that can be used by the database search and spectral library search approaches. 

1.3 DATABASES OF PROHORMONES AND NEUROPEPTIDES SEQUENCE AND 

SPECTRAL DATA 

UNIPROT 

UniProt (http://www.uniprot.org) is an integrated resource to store information pertaining 

to protein sequences and their functional annotation from various sources. The UniProt is a joint 

effort of research groups in the European Bioinformatics Institute (EBI), Protein Information 

Resource (PIR), and Swiss Institute of Bioinformatics (SIB).
23, 24

 UniProt has four components: 

UniProt Knowledgebase (UniProtKB) is a central repository to store curated information about 

proteins along with cross-references to more than 140 databases providing additional or 

complementary information on the annotation.
24

 UniProt Archive (UniParc) keeps track of changes 
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in the protein sequences present in the UniProt database. UniProt Reference Clusters (UniRef) 

clusters sequences in related species based on similarity to increase speed of searches. UniProt 

Metagenomic and Environmental sequences (UniMES) provide metagenomic and environmental 

data. The protein and peptide sequences from the UniProtKB were used in these studies. 

The UniProtKB has two different components: UniProtKB/Swiss-Prot and 

UniProtKB/TrEMBL. The UniProtKB/Swiss-Prot contains manually curated protein sequences 

and annotations that are extracted from literature and computational analysis. For each protein the 

following information is provided: function, enzyme specificity, functional domains, PTMs, 

subcellular location, tissue specificity, spliced isoforms, structure, interactions, and associated 

diseases.
23

 The current version of UniProtKB/Swiss-Prot (release 2013_10; October 16, 2013) 

contains 541,561 sequences obtained from 223,284 references. The UniProtKB/TrEMBL contains 

protein sequences that are computationally annotated and classified. The sequences that are 

translated from the coding sequences (CDS) present in the EMBL, GenBank, DDBJ nucleotide 

sequence databases, sequences associated with PDB structures, and data derived from the 

sequences directly submitted to UniProtKB and published literature.
23

 Currently 

UniProtKB/TrEMBL (release 2013_10; October 16, 2013) contains 44,746,523 protein sequence 

records. 

SWEPEP 

SwePep (http://www.swepep.org) is a composite database of neuropeptide sequences and 

tandem spectral data designed to facilitate peptide identification in mass spectrometry 
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experiments.
25

 The sequence database contains 4,180 annotated endogenous peptides and small 

proteins that are less than 10 KDa from 394 different species. These endogenous peptides were 

collected from three sources: in house experimentally verified peptides, peptides and proteins from 

UniProt, and peptides and proteins extracted from peer-reviewed publications. SwePep provides 

the calculated monoisotopic mass, average isotopic mass and isoelectric point (PI) for each peptide 

sequence in the database. The peptides in SwePep are classified into three groups: (1) biologically 

active peptides, the peptides with known biological functions; (2) potential biologically active 

peptides, the peptides with unknown biological function that belong to known peptide precursor 

proteins containing endogenous peptide specific processing sites; and (3) uncharacterized peptides, 

all peptides that do not belong to the above two groups. The SwePep sequence database is 

searchable by using the peptide’s mass or name, organism name, or UniProt accession number.
25

 

The spectral library of the SwePep includes CID spectra obtained from the LTQ mass spectrometer 

coupled with liquid chromatography and ESI.
26

 The 389 unique peptide identifications from 2,700 

tandem spectra using X! Tandem were included in the spectral library regardless of the score 

threshold (loge(-2)). The spectral library is searchable using peptide sequence and peptide 

molecular mass with adjustable mass tolerance. 

NATIONAL INTITUTE OF STANDARDS AND TECHNOLOGY (NIST) 

NIST (http://peptide.nist.gov) hosts a tandem spectral library of tryptic peptides produced 

in LC-MS/MS experiments utilizing the ESI method. The library generally holds spectra from ion 

trap and quadrupole-TOF mass spectrometers. The tandem spectra in NIST are grouped into three 

categories: 1) the consensus spectra; 2) the best replicate spectra; and 3) the high confidence single 
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spectra identifications. Utilizing four database search programs the peptides were peptide 

sequences were assigned to every spectrum.
27

 

NEUROPEDIA 

NeuroPedia is a neuropeptide sequence and spectral library 

(http://proteomics.ucsd.edu/Software/NeuroPedia/index.html).
28

 NeuroPedia was developed to 

improve the sensitivity and speed of the sequence database search and spectral library search 

programs in neuropeptide studies. The NeuroPedia sequence database contains 847 neuropeptides 

obtained from seven species, human (270), rat (195), mouse (188), bovine (154), rhesus macaque 

(20), chimpanzee (17), California sea hare (2), and leech (1). The 847 neuropeptides (from 332 

precursor proteins) ranged in length from 2 to 1,129 amino acids in length. Neuropeptide 

description available in NeuroPedia includes peptide sequence, name, gene family, organism name, 

taxonomy, gene name, RefSeq gene identifier, protein name, RefSeq protein identifier, UniProt 

accession number, and start and end positions of the neuropeptide in the precursor protein. The 847 

sequences are clustered into three groups regardless of the species based on sequence similarity in 

pairwise alignments: (1) 531 identical pairs, when the two aligned peptide sequences are exactly 

similar or redundant; (2) 5,020 overlapping pairs, with two aligned sequences identical up to half 

the length of the longest sequence in the alignment; and (3) 9,185 homolog pairs, with aligned 

sequences including one or two amino acid substitutions. The NeuroPedia spectral library contains 

3,401 tandem spectra gathered from the NIST library and in house experimental datasets from five 

species, human (3,184), bovine (145), mouse (67), rat (4), and leech (1). The tandem spectral 

library is downloadable in the Mascot Generic Format (MGF) and is compatible with MSPLIT
29

 

http://proteomics.ucsd.edu/Software/NeuroPedia/%20index.html
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spectral library search program. The 3,401 tandem spectra are divided into ten MGF files 

depending upon the source organism (five species), instrument type (ion trap or quadrupole time of 

flight), and enzyme specificity (trypsin, v8, or none). Furthermore, the NeuroPedia allows visual 

inspection of each tandem spectrum. 

PEPTIDEDB 

PeptideDB (http://www.peptides.be) is a sequence database composed of biologically 

active endogenous peptides, precursor proteins and known protein motifs.
30

 The current version of 

the database (version 1.0; April 25, 2008) contains 20,027 bioactive peptides derived from 19,438 

precursor proteins obtained from 2,820 metazoan species. The peptides and proteins in the 

PeptideDB were collected from BLAST alignments, annotations in the UniProt database, and 

published literature. The 19,208 out of 19,438 precursor proteins in the PeptideDB were classified 

into 373 peptide families based on sequence similarities and information available in the literature, 

while the remaining 230 precursor proteins with no significant homology were classified in a 

“unique peptide group”. The 48% (178) of protein families have known motifs in the Prosite 

(http://prosite.expasy.org), Pfam (http://pfam.sanger.ac.uk), SMART (http://smart.embl-

heidelberg.de), and peptidemotifdat
31

 databases. The peptide and precursor protein length 

distribution indicated that 97% peptides and 98% precursor proteins are less than 200 and 500 

amino acids in length, respectively. The PeptideDB database is searchable using the PeptideDB 

accession number, peptide name, peptide length, monoisotopic mass, amino acid sequence, 

organism common name, peptide family, or UniProt accession number.  
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PEPSHOP 

PepShop (http://stagbeetle.animal.uiuc.edu/pepshop.html) is a comprehensive web resource 

that enables the identification and discovery of neuropeptides.
32

 PepShop integrates public 

databases encompassing sequence, annotation, and tandem mass spectra (MS/MS) information 

with bioinformatics and proteomics tools to input, search, align, predict, and identify prohormone 

and peptides. PepShop integrates experimentally confirmed prohormone and peptide information 

from the SwePep, UniProt, and NeuroPred repositories. The PepShop data warehouse can be 

searched by species (seven species), prohormone identifier (668 unique sequences), exact amino 

acid sequence, and peptide monoisotopic mass with adjustable mass tolerance level. The 

neuropeptides in the PepShop database are linked to the spectral library of SwePep. PepShop 

enables the search of user-provided MS/MS profiles against the in-house neuropeptide repository 

using three open source database search programs, Crux, X! Tandem, and OMSSA. In PepShop, 

identified peptides are automatically linked to prohormone and peptide information.  

NEUROPEPTIDES.NL 

Neuropeptides.nl (http://www.neuropeptides.nl) database contains information about the 

known neuropeptides, neuropeptide genes, precursor proteins, and their expression in the mouse 

brain.
33

 The neuropeptide genes have been grouped into families based on structural or functional 

similarities among them. The neuropeptide genes are linked to their corresponding locus on the 

human genome through UCSC (University of California Santa Cruz; http://genome.ucsc.edu) 

human genome browser. The UCSC browser provides further information about the gene location, 
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transcripts, and base wise conservation in other species. The precursor proteins are linked to their 

isoforms and homologous proteins in related species using pre-computed BLAST results. 

Comparisons of precursor proteins across species indicate that precursor proteins are less 

conserved relative to the neuropeptides and their processing sites. Furthermore, the neuropeptide 

genes are linked to the mouse expression data for the annotated genes in the online Allen Brain 

Atlas or GenePaint.org resources.  

EROP-MOSCOW 

EROP-Moscow (http://erop.inbi.ras.ru) database provides comprehensive information 

about 10,575 naturally occurring bioactive oligopeptides.
34

 These peptides ranged from 2 to 50 

amino acids in length. Of 10,575 bioactive peptides in the current version of the database, 2,362 

peptides are neuropeptides. The database provides information about each neuropeptide including 

peptide length, sequence, precursor protein, PTMs, biological functions, molecular mass, 

isoelectric point, and literature sources. The majority of the information about neuropeptides and 

other functional classes of bioactive peptides (such as toxins, antimicrobial) was extracted from the 

scientific literature. The peptides are also linked to the external generalized databases, Swiss-Prot, 

protein identification resource (PIR), and PubMed. Based on sequence similarity peptides are also 

grouped into homologous families.  
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NCBI REFSEQ 

The National Center for Biotechnology Information (NCBI) Reference Sequence 

(http://www.ncbi.nlm.nih.gov/RefSeq/) is a collection of genomic, transcripts and protein 

sequences. The database contains more than 13 x 10
6 

protein entries from more than 16,000 

species.
35

 RefSeq contains well annotated sequences for the neuropeptide genes and precursor 

proteins. The key features of the RefSeq are less redundancy in records and improved cross-

referencing between nucleic acid and protein information. The RefSeq records are generated either 

using annotation pipelines or through manual annotation. The accession numbers of the protein 

records derived from the annotation pipelines and manual annotation are denoted with prefixes 

“XP_” and “NP_”, respectively. 

1.4 PEPTIDE IDENTIFICATION BY TANDEM MASS SPECTROMETRY 

Several computational approaches and software tools are available to identify peptide 

sequences from tandem spectra. These approaches are grouped into four categories depending 

upon how peptide sequence is assigned to the tandem mass spectra: (1) de novo peptide 

identification, (2) sequence database searching, (3) spectral library searching, and (4) hybrid 

approach. 

The de novo approach extracts peptide sequences from the experimental spectra without 

any prior knowledge about the peptide sequences.
36

 This approach is based on the rationale that the 

two fragment ion peaks in the tandem spectra differ by a single amino acid and sequence of the 

peptide can be obtained by calculating the mass differences between the adjacent peaks.
37

 Novel 
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peptides can be identified by this approach but at the same time the error rate is high due to 

incomplete fragmentation patterns in tandem mass spectra.
36, 38

 

The database search approach identifies spectra by comparing experimental spectra against 

theoretical spectra generated from peptides in the sequence database. This approach is useful when 

the peptide sequence is known and present in the sequence database or when the experimental 

spectra have low quality and incomplete fragmentation. The sequence database approach can 

match tandem mass spectra containing sufficient information (i.e., signal peaks) to peptide 

sequences in the database even if the spectra are of poor quality (too many non-signal peaks or low 

intensity of signal peaks) and contains incomplete fragmentation.
37

 However, confidence in peptide 

identification is decreased if the spectrum quality is too low
39

 or when many fragment ions are 

missing.
16

 The database search approach cannot identify those peptides that are not present in 

searched database.
22

 

The spectral library approach identifies peptides by searching the experimental spectrum 

against already annotated spectra present in the spectral library.
22, 40, 41

 The spectral library search 

approach is based on the rationale that MS-based peptidomics experiments include many peptide 

spectra already annotated in prior studies.
42

 Like the sequence database search approach, this 

approach cannot identify novel peptides. 

The hybrid approach is a combination of de novo and sequence database search approach. 

In the first step, short sequence tags (i.e., short sequences of 3-5 amino acids in length) are 

extracted from the tandem mass spectra using de novo approach and then these sequence tags are 

searched against the sequence databases using database search methods. This approach is designed 
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to overcome the limitations of de novo approach (failure to correctly match spectra with 

incomplete information and poor quality) and the database search approach (identification of novel 

or mutated peptides).
22, 41

 The database search programs were used in the current studies and will 

be discussed in detail. 

1.5 OVERVIEW OF THE DATABASE SEARCH APPROACH 

The database search approach is the most common approach to detect peptides in the 

bottom up proteomics studies primarily due to the ability to handle spectra with incomplete 

fragmentations and of low quality (low intensity of the signal peaks or presence of many non-

signal peaks). Figure 1.4 shows an overview of the database search approach. The database search 

programs correlate experimental spectra with the in silico theoretical spectra generated from the 

peptide sequences in the database.
40

 One or more scores or indicators are reported with each score 

indicating the strength of the peptide-spectrum match. Furthermore, in addition to existing 

proteomic databases, this approach can use information from translated genomic databases.
22, 41

 

Many database search programs have been developed and routinely used for the peptide 

identification including OMSSA,
43

 Crux,
44

 X! Tandem,
45

 Mascot,
46

 SEQUEST,
47

 and Tide.
48

 

These programs differ in the heuristic search algorithms and the way the experimental-theoretical 

spectra matching score is computed.  

The database search programs match individual spectrum against a subset of all the 

peptides present in the sequence database that fall within the mass range (tolerance) of the 

precursor peptide. The scores are converted to either p-values or E-values that reflect the statistical 

significance of the match based on a theoretical test distribution or an empirical test distribution 
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based on other peptide spectrum matches.
41

 The p-value is the probability of obtaining the match 

between experiment and theoretical spectra due to chance. The E-value is closely related to p-value 

but denotes the expected number of random database matches that received score as high as the 

current match.  

SEARCH PARAMETERS FOR THE DATABASE SEARCH PROGRAMS 

The parameter specification of the database search program affects peptide identification. 

The parameters influence the selection of the candidate peptides that have similar mass as the 

experimental spectrum, peptide identification accuracy, and speed of search.
22, 49

 There is no best 

set of parameter values and the optimal search parameter values depends on multiple factors 

including tandem MS datasets, search methods and tools, and analysis strategies.
49

 The most 

widely used search parameters are: monoisotopic or average isotopic mass, precursor and fragment 

ion tolerance, enzyme specificity, PTMs, and type of fragment ions. 

Monoisotopic or Average mass 

All database search programs allow the specification of the method to calculate the peptide 

masses from the m/z values of the peptide ions. The calculated masses from the m/z values can be 

closer to the monoisotopic mass (with 
12

C atoms only) or average mass (including 
13

C atoms). The 

monoisotopic mass is the mass of the most common isotopic form of the amino acids, while the 

average mass represents the weighted average of all the isotopic forms of the amino acids. The 

monoisotopic and average isotopic masses are usually used for the high-resolution and low-

resolution mass spectrometers, respectively.
22
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Precursor and fragment ion tolerance 

After calculation of the peptide mass from the m/z value of the precursor ion from the 

experimental spectrum, the database search program selects the database peptide sequences 

(candidate peptides) that fall within a certain mass range (precursor ions tolerance) of the 

experimental spectrum. The choice of the precursor mass tolerance value depends on the accuracy 

of the mass spectrometers that range from 0.05 Da for the high mass accuracy instruments such as 

Fourier transform to 3 Da for the low mass accuracy instruments such as ion traps.
22

 The higher 

value of the precursor ion tolerance can affect the speed of searches and accuracy of peptide 

identification due to large number of available candidate peptides.
41

 However, studies have shown 

that selection of few candidate peptides can also hamper the performance of the database search 

programs.
50

 This is because many database search programs use the score distribution of the 

candidate peptides to assign significance values to the correct peptide match. The lack of sufficient 

candidate peptides can lead to potential incorrect matches. In addition to the precursor ion 

tolerance, the fragment ion tolerance can also be provided for the database search programs.  

Enzyme specificity 

The choice of the digestion enzyme to process the protein sequences into peptides depends 

on the experimental settings. Accurate specification of the digestion rules can reduce the search 

space to only those candidate peptides that satisfy the digestion rules of interest. Most database 

search programs are designed for tryptic peptides; however these programs can also be used for the 

neuropeptide searches by specifying custom cleavage rules. For neuropeptide searches, the protein 

library can be processed with a nonspecific enzyme that cleaves on every peptide bond while 

allowing for the large number of missed cleavages.
26

 An alternative strategy is to instruct the 
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database search program to use the peptide sequence database without further processing.
16

 

NeuroPred and similar tools can be used to create such peptide databases. 

Post-translational modifications (PTMs) 

PTMs are the covalent modifications in the proteins that occur either due to proteolytic 

cleavage or addition of modifying groups.
51

 So far, approximately 200 different types of PTMs 

have been reported.
52

 Each modification makes the mass of the precursor and fragment ions 

different from the masses of peptides in the sequence databases. The database search programs 

select candidate peptides from the sequence database on the basis of observed mass and failure to 

incorporate these PTMs would lead selection of incorrect candidate peptides.
53

 Most database 

search programs allow the specification of three different types of PTMs: (1) the modification of 

specific residue when present at peptide terminus such as pyro-glutamination of glutamine and 

glutamic acid residues; (2) modifications of any residue present at peptide terminus such as N-

terminal acetylation and C-terminal amidation; and (3) modification of particular residues 

regardless of their position in the sequence such as phosphorylation of serine, threonine, and 

tyrosine.
46

 The PTMs can be applied either in fixed fashion (all occurrences of the residue are 

modified e.g., addition of 57 Da on every occurrence of cysteine due to cysteine alkylation) or in 

variable fashion (residue is only conditionally modified). The variable modification increases the 

search space exponentially with increase in the number of PTM specified, which can lead to 

reduction in search speed and peptide identifications.
20

 Common PTMs for the neuropeptides are 

glycosylation, amidation, acetylation, phosphorylation, and sulfation. These PTMs occur in 

secretory granules and are species- or tissue-specific.
4
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Types of fragment ions 

The value of this parameter depends on the type of fragmentation method used in the mass 

spectrometry.
22

 The ions are named based upon the type of bonds that are broken between the two 

adjacent amino acids during the fragmentation process. The most common fragmentation is the 

CID which produces b- and y-ions due to the breakage of amide bonds. The breakage of bond 

between the alpha carbon and carbonyl carbon yields a- and x-series ions. Furthermore, the 

methods such as ETD mainly results in c- and z-ions due to the fragmentation of bonds between 

the amide nitrogen and alpha carbon. The fragment ions are classified as N-terminal or C-terminal 

if the charge is retained on the N-terminus or C-terminus of the peptide, respectively. The N-

terminal ions include a-, b-, and c-ions, while x-, y-, and z-ions are classified as C-terminal ions.
54, 

55
 The database search program predicts the fragment ions for the selected candidate peptides 

according to this search parameter and then compares them with the fragment ions present in the 

experimental spectrum.
49

  

1.6 REVIEW OF SELECTED DATABASE SEARCH PROGRAMS 

Many database search programs are available including OMSSA, Crux, Mascot, Sequest, 

Tide, Myrimatch, and X! Tandem. A brief description of the selected database search programs, 

their scoring schemes and conversion of scores to either E- or p-value is given below. The X! 

Tandem and OMSSA use a parametric approach (fitting parametric distributions without using 

decoy peptides) to obtain significance values, while Crux uses a semi-supervised parametric 

approach (fitting parametric distributions from the scores of decoy peptides) to compute the p-

value. 
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X! Tandem 

X! Tandem (http://www.thegpm.org/tandem) is an open source program written in the C++ 

programming language and can be executed in multiple platforms (Windows, Linux, OS X).
45

 X! 

Tandem assigns peptide sequences to provided tandem spectra in the multistep process. First, X! 

Tandem preprocesses the input tandem spectra to remove noise and artifacts (i.e., peaks resulting 

from the ions other than the selected ions in MS) using information provided in the search 

parameter file. The X! Tandem selects the 50 (user adjustable) most intense fragment ion peaks 

and the intensity values of the selected peaks are normalized using a user-adjustable dynamic range 

value (a parameter showing the difference between the most intense and least intense fragment 

peak in the spectra; the default value is 100). In the normalization step, the intensity of the most 

intense peak is set to one-hundred, while the intensities of the remaining peaks are linearly scaled 

with respect to most intense peak. Furthermore, peaks with scaled intensity below one are removed 

from the normalized spectrum. Second, X! Tandem processes the database protein sequences into 

peptides using specified enzymatic cleavage rules and the resulting peptide sequences are further 

subjected to chemical and PTMs. Third, the normalized observed spectrum is correlated to the 

theoretical spectra generated from the peptide sequences from the target search database. This step 

assigns scores to each peptide-spectrum match indicating the strength of the match.
45

 Fourth, X! 

Tandem creates an XML output file containing details of the match such as precursor ion mass, 

charge state, hyperscore, E-value, peptide sequence, protein sequence, search parameters and 

others (http://www.thegpm.org/ docs/X_series_output_form.pdf).  

X! Tandem first computes a convolution score (preliminary) for each peptide-spectrum 

match. The convolution score is the dot product of the intensities of the matched fragment ions 
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between experimental and theoretical spectra. The dot product is used because only the matched 

ions are considered. The convolution score is converted into a hyperscore by multiplying the score 

by the factorial number of matching b- and y-ions (the usage of b- and y-ions corresponds to the 

CID spectra). The default use of the factorial of the number of matched b- and y-ions can be 

modified to include other ions such as a-, c-, x- and z-ions in the scoring. The use of factorial is 

based on the hypergeometric distribution. The hyperscore is calculated as: 

                    ∑   

 

 

   

The database search produces a hyperscore distribution of all the peptide-spectrum 

matches, which is assumed to follow a hypergeometric distribution. The hypergeometric 

distribution is a parametric discrete probability distribution that allows extrapolation. The 

hyperscores are log-transformed and the hyperscores higher than the intersection between the log-

transformed hyperscores (on the x-axis) and log transformation of the frequency of the hyperscores 

(i.e., E-value on the y-axis) are assumed to be significant.
39

 

OMSSA 

Open Mass Spectrometry Search Algorithm (OMSSA; http://pubchem.ncbi.nlm.nih.gov/ 

omssa) is an open source program written in the C++ programming language that can be compiled 

across multiple platforms including Windows, Linux, Solaris, and OS X.
43

 OMSSA uses a multi-

step strategy to identify peptides from the spectra.  

In the first step, OMSSA determines the precursor charge state of the spectrum by counting 

the number of peaks that fall below the m/z value of the precursor ion. A spectrum with more than 

95% peaks below precursor m/z is considered in +1 precursor charge state, while the spectrum is 
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searched with +2 and +3 precursor charge states if less than 95% peaks fall below precursor m/z 

values. The accurate determination of the charge state is important in OMSSA because candidate 

peptides (peptides within the precursor mass tolerance) for each spectrum are selected using the 

neutral mass (i.e., sum of the masses of amino acid residues in a peptide and mass of the hydroxyl 

group) of the precursors. The second step involves preprocessing of experimental spectra to 

remove noise peaks including peaks with intensity below 2.5% of the highest peak in spectrum, 

precursor ion peaks, peaks that are within 2 Da of m/z distance from the examined peaks, and 

peaks that can be explained by neutral mass losses (loss 17 Da for ammonia, and 18 Da for water). 

Furthermore, peaks are examined in the order of intensity, for the precursor charge states +1 and 

+2 only the most intense peak within ±27 Da of the peak being examined is selected, while for the 

+3 charge state the two most intense peaks are selected within ±14 Da of the peak being examined. 

Third, candidate peptides from the sequence database that fall within precursor mass tolerance of 

the spectra are selected. The candidate peptides masses are calculated considering the specified 

PTMs. Fourth, to improve the speed of searches, the m/z values from the experimental spectra are 

converted to integer values using 100 as the scaling factor (user-adjustable), the sequence library is 

mapped to memory, and the observed spectra are sorted, and indexed by the precursor mass. Fifth, 

+1 charge fragment ions are calculated for precursor charge states +1 and +2, while both +1 and +2 

fragment ions are calculated for precursor charge state +3 when the peak is above m/2 and below 

m/2, respectively, where m is the precursor mass. Sixth, the fragment ion peaks in the experimental 

and theoretical spectra are compared and a score is calculated. Only the theoretical spectra that 

have at least one fragment ion match with any of the top three (user-adjustable) most intense peaks 

in the experimental spectrum are scored to improve the sensitivity of the algorithm.
43
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The scoring of the experimental-theoretical spectra matches is based on the assumption that 

the distribution of the number of matched ions follows a Poisson distribution. Lambda (the Poisson 

mean parameter) is calculated by considering the fragment ion tolerance, number of peaks in the 

experimental and theoretical spectra, and the mass of the precursor. The lambda is calculated by 

counting the number of spectrum peaks that fall within two matched fragment ions from any one 

fragment ion series (e.g., b- or y-ions). The count is adjusted by dividing with the mass of the 

precursor. Lambda is the sum of the adjusted counts. The calculation of the lambda parameter is 

different for the spectra with +1 charge fragment ions than spectra with both +1 and +2 fragment 

ions. During the preprocessing step, the OMSSA noise filter removes some but not all noise peaks 

(peaks not representing fragment ion peaks are known as noise peaks) from the experimental 

spectra leading to inclusion of noise peaks in the calculation of the Poisson mean. The probability 

of the match with a given number of fragment ion matches (x) and lambda can be calculated as 

follow: 

        
  

  
    

The OMSSA report results according to E-value which is the expected number of random 

database matches with probability equal or more significant than the one observed due to chance. 

OMSSA calculates this E-value by multiplying the number of candidate peptides (i.e., database 

peptides within precursor tolerance of observed spectra) with Poisson probability of the match. 

             ∑        

   

   

     

 



 

25 

 

Crux 

Crux is an open source reimplementation of Sequest, the first commercial database search 

program.
44

 Like in the previous database search programs, the first step in Crux is the identification 

of all database candidate peptides that are within the precursor mass tolerance range of the 

experimental spectra. The candidate peptides are selected either by querying spectrum masses 

against the entire sequence database or against an indexed database of predicted peptides. This 

indexed database is a preprocessed binary sequence database obtained from the in silico digestion 

of precursor sequences in the target database and followed by sorting of the resultant in silico 

generated peptides by their masses. The index database allows efficient retrieval of candidate 

peptides upon query allowing Crux to perform faster searches than the original Sequest program. 

The candidate peptides are matched with the experimental spectrum and indicators of the strength 

of the experimental and theoretical spectra matches are reported. These indicators are: cross-

correlation score (XCorr), delta Cn (ΔCn), Sequest preliminary score (Sp), and p-value.  

First, Crux processes the spectra by taking the square root of each intensity peak value, 

normalizes the peak intensities to sum to one hundred, and round each m/z to the nearest integer 

value. Second, Crux uses the 200 most intense peaks to compute a Sp score. The higher the value 

of Sp score denotes higher similarity between theoretical and experimental spectra. The Sequest 

version used Sp score to filter top 500 database candidate peptides that are subsequently scored and 

reranked using XCorr to increase the speed of searches. The default version of Crux “search-for-

matches” does not calculate Sp score. In this study, the Crux parameter file was modified to 

retrieve this score. 



 

26 

 

The experimental spectrum is preprocessed prior to calculating XCorr scores, the primary 

score of Crux that indicates the similarity between experimental and theoretical spectra. First, 

spectra are processed by taking the square root of each intensity peak value and rounding each m/z 

to the nearest integer value. The processed spectrum is divided into ten bins and the peaks intensity 

in each bin is set to a maximum of 50. A theoretical spectrum is synthesized for each candidate 

peptide containing b- and y-ions with peak intensity of 50, ±1 m/z peaks with intensities of 25, and 

with peak intensity 10 for b- and y-ion peaks with neutral mass loss of ammonia and b-ion peaks 

with neutral loss of water. The two spectra are correlated and higher XCorr denotes higher 

similarity between experimental and theoretical spectra. Crux computes a relative score (ΔCn) 

from the XCorr scores denoting the relative ranking of each peptide match in terms of other 

peptide matches for any particular spectrum. The deltaCn reflects the difference in the XCorr score 

of the top peptide-spectrum match relative to other matches for that spectrum. The deltaCn score 

indicates the strength of the top match relative to the second best match. 

 Crux calculates a p-value from a Weibull distribution obtained by using XCorr scores from 

all peptide-spectrum matches.
56

 The p-value is the probability that the match between the 

experimental and target peptide spectrum is due to chance. Crux reports spectrum specific 

Bonferroni-adjusted p-values, adjusted by the number of candidate peptides. Crux uses 40 Weibull 

points (the minimum numbers of XCorr scores required to estimate the p-value) to estimate p-

values. However, prior studies have shown that increase in the number of Weibull points increase 

significance levels of the estimated p-values.
16

 Crux generates in silico peptides (decoy peptides 

described in the next section) when the number of candidate peptides are less than the number of 

Weibull points required to estimate p-values using Weibull distribution. The decoy peptides are 
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generated by keeping the terminal amino acids of the candidate peptides fixed while shuffling the 

internal amino acids of the peptide. The Crux sampling with replacement procedure is repeated 

until a minimum number of Weibull points are obtained.  The source code of Crux was modified to 

obtain raw p-values for each spectrum using different values of Weibull points.  

1.7 FACTORS AFFECTING PEPTIDE IDENTIFICATION 

Accurate peptide identification from the tandem spectra remains challenging despite the 

many parametric, semi-parametric, and non-parametric methods available to calculate the 

significance levels of a match between the experimental and theoretical spectra. The significance 

levels provide an objective criterion to assess the likelihood that the scores of target peptides could 

be observed by chance. A large number of observed spectra are either missed due to significant 

levels that do not surpass the minimum user-defined threshold (false negative) or the match 

significance surpasses the minimum threshold yet the match is incorrect (false positive). Several 

factors influence the significance levels of the peptide-spectrum matches including: search space, 

peptide length, missing ions and low spectrum quality, and incomplete databases. 

IMPACT OF THE SEARCH SPACE DENSITY ON PEPTIDE IDENTIFICATION 

The precursor mass tolerance, choice of a digestion enzyme, and PTM searches influence 

the effective database size (the number of database peptides that have mass within the precursor 

tolerance of the experimental spectrum).
41, 49

 A spectrum with fewer database candidate peptides is 

more likely to produce a correct peptide match relative to a spectrum with more candidate peptides. 

The presence of large number of candidate peptides reduces the sensitivity of the database search 
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programs as more incorrect peptides have a chance to receive a score higher than the correct 

peptide matches leading to an increase in the false positive results. The higher number of incorrect 

peptides with score as extreme as the correct target peptide leads to lower significance values for 

the corresponding spectrum. On the other hand, many database search programs use all candidate 

peptides scores for a spectrum to fit a distribution and calculate significance values for the match.
49

 

For example, X! Tandem estimates E-value from the distribution of hyperscores from all peptide 

matches for a spectrum.
57

 Low number of candidate peptides increases the E-value and the match 

becomes less significant.
16

 A wider precursor tolerance can be used to generate enough number of 

candidate peptides to estimate significance values in the absence of sufficient candidate peptides.
49

 

An alternative approach is to generate decoy peptides when sufficient number of candidate 

peptides is not available to estimate significance.
56

  

IMPACT OF PEPTIDE LENGTH ON PEPTIDE IDENTIFICATION 

The ability of the database search programs to accurately identify peptides mainly depends 

on the availability of a sufficient number of matching fragment ions.
16

 Short peptides have a higher 

chance to be missed by the database search programs due to less significance values.
16, 20, 58

 The 

short peptide tends to receive a score that is not different from the other matches of the spectrum 

due to less number of possible fragment ions. This problem is further complicated by other factors 

such as missing ions and presence of fragment ions due fragmentation of more than one peptides in 

a single spectrum.
16
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IMPACT OF MISSING IONS AND LOW SPECTRUM QUALITY ON PEPTIDE IDENTIFICATION 

The incomplete fragmentation and noise (non-signal spectra peaks) in the spectra reduces 

the number of correct peptide identifications due to lower significant p- or E-value levels assigned 

by the database search programs. The increase (becoming less significant) in p- or E-values with 

both factors is due to the lower score of the correct matches that is not significantly different from 

the other matches of the spectrum. Most database search programs use intensity to select signal 

peaks to be used in their scoring functions. The low intensity of signal peaks relative to the noise 

peaks reduces the contribution of signal peaks in the scoring functions which can lead to the lower 

scores for the correct peptide matches.
26

 In the case of same PTM occurring on more than one 

residue on a single peptide (e.g., phosphorylation of serine and threonine), the confidence in 

localization of the PTM is reduced in the absence of fragment ions representing the exact residue 

modified.
49

 

FACTORS IMPACTING SEQUENCE DATABASES 

The database search programs can fail to identify a peptide match if the corresponding 

peptide sequence is absent from the target database. This could be either due to the: (a) presence of 

a closely related variant of the peptide or protein rather than exact sequence in the database; (b) 

sequencing errors; (c) mutation in the sequence; (d) polymorphism; or (e) presence of homologous 

sequence in the database from closely related species.
59

  

In the context of the standard database search approach (searching database with a narrow 

precursor mass tolerance) a peptide sequence is considered missing when either a peptide sequence 
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is totally absent from the sequence database or a closely related variant of the sequence is present 

in the database. This is because it can change the peptide mass and the resulting MS/MS 

fragmentation patterns of the b- and y-ions making the observed-theoretical spectra unmatchable. 

The error tolerant searches are assumed to work better than the standard database searches in such 

cases.
59

 

Another reason could be the complex dissociation chemistry of peptides in MS that can 

permute or rearrange the sequence of peptides in sample. Studies have shown that the larger b-ions  

have higher tendency to form cyclic structures in which sequence ends are fused together followed 

by reopening of the ions at different residues instead of the original fused positions. Most database 

search programs do not take into account the possibility of peptide ion rearrangements while 

counting the number of shared peaks between the observed and theoretical spectra.
60

 The exclusion 

of such permuted ions from scoring can contribute towards lower scores for the peptide matches.       

MULTIPLE HYPOTHESIS TESTING 

Typical MS-based peptidomics or proteomics experiments involve the analysis of 

thousands of experimental tandem spectra leading to a multiple hypothesis testing scenario.
61

 Two 

different types of measures have been proposed to control multiple hypothesis testing problems: 

family wise error rate (FWER) and false discovery rate (FDR). The first measure is FWER the 

probability of rejecting at least one true null hypothesis among all m independent hypotheses. 

Given m independent hypothesis and the probability of error for each test (α), the FWER is 

calculated as: 
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The quantity (1- α) represents the probability of no error and (1- α)
m
 represents the 

probability of no error in the m independent tests.
62

 For example for m = 100 and α = 0.05 then 

FWER is 0.99 (or 99% chance of observing at least one falsely rejected null hypothesis). Many 

methods have been proposed to control such high FWER and these methods are divided into 

categories: (a) single step approach, in which all p-values are adjusted equally; and (b) sequential 

step approach, in which each p-value is adjusted separately.  

The Bonferroni adjustment is a single step approach that is used in the current study. This 

adjustment can be applied in two ways: (1) by multiplying the probability of type I error (alpha 

level) by the number of tests (adjusted alpha level) and accepting or rejecting the null hypothesis 

by comparing significance values against adjusted alpha level; and (2) by adjusting the raw 

significance values by multiplying them by the number of hypothesis tests and then comparing the 

adjusted significance values against the alpha level to accept or reject the null hypothesis. The 

Bonferroni adjustment is a highly conservative approach.  

An alternative approach to control FWER is the Holm’s sequential step wise adjustment 

method.
63

 In this method the unadjusted p-values are arranged in an ascending order (from the 

smallest to the largest) and each unadjusted p-value is adjusted by multiplying with m-j+1, where 

m refers to the total number of tested hypotheses and j is the rank of the unadjusted p-value in the 

ordered list. The Holms method is less conservative than the Bonferroni method and the hypothesis 

rejected by the Bonferroni method would also be rejected in the Holm’s step down procedure. 



 

32 

 

 Benjamini and Hochberg proposed a false discovery rate (FDR) method as a second 

measure to handle multiple testing problems.
64

 This method allows a certain percentage of false 

positive hypotheses among all rejected hypothesis. The FDR is defined as the expected fraction of 

false positive identifications or hypothesis among all rejected hypotheses. The FDR is calculated at 

certain threshold (α) by dividing the number of false positives (FP) with the total number of 

rejected hypothesis i.e., true positives (TP) and false positives (FP). Thus, peptide-spectrum 

matches need to reach statistical significance values that surpass the stringent threshold that 

controls for multiple hypothesis testing. 

1.8 FDR VIA TARGET-DECOY APPROACH 

In the MS/MS-based peptidomics studies, the FDR can also be calculated using the target-

decoy database search strategy
41, 65-68

 or mixture model approach. The target-decoy approach 

(TDA) is the simplest and most popular approach to estimate error rate. This approach is easily 

applicable to several experimental setups and demonstrates the ability of the scoring functions to 

distinguish between correct and incorrect peptide-spectra identifications. The TDA is based on the 

assumption that the score distribution of incorrect matches from the target database is identical to 

the score distribution of the decoy matches.   

The accuracy of the TDA based FDR estimates depend on the way the target decoy search 

strategy is conducted. First, the decoy sequences can be generated either through sequence 

reversal, shuffling, or randomization. Details on the decoy construction methods are given in the 

next section. However, various studies have reported that the type of the decoys have little to no 

effect on the FDR estimates. Second, the tandem spectra can be searched against the combined 
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target-decoy database (concatenated database) or target database can be searched separately from 

the decoy database to obtain correct and random score distributions. The concatenated target-decoy 

database searches are preferred over separate target and decoy database searches because separate 

searches can produce conservative estimates. This is because in the absence of competition 

between target and decoy peptides for the same spectra the decoy peptides can receive higher 

scores relative to the concatenated search strategy.
41, 65, 68

 Third, the choice of the formula to 

compute FDR can produce conservative estimates. The (2 * Ndecoys / (Ndecoys+ Ntargets)) provides 

conservative FDR estimates relative to the Ndecoys/Ntargets formula.  

1.9 GENERATION OF DECOY PEPTIDES 

A decoy peptide is an in silico generated amino acid sequence that is not present in the 

original target database (database containing correct peptides for tandem spectra). The database 

search methods can use a database of decoy peptides to compute the statistical significance value 

of the peptide-spectrum matches
44

 or to determine the score thresholds that separates incorrect 

from the correct peptide identification and estimation of the corresponding FDR
41

. The FDR 

estimates and significance values can be estimated from the decoy database based on the 

assumption that the probability of the incorrect match in the target database can be estimated from 

the peptide-spectrum matches in the decoy database.
40, 41, 65, 69

 Several methods are used to generate 

the decoy peptides including the sequence reversal method, sequence shuffling method, and 

random sequence generation method. Each method has its own advantages and disadvantages. A 

brief description of these methods follows. 
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The sequence reversal method generates decoy peptides from the original target peptide by 

sequence reversal (change in the amino-carboxyl orientation) of the target peptide. This method 

generates the decoy peptides with the same amino acid composition, length and mass distributions 

as the target peptides. However, the generated peptides are not truly random (i.e., the peptides are 

generated by reversing the target peptides) and the method cannot be used for palindromic 

sequences.
68

 The sequence reversal method is used in X! Tandem.
45

 

The sequence shuffling method generates decoy peptides by randomly shuffling the amino 

acids in the target peptides. This method preserves the amino acid composition, length and mass 

distributions of the target peptide. The sequence shuffling method allows repeating the analysis 

many times by creating different versions of the target peptides than sequence reversal method.
68

 

This method is implemented in the Crux program to estimate p-values.
56

  

The random sequence generation method generates decoy peptides by randomly selecting 

amino acids according to the amino acid frequency and peptide length distributions in the target 

database. This is undesirable because simple random method cannot preserve amino acid 

homologies of the target database in the corresponding decoy databases. A better model for the 

generation of random peptides consists in using a Markov chain model parameterized with the 

amino acid frequencies of the target database. This approach generates similar amino acid patterns 

to the target peptides such as acidic or basic regions. The random generation method is 

implemented in Mascot.
68

 The random generating methods can generate many more decoy 

peptides than the target peptides and this can be undesirable for generating false positive estimation 

as the relative proportion of decoy to peptide peptides can add decoy bias. Alternatively, the large 

number of decoy peptides can be used to estimate the significance values for the peptide-spectrum 
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matches. Prior studies have shown that choice of the type of decoy database have low impact on 

the accuracy of FDR estimates.
65

 

The significance values for the database search programs can be computed either using the 

parametric approach, semi-parametric approach, or non-parametric approach. The parametric 

approaches assumes that scores of peptide-spectrum matches follow a certain distribution and the 

required distribution parameters are obtained from all the matches of particular a spectrum in the 

sequence database. For example, X! Tandem and OMSSA use the hypergeometric and Poisson 

distributions to calculate the E-values.
43, 45

 A semi-supervised parametric procedure uses decoy 

peptide-spectrum scores to fit a parametric distribution. An example is Crux that calculates p-

values by fitting Weibull distribution from the target and decoy XCorr scores.
56

 The significance 

values can be calculated using scores of decoy peptides in a non-parametric fashion (without 

assuming any distribution).
70

  

1.10 PERMUTATION TEST 

The strengths and limitations of the standard database search programs to identify peptide 

have been discussed in various comparative studies.
16, 20, 66

 The ability of the database search 

programs to discriminate between the correct and incorrect peptides identifications with good 

statistical significance values remains an open question. The database search programs must 

calculate significance of matches irrespective of the peptide size, spectra quality issues such as 

incomplete fragmentation, low signal to noise ratios, and precursor charge states.16 The statistical 

significance values for the peptide identification can be calculated either using parametric, semi-

supervised parametric, or non-parametric approaches.  
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The permutation test or randomization test is a non-parametric statistical significance test to 

estimate the significance values without assuming any particular distribution for the given data.
71

 

This makes permutation test useful because in many cases the distribution of the test statistic is 

usually unknown.
72

 Permutation tests can be used for any test statistic or indicator regardless of the 

original distribution of the test statistic. This makes the permutation test an ideal choice to perform 

sufficiency analysis and determine the statistic or indicator providing more accurate acceptance or 

rejection of the null hypothesis. In order to get p-values, a null distribution of the test statistic of 

interest is fitted by calculating all possibilities of the data points through rearrangement (peptide 

sequences in this case). The p-value is calculated as the proportion of rearranged or random 

peptides receiving equal or better score than the original target peptide. The permutation tests can 

be categorized into two categories: exact permutation test and Monte Carlo permutation test.  

An exact permutation test for a peptide sequence of a given length (L) involves calculation 

of the test statistic on all possible peptide sequences by sampling amino acids with replacement 

from a list of 20 standard amino acids. In practice, the enumeration of all possible peptide 

sequences for the peptides greater than eight amino acids in length would produce a large number 

of possible permuted peptides. For example, there are (20)
10 

= 10,240,000,000,000 possible ways 

to generate peptides of ten amino acids in length. These peptides provide possible values of test 

statistic, the associated distribution and exact p-value. The exact test provides an exact p-value (the 

p-value observed from an actual experiment) by dividing the number of permutations with score 

t(r) equal or higher than the original peptides t(s) with total number of permutations (N). 
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 However, the computation of p-values using exact test through enumeration of all possible 

peptide sequences is not feasible computationally. The second category of permutation test termed 

as approximate permutation test or Monte Carlo permutation test or randomized permutation test, 

generates sampling distribution without exhaustively enumerating all possible values of the test 

statistic.
71, 73

 This procedure provides empirical p-values that approach there exact p-values as the 

number of sampled permutation increases. The significance levels of the computed p-values 

depend on the number of sampled permutations. For example, to get a p-value of 10
-6

 about 

>=1,000,000 permutation values must be generated. The p-values for the Monte Carlo permutation 

approach are computed in a manner similar to the exact permutation test. 

The permutation tests have been extensively used in many bioinformatics areas that include 

analysis of gene expression data, QTL detection, allelic association analysis, and modeling ChIP 

sequencing.
73

 Likewise, permutation tests can be applied for MS-based peptidomics studies as 

peptides and proteins are made up of finite (20 standard) number of amino acids. However, it is not 

practically feasible to enumerate all possible peptide sequences for peptides greater than eight 

amino acids in length, for example, there are (20)
10 

= 10,240,000,000,000 possible ways to 

generate different peptides of ten amino acids in length. Therefore, in this entire thesis we used the 

Monte Carlo permutation approach to convert scores produced by the database search programs 

into p-values. 
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1.11 FIGURES 

 
 

Figure 1.1. Classical and nonclassical neuropeptide processing scheme. First, the N-terminal 

sequence that drives translocation of the protein into the lumen of the endoplasmic reticulum is co-

translationally removed by a signal peptidase. Then, in the classical scheme, the prohormone is 

typically processed at sites containing Lys-Arg (KR), Arg-Arg (RR), or Arg-Xaa n -Arg, where n 

is 2, 4, or 6 (RxxR shown in figure). Processing at these basic amino acids involves endopeptidase 

action by an enzyme such as prohormone convertase 1 or 2 followed by the removal of the C-

terminal basic residue(s) primarily by carboxypeptidases E, although an additional enzyme 

(carboxypeptidase D) is also able to contribute to processing. An amidating enzyme that is broadly 

expressed in the neuroendocrine system converts C-terminal Gly residues into a C-terminal amide. 

In addition to this classical pathway, a large number of peptides have been found that result from 

cleavage at nonbasic residues. An example of this nonclassical pathway for the generation of a 

peptide previously found in brain is indicated; this fragment of chromogranin B involves cleavage 

between 2 adjacent Trp residues (WW). Many other nonbasic cleavage sites have been reported, 

including other hydrophobic residues, short chain aliphatic residues, and acidic residues. The 

enzymes responsible for the nonclassical pathway are not clear. Some of these nonclassical 

processing events may occur after secretion and be mediated by extracellular peptidases, although 

some of the nonbasic mediated cleavages appear to occur within the secretory pathway.
1
 

 

 

 

                                                 
1
 The AAPS Journal, 2, 2005, E449-E455, Neuropeptide-processing enzymes: Applications for drug 

discovery, Fricker L. D.; with kind permission from Springer. 
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Figure 1.2. Tandem mass spectrometry (MS/MS). A sample is injected into the mass spectrometer, 

ionized and accelerated and then analyzed by mass spectrometry (MS1). Ions from the MS1 

spectra are then selectively fragmented and analyzed by mass spectrometry (MS2) to give the 

spectra for the ion fragments.While the diagram indicates separate mass analyzers (MS1 and MS2), 

some instruments can utilize a single mass analyzer for both rounds of MS.
2
 

 

 

 

 

 

 

 

 

 

 

                                                 
2
 http://www.piercenet.com/method/overview-mass-spectrometry 
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Figure 1.3. General view of the experimental steps and flow of the data in shotgun proteomics 

analysis. Sample proteins are first proteolytically cleaved into peptides. After separation using one- 

or multidimensional chromatography, peptides are ionized and selected ions are fragmented to 

produce signature tandem mass spectrometry (MS/MS) spectra. Peptides are identified from 

MS/MS spectra using automated database search programs. Peptide assignments are then 

statistically validated and incorrect identifications filtered out (peptide STHICR). Sequences of the 

identified peptides are used to infer which proteins are present in the original sample. Some 

peptides are present in more than one protein (peptide HYFEDR), which can complicate the 

protein inference process.
3
 

 

                                                 
3
 Springer and the Methods in Molecular Biology, 367, 2007, 87-119, Protein identification by tandem mass 

spectrometry and sequence database searching, Nesvizhskii A. I.; with kind permission from Springer. 
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Figure 1.4. Tandem mass spectrometry (MS/MS) database searching. Acquired MS/MS spectra 

are correlated against theoretical spectra constructed for each database peptide that satisfies a 

certain set of database search parameters specified by the user. A scoring scheme is used to 

measure the degree of similarity between the spectra. Candidate peptides are ranked according to 

the computed score, and the highest scoring peptide sequence (best match) is selected for further 

analysis.
4
 

 

 

 

 

 

 

                                                 
4
 Nature Methods, 4, 2007, 787-797, Analysis and validation of proteomic data generated by tandem mass 

spectrometry, Nesvizhskii et al.; with kind permission from Nature Publishing Group. 
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 CHAPTER II: ACCURATE ASSIGNMENT OF SIGNIFICANCE TO 

NEUROPEPTIDE IDENTIFICATIONS USING MONTE CARLO K-PERMUTED 

DECOY DATABASES 

  



 

43 

 

2.1 NOTES AND ACKNOWLEDGMENTS 

The material presented in this chapter is a preprint version of the article “Akhtar, M. N.; 

Southey, B. R.; Andren, P. E.; Sweedler, J. V.; Rodriguez-Zas, S. L. Accurate assignment of 

significance to peptide identifications using Monte Carlo k-permuted decoy databases” published 

in PLOS ONE (2014). This work was completed in Dr. Sandra Rodriguez-Zas Bioinformatics 

Laboratory at University of Illinois Urbana-Champaign (USA) in collaboration with Dr. Sweedler 

at University of Illinois Urbana-Champaign (USA) and Dr. Andren at University of Uppsala 

(Sweden). The work is focused on estimation and evaluation of significance values for the 

neuropeptide identifications from the database search programs using whole sequence permutation 

databases. The support of NIH (Grant Numbers: R21 DA027548, P30 DA018310 and R21 

MH096030) is greatly appreciated. 

  



 

44 

 

2.2 ABSTRACT 

In support of accurate neuropeptide identification in mass spectrometry experiments, novel 

Monte Carlo permutation testing was used to compute significance values. Testing was based on k-

permuted decoy databases, where k denotes the number of permutations. These databases were 

integrated with a range of peptide identification indicators from three popular open-source database 

search software (OMSSA, Crux, and X! Tandem) to assess the statistical significance of 

neuropeptide spectra matches. Significance p-values were computed as the fraction of the 

sequences in the database with match indicator value better than or equal to the true target spectra. 

When applied to a test-bed of all known manually annotated mouse neuropeptides, permutation 

tests with k-permuted decoy databases identified up to 100% of the neuropeptides at p-value < 1 x 

10
-5

. The permutation test p-values using hyperscore (X! Tandem), E-value (OMSSA) and Sp 

score (Crux) match indicators outperformed all other match indicators. The robust performance to 

detect peptides of the intuitive indicator “number of matched ions between the experimental and 

theoretical spectra” highlights the importance of considering this indicator when the p-value was 

borderline significant. Our findings suggest permutation decoy databases of size 1 x 10
5
 are 

adequate to accurately detect neuropeptides and this can be exploited to increase the speed of the 

search. The straightforward Monte Carlo permutation testing (comparable to a zero order Markov 

model) can be easily combined with existing peptide identification software to enable accurate and 

effective neuropeptide detection. The source code is available at 

http://stagbeetle.animal.uiuc.edu/pepshop/MSMSpermutationtesting. 
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2.3 INTRODUCTION 

Neuropeptides participate in cell to cell communication and regulate many biological 

processes such as behavior, learning, and metabolism.
1
 Mass spectrometry has revolutionized 

neuropeptide characterization and quantification.
74-79

 However, detection is complicated by the 

neuropeptide size (typically 3 to 40 amino acids long) and by the complex post-translational 

processing that includes cleavage, and amino acid modifications of prohormones into 

neuropeptides.
1, 6

 

Database search programs are commonly used to identify peptides from tandem mass 

spectrometry experiments.
41

 These programs generate in silico theoretical spectra from target 

databases of known peptide sequences that have masses within a range (tolerance) of the observed 

peptide mass. The in silico spectra are then compared to the observed experimental spectra and 

indicator scores that signify the closeness of the match are computed. To assess the statistical 

significance of these matches, the observed-target match indicator is compared to the distribution 

of indicator values under the null hypothesis of no match using various methods. In the popular 

target-decoy approach, the experimental spectra are compared to spectra from a decoy database 

consisting of peptides sequences that were generated by reverting or reshuffling the amino acids in 

the sequences of the target database.
16, 41, 46

  

For neuropeptide identification, the target-decoy approach can result in false negatives 

because the small size of many neuropeptides leads to low observed-target match indicator values 

and consequently low significance levels.
16

 Furthermore, the small size of many neuropeptide 

leads to few decoy reshuffled sequences and the resulting granularity of the null distribution of 
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decoy scores further lowers the significance levels.
16, 20, 58, 80, 81

 At the protein level, alternative 

identification approaches have attempted to address the challenge of assessing statistical 

significance.
82, 83

 However, the implementations of the previous approaches do not work with 

widely used database search programs, do not use all the information resulting from the mass 

spectrometry experiment, and are biased by peptide length or assume one-direction progressive 

processing. Approaches that rely on fewer limiting assumptions and that use all the information 

available need to be evaluated. 

Permutation tests are well-suited for neuropeptide database searches by helping to 

overcome the finite combination of amino acids from small neuropeptides and do not rely on 

directional assumptions. Furthermore, permutation testing provides strong control of Type I errors 

thus minimizing the incidence of false positive results.
84

 Under the null hypothesis of no match, the 

experimental spectrum of a peptide is the result of a random sequence of amino acids provided that 

the total mass is close to the experimental mass. This requirement stems from the database search 

program strategy that only accepts sequences within a user determined range of the experimental 

spectra. The permutation statistical significance under the null hypothesis is then generated by 

using a decoy database of considering all possible amino acid sequences within the predetermined 

range of the experimental spectra. Under the null hypothesis any amino acid can be present at any 

position of the sequence, thus, addressing the exchangeable assumption required by the 

permutation test.
84

  

Monte Carlo sampling is used to reduce the number of possible sequences while providing 

an unbiased estimate of the p-value. Furthermore, the loss in statistical efficiency when estimating 

the p-value decreases with increasing number of random samples.
84

 The main advantage of the 
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Monte Carlo permutation approach proposed over existing decoy generation based on sequence 

reversion or reshuffling of the target sequence is the improved definition of the null distribution. 

The larger number of decoy sequences results in lower granularity and, thus, more precise 

assessment of the statistical significance of the observed matches. Two major advantages of the 

Monte Carlo permutation approach proposed over existing dynamic programming approaches
82, 83

 

is the simplicity of integration to existing database search programs, the use of all spectra 

information available and consideration of all possible spectra matching processes. 

This study demonstrates the use Monte Carlo permutation testing to overcome the 

limitations of current protein identification approaches to accurately assess neuropeptide statistical 

significance. This approach combines and extends the model-free property of current decoy 

databases with the more extensive search of dynamic programming approaches. The aims are: (1) 

to develop permutation resampling methodology that can be easily integrated with existing peptide 

database search software, and (2) to demonstrate the advantages of this approach to provide 

accurate measures of neuropeptide match significance using ideal and real experimental 

neuropeptide spectra. Supporting objectives were: (1) to develop and implement complementary 

novel permuted databases; (2) to determine the number of permutations required for accurate 

significance levels; and (3) to identify the neuropeptide match indicators within and across 

programs that are better suited to provide accurate statistical significance. 
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2.4 MATERIALS AND METHODS 

TANDEM SPECTRAL DATASET AND TARGET DATABASE 

Tandem mass spectra from a comprehensive list of 103 experimentally-obtained and 

manually annotated mouse neuropeptides were obtained from the SwePep database 

(http://www.swepep.org). These spectra were obtained using linear ion trap mass spectrometer 

coupled with liquid chromatography and electrospray ionization source.
25

 Neuropeptides were 

manually validated after identification using the X! Tandem database search program.
45

 The 

independent manual annotation step also ensured that the subsequent software comparison would 

not be biased in favor of the X! Tandem database search program. Of these, 80 neuropeptides were 

unmodified and the remaining 23 encompassed post-translational modifications (PTMs) including 

C-terminal amidation, N-terminal acetylation, phosphorylation, pyro-glutamination and oxidation. 

The spectra corresponded to 5, 68, 25, and 5 peptides that had precursor charge states +1, +2, +3 

and +4, respectively, and all charge states were observed in modified and unmodified peptides.  

Ideal uniform spectra of all possible b- and y-ions with +1 product charge state were 

simulated for 103 annotated experimental spectra. The ideal spectra also included all the PTMs 

identified in the corresponding experimental spectra. The neutral mass loss peaks due to loss of 

single water or ammonia molecules from the b- and y-ions were simulated regardless of their 

position in the ions sequence.  

A comprehensive target database of 618 mouse neuropeptides was obtained from the 

PepShop database
32

 (http://stagbeetle.animal.uiuc.edu/pepshop). This target database encompassed 
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the neuropeptides corresponding to the 103 tandem spectra studied. The neuropeptides in the 

PepShop were assembled from the known 95 mouse prohormones present in SwePep
25

 and 

UniProt
24

 complemented with NeuroPred
85

 predictions. The neuropeptides in the target database 

ranged from 2 to 223 amino acids in length because this included all known experimentally 

confirmed mouse neuropeptides as well as all possible intermediates and other peptides produced 

during the processing of prohormones. The target database of neuropeptides is available at 

http://stagbeetle.animal.uiuc.edu/pepshop/MSMSpermutationtesting. 

DATABASE SEARCH PROGRAMS AND DATABASE SEARCHING 

Three open source database search programs were used in this study: Crux (version 1.37),
44

 

OMSSA (version 2.1.8),
43

 and X! Tandem (version 2013.02.01.1).
45

 These commonly used open 

source programs were selected because the code could be modified to ensure comparable search 

parameter specification and enabled to retrieve intermediate indicators of the strength of the match 

between the observed and target or decoy spectra. The observed-target or observed-decoy spectra 

match indicators extracted from OMSSA were: number of matched fragment ions, lambda or 

Poisson mean match indicator, Poisson probability of the lambda match indicator, and 

corresponding E-value of the match (Poisson probability multiplied by the effective database size). 

The spectra match indicators extracted from X! Tandem were: number of matched fragment ions, 

intermediate convolution score (product of the intensities of the shared b- and y-fragment ions 

between experimental and theoretical spectra), hyperscore (factorial of the number of matching b- 

and y-ions multiplied by the convolution score), and E-value (calculated from the distribution of 

hyperscores scores). The spectra match indicators extracted from Crux were: number of matched 
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fragment ions, Sequest Sp score (Sp), cross-correlation score (XCorr), deltaCn score (ΔCn) and p-

value that is calculated from the Weibull distribution fitted to the XCorr scores of observed-

theoretical spectra matches.
56

 

For comparable neuropeptide identification across the three programs the following search 

parameters from our prior research
16

 were used: (1) precursor ion tolerance: 1.5 Da; (2) fragment 

ion tolerance: 0.3 Da (OMSSA and X! Tandem); mz-bin-width: 0.3 (Crux) (3) searches were 

performed with and without PTMs. The PTMs evaluated were: amidation, phosphorylation, N-

terminal acetylation, acetylation of lysine, pyroglutamination of glutamine, methylation of lysine 

and arginine residues, sulfation of tyrosine residue, and oxidation of methionine; (4) “protein” 

(OMSSA) or “enzyme: custom cleavage site” (X! Tandem and Crux) to prevent peptide cleavage 

since the detection of neuropeptides does not involve protease digestion; (5) fragment ion charge: 

default values; (6) OMSSA “ht” option was set to eight to filter database peptides that have at-least 

one theoretical fragment ion match to one of the top eight most intense peaks in the observed 

spectra; and (7) peptide mass: monoisotopic; 8) Crux p-values were computed using 1000 Weibull 

points because this information provides more accurate p-values than the default 40 Weibull 

points.
16

 

PERMUTATION APPROACH AND K-PERMUTED DECOY DATABASES 

A Monte Carlo permutation test approach based on biological, computational and statistical 

considerations was used to generate decoy sequence databases that, in turn, can be used by all 

database search programs without the need to modify the original program code. Applying the 
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same strategy used by the database search programs, candidate mouse neuropeptides within 12 Da 

of the precursor mass of the 103 studied neuropeptides were considered for permutation.  This 

resulted in 236 peptide sequences available for permutation. The 12 Da threshold enabled the 

creation of a single catalog of peptides independent of charge state tolerance because this databases 

included all peptides within a 3 m/z ion mass tolerance of the target peptide at a charge state of +4. 

This single catalog was used to create target and was the basis to generate all the decoy 

permutation databases evaluated. Figure 2.1 depicts the correspondence between the lengths of 

neuropeptides in the target database, the 103 experimental neuropeptides and the neuropeptides 

that fall within 12 Da of the 103 peptides. Decoy peptide sequences were randomly generated by 

sampling the 19 amino acids from the candidate peptide list (leucine and isoleucine were 

considered the same amino acid due to the high similarity of the neutral masses). The resulting 

libraries are comparable to those generated from a Markov model of order zero. A permutated 

database of only 10-amino acid long peptides would lead to 6.13 x 10
12

 permuted sequences. Due 

to this potential size of a database encompassing all possible permutations, a Monte Carlo 

permutation approach was used to generate a random sample of all possible sequences. These 

permuted sequences were collected into a single database after removal of duplicate peptides and 

sequences present in the target database. This procedure was used to generate k-permuted decoy 

sequence databases and the numbers of unique permuted sequences per candidate peptide (k) were: 

10
3
 (K10

3
 with 236,000 decoy peptide sequences), 10

4
 (K10

4
 with 2,360,000 decoy peptide 

sequences), 10
5
 (K10

5
 with 23,600,000 decoy peptide sequences), and 10

6
 (K10

6
 with 236,000,000 

decoy peptide sequences). The target database was appended to each of the four k-permuted 

databases to create a combined target-k-permuted decoy database. The combined database search 
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is more accurate than separate database searches and to avoid zero p-value.
65, 69, 73, 84

 This strategy 

also removed potential database size dependency of the match indicators between target and 

permuted sequences because the correct match was evaluated under the same database sizes as the 

permuted databases. 

The search of spectra against the k-permuted decoy databases produced many matches that 

were indistinguishable from each other based on the indicators reported by the programs (e.g., 

number of matched ions, hyperscore, convolution score, and E-value for the X! Tandem). Matches 

were considered “homeometric”
86

 when the matches had the same indicator values across 

programs and the matched peptides masses were within ±1.5 Da from each other. Matches were 

considered “heterometric” when the matches differed in at least one indicator value or the matched 

peptides masses differed by more than ±1.5 Da from each other. Figure 2.2 depicts the number of 

peptides with homeometric matches ranging from 1 to 10 for the K10
6
 k-permuted decoy database 

across the three databases search programs. Homeometric matches were counted only once while 

calculating the number of random peptides that have an indicator value equal or better than the true 

target peptide. This strategy resolved the challenge that database search programs were not able to 

differentiate between such matches that are technically redundant and ensured the calculation of 

permutation p-values that were unbiased by these effects.  

For each database search program and target sequence, the observed tandem spectra were 

searched for matches within each combined target-k-permuted decoy spectra. The permutation p-

values were estimated as the fraction of combined target-k-permuted decoy peptides, excluding 

any homeometric matches that have a matching indicator score equal or better than the score of 

target peptide.  
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A comprehensive evaluation of the k-permuted decoy approaches, programs, and peptide 

match indicators was undertaken including: (a) Search for ideal uniform simulated spectra against 

the target database using all three database search programs; (b) Search for real tandem spectra 

against the target database using all three database search programs; (c) Search for the 80 tandem 

spectra containing no PTMs against the K10
3
, K10

4
, K10

5
, and K10

6
 target-k-permuted decoy 

databases without PTM specification using all three database search programs; (d) Search for the 

80 tandem spectra containing no PTMs against the K10
5
 k-permuted database with PTM 

specification using all three database search programs; and (e) Search for the 23 tandem spectra 

containing PTMs against the K10
5
 k-permuted database with PTM specification using OMSSA 

and X! Tandem. Crux was excluded from this last comparison due to considerable amount of 

search time required. 

2.5 RESULTS AND DISCUSSION 

Results from a three step benchmarking strategy were used to evaluate the performance to 

detect neuropeptides using target-k-permuted decoy databases. First, a baseline performance was 

obtained by comparing ideal simulated spectra against a standard “target database” using the three 

database search programs. Then, observed tandem spectra were matched to a target database. 

Lastly, the observed tandem spectra were matched to different target-k-permuted decoy databases. 

The source code to generate k-permuted decoy databases is available at 

http://stagbeetle.animal.uiuc.edu/pepshop/MSMSpermutationtesting. 
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PEPTIDE DETECTION USING IDEAL SIMULATED SPECTRA AND A TARGET DATABASE 

Table 2.1 summarizes the results from the three database search programs when 103 ideal 

uniform spectra were simulated with all b- and y-ions including neutral mass losses and searched 

against the target database. The search of ideal simulated spectra demonstrated the ability of the 

database search methods to assign E- or p-values to each peptide-spectrum match in the absence of 

technical or biological noise.
16

 

The three programs matched all unmodified peptides correctly at E- or p-value < 2 x 10
-1

. 

At E- or p-value < 1 x10
-2

, OMSSA, X! Tandem, and Crux identified 80 (100%), 80 (100%), and 

73 (91.25%) peptides, respectively. This trend was consistent with previous study that compared 

Crux, OMSSA and X! Tandem.
16

 Our study confirmed the lower significance values that Crux 

computes for peptides less than 45 amino acids in length.
16

 OMSSA E-values averaged more 

significant matches than X! Tandem for the 32 peptides that were less than 13 amino acids in 

length. However, for the 48 peptides longer than 12 amino acids in length, the difference in 

significance levels of X! Tandem and OMSSA decreased on the average with 8, 18, and 22 

peptides getting lower, equal, and better significance levels for the X! Tandem than OMSSA, 

respectively.  

For the 23 neuropeptides with PTMs and an E- or p-value < 1 x 10
-1

, OMSSA, X! Tandem, 

and Crux correctly detected 23 (100%), 18 (78.26%), and 23 (100%) peptides, respectively. X! 

Tandem failed to correctly match five peptides with N-terminal acetylation modification instead 

these five peptides were matched with incorrect internal acetylation modification at 9
th

 lysine 

residue. The failure in the peptide detection of X! Tandem was only observed when multiple PTMs 
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were specified in the search specification. The five peptides were correctly detected when only N-

terminal acetylation was used in the search specification. At E- or p-value < 1 x 10
-2

, 23 (100%), 

18 (78.26%), and 22 (95.66%) peptides were detected by OMSSA, X! Tandem, and Crux, 

respectively. The three peptides that were not significant for OMSSA at E-value < 1 x 10
-4

 all had 

a pyroglutamination (Q residue) modification. Two of these peptides, somatostatin [87-100] 

(QRSANSNPAMAPRE; charge state +2) and secretogranin-2 [205-216] (QELGKLTGPSNQ; 

charge state +1), were significant for the X! Tandem and Crux at E- or p-value < 1 x 10
-4

. A nine 

amino acid long peptide secretogranin-1 [667-675] (QKIAEKFSQ; charge state +2) was not 

significant for all three programs at E- or p-value < 1 x 10
-4

, while the same peptide was missed by 

the Crux at p-value < 1 x 10
-2

. 

PEPTIDE DETECTION USING OBSERVED SPECTRA AND A TARGET DATABASE 

Table 2.2 summarizes the performance of the three database search programs when the 80 

experimental tandem spectra containing no PTMs were searched against the target database. All 

peptide assignments by the three database search methods were correct at E- or p-value < 5 x 10
-1

. 

At E- or p-value < 1 x 10
-2

, OMSSA, X! Tandem and Crux detected 80 (100%), 71 (88.75%), and 

63 (78.75%) peptides, respectively. The higher number of significant peptide detections by 

OMSSA relative to Crux was consistent with the prior reports.
16

 The three search methods were 

less accurate on 23 observed spectra with PTMs when searched against the standard target 

database (Table 2.2). From the correctly matched peptides for each program, at E- or p-value < 1 x 

10
-2

, OMSSA, X! Tandem and Crux detected 20 (86.95%), 15 (65.21%), and 17 (73.91%) 

peptides, respectively.  
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The 80 spectra without PTMs were searched against the target database using three 

database search programs and with PTM specifications. X! Tandem peptide detection significance 

levels for the 76, 3, and 1 target peptide remained unchanged, decreased, and increased, 

respectively, relative to the searches involving no PTMs. The changes in the significance levels of 

the four peptides were due to higher number of candidate peptides available in the PTM searches 

which in turn changed the estimation parameters used in the E-value computation. The OMSSA 

peptide detection significance levels decreased for the majority of the previous peptides (75 out of 

80 peptides) or remained unchanged (5 out of 80 peptides) when searches included PTMs, 

respectively. Crux peptide detection significance levels were improved when searches included 

PTMs with 65 and 29 peptide detections at p-value < 1 x 10
-2

 and < 1 x 10
-4

, respectively. 

Comparison of peptide detections across PTM scenarios indicated that at p-value < 1 x 10
-2

, 54 

peptides were detected by both scenarios, 11 peptides were detected in the PTM scenario, 9 

peptides were detected in the no PTMs scenario, and 6 peptides were not detected by either 

scenario. The target peptides with low XCorr scores remained undetected either across both 

scenarios or with PTM search. The clear positive correlation between significance level and XCorr 

score for the PTM searches relative to the searches without PTMs could be due to the higher 

number of low scoring matches in the searches with PTMs than without PTMs. The Crux 

resampling from the low scoring matches might have resulted in a shift on the distribution of 

XCorr scores towards lower scores than the target peptides XCorr scores.  
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X! TANDEM PEPTIDE IDENTIFICATION USING A K-PERMUTED DECOY DATABASE 

Table 2.3 summarizes the log10 transformed of the E-values to the target database and 

permutation p-values computed for the X! Tandem indicators: number of matched ions, 

hyperscore, E-value, and convolution score using the 80 spectra without PTMs across the four 

target-k-permuted decoy databases studied. The permutation p-values from number of matched 

ions, hyperscore and E-value showed that the X! Tandem E-values from the target database were 

dramatically underestimated (less significant) for most target peptides. Detection and significance 

level using the number of ions matched, hyperscore and E-value were almost the same across all 

target-k-permuted decoy databases. Only at the 10
6
 permutations did the p-values for number of 

ions matched started to differ from the p-values from the hyperscore and E-value match indicators. 

This trend was expected as the hyperscore is a function of the product of factorial of the number of 

matched ions and the ion intensity values and E-value is a function of the hyperscore. 

The convolution score resulted in fewer target peptide identifications with higher number 

of sequence permutations due to relative increase in the number of decoy matches with equal or 

better scores. From the K10
3
, K10

4
, K10

5
, and K10

6
 target-k-permuted decoy databases, 72 (90%), 

31 (39%), 9 (11 %), and 10 (13%) peptides were identified at p-value < 1 x 10
-2

, < 1 x 10
-3

, < 1 x 

10
-4

, and < 1 x 10
-4

, respectively. These results showed that the convolution score alone was less 

suitable to discriminate between true target and decoy matches than the hyperscore and E-value.  

Comparison of the p-values obtained from the target-k-permuted decoy number of matched 

ions, hyperscores and convolution scores suggested that roughly 10
5
 permutations were required 

for significant p-value computations using the convolution scores. Higher number of sequence 



 

58 

 

permutations provided better separation between the significance levels of the three indicators. 

There were 7 peptides with E-values < 10
-7

 from the target database indicating that the lower 

bound of p-values appeared to be far smaller than the limit provided by the K10
6
 permuted 

database. Comparable performance (significance level) using number of matched ions and 

hyperscore were observed with fewer permutations or lower significance thresholds. This novel 

finding suggests that more significant detections can be obtained by permuting the X! Tandem 

hyperscore and number of matched ions indicators, even with a relatively small k-permuted decoy 

database size. 

CRUX PEPTIDE IDENTIFICATION USING A K-PERMUTED DECOY DATABASE 

Table 2.4 summarizes the log10 transformed permutation p-values computed for the Crux 

match indicators: number of matched ions, XCorr, ΔCn, and Sp using the 80 spectra without PTMs 

across the four target-k-permuted decoy databases. Higher number of sequence permutations 

increased the significance values using the number of matched ions and Sp. This trend was due to 

the lower number of matched ions and Sp scores of the decoy peptide matches relative to the target 

peptides. The two non-detected peptides could be attributed to the low number of decoy candidates 

for those peptides rather than to an increase in the number of decoy peptides with equal or better 

scores. The hindering effect on the match significance of better or equal decoy matches on Sp was 

more evident with the large decoy databases at p-value < 1 x 10
-5

.  

Peptide detection was less significant when using XCorr relative to Sp and number of 

matching ions. The drop in significance level with increase in threshold and database size was due 
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to the higher number of decoy peptides reaching XCorr levels better or equal than the target 

peptides. The detection and significance computation using XCorr and ΔCn (the difference in 

XCorr between candidates) was similar across all target-k-permuted databases which reflects that 

the range of these match indicators stabilized. The range of possible XCorr values was limited by 

the number of observed spectrum peaks because the background adjustment is expected to be 

constant across permuted database sizes. This result indicates that only a relatively few permuted 

sequences are required to cover the range of XCorr values and that higher number of permutations 

offer greater precision to detect match differences. 

OMSSA PEPTIDE IDENTIFICATION USING A K-PERMUTED DECOY DATABASE 

Table 2.5 summarizes the log10 transformed permutation p-values calculated for the 

OMSSA match indicators: number of matched ions, lambda match indicator, p-value, and E-value 

using the 80 spectra without PTMs across the target-k-permuted decoy databases. Comparison 

between the target database and the permutation p-values indicated that most peptides were 

accurately estimated by OMSSA suggesting that the k-permuted database size was unimportant. 

Examination of the few peptides with underestimated E-values suggested that these peptides had 

fewer intense MS/MS ion peaks resulting in lower 75% quartile values than peptides of similar size 

with lower E-values. This result indicates that OMSSA E-values may be less reliable in the 

presence of multiple low intensity spectra peaks.  

Detection and significance computation using the number of matched ions, OMSSA p-

value and E-value indicators was identical across all k-permuted decoy databases. However, the 
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lambda parameter was less suitable than the other OMSSA match indicator to discriminate 

matches than the other match indicators. Differences in the lambda indicator for the same observed 

spectrum were mainly determined by the total number of theoretical m/z values for product ions 

and hence by the length of the decoy peptide sequence. After a relatively few permutations, the 

range of possible sequences is determined such that fewer permutations are required to determine 

the distribution of the lambda parameter than other match indicators.  

IMPACT OF PTM ON PEPTIDE IDENTIFICATION USING A K-PERMUTED DECOY DATABASE 

Searches of 80 peptides with no PTMs including the specification of common neuropeptide 

PTMs improved the significance of the detection in target-k-permuted decoy databases. Using X! 

Tandem, all 80 observed peptides were identified at p-value < 1 x 10
-5

 using the number of 

matched ions and hyperscore indicators in the K10
5
 permuted database, while convolution score 

indicator detected only 7 (8.75%) peptides. Consistent with searches without PTMs using the 

OMSSA program, when the searches included PTMs the number of matched ions and E-value 

indicators provided more significant permutation p-values than the lambda indicator. For Crux, 

specification of PTMs reduced the performance (significance levels) of the number of matched 

ions, XCorr, and Sp indicators in the K10
5
 database. The lower significances was due to 

corresponding increase in the decoy peptides with equal or better scores than the target peptides 

with increase in decoy database size when PTMs are considered in the search. Using the K10
5
 

permuted database, OMSSA and X! Tandem correctly identified the 20 and 17 of spectrum with 

PTMs as the first match, respectively. Both programs correctly identified the same 16 peptides, 6 

peptides were identified by only one program and 1 peptide was not detected by either program. 
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There were 4 peptides unmatched by X! Tandem only and the unmodified forms were matched 

outside the top 20 matches. The unmatched peptide, acetyl-YGGFMTSEKSQTPLVT, was 

undetected by OMSSA both in the target or k-permuted databases. X! Tandem was able to match 

the correct sequence, however the match has an additional amidation. Manual evaluation would 

have corrected the match as the amidation was on an unexpected amino acid and the non-amidated 

form was closer to the precursor mass then the amidated form. 

The remaining 2 peptides that were unmatched by OMSSA were both amidated. One 

peptide, SYSMEHFRWGKPV-amide, was correctly identified as the 15
th

 best match by OMSSA 

with the unamidated form providing the best match. The difference in monoisotopic mass between 

modified and unmodified was less than 1 Da. The experimental spectrum had a precursor m/z 

value of 541.70 with an assigned a 3+ charge state. At a 3+ charge state the predicted m/z values 

were 541.9294 and 541.6014 for the unmodified form and amidated forms, respectively. 

Biologically the unmodified form would be identified as a probable match since this sequence is an 

intermediate in the amidation process and the unmodified sequence is uncommon among 

neuropeptides because this form lacks the terminal G-residue after cleavage.
87

 Consequently this 

unmodified peptide could be considered a match for OMSSA. 

COMPARISON OF PEPTIDE DATABASE SEARCH PROGRAMS 

Overall the k-permuted decoy databases allowed the detection of more peptides based on 

real spectra than the use of the standard target database regardless of the database search program. 

The search of spectra against the k-permuted decoy databases produced many matches that were 
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indistinguishable from each other based on the indicators reported by the programs (e.g., number 

of matched ions, hyperscore, convolution score, and E-value for the X! Tandem). Permutation 

testing is computational demanding even with Monte Carlo sampling (Table 2.6). The increase in 

time across permutated database sizes is a consequence of the exponential increase in the number 

of sequences evaluated. However, the K10
5
 database provided adequate results and all programs 

completed the search within 35 CPU minutes using a single process Intel® Core™ i7-3770 CPU 

@ 3.40GHz. This timing is the result of single-processor searches that ignored possible parallel 

processing of individual spectra. The advantages of Monte Carlo permutation approaches to assess 

the statistical significance of neuropeptide matches could be further advanced by simultaneously 

running groups of observed spectra using parallel processing.  

An alternative approach to generate a permutated database is to perform targeted 

permutation of specific regions such as the terminal amino acids to disrupt b- and y-ion series. 

While other regions can be permuted, the advantage of permuting only the terminal peptides is that 

this strategy is independent of peptide size. The size of the required database quickly increases 

from 84,960 sequences per target peptide when one terminal position was permuted to 47,045,880 

sequences per target peptide when three terminal positions were permuted. Evaluation of terminal 

permuted databases demonstrated that this approach offered similar yet less significant matches 

than the whole sequence permuted database approach. Also, this permutation approach had the 

disadvantage of providing a large number of homeometric matches since experimental ions near 

the termini are required to differentiate the order of amino acids. Thus, results from this approach 

are not reported.  
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With the goal of accurate significance evaluation of protein matches, dynamic 

programming-related approaches have been proposed.
82, 83

 However, dynamic programming 

assumes that a problem (i.e., spectra matching) can be divided into independent components. In the 

context of tandem spectra, any division based on sequence location creates dependent components 

because changing an amino acid in any location will change both the b- and y-ion fragment series. 

Further any mass change must be balanced by a corresponding change in another part of the 

sequence such that the overall mass is within the specified tolerance of the original mass. Also, the 

implementation of these approaches limit high computational requirements by limiting the 

information considered or through analytical assumptions. These strategies resulted in non-

exhaustive libraries that could lead to biased statistical significance assessment. In one case, the 

algorithm used is location based such that the only one ion series can be used
83

 due to 

interrelationship between ion series and that precursor must remain within the preset tolerances. 

However, using only one series is not as effective as using both ion series and that one ion series 

can be more informative than the other series.
16

 In the other case, the score for a given number of 

matched peaks is assumed to encompass the score from fewer matched peaks.
82

 This assumption 

fails when different sets of peaks are being matched from the same peptide and the number of 

peaks in common changes. Both strategies do not consider the optimal starting location such that a 

peptide will be dropped from consideration when a region of the spectrum has a poor match score 

despite the higher score in other unevaluated regions. The published algorithms appear to lack 

error corrections for common problems of incorrect peak assigned due to charge state, presence of 

chimeric peptides, and missing peaks. Also, both dynamic programming strategies do not have a 

clear approach to account for peptide length that has been proven to bias the statistical significance 
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of neuropeptides identifications.
16

 Lastly, both approaches cannot be directly applied to the open 

source X! Tandem, Crux and OMSSA unlike the straightforward permutation approach proposed 

in this study. Although the lack of comparable basis challenges the benchmarking of strategies, the 

Monte Carlo permuted database approach proposed addresses the previous limitations while 

enabling simple integration to database search programs and prompt results.  

2.6 CONCLUSIONS 

The present study demonstrated that the k-permuted decoy database is an effective and 

computationally feasible approach to accurately calculate the statistics of neuropeptide matches 

from complex tandem MS datasets. Unlike other proposed methods to control multiple testing, 

such as target-decoy approaches, permutation testing provided strong control of Type I errors such 

that neuropeptides are detected at high confidence of significance. The implication of this finding 

is that an extensive decoy database is not required to accurately detect neuropeptides and this can 

be exploited to increase the speed of the search.  

This study demonstrated the relative superiority of specific detection indicators for 

database search programs. The indicators E-value, hyperscore, and Sp score from the OMSSA, X! 

Tandem, and Crux programs, respectively, performed better than other indicators. The results 

indicated that 10
5
 permutations per peptide were sufficient to provide significant peptide 

identifications. Indication of the suitability of the Monte Carlo permutation approach using 10
5
 

permutations was the capability of all three database search programs to detect all or nearly all 

neuropeptides at p-value < 10
-4

 and the absence of a trend for lower statistical significance with 

higher permutation number. A promising finding is the robust performance of the simple indicator, 
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number of matched ions between the experimental and theoretical spectra to detect peptides. This 

intuitive indicator identified the vast majority of the peptides also identified by other indicators 

such as hyperscore, Sp and E-value that rely on assumptions or parametric specifications. This 

result also highlights the importance of considering the number of matched ions when a match is 

borderline significant. The results have shown that, in conjunction with database search programs, 

the k-permuted sequence databases allowed the detection of more peptides and exhibited high 

consensus among the various indicators and database search programs.  

The permutation testing approached developed here can easily be integrated into standard 

database search programs to compute spectrum specific p-values for any indicator reported by the 

program. Through the generation of decoy peptides, the permutation approach could offer insights 

into unknown or unexpected neuropeptides (including those resulting from PTMs or 

polymorphisms or chimeras) not present in the target database. Further, the k-permuted databases 

can be generated once and shared between programs and the community. 
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2.7 FIGURES 

 
Figure 2.1. Distribution of neuropeptides length in target database peptides less than 60 amino acid 

in length are shown, 103 MS/MS peptides, and 236 peptides that fall within ±12 Da of the SwePep 

peptides. 
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Figure 2.2. Frequency (number) of spectra with 1 to 10 homeometric matches for K106 k-

permuted decoy databases across the three database search programs (X! Tandem, OMSSA, and 

Crux). 
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2.8 TABLES 

 

Table 2.1. Peptide detection significance levels using ideal simulated spectra of the 103 peptides 

with and without any post-translational modifications (PTMs) and all b- and y-ions including 

neutral mass losses against a standard target database across database search programs (OMSSA, 

X! Tandem, and Crux). 

Program PTMs Significance
a
 P ≤ 10

-2b
 

  0 1 2 3 4 5 ≥6  

X! Tandem None 0 0 4 4 2 6 58 74 

Amidation 0 0 0 0 0 0 9 9 

Oxidation 0 0 0 0 0 0 1 1 

Pyroglutamination 0 0 1 0 1 1 1 4 

Phosphorylation 0 0 0 0 0 1 3 4 

N-terminal acetylation 0 0 0 0 0 0 0 0 

OMSSA None 0 0 0 0 0 0 79 79 

Amidation 0 0 0 0 0 0 9 9 

Oxidation 0 0 0 0 0 0 1 1 

Pyroglutamination 0 0 1 2 1 0 0 4 

Phosphorylation 0 0 0 0 0 0 4 4 

N-terminal acetylation 0 0 0 0 0 0 5 5 

Crux None 2 5 12 52 3 1 2 70 

Amidation 0 0 2 3 2 0 2 9 

Oxidation 0 0 0 1 0 0 0 1 

Pyroglutamination 0 1 1 0 1 0 1 3 

Phosphorylation 0 0 1 2 0 0 1 4 

N-terminal acetylation 0 0 0 3 1 0 1 5 
a
Significance threshold (t) for matched to be considered significant at E- or p-value < 1 x 10

-t 
(t = 0 to >= 

6). 
b
Cumulative number of peptides with E- or p-value < 1 x 10

-2
. 
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Table 2.2. Peptide detection significance levels using experimental spectra of the 103 peptides 

with and without any post-translational modifications (PTMs) against a standard target database 

across database search programs (OMSSA, X! Tandem, and Crux). 

Program PTMs   Significance
a
 Cum N

b
 

  Miss
c
 Inc

d
 0 1 2 3 4 5 ≥6 P ≤ 10

-2
 

X! Tandem None 0 0 1 8 11 15 16 11 18 71 

Amidation 0 0 0 0 0 0 0 0 9 9 

Oxidation 0 0 0 0 0 0 0 0 1 1 

Pyroglutamination 0 0 0 0 1 0 1 1 1 4 

Phosphorylation 0 0 0 0 0 0 0 1 3 4 

N-terminal acetylation 0 5 0 0 0 0 0 0 0 0 

OMSSA None 0 0 0 0 1 2 1 3 73 80 

Amidation 1 0 1 0 0 0 1 0 6 7 

Oxidation 0 0 0 0 0 0 0 0 1 1 

Pyroglutamination 0 0 0 0 0 0 1 0 3 4 

Phosphorylation 0 0 0 0 0 0 0 0 4 4 

N-terminal acetylation 0 1 0 0 0 0 0 0 4 4 

Crux None 0 0 9 8 9 44 1 0 9 63 

Amidation 0 0 0 1 5 1 1 0 1 8 

Oxidation 0 0 0 0 0 1 0 0 0 1 

Pyroglutamination 0 0 1 1 0 2 0 0 0 2 

Phosphorylation 0 0 0 2 2 0 0 0 0 2 

N-terminal acetylation 0 0 0 1 1 2 0 1 0 4 
a
Significance threshold (t) for matched to be considered significant at E- or p-value < 1 x 10

-t 
(t = 0 to >= 

6). 
b
Cumulative number of peptides with E- or p-value < 1 x 10

-2
. 

c
Number of peptides missed by 

program. 
d
Number of peptides with incorrect post-translational modification assignment. 
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Table 2.3. Performance of the target and alternative k-permuted decoy databases used with the X! 

Tandem database search program using spectra from 80 unmodified neuropeptides. 

Database
a
 Indicator Significance Levels of the Permutation p-

values
b
 

Cum. Num. of 

Peptides
c
 

  0 1 2 3 4 5 ≥6 ≥10
-2

 ≥10
-4

 

Target E-value 1 8 11 15 16 12 17 71 45 

K10
3
 # ions 0 0 76 4 0 0 0 80 0 

Hyperscore 0 0 76 4 0 0 0 80 0 

Convolution 0 8 70 2 0 0 0 72 0 

E-value 0 0 76 4 0 0 0 80 0 

K10
4
 # ions 0 0 0 80 0 0 0 80 0 

Hyperscore 0 0 0 80 0 0 0 80 0 

Convolution 0 5 44 31 0 0 0 75 0 

E-value 0 0 0 80 0 0 0 80 0 

K10
5
 # ions 0 0 0 0 80 0 0 80 80 

Hyperscore 0 0 0 0 80 0 0 80 80 

Convolution 0 3 36 32 9 0 0 77 9 

E-value 0 0 0 0 80 0 0 80 80 

K10
6
 # ions 0 0 0 0 1 79 0 80 80 

Hyperscore 0 0 0 0 0 80 0 80 80 

Convolution 0 4 30 36 5 5 0 76 10 

E-value 0 0 0 0 0 80 0 80 80 
a
Target: database of 236 neuropeptide sequences; K10

3
: k-permuted decoy database size of 236,000 

peptides; K10
4
: k-permuted decoy database size = 2,360,000 peptides; K10

5
: k-permuted decoy database 

size = 23,600,000 peptides; K10
6
: k-permuted decoy database size = 236,000,000 peptides. 

b
Significance 

threshold (t) for target spectrum to be considered significant at significance thresholds  < 1 x 10
-t   

(t = 0 to 

>= 6). 
c
The cumulative number of peptides at 1 x 10

-2
 and 1 x 10

-4
 thresholds. 
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Table 2.4. Performance of the target and alternative k-permuted decoy databases used with the 

Crux database search program using spectra from 80 unmodified neuropeptides. 

Database
a
 Indicator

b
 Significance Levels of the Permutation p-

values
c
 

Cum. Num. of 

peptides
d
 

  0 1 2 3 4 5 ≥6 ≥10
-2

 ≥10
-4

 

Target p-value 9 8 9 44 1 0 9 63 10 

K10
3
 # ions 0 2 78 0 0 0 0 78 0 

XCorr 3 11 66 0 0 0 0 66 0 

Sp 0 2 78 0 0 0 0 78 0 

ΔCn 3 11 66 0 0 0 0 66 0 

K10
4
 # ions 0 0 1 79 0 0 0 80 0 

XCorr 3 10 14 53 0 0 0 67 0 

Sp 0 0 1 79 0 0 0 80 0 

ΔCn 3 10 14 53 0 0 0 67 0 

K10
5
 # ions 0 0 0 1 79 0 0 80 79 

XCorr 3 10 8 23 36 0 0 67 36 

Sp 0 0 0 1 79 0 0 80 79 

ΔCn 3 10 8 23 36 0 0 67 36 

K10
6
 # ions 0 0 0 0 2 78 0 80 80 

XCorr 3 10 9 19 22 17 0 67 39 

Sp 0 0 0 0 4 76 0 80 80 

ΔCn 3 10 9 19 22 17 0 67 39 
a
Target: database of 236 neuropeptide sequences; K10

3
: k-permuted decoy database size of 236,000 

peptides; K10
4
: k-permuted decoy database size = 2,360,000 peptides; K10

5
: k-permuted decoy database 

size = 23,600,000 peptides; K10
6
: k-permuted decoy database size = 236,000,000 peptides. 

b
# ions: 

permutation p-values computed for the number of matched b- and y-ions. XCorr: permutation p-values 

computed from the XCorr scores of the matches. Sp: permutation p-values computed from the Sp scores 

of the matches. ΔCn: permutation p-values computed using X! Tandem ΔCn. 
c
Significance threshold (t) 

for matched to be considered significant at p-value < 1 x 10
-t
. 

d
Cumulative number of peptides with p-

values thresholds of 1 x 10
-2 

and 1 x 10
-4

. 
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Table 2.5. Performance of the target alternative k-permuted decoy databases used with the 

OMSSA database search program using spectra from 80 unmodified neuropeptides. 

Database
a
 Indicator

b
 Significance Levels of the Permutation p-

values
c
 

Cum. Num. of 

Peptides
d
 

  0 1 2 3 4 5 ≥6 ≥10
-2

 ≥10
-4

 

Target E-value 0 0 1 2 1 3 73 80 77 

K10
3
 # ions 0 2 78 0 0 0 0 78 0 

Lambda 0 9 71 0 0 0 0 71 0 

p-value 0 2 78 0 0 0 0 78 0 

E-value 0 2 78 0 0 0 0 78 0 

K10
4
 # ions 0 0 1 79 0 0 0 80 0 

Lambda 0 5 11 64 0 0 0 75 0 

p-value 0 0 1 79 0 0 0 80 0 

E-value 0 0 1 79 0 0 0 80 0 

K10
5
 # ions 0 0 0 0 80 0 0 80 80 

Lambda 0 5 8 24 43 0 0 75 43 

p-value 0 0 0 0 80 0 0 80 80 

E-value 0 0 0 0 80 0 0 80 80 

K10
6
 # ions 0 0 0 0 2 78 0 80 80 

Lambda 0 5 8 17 18 32 0 75 50 

p-value 0 0 0 0 0 80 0 80 80 

E-value 0 0 0 0 0 80 0 80 80 
a
Target: database of 236 neuropeptide sequences; K10

3
: k-permuted decoy database size of 236,000 

peptides; K10
4
: k-permuted decoy database size = 2,360,000 peptides; K10

5
: k-permuted decoy database 

size = 23,600,000 peptides; K10
6
: k-permuted decoy database size = 236,000,000 peptides. 

b
# ions: 

permutation p-values computed for the number of matched b- and y-ions. Lambda: permutation p-values 

computed from the Poisson mean of matches. p-value: permutation p-values computed from the p-value 

reported by the OMSSA for the matches. E-value: permutation p-values computed using OMSSA E-

values. 
c
Significance threshold (t) for matched to be considered significant at p-value < 1 x 10

-t
. 

d
Incorrect: the program provided an incorrect match. 

e
Cumulative number of peptides with p-value < 1 x 

10
-2

. 
f 
Cumulative number of peptides with p-value < 1 x 10

-4
. 
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Table 2.6. Computation times given in seconds for search of 80 unmodified spectra against 

different databases using a single process Intel® Core™ i7-3770 CPU @ 3.40GHz. 

Database
a
 Database Search Program 

 Crux OMSSA X! Tandem 

Target 5 11 1 

K10
3
 7 56 41 

K10
4
 61 915 476 

K10
5
 200 1220 467 

K10
6
 2162 24475 5196 

a
Target: database of 236 neuropeptide sequences; K10

3
: k-permuted decoy database size of 236,000 

peptides; K10
4
: k-permuted decoy database size = 2,360,000 peptides; K10

5
: k-permuted decoy database 

size = 23,600,000 peptides; K10
6
: k-permuted decoy database size = 236,000,000 peptides. 
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CHAPTER III: IDENTIFICATION OF BEST INDICATORS OF PEPTIDE-

SPECTRUM MATCH USING A PERMUTATION RESAMPLING APPROACH 

Preprint of an article submitted for consideration in Journal of Bioinformatics and Computational 

Biology © 2014 copyright World Scientific Publishing Company, http://www.worldscientific.com/ 

worldscinet/jbcb 
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3.2 ABSTRACT 

Various indicators of observed-theoretical spectrum matches were compared and the 

resulting statistical significance was characterized using permutation resampling. Novel decoy 

databases built by resampling the terminal positions of peptide sequences were evaluated to 

identify the conditions for accurate computation of peptide match significance levels. The 

methodology was tested on real and manually curated tandem mass spectra from peptides across a 

wide range of sizes. Indicators from complementary database search programs were profiled. The 

permuted decoy databases improved the calculation of the peptide match significance compared to 

the approaches currently implemented in the database search programs that rely on distributional 

assumptions. Permutation tests using p-values obtained from software-dependent matching scores 

and E-values outperformed permutation tests using all other indicators. The higher overlap in 

matches between the database search programs when using end permutation compared to existing 

approaches confirm the superiority of the end permutation method to identify peptides. The 

combination of effective match indicators and the end permutation method is recommended for 

accurate detection of peptides. 
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3.3 INTRODUCTION 

Mass spectrometry discovery has revolutionized proteomic research enabling the 

characterization and quantification of hundredths of peptides from samples ranging in size and 

complexity.
74-79

 In tandem mass spectrometry (MS/MS) experiments, the peptides present in the 

sample can be identified by sequence database search programs.
16, 88

 These programs attempt to 

match the fragment ions from the observed spectra with the fragment ions from theoretical spectra 

generated from the known or predicted peptide sequences in the target database. Each observed-

theoretical spectra match is assigned scores that reflects the similarity between both spectra. 

Subsequently, these scores are converted into a measure of the statistical evidence supporting the 

match.
41, 46

 

Two related components, the match score and the statistical significance assigned to the 

score, influence the capability to detect peptides. Database search software differ in the algorithms 

and assumptions to assess the observed-theoretical spectra match leading to different mating score 

indicators (e.g., number of matched fragment ions, cross-correlation) and different methods to 

assess statistical significance of the match. The comparative effectiveness of the scores to capture 

the match has not been evaluated. 

One commonly used approach to convert specific observed-theoretical spectra match score 

into a statistical significance value encompasses fitting a specific parametric distribution to all the 

match scores attained from the target database
43, 45

 or from decoy peptides generated from the 

target database matches.
56

 Alternatively, significance values can be obtained in a non-parametric 

fashion from the decoy peptides.
69

 A previous comparative study of the database search programs 
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demonstrated that, for some peptides, detection using significance value estimation approaches 

implemented in the database search programs remains challenging.
16

 This situation can be traced 

back to the low significance levels obtained with existing approaches particularly for short peptides 

under 15 amino acids in length.
16

 

The challenges of peptide identification using existing approaches include false negatives 

due to match significance levels that do not surpass the minimum detection threshold, false 

positives due to incorrectly spectra match surpassing the minimum threshold, and missed peptides 

due to sample complexity leading to multiple peptides present in the single tandem spectrum (also 

known as chimeric spectra).
16

 The bias introduced by existing approach has major impact in small 

peptides. These peptides are unlikely to be identified at high significance levels by most database 

search programs due limited number of fragment ions to accumulate high matching scores.
16, 20, 58

 

Also, tandem spectra that have incomplete fragmentation and noise peaks can result in matches 

with low scores that can be indifferent to the random matches, thus, resulting in low significance 

levels.
16, 80

 Likewise, increases in the effective search database size (such as those rising from the 

consideration of post-translational modifications) can reduce the sensitivity of the algorithms to 

detect peptides at accurate significance levels.
20

 

In the target-decoy approach, observed spectra are matched to theoretical spectra from 

reverted or reshuffled sequences from the target database together with the original target 

sequences.
65

 The target-decoy approach aims at avoiding stringent significant threshold to control 

for multiple testing across peptides.
72, 73

 However, for small peptides, most decoy database 

construction methods produce few spectra that have more extreme matches that artificially inflates 

the significance levels. Other decoy databases construction methods that exploit the capability of 
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resampling approaches to generate null hypothesis while controlling the experiment-wise error rate 

should be evaluated.  

The aims of this study were: (1) to compare indicators of observed-theoretical spectra 

matches and characterize the accuracy of the resulting statistical significance using permutation 

testing, (2) to develop novel decoy databases including resampling of terminal positions in the 

peptide sequence and identify the conditions for accurate computation of match significance levels, 

and (3) to demonstrate the application of the novel decoy approach using popular database search 

programs. 

3.4 THEORETICAL-OBSERVED SPECTRA MATCH INDICATORS 

Table 3.1 lists the observed-theoretical spectrum match indicators evaluated and 

corresponding database search programs: Crux (version 1.37),
44

 OMSSA (version 2.1.8),
43

 and X! 

Tandem (version 2013.02.01.1).
45

 These programs were selected because their open source nature 

allowed the retrieval of intermediate match indicators through modification of the source code. 

Database search specifications were: (1) mass type: monoisotopic; (2) fragment ion charge: 

default values; “mz-bin-width”: 0.3 (Crux); (3) no post-translational modifications; (4) enzyme: 

“whole protein” (OMSSA) or custom cleavage site to avoid cleavage of the provided neuropeptide 

database (Crux and X! Tandem); (5) precursor ion tolerance: 1.5 Da; (6) fragment ion tolerance: 

0.3 Da (OMSSA and X! Tandem); and (7) OMSSA “ht”: 8 to consider only those database 

peptides that had one or more fragment ion matching including one of top 8 highest fragment ion 

peaks in the observed spectrum. The selected specifications follow program settings previously 

used to evaluate the ability of the database search programs to identify peptides.
16
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3.5 OBSERVED SPECTRA, TARGET AND DECOY DATABASES 

The performance of alternative indicators to assign the statistical significance to spectra 

matches was investigated on a murine linear ion trap (LTQ) tandem spectra dataset.
25

 Spectra and 

peptide identification were obtained from the SwePep database (http://www.swepep.org).
25

 The 

tandem spectra dataset consisted of 80 observed tandem spectra from neuropeptides without post-

translational modifications. The majority of the peptides (92%) had precursor charge states +2 or 

+3. The target database included the 80 peptides with observed spectra studied and all other 

peptides that could have been produced from the known 95 mouse prohormones including those 

that produced the 80 peptides studied. The exhaustive list of target peptides was obtained from the 

PepShop
32

 database (http://stagbeetle.animal.uiuc.edu/pepshop) including information from the 

SwePep, UniProt,
24

 and NeuroPred.
85

 

To understand the performance of the software under best conditions, optimal spectra were 

simulated for the peptides in the target database using corresponding precursor charge states. For 

each spectrum, all b- and y- fragment ions with +1 charge state were simulated with uniform 

intensity. Additional peaks due to loss of single ammonia or water molecule were simulated when 

the b- or y-ions sequence contained a water or ammonia loosing amino acids anywhere in the 

sequence.
16

 

The characterization of the significance of the spectral match based on various indicators 

relied on a decoy database generated using permutation.
84

 A single target database that was used 

for all database search programs was created by selecting all peptides within 12 Da (corresponding 

to 3 m/z ion tolerance with a +4 charge state) of the precursor mass for each tandem spectrum. This 
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mass limit results from the database search programs preselecting candidate peptides based on 

peptide mass and user-defined mass tolerances. Permutations of each target candidate sequence 

residues at the N- and C-terminal ends were used to populate the decoy database. This terminal 

permutation generated decoy peptides that were more similar to their target peptides yet disrupted 

the pattern of b- and y-fragment ions that are used in matching the observed and theoretical spectra. 

The terminal regions were selected because it was considered that the ions from the terminal 

regions had better sensitivity than the ions from the central region of peptide. Leucine and 

isoleucine were treated as the same amino acid in all permutations and comparisons between 

candidate and permuted sequence. 

From the termini permutation strategy, three decoy databases: Ends1, Ends2 and Ends3 

were evaluated. Ends1 encompasses 236*(19 N-terminal amino acids)*(19 C-terminal amino 

acids) = 236*360 = 84,960 decoy peptides; Ends2 encompasses 236*(19*19 N-terminal amino 

acids)*(19*19 C-terminal amino acids) = 236*130320 = 30,755,520 decoy peptides; and Ends3 

encompasses 236*(19*19*19 N- terminal amino acids)*(19*19*19 C-terminal amino acids) = 

236*47,045,880 =1,120,027,680 decoy peptides. Separate permuted databases were created for 

each observed spectra in Ends3 due to inability of the database search programs to adequately 

handle the size of the permuted decoy database. The target database was appended to each of the 

Ends decoy databases for the combined target-decoy search strategy. The merging of the target and 

decoy databases provided unbiased p-value estimates and avoided zero p-values.
84

 

For each observed-theoretical spectra match indicator, the permutation p-values were 

computed as the relative frequency of the sum of the matches in the target-decoy database that had 

indicator values equal or better than the observed-target spectra matches. A Bonferroni adjusted 
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threshold p-value < 1 x 10
-4

 based on a 1% experiment-wise error rate (0.01/80 ≈ 1 x 10
-4

) was 

used to compare performance of the different indicators. A sensitivity analysis enabled the 

assessment of the impact of the p-value threshold on the capability of match indicators to detect the 

peptides. The limited number of observed and annotated spectra prevented unbiased analysis using 

receiver operating characteristic (ROC) curve. 

3.6 RESULTS AND DISCUSSION 

A threefold-strategy was used to characterize the performance of spectra match indicators 

from database search programs to detect peptides. First, optimal simulated spectra were searched 

against the target database to obtain a baseline performance in the absence of data quality issues 

such as presence of noise peaks, missing signal peaks, and low signal-to-noise ratio. Second, real 

spectra were searched against the target database to study the influence of data quality issues on 

peptide detection significance levels relative to the baseline performance. Third, the performance 

of the match indicators to detect peptides in realistic scenarios using End-permuted decoy 

databases was demonstrated. 

PEPTIDE DETECTION BENCHMARKS USING OPTIMAL AND REAL SPECTRA AGAINST THE 

TARGET DATABASE 

Table 3.2 summarizes the number of peptides detected by the three database search 

programs at various significance E- or p-value thresholds when optimal uniform simulated spectra 

and real tandem mass spectra were searched against the target database. 
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For the ideal simulated spectra, the three programs accurately detected all peptides at E- or 

p-value < 1 x 10
-1

. At E- or p-value < 1 x 10
-4

, the Crux, OMSSA, and X! Tandem detected 9 

(11.25%), 80 (100%), and 72 (90.0%) peptides, respectively. The significance levels of the X! 

Tandem E-values increased linearly with increase in peptide length and only peptides greater than 

8 amino acids in length (hyperscore > 40) reached a significance level of E-value < 1 x 10
-4

. 

OMSSA E-values were less correlated with peptide length or number of matched b- and y-ions. 

The minimum E-value was 1 x 10
-6

 and corresponded to an 11 amino acid-long peptide that had a 

+2 precursor charge state spectrum. The lower significance level of Crux peptide matches, relative 

to the OMSSA and X! Tandem, have been confirmed previously.
16

 At a less stringent threshold p-

value < 1 x 10
-2

, Crux identified 73 (91.25%) peptides with seven peptides between 7 to 14 amino 

acids in length undetected. 

Crux, OMSSA, and X! Tandem correctly matched 10 (12.5%), 77 (96.35), and 45 (56.3%) 

real spectra, respectively, at E- or p-value < 1 x 10
-4

. A large number of peptides (44) were 

detected with a p-value < 10
-3

 indicating the previously noted difficulty of obtaining significant 

matches with Crux.
16

 The spectra quality features such as missing peaks, noise peaks and low 

intensity peaks tended to reduce the positive correlation that was observed between peptide length 

and E-value in the optimal simulated scenario. 

Higher number of Weibull points (XCorr scores) were correlated with more significant p-

values in Crux.
16

 Consistent with prior work, the increase in the number of Weibull points from 

10
3 

to 10
4
, and 10

5 
resulted in 24 and 10 more peptides that reached p-value < 1 x 10

-4
 relative to 

the 10
3
 scenario, respectively. However, 17 and 40 more peptides had p-value > 1 x 10

-2
 with 10

4
 

and 10
5
 Weibull points, respectively, than with 10

3
 points (data not shown). Further investigation 
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uncovered that peptides that did not reach the significance threshold were affected by the “mz-bin-

width” (fragment ion tolerance) parameter. Increasing the “mz-bin-width” values from 0.3 to 

1.0005 increased XCorr scores, and consequently, reduced the number of peptides that had p-value 

> 1 x 10
-2

 (figure 3.1). Thus, the 0.3 specification appears to provide more conservative results. 

However, to use comparable search specification for the three database search programs, from this 

point onwards, all Crux results were calculated using the more conservative 0.3 “mz-bin-width”.  

PEPTIDE DETECTION USING REAL SPECTRA AGAINST THE END DECOY DATABASE 

The detection of peptides from observed real spectra when matched against the End-

permuted decoy database improved relative to the standard comparison against a target database. 

Figure 3.2 depicts the distribution of the effective database size corresponding to each observed 

spectra for the three database search programs when two (Ends2) or three (Ends3) terminal 

residues were permuted. The patterns in these box plots showed that X! Tandem evaluated more 

decoy sequences than the Crux and OMSSA. 

For each peptide, some matches of the observed spectrum against the decoy database 

spectra were indistinguishable from each other in terms of all indicators (e.g., the number of 

matched fragment ions, XCorr score, and Sp score). This is because for each peptide, the Ends2 

and Ends3 decoy databases had dimer and trimer residue combinations with similar total 

monoisotopic masses. These numerically indistinguishable matches were counted as one when 

calculating the permutation p-values to avoid biases towards any one database search program. 
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Table 3.3 summarizes the number of peptides matched at different log10-transformed 

permuted p-value significant levels across match indicators and database search programs for the 

Ends1, Ends2, and Ends3 decoy databases.  

X! Tandem 

The level of significance of the matches to the decoy databases increased from Ends1 to 

Ends2 and stabilized between Ends2 and Ends3 decoy databases (Table 3.3). The Ends2 and 

Ends3 decoy databases detected 34.95 to 38.70% more peptides than the target database. Overall, 

the X! Tandem indicator convolution score had the lowest detection rate among all indicators 

suggesting that the convolution score alone is inadequate to discriminate between true target and 

false decoy matches. Detections and significance levels were similar for the hyperscore and E-

value indicators. Furthermore, detection rate was comparable between hyperscore and the number 

of matched ions across the three End decoy databases. End decoy databases improved peptides 

detection relative to the target database for number of matched ions, hyperscore and E-value 

indicators.  

The peptides that were not detected by the hyperscore were also not detected by the number 

of matched ion indicator. The decoy database size was not correlated with the significance level or 

capability to detect the peptide. Of the undetected peptides, 2 peptides were not detected by the 

Ends2 and Ends3 databases. Meanwhile five undetected peptides in the Ends2 database were 

significant with the Ends3 database, four other peptides that were significant in the Ends2 database 

were not detected (became non-significant) in the Ends3 decoy database. The non-significant 

peptides in the Ends3 database were either non-significant or marginally significant in the target 

database.  
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Table 3.4 summarizes the number of peptides detected in the target and Ends3 decoy 

databases, target only, Ends3 only, and missed by both databases when the number of matched 

ions and hyperscore indicators are considered. The Ends3 decoy database detected most peptides 

(42 out of 45) that were significant in the target database in addition to the 32 peptides that were 

missed by the standard target database. The performance of the number of matched ions and 

hyperscore was comparable. The higher significance of the matches resulting from the 

consideration of the hyperscore relative to all other X! Tandem indicators can be attributed to the 

use of peak intensity in the scoring and the theoretical spectrum synthesis process.
20

 

Crux 

Peptide detection and significance levels were similar for the XCorr and ΔCn across Ends2 

and Ends3 decoy databases. The XCorr and ΔCn detected 33 (41.25%) and 35 (43.75%) peptides 

in the Ends2 and Ends3 decoy databases, respectively (Table 3.3). The lower peptide detection rate 

of XCorr and ΔCn with decoy databases indicates that XCorr and ΔCn are less suitable than the 

other indicators (Sp and number of ions). Overall, the Sp indicator identified 2 and 4 more peptides 

(p-value < 1 x 10
-4

) than the number of matched ions indicator in Ends2 and Ends3, respectively 

(Table 3.3).  

Combining the number of matched ions or Sp indicators with the End decoy databases 

improved the peptide detection relative to the target database alone. The Ends2 and Ends3 

databases had 67.5 to 83.75% peptide detection rate compared to 12.50% with the target database 

with both indicators. The number of matched ion indicator missed more peptides (23) than the Sp 

indicator (19). The Ends3 permuted database detected 51 peptides missed by the standard target 

database using Sp indicator (Table 3.4).  
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OMSSA 

Table 3.3 summarizes the log10-transformed p-values for the OMSSA match indicators: 

number of matched ions, lambda, Poisson p-value, and E-value. Detections and significance levels 

were identical for the Poisson p-value and E-value indicators, and only E-value indicator would be 

considered in further discussion. The lambda indicator overall detected lower number of peptides 

than the number of matched ion and E-value indicators suggesting that the lambda alone is 

inadequate to discriminate between target and decoy matches. The Ends2 and Ends3 decoy 

databases provided further discrimination between the number of matched ions and E-value 

indicators, with significance levels and peptide detection rate in the decoy database higher than the 

target database when the E-value indicators was considered. The E-value indicator provided more 

true detections across significance thresholds than the number of matched ions and lambda 

indicators.  

Comparison among Database Search Indicators 

Table 3.4 lists the number of peptides identified by the target and Ends3 decoy, target only, 

Ends3 decoy only, and not identified by either database when the number of matched ions and E-

value indicators are considered. Meanwhile the number of ions and E-value indicators detected 3 

peptides using the Ends3 decoy database that were missed by the target database, these indicators 

detected 10 and 7 peptides, respectively using the target database that were missed by the decoy 

database. Approximately, 88% peptide detections were shared by the target and Ends3 databases 

using the E-value indicator. 
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3.7 COMPARISON OF SPECTRA MATCH INDICATORS AND DATABASE SEARCH 

SOFTWARE 

Figure 3.3 depicts the number of peptides detected by one, two or all three database search 

programs when the number of matched ion and best score indicator from each of the three 

programs was used to compute the p-value. The best score indicator was defined as the indicator 

that exhibited the highest difference between the target and decoy peptides. The best spectra match 

indicators were E-value for OMSSA, hyperscore for X! Tandem, and Sp for Crux. 

The Ends decoy databases supported higher consensus among the three programs when 

compared to the target database. For the Ends3 decoy database, all three programs detected slightly 

less peptides together when considering the number of matched ions compared to the best indicator 

(50 vs. 56). A similar number of peptides were detected by any two programs using the number of 

matched ions than the best score indicator (72 vs. 73). OMSSA and Crux detected more peptides 

with best indicator than the number of matched ion indicator and X! Tandem detected similar 

peptides with the number of matched ions and the hyperscore. Using either the number of matched 

ions or best score indicator, X! Tandem detected more peptides than OMSSA and Crux and 

OMSSA detected more peptides than Crux. 

The computational time of the searches was calculated on a computer with 3.40 GHz Intel 

Core i7-3770 processor. Searching the target database only using Crux (using 1000 Weibull 

points), X! Tandem and OMSSA averaged 1.14, 0.013, and 0.14 seconds per spectrum, 

respectively.  Crux averaged 0.04, 3.54 and 40.65 seconds for Ends1, Ends2 and Ends3 decoy 

databases, respectively. X! Tandem averaged 0.15, 6.54, and 116.26 seconds per spectrum for 
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Ends1, Ends2 and Ends3 decoy databases, respectively. OMSSA averaged 0.34, 21.72, and 604.00 

seconds per spectrum for Ends1, Ends2 and Ends3 decoy databases, respectively. The longer 

search time for the X! Tandem and OMSSA using the Ends3 decoy database relative to Ends2 

database could be due to the searching of separate decoy databases for each spectrum in addition to 

the larger database size of the Ends3 decoy database. Furthermore, the comparisons of the peptide 

detection rate between the Ends2 and Ends3 database suggest that detection performance similar to 

the Ends3 database could be obtained using a smaller random sample of the decoys in the Ends3 

database. Overall, the dramatic improvement in the peptide identification highlights the efficacy of 

the terminal residue permutation decoy database. 

3.8 CONCLUSIONS 

The present study demonstrated that the spectra match indicators Sp (Crux), hyperscore (X! 

Tandem) and E-value (OMSSA) with a terminal residue permutation decoy database enabled 

effective detection of peptides compared to target database. The Ends decoy databases improved 

the consensus among database search programs to identify peptides. The End decoy databases can 

be integrated to other database search programs. The new candidate decoy peptides resulting from 

the permutation can also be used to discover novel peptides.  

In the present study, Ends decoy databases were generated from subset of target database 

peptides that were within 12 Da of the observed spectra precursor masses since database search 

programs initially filter candidate peptides based on precursor mass. The approach can be extended 

to any number of peptides, types of peptides and other database search programs. This could be 

accomplished by generating the required number of permuted peptides from peptide-spectrum 
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matches (PSMs) obtained by searching observed spectra against the target database using the 

desired database search program.  
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3.9 FIGURES 

 

Figure 3.1. Box plots of Crux XCorr scores (a) and number of peptides correctly identified at 

different -1*log10-transformed Weibull p-values (b) using “mz-bin-width” values of 0.3, 0.5, 0.7, 

and 1.0005. 
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Figure 3.2. Box plots depicting the distribution of number of candidate decoy peptides within 

precursor mass tolerance per queried observed peptide considered by Crux, OMSSA, and X! 

Tandem for the (a) Ends2 and (b) Ends3 permuted decoy databases. 
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Figure 3.3. Distinct and shared number of peptide detected in the Ends3 decoy database using a) 

the number of matched ions or b) the best indicator for each database search program (OMSSA E-

value, Crux Sp score, and X! Tandem hyperscore). 
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3.10 TABLES 

Table 3.1. Crux, X! Tandem, and OMSSA match indicators used. 

Programs Indicators 

Crux Number of matched b- and y-fragment ions 

 SEQUEST preliminary (Sp) score 

 Cross-correlation (XCorr) score 

 DeltaCn (ΔCn) score 

 p-value: computed from the Weibull distribution using 10
3
 XCorr scores 

X! Tandem Number of matched b- and y-fragment ions 

 Convolution score 

 Hyperscore 

 E-value: computed assuming hypergeometric distribution for 

hyperscores 

OMSSA Number of matched b- and y-fragment ions 

 Lambda or Poisson mean 

 Poisson p-value 

 E-value: Poisson p-value multiplied by effective database size 
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Table 3.2. Number of peptides matched at various significance levels of the log10-transformed E- 

or p-values when the optimal simulated spectra and real tandem spectra were searched against the 

standard target database. 

Program Spectra Log10-transformed p-values Peptides (%) 

at < 1 x 10
-4

   0
a
 1 2 3 4 5 ≥6 

Crux Optimal 2 5 12 52 3 1 5 11.3 

Real 9 8 9 44 1 0 9 12.5 

OMSSA Optimal 0 0 0 0 0 0 80 100.0 

 Real 0 0 1 2 1 3 73 96.3 

X! Tandem Optimal 0 0 4 4 2 6 64 90.0 

 Real 1 8 11 15 16 11 18 56.3 
a
Significance threshold (t) for matches to be significant at p-value <1 x 10

-t
. 
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Table 3.3. Number of peptides detected by spectra match indicators from database search 

programs across log10-transformed p-values levels of the computed using the End decoy databases. 

Programs Database
a
 Indicators Log10-transformed p-values Pep. 

< 1 x 10
-4c

    0
b
 1 2 3 4 5 ≥6 

X! Tandem Ends1 # of ions 0 8 72 0 0 0 0 0 

 
 Convolution 0 25 55 0 0 0 0 0 

 Hyper/E-value 0 9 71 0 0 0 0 0 

 Ends2 # of ions 0 0 0 7 65 8 0 73 

  Convolution 0 2 20 41 17 0 0 17 

  Hyper/E-value 0 0 0 4 67 9 0 76 

 Ends3 # of ions 0 0 0 6 29 44 1 74 

  Convolution 0 0 1 26 31 22 0 53 

  Hyper/E-value 0 0 0 5 20 51 4 75 

Crux Ends1 # of ions 0 20 60 0 0 0 0 0 

  Sp 0 19 61 0 0 0 0 0 

  XCorr/ΔCn 4 30 46 0 0 0 0 0 

 Ends2 # of ions 0 0 0 15 65 0 0 65 

  Sp 0 0 0 13 67 0 0 67 

  XCorr/ΔCn 1 6 12 28 33 0 0 33 

 Ends3 # of ions 0 1 1 24 27 27 0 54 

  Sp 0 1 1 20 28 30 0 58 

  XCorr/ΔCn 0 3 17 25 23 12 0 35 

OMSSA Ends1 # of ions 0 16 64 0 0 0 0 0 

  Lambda 2 29 49 0 0 0 0 0 

  p-value/E-value 0 14 66 0 0 0 0 0 

 Ends2 # of ions 0 0 0 22 58 0 0 58 

  Lambda 0 6 15 25 34 0 0 34 

  p-value/E-value 0 0 0 11 69 0 0 69 

 Ends3 # of ions 0 0 0 10 51 19 0 70 

  Lambda 0 0 0 17 43 20 0 63 

  p-value/E-value 0 0 0 7 33 40 0 73 
a
Ends1: the last one N- and C-terminal amino acids were permuted (decoy peptides: 236*360=84,960); 

Ends2: the last two N- and C-terminal amino acids were permuted (decoy peptides: 

236*130320=30,755,520); Ends3: the last three N- and C-terminal amino acids were permuted (decoy 

peptides: 47,045,880). 
b
Significance threshold (t) for matched to be considered significant at p-value < 1 x 

10
-t
. 

c
The number of peptides detected at p-value < 1 x 10

-4
. 
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Table 3.4. Number of peptides detected by spectra match indicators from database search 

programs using the target and Ends3 decoy databases. 

Program Indicators Number of peptides detected in Ends3 permuted 

and target databases 

  PT
a
 P T None 

Crux # of ions 7 47 3 23 

Sp 7 51 3 19 

OMSSA # of ions 67 3 10 0 

 E-value 70 3 7 0 

X! Tandem # of ions 42 32 3 3 

 Hyperscore 43 32 2 3 
a
PT: peptides detected at  p-value < 1 x 10

-4 
in both target and Ends3 databases; P: peptides detected at  p-

value <1 x 10
-4 

in Ends3 database only; T: peptides detected at  p-value <1 x 10
-4

 in the target database 

only; None: missed peptides (p-value > 1 x 10
-4

) in both databases. 
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CHAPTER IV: EVALUATION OF RESAMPLING APPROACH FOR THE 

TRYPTIC PEPTIDE IDENTIFICATION IN TANDEM MASS SPECTROMETRY 

EXPERIMENTS USING DATABASE SEARCH APPROACH 
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4.2 ABSTRACT 

A novel resampling approach was integrated with the OMSSA database search program. 

Complete peptides sequences that were within a 3 Da precursor mass tolerance of the observed 

spectrum mass were randomly generated. The approach was tested on 5,806 tryptic tandem mass 

spectra (http://www.ludwig.edu.au).
20

 The performance of the OMSSA’s E-value indicator and k-

permutation decoy database was validated and compared by filtering peptides matches using a 5% 

false discovery rate estimated from the target database and target-decoy database searches. The 

conventional receiver operating characteristics (ROC) curve analysis was used to study the tradeoff 

between true positive rate and false positive rate regardless of any specific threshold. The k-

permuted database showed better sensitivity and classification performance relative to the OMSSA 

E-value. A higher peptide detection rate was achieved due to better separation of false negative 

matches with less number of matched ions and large OMSSA’s E-values from the true negatives 

and false positive matches. ROC curves analysis indicated that the k-permuted decoy database had 

performance comparable with OMSSA E-value at various thresholds with an area under the curve 

(AUC) of 0.95 and 0.94, respectively. 
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4.3 INTRODUCTION 

The bottom-up shotgun approach enables high throughput proteins and peptide 

identifications from complex protein mixtures using tandem mass spectrometry (MS/MS).
14

 In the 

shotgun approach, proteins in the complex mixture are enzymatically digested into peptides usually 

with trypsin. The resulting peptides are separated using techniques such as reverse phase 

chromatography and subsequently introduced into the mass spectrometer. These peptides are 

ionized and the mass-to-charge (m/z) ratios are measured to generate the first MS scan. The peptide 

ions are further fragmented inside the mass analyzers and the m/z values of the fragments are 

measured to generate MS/MS (tandem) spectra.
41

  

Database search approaches are commonly used to infer the amino acid sequences 

corresponding to the acquired tandem spectra
41

 including SEQUEST,
89

 Mascot,
46

 OMSSA,
43

 

X!Tandem,
45

 and Crux.
44

 For any observed experimental spectra, these programs predict the 

peptides resulting from the enzymatic digestion of protein sequences compiled in a database, 

generate in silico theoretical spectra from the peptides that fall within mass tolerance of the 

observed spectra, and match the observed spectra against theoretical spectra. Different database 

search programs use different scoring schemes to rank the observed-theoretical spectra matches 

and typically the best match or hit is listed as the most likely identifier peptide.
41

 The database 

search programs can be grouped into probabilistic and empirical based based on the scoring 

schemes.
67

  

The identification of peptides from tandem mass spectra remains challenging.
16, 90

 The 

correct peptide identification (true positive) rate is reported to range from 5 to 50%.
20, 65, 67

 The 
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remaining spectral assignments are either false positive (incorrect), or false negatives (missed).
90

 

Factors that could lower the true positive rate include presence of low informative product ions due 

small size of fragmented peptides,
16, 20, 91

 incomplete fragmentation,
16, 39, 80

 high intensity noise 

peaks relative to the signal peaks,
26

 effective database size,
49

 and chimeric events due to the 

fragmentation of more than one peptide ions to generate tandem spectra.
16

   

The method to evaluate the statistical significance of the match between the observed and 

theoretical spectra could aid in augmenting the true positive rate of peptide detection. The k-

permuted decoy database approach has been proven to increase the true positive rate of 

neuropeptide detection compared to approaches implemented in the database search programs.
88

 

The benefits of the Monte Carlo permuted decoy strategy to identify tryptic peptides have not been 

assessed. Unlike neuropeptides, tryptic peptides in general require trypsin digestion and show 

different fragmentation patterns due to presence of C-terminal basic residues. A public dataset of 

tryptic digest peptides from the plasma and serum proteins is available at 

(http://www.ludwig.edu.au).
20

 The proteins were digested with trypsin enzyme and resulting 

peptides were analyzed using LCQ Deca XP ion trap mass spectrometer (Thermo-Finnigan, San 

Jose, CA, USA). In this dataset peptide assignments to 671 tandem mass spectra identified by the 

seven programs were independently validated by the experts in different laboratories.
20

 The known 

peptide assignments were used in this study to evaluate the performance of the OMSSA and k-

permuted decoy database. 

The overall goal of this study is to evaluate the relative advantages of the k-permuted decoy 

database approach to identify tryptic peptides. Supporting aims were: (1) to evaluate the effectivity 

of the k-permuted decoy database approach to effectively use larger tryptic MS/MS datasets; (2) to 
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evaluate the ability of the k-permuted decoy database approach to discriminate between correct and 

incorrect peptide assignments on MS/MS datasets in which many spectra are either missed or 

incorrectly matched; (3) to evaluate the performance of the k-permuted decoy database approach 

and standard approach in OMSSA using commonly used the target-decoy search strategy to 

estimate False Discovery Rate (FDR); and (4) to evaluate the performance of the approaches using 

conventional Receiver Operating Characteristics (ROC) curves. 

4.4 MATERIALS AND METHODS 

DATASET AND TARGET DATABASE  

The performance of the k-permuted decoy database approach was evaluated on annotated 

experimental tandem mass spectra obtained from the Human Plasma Proteome Project samples.
20

 

The plasma and serum proteins were digested with trypsin and resulting peptide mixture was 

separated using liquid chromatography (Agilent 1100 capillary column). The peptides were 

analyzed on an LCQ Deca XP ion trap mass spectrometer (Thermo-Finnigan, San Jose, CA, USA) 

using electrospray ionization source. This dataset with validated set of peptide assignments was 

downloaded from http://www.ludwig.edu.au and consisted of 5,806 tandem mass spectra (.dta 

format) that were analyzed using seven programs including Mascot, SEQUEST, PeptideProphet, 

Sonar, X!Tandem, Spectrum Mill, and Spectrum Mill (tag).
20

 The dataset consisted of 671 

annotated and 5,135 unannotated spectra. The known peptide identities for the 671 spectra ranged 

from 5 to 41 amino acids in length. Of the 671 spectra: 218, 360, and 93 had precursor charge 
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states of +1, +2, and +3, respectively. The dta spectral files were converted in to a single mascot 

generic format (mgf) file using a python script. 

The spectra were searched against a target protein sequence database containing 68,711 

protein entries downloaded from the RefSeq (ftp://ftp.ncbi.nih.gov/refseq; release 61 September 9, 

2013). A reversed decoy database was also created by reversing the protein sequences in the target 

database. These reversed decoy sequences were appended at the end of target database for the 

combined target-decoy search strategy to estimate the false discovery rate. 

DATABASE SEARCH PROGRAM AND DATABASE SEARCH STRATEGY 

OMSSA (version 2.1.8), an open source program was used for the identification of peptides 

and to evaluate the performance of the k-permuted decoy database. This program was selected due 

to its relatively better performance for the small peptides and spectra containing noise.
16, 88

 The 

program reported the number of matched ions between observed and theoretical spectra and 

significance values (E-value and p-value) for the PSMs. OMSSA uses a Poisson parametric 

distribution to compute significance values. The source code of OMSSA was modified to obtain 

the effective database size and Lambda (parameter for the Poisson distribution) for each spectrum. 

In this study, the OMSSA’s E-value indicator of the match quality was evaluated. The E-value 

indicator was selected based on previous studies (chapters II and III) in which E-value 

outperformed the other indicators reported by OMSSA.  

The following search specifications were used for the database searches: (1) precursor mass 

tolerance: 3.0 Da; (2) fragment mass tolerance: 0.5 Da; (3) variable PTMs: Oxidation of 
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Methionine and Carbamylation of Lysine; (4) mass type: monoisotopic; (5) enzyme: “trypsin” for 

the forward and reverse protein sequence databases or “whole” option to prevent cleavage of the 

provided k-permuted decoy database; (6) Digestion: partial digestion of protein sequence database 

that allows one non-tryptic termini in the resulting peptides; (7) maximum number of missed 

cleavages: 1; (8) minimum peptide length: 4; (9) minimum number of m/z peaks a spectrum must 

have: 2; (10) Option “ht”: at-least one of theoretical spectra peak must match to one of the eight 

most intense experimental spectra peak; and (11) the upper limit on the maximum peptide length 

(i.e., 40 amino acids) for the semi-tryptic digestion was disabled. 

GENERATION OF PERMUTED DECOY DATABASE 

The Monte Carlo permutation approach was used to generate k-permuted decoy peptides 

by randomly sampling a subset (k) of decoy peptides for each spectrum. The decoy peptides are 

sequences of amino acids that are not present in the target database. The match of a spectrum 

against decoy peptides is considered incorrect and can be used to generate a reference null 

distribution to assign significance values to the peptide-spectrum matches. For peptide-spectrum 

matches, permutation p-values were computed using a k-permuted decoy database that indicated 

the probability that a match between peptide and spectra is due to chance. In a recent study, the 

performance of the permuted approach was evaluated using Whole sequence and Ends k-permuted 

decoy databases that provided better sensitivity and discrimination in the performance of the 

different scores or indicators reported by the three database search programs, respectively.
88
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In the Whole sequence k-permuted decoy databases, the k number of complete peptide 

sequences that were within 3.0 Da of the spectrum masses were randomly generated without 

replacement using a python script. For each position in the decoy peptides, the amino acids were 

randomly sampled with replacement from a list of 19 standard amino acids. The leucine and 

isoleucine were treated as isobaric amino acids and only Leucine was used to generate decoy 

peptides. For each experimental spectrum a separate decoy database was created containing 1 x 10
5
 

decoy peptides. The consideration of separate decoy databases for each spectrum can reduce the 

overall search time when multiple database search programs are considered. This strategy of 

permuted decoy database creation can be applied to any type of peptides, experiments, and 

database search programs.  

The tandem mass spectra were searched against the k-permuted decoy peptide databases 

using OMSSA with enzymatic settings that prevented the cleavage of the provided peptide 

sequences. For each spectrum, the peptide matches in the k-permuted database that were identical 

in terms of match scores (i.e., Poisson Lambda, the number of matched ions, p-value, and E-value) 

and had masses within 3 Da of each other were treated as homeometric
86

 matches. The 

homeometric matches were counted only once in calculation of permutation p-values. The problem 

of zero p-values was avoided by using the following formula for the p-value computation with plus 

one representing target peptide score that is always equal to itself:
73

 

        
  ∑           
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Where t(r) is the score for the permuted peptides, t(s) is the score for the target peptides, 

and N is the effective database size for each particular spectrum. The two-fold search strategy was 

implied.  

a) Tandem mass spectra were searched against the target database using OMSSA and 

the permutation p-values were computed for the OMSSA’s E-values assigned to 

each peptide-spectrum match using k-permuted decoy databases. 

b) Tandem mass spectra were searched against the concatenated target-reversed 

database using OMSSA and the permutation p-values were calculated for the 

OMSSA’s E-values of the peptide-spectrum matches using k-permuted decoy 

databases.  

PERFORMANCE EVALUATIONS: FDR AND ROC CURVES 

For the two strategies, the performance (i.e., peptide detection at a specific FDR-based 

threshold) of the OMSSA E-value and permutation approach was compared at a 5% FDR. Only 

the best hit for each spectrum was considered in the FDR calculation and performance evaluation. 

The peptide-spectrum matches were arranged in the increasing order of their E-values and 

permutation p-values to compute the FDR. The significance value at which FDR was immediately 

below 5% was selected as thresholds. 

For the target database search strategy, FDR was calculated with the assumption that the 

incorrect hits in the forward database are already known. This was accomplished using 671 

annotated spectra with known sequence identities, while the remaining 5,135 spectra with 
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unknown peptide sequences were not considered in FDR calculation. The FDR was estimated with 

the following formula: 

     
  

     
           

 Where FP (false positive) and TP (true positives) were the number of incorrect and correct 

peptides hits with significance values below the threshold (i.e., significant matches), while TN 

(true negatives) and FN (false negatives) were the number of incorrect and correct peptide hits with 

significance values above the threshold (i.e., insignificant matches). 

For the concatenated target-reversed database, FDR was calculated with the assumption 

that the incorrect hits in the forward database are not known (common case in MS/MS 

proteomics). All 5,806 spectra were considered in the FDR calculation using the following 

formula: 

     
                

                 
          

Where, number of decoys and targets represent the number of reversed and target peptides 

receiving significance values more significant than the threshold. The selected FDR formula 

produces less conservative FDR estimates than the (2.decoys) / (target + decoy) formula.
92

 This 

procedure allowed the classification of 671 annotated spectra into TP, FN, TN, and FP at a 

particular score threshold. 

Standard ROC curves were also used to compare the performance of the OMSSA’s E-value 

and permutation approach. ROC curves were generated in OriginPro (version 8.6; 

http://www.originlab.com/). Plots showed tradeoff between Sensitivity (fraction of correct 
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significant peptide identifications among all correct identifications) and 1-specificity (fraction of 

incorrect significant identifications among all incorrect identifications) across different significance 

thresholds and provided a useful way to compare performance of the two approaches. 

4.5 RESULTS AND DISCUSSION 

The sensitivity (i.e., number of correct peptides matched at a given FDR threshold), and the 

significance levels of the peptide assignments to validated tandem mass spectra of the tryptic 

peptides obtained from the serum and plasma protein samples were evaluated. The peptide matches 

were filtered with 5% FDR, where FDR was calculated from the best hits for the tandem mass 

spectra matching in the target database and target-reversed concatenated databases. The peptide 

identification rates were compared between the OMSSA’s E-value indicator (best indicator for the 

OMSSA based on previous two chapters) and permuted significance levels attained from the k-

permuted decoy database using E-value indicator. The performance of the two approaches was 

compared in the target database and target-reversed concatenated database. The results were 

further verified by conventional ROC curves that highlighted the performance (i.e., tradeoff 

between Sensitivity vs. 1-Specficity) of the OMSSA’s E-value and permutation approach 

regardless of any specific threshold based on false positive rate. 

SENSITIVITY OF THE OMSSA’S E-VALUE IN THE STANDARD TARGET DATABASE 

Sensitivity is a measure of the ability of the database search program to correctly match 

tandem mass spectra to peptide sequences in the database.
20

 Table 4.1 summarizes the number of 

annotated spectra that provided correct and incorrect matches in the target database.  
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The known peptide identities of the 671 annotated tandem spectra in this dataset were 

compared against the top hit assigned to each spectrum by OMSSA to classify them as correct and 

incorrect matches. In the target database, OMSSA correctly matched 469 (69.90%) peptides 

irrespective of the match significance levels. Of the remaining 202 incorrectly matched tandem 

mass spectra, 49 spectra were not detectable for the OMSSA either due to the absence of candidate 

peptides from the RefSeq database (39) or search parameter settings (10 spectra with N-terminal 

carbamylation). Any peptide match to these spectra was treated either as false positive or true 

negative identification based on significance threshold during the estimation of FDR. Spectra with 

no candidate peptides in the RefSeq database correspond to immunoglobulin genes that undergo 

extensive rearrangement and protein RefSeqs are not available for these genes. The remaining 153 

spectra provided incorrect matches even in the presence of candidate peptides in the target 

database. Most of these spectra were incorrect either due to low intensity of the signal peaks 

relative to the noise peaks (high intensity noise peaks get preference over low intensity signal 

peaks due to filtering steps of OMSSA) or presence of better scoring modified peptides. 

The sensitivity of the OMSSA’s E-value was examined at a 5% FDR. In MS/MS based 

analysis, usually the incorrect matches in the target database are not known and the FDR is 

estimated using target-decoy approach or mixture model approach.
41

 However, due the presence of 

annotated spectra in the dataset, the FDR is calculated directly as the proportion of incorrectly 

matched annotated spectra in the target database using formula one (see materials and methods 

section). For the calculation of FDR, the peptide matches were arranged in the ascending order of 

OMSSA’s E-value and permutation p-values. The value at which the FDR was immediately below 

5% was selected as the threshold.  
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Table 4.2 summarizes the number of true positive, false negative, true negative, false 

positive identifications at a 5% FDR for the OMSSA’s E-value in the target database. OMSSA 

significantly detected 384 (81.88%) peptide identifications out of 469 at s 5% FDR. The 85 

peptides that were not significantly detected had precursor charge state of +1 (54 peptides) and +2 

(31), while all correctly matched peptides with +3 precursor charge state were significantly 

detected at 5% FDR. The false negative peptides had E-values > 1 x 10
-1 

and less number of 

matched fragment ions (<13) which made them indistinguishable from other incorrect matches in 

the target database. This was consistent with the previous study indicating that with insufficient 

number of matched fragment ions (either due to missing ions, small peptide size etc.,) the 

significance values of the OMSSA tends to increase (i.e., become less significant).
16

 Of the 85 

insignificant peptides, 100%, 100%, 94%, 62%, 45%, 41%, 20%, and 25% had 5, 6, 7, 8, 9, 10, 11, 

and 12 number of matched fragment ions. False negative peptides showed more overlap with the 

true negatives and false positives in terms of OMSSA E-values which made those peptides 

insignificant using the OMSSA E-values. 

SENSITIVITY OF THE PERMUTATION APPROACH IN STANDARD TARGET DATABASE 

The E-value indicator was considered in this study due to its higher sensitivity and 

discriminatory power than the other peptide-spectrum match quality indicators in the previous 

studies (chapter II and III). OMSSA’s E-values of around 37% correctly matched annotated 

peptides were more significant than the ones obtainable with the k-permuted decoy database size 

used in this study. These 37% peptides were also significant with the k-permuted decoy database. 
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Overall, k-permuted showed better performance for the false negative identifications produces by 

the standard OMSSA’s E-value due to overlap with true negatives and false positives. 

Table 4.2 summarizes the number of TP, FN, TN, FP identifications at a 5% FDR for the 

k-permuted decoy database. At a 5 % FP rate, the k-permuted decoy database identified 417 

(88.91%) of the annotated peptides correctly matched by the OMSSA database search program. 

The sensitivity of the k-permuted decoy database improved with the increasing number of matched 

fragment ions. Peptide detection rate was 0%, 42%, 12%, 52%, 68%, 79%, 96%, 97%, and 100% 

for peptides with 5, 6, 7, 8, 9, 10, 11, 12, and 13 matched fragment ions, respectively. All peptides 

with +3 precursor charge state were significantly detected, while 38 and 14 peptides were missed 

by the k-permuted decoy database with precursor charge states of +1 and +2, respectively.  

Consistent with our previous studies, accurate permutation p-values for the E-value 

indicator could be estimated with smaller number of permutations (≈ 10
5
). The large E-values (less 

significant) assigned to the peptide matches in the target database allowed more decoy peptides to 

receive equal or more extreme values than the target peptides even with less number of 

permutations, thus separating correct and incorrect matches in better fashion. This is because the 

target peptide matches with less number of matched ions and less intense fragment ion peaks can 

receive higher E-values which in turn can make target database matches with extremely large E-

values non-significant.  
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COMPARISON OF PERFORMANCE IN THE TARGET DATABASE 

Table 4.3 summarizes the log10-transformed significance levels of the OMSSA’s E-values 

for the peptides that were significantly detected by the OMSSA E-value and k-permuted decoy 

database, k-permuted decoy database only, OMSSA E-value only, and not detected by any 

approach.  

Comparison of the peptide identifications between the OMSSA E-value and k-permuted 

decoy database indicated that 378, 39, and 6 peptides were significantly detected by the two 

approaches, only k-permuted decoy database, and only OMSSA E-value, respectively. Consensus 

among approaches was lower for the small and large peptide matches with fewer than 13 matched 

fragment ions. The OMSSA E-value and k-permuted decoy database detected 0%, 0%, 0.06%, 

31%, 45%, 55%, 80%,75%, 93% peptides with 5, 6, 7, 8, 9, 10, 11, 12, and 13 number of matched 

fragment ions. The 46 peptides were not detected by any approach. The peptides that were not 

significant across both approaches had less number of matched ions (ranging between 5 to 12) and 

large OMSSA’s E-values (mean=23.89, std. dev=51). Due to large E-values and less number of 

matched ions the more permuted decoy peptides had extreme E-values than the correct matches. 

The peptides with extreme E-values (especially short peptides with +1 charge state) were not 

distinguishable from other incorrect matches in the target database.  

Figure 4.1 depicts the ROC curve comparison between the OMSSA’s E-value indicator 

and permutation p-value approach. Roc curves shows the effectiveness of each match indicators 

across different significance thresholds by allowing investigation of tradeoff between true positive 

rate (sensitivity) and false positive rate (1-specificity). The diagonal line from lower left corner to 
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the upper left corner in the curve indicates the usefulness of the two approaches. The curves above 

the diagonal lines denote that the discrimination between correct and incorrect peptide 

identifications provided by the approaches was not due to chance. The area under the curve (AUC) 

given in plot provides information about the discriminatory power (value close to one shows good 

power) of each approach across different significance thresholds. 

The curves depicts the tradeoff between the true positive rate and false positive rate across 

different thresholds for the OMSSA’s E-value indicator and permutation p-value calculated from 

the E-value indicator using k-permuted decoy database. Overall, the k-permuted decoy database 

performed better than the OMSSA E-value in the target database. The AUC indicating 

effectiveness for the k-permuted decoy database and OMSSA E-value in separating correct from 

incorrect matches was around 0.95 and 0.94, respectively. The false positive rate of the OMSSA E-

value was slightly lower than the k-permuted decoy database when the sensitivity was below 68%. 

However, false positive rate of the OMSSA E-value increased with slight increase in sensitivity of 

the peptide identifications. The performance of k-permuted decoy database and OMSSA E-value 

converged around sensitivity of 79%. The k-permuted decoy database achieved higher sensitivity 

(around 89%) while keeping false positive rate below 5% than OMSSA E-value with sensitivity 

around 82%. 

SENSITIVITY OF THE PEPTIDE IDENTIFICATION USING TARGET-REVERSE APPROACH 

In MS/MS analysis, target-decoy search strategy is commonly used to estimate the FDR as 

the peptide identities for the incorrect matches in the target database are not known. The target-
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decoy strategy is easy to implement and is based on the assumption that the incorrect matches in 

the target database and decoy database have identical score distributions. In this study, protein 

sequences in the target database were reversed and appended to the target database to conduct 

combined target-decoy database search. This is because the combined search strategy is considered 

to produce less conservative FDR estimates.
92

 The 5,806 spectra were searched against the 

combined database and using the best hit for each spectrum was considered. The permutation p-

values for the OMSSA E-values were calculated using k-permuted decoy database as the ratio of 

permuted peptides receiving E-values as extreme as the E-value of the hits in the target-decoy 

database. The performance of the OMSSA E-value and k-permuted decoy database was compared 

in terms of sensitivity and overlap among peptide identifications in the target and permuted 

databases at 5% FDR, where FDR was calculated as the ratio of decoy and target matches at 

different significance threshold.  

Table 4.1 summarizes the number of annotated spectra with correct and incorrect peptide 

assignments in the target-reverse decoy database across three precursor charge states. OMSSA 

correctly matched 459 (68.41%) annotated spectra. The target-reverse database reduced the 

number of correct peptide identifications by 1% relative to the target only database. Seven peptides 

with +1 charge state that were not correctly matched by the OMSSA in the target-reverse database 

were not significantly detected by the OMSSA in the target database at 5% FDR. This could be 

one of the reasons for the apparent reduction in the number of false negative peptides in the target-

reverse database relative to the target only database in addition to the increase in number of 

available spectra for the calculation of FDR.  
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Table 4.4 summarizes the number of TP, FN, TN, and FP matches for the 671 annotated 

spectra using OMSSA’s E-value and k-permuted database. The OMSSA E-value significantly 

detected 84.10% peptides out of the 459 correctly annotated spectra at 5% FDR based threshold. 

Consistent with the target database results, about 92% true positives matches had E-values < 1 x 

10
-1

, while false negatives had E-values > 1 x 10
-1 

and showed more overlap with the true negatives 

and false positives. The k-permuted database detected 87.15% of the correctly matched annotated 

peptides. Compared with the OMSSA’s E-value, the k-permuted database had higher sensitivity 

and specificity (33% less false positives). Consistent with the target database, k-permuted approach 

detected more peptides that showed higher overlap with false positives and true negatives using 

OMSSA’s E-values. Furthermore, OMSSA’s E-value and k-permuted decoy database also 

significantly detected 566 and 594 unannotated spectra which could be either false positives or true 

positives but there is no assurance about these results.  

4.6 CONCLUSIONS 

The present study demonstrated that the k-permuted decoy database can be used for both 

peptide matches coming from the target database and commonly used target-decoy database search 

strategy. The peptide-spectrum matches were filtered with false discovery rate calculated in two 

different ways. The results indicated that in both databases the k-permuted database had higher 

specificity (less false positives) than the standard approach implemented in the OMSSA program.   

The k-permuted decoy database allowed detection of more annotated peptides in both the 

target database and target-reverse database relative to the OMSSA E-value at a fixed false 

discovery rate of 5%. Better detection rate was achieved by separating borderline correct matches 
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with large E-values (less significant) from incorrect matches. The area under the ROC curves was 

slightly better for the k-permuted decoy database. The study demonstrated that the k-permuted 

decoy database can be integrated with any database search program and current standards in 

MS/MS based analysis. 

  



 

118 

 

4.7 FIGURES 

 

Figure 4.1. ROC curves for match indicators in the target and permuted databases. Plot compares 

discriminatory powers of target database versus permuted database using permuted p-values from 

the OMSSA’s E-value indicators against target database E-value. 
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4.8 TABLES 

Table 4.1. The number of correctly and incorrectly matched annotated spectra in the target and 

concatenated target-reverse databases, irrespective of the match significance levels across three 

precursor charge states.  

Peptide hits for the 
annotated spectra 

Target database Concatenated target-reverse database 
Total 
spectra 

Precursor charge state 
distribution  

Total 
spectra 

Precursor charge state 
distribution 

+1 +2 +3 +1 +2 +3 
Matched 469 98 303 68 459 92 300 67 
Misidentified 202 120 57 25 212 126 60 26 
Total 671 218 360 93 671 218 360 93 
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Table 4.2. Sensitivity of the OMSSA’s E-value and k-permuted decoy database at 5% False 

Discovery Rate when spectra were searched against standard target database. 

Approacha Total spectra 5% False Discovery Rate (FDR)b 
  TPc FN TN FP Threshold 
OMSSA’s E-value 671 384 85 182 20 0.21557 
Permutation 671 417 52 181 21 1.995e-5 
a) 

E-value: OMSSA’s E-value; Permutation: p-value computed using OMSSA’s E-value; 
b) 

FDR: FP/TP+FP; 
c)
 TP: number of correctly matched peptides significant at 5% FDR; FN: number of correctly 

matched peptides not significant at 5% FDR; TN: number of incorrectly matched peptides not 

significant at 5% FDR; FP: number of incorrectly matched peptides significant at 5% FDR; 

Threshold: significance threshold for the 5% FDR. 
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Table 4.3. The number of spectra significantly detected by both OMSSA’s E-value and k-

permuted decoy database, k-permuted decoy database only, OMSSA’s E-value only, and not 

detected by any approach in the target database at a false discovery rate of 5%.  

Log10 E-value Permuted & 

OMSSA’s E-value 

Permuted 

approach only 

OMSSA’s E-value 

only 

Not significant in 

both approaches 

-3 0 0 0 0 

-2 0 0 0 3 

-1 0 3 0 13 

0 13 36 1 30 

1 34 0 3 0 

2 46 0 2 0 

3 39 0 0 0 

4 36 0 0 0 

5 36 0 0 0 

6 174 0 0 0 
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Table 4.4. Sensitivity of the OMSSA’s E-value and k-permuted decoy database at 5% False 

Discovery Rate when spectra were searched against target-reverse combined database. 

Approacha Total 
spectra 

Target database 
matchesb 

Reverse database 
matchesc 

 5% False Discovery Rate 
(FDR)d 
TPe FN TN FP Unknown 

OMSSA’s E-
value 

5806 3834 1972 386 73 173 39 566 

Permutation 5806 3834 1972 400 59 186 26 594 
a) 

E-value: OMSSA’s E-value; Permutation: p-value computed using OMSSA’s E-value; 
b) 

The number of spectra with peptide matches from the target database. 
c) 

The number of spectra with peptide matches from the reverse database. 
d) 

FDR: #reverse/#targets; based on the assumption that usually incorrect matches in the target 

database are not known, the unknown spectra with match in target database were treated as target 

while calculating FDR. 
e)
 TP: number of correctly matched peptides significant at 5% FDR; FN: number of correctly 

matched peptides not significant at 5% FDR; TN: number of incorrectly matched peptides not 

significant at 5% FDR; FP: number of incorrectly matched peptides significant at 5% FDR; 

Unknown: unannotated spectra those were significant at 5% FDR; Threshold: significance 

threshold for the 5% FDR. 
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CHAPTER V: CONCLUSION 

The database search programs are commonly used to identify neuropeptides and proteins in 

tandem mass spectrometry experiments. In MS/MS analysis, typical challenges for the database 

search programs include failure to correctly identify tandem mass spectra and discriminate correct 

from incorrect identifications. Previous studies have shown that the programs designed for protein 

identification (usually one unique peptide matched with high confidence is enough to identify 

protein) are not optimized for the identification of neuropeptides and short peptides present in 

biological sample.
16

 For the ideal simulated tandem spectra containing all possible fragment ions, 

the database search programs can correctly assign peptide sequences to most tandem mass spectra. 

However, accurate assignment of the match significance levels remains challenging due to spectral 

quality issues and limitations of the parametric distribution approaches in programs for the shorter 

peptides.  

In my studies, permutation testing was used to overcome the limitations associated with the 

parametric approaches already implemented in the database search programs. Three studies were 

conducted with the overall aims: (a) to develop and integrate permutation resampling approach 

with the database search programs; (b) to identify the match indicators that provide optimal 

performance within and across programs; and (c) to evaluate the classification performance of the 

approach relative to the already implemented approaches in the database search programs. The 

permutation databases based on the complete permutations and terminal permutations of the 

peptide sequences were developed and performance of various scores within and across programs 
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was tested. The results provided us an insight about suitability of the various scores in each 

program to be used for computation of significance values.  

Resampling approach can be used to validate the suitability of the significance estimation 

approached implemented in the database search programs. The magnitude of the scores is reduced 

by factors such as spectral complexity and low signal-to-noise ratio even in presence of correct 

matches, which in turn have an effect on the match significance values. These spectral quality 

issues had larger impact on the significance estimation approaches already implemented in the 

programs relative to the resampling approach. The approach improved peptide detection rate in 

Crux and X! Tandem programs which underestimated significance values with parametric 

approaches leading to reduction in the peptide identifications. Furthermore, the permutation testing 

validated the suitability of the significance estimation approach implemented in OMSSA for the 

neuropeptides. 

Additionally, the resampling approach provides comparable basis for benchmarking 

various database search programs. The same peptide identifications from the different database 

search programs are less likely to be comparable due to difference in significance estimation 

approaches using standard ways to adjust for the multiple hypotheses testing. A common approach 

in MS/MS studies is to use target-decoy database search strategy to compute significance 

thresholds based on certain level of false discovery rate to control for multiple hypothesis testing. 

On the other hand, resampling approach allows computation of significance levels for various 

programs and scores in the same fashion, which allows their benchmarking using standard 

threshold adjustment procedures for multiple hypothesis testing. This can be useful to save 
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computational search time which increases when spectra are searched against target-decoy 

databases. 

Consensus approach (use of multiple programs) assures that the peptide matches are less 

likely to be false positives. Our studies demonstrate that the programs show less agreement for the 

peptide identifications at more stringent thresholds with already implemented significance 

estimation approaches. The resampling approach improves consensus among programs due to 

higher peptide detection rate for the Crux and X! Tandem that previously underestimated 

significance values. Furthermore, the resampling approach confirms the previous notion that some 

scoring functions are better suited for peptide identification than other programs.  

The database search programs assign peptide matches to tandem mass spectra even when 

appropriate candidate peptides are missing from the database. This requires that significance 

estimation approaches should be able to provide good separation between correct and incorrect 

peptide identifications. The results demonstrated that the resampling approach performs better in 

discriminating correct peptides matches with less than 13 matched fragment ions from other 

incorrect matches. 

The permutation testing provides more accurate estimates of the null distribution, where the 

null distribution is formed by either complete random peptides or terminal permutations of the 

peptides that fall within a certain mass tolerance range of each spectrum. The two types of 

permuted decoy databases provided enough number of target alike decoy peptides to discriminate 

the performance of poor match indicators from the strong indicators of the peptide match. Some 

scores or indicators within and across programs had lower peptide detection rate regardless of the 
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type of the permuted decoy database. Terminal permutations generated more decoy peptides that 

can receive more extreme scores than the target database matches which in turn reduced the 

peptide detection using indicators within and across database search programs.  

The availability of the open source database search programs to proteomics and 

bioinformatics community is important to evaluate and refine their scoring functions. The ability to 

retrieve and test a set of intermediate and final match indicators from the database search programs 

provides useful information about the relative strengths of various match indicators within and 

across programs. Model free property of the k-permuted decoy database allows consideration of 

the multiple match indicators in confidently identifying peptides that are borderline significant. 

Furthermore, the sharing of source code to generate k-permuted decoy database will be beneficial 

for the proteomics community to further explore the biological, statistical, and computational basis 

of the approach for the other database search programs and spectral identification approaches.   

Future studies are needed to uncover the impact of target peptide amino acid composition 

on the significance levels estimation using k-permuted decoy databases. Furthermore, a study 

about assigning significance values to protein matches rather than the spectrum matches needs to 

be undertaken. 
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