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ABSTRACT

This thesis poses a general model for optimal control subject to informa-

tion constraint, motivated in part by recent work on information-constrained

decision-making by economic agents.

In the average-cost optimal control framework, the general model intro-

duced in this paper reduces to a variant of the linear-programming represen-

tation of the average-cost optimal control problem, subject to an additional

mutual information constraint on the randomized stationary policy. The re-

sulting infinite-dimensional convex program admits a decomposition based

on the Bellman error, which is the subject of study in approximate dynamic

programming.

Later, we apply the general theory to an information-constrained variant

of the scalar Linear-Quadratic-Gaussian (LQG) control problem. We give

an upper bound on the optimal steady-state value of the quadratic perfor-

mance objective and present explicit constructions of controllers that achieve

this bound. We show that the obvious certainty-equivalent control policy is

suboptimal when the information constraints are very severe, and propose

another policy that performs better in this low-information regime. In the

two extreme cases of no information (open-loop) and perfect information,

these two policies coincide with the optimum.
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CHAPTER 1

INTRODUCTION

In many applications of stochastic dynamic programming, the controller has

access only to limited information about the state of the system.

Unlike much of the existing literature on problems with imperfect state

information, in this paper it is assumed that the system designer has to

decide not only about the control policy, but also about the observation

channel based on which the control is derived. There are various applications

which fit in this framework, either in engineering or economics.

In economic decision making, the amount of information required to make

a truly optimal decision will typically exceed what an agent can handle. In

his seminal work [1, 2], Christopher Sims 1 adds an information-processing

constraint to a specific kind of dynamic programming problem which is fre-

quently used in macroeconomic models. Sims uses the term “rational inatten-

tion” to describe the setting in which information-constrained agents strive

to make the best use of whatever information they are able to handle. Sims

considers a model in which a representative agent decides about his con-

sumption over subsequent periods of time, while his computational ability to

reckon his wealth – the state of the dynamic system – is limited. A special

case is considered in which income in one period adds uncertainty of wealth

in the next period. Other modeling assumptions reduce the model to an

LQG control problem.

Quantitatively, the constraint on observation channel is stated in terms of

an upper bound on the mutual information in the sense of Shannon [3] be-

tween the state of the system and the observation available to the agent. As

one justification for introducing the information constraint, Sims remarks [2]

that “most people only vaguely aware of their net worth, are little influenced

in their current behavior by the status of their retirement account, and can

1Christopher Sims shared the 2011 Nobel Memorial Prize in Economics with Thomas
Sargent.
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be induced to make large changes in savings behavior by minor informa-

tional changes, like changes in default options on retirement plans.” From a

broader perspective, as he expresses, this model aims to support John May-

nard Keynes’ well-known view that real economic behavior is inconsistent

with the idea of continuously optimizing agents interacting in continuously

clearing markets.

Extensions of this work include Matejka and McKay [4], who recovered

the well-known multinomial logit model for a situation where an individual

must choose among discrete alternatives yielding different values not per-

fectly known ex-ante. In the sequel [5], they extend this model to study

Nash equilibria in a Bertrand oligopoly setting where N firms produce the

same commodity with different qualities not perfectly known ex-ante; it is

shown that this information friction leads to increased prices for the com-

modity. On a similar theme, Peng [6] is motivated by the observation that

“investors have limited time and attention to process information.” In a fac-

tor model for asset returns, he investigates the dynamics of prices and mutual

information when there is uncertainty in the decision making process. Other

works using this setup in economics include [6–9]. These works have offered

compelling information-theoretic explanations of certain empirically observed

features of economic behavior of individuals, firms or institutions; however,

most of them rely on heuristic considerations or on simplifying assumptions

pertaining to the structure of observation channels.

On the other hand, a parallel line of research on dynamical decision-making

with limited information can be found in the control theory literature (a very

partial list of references is [10–15]).

Given the appeal and generality of these questions, there is ample mo-

tivation for the creation of a general theory for optimal control subject to

information constraints. The contribution of this thesis is to initiate the de-

velopment of such a theory, which would in turn enable us to address many

problems in macroeconomics and engineering in a systematic fashion.

In this thesis, we focus on the average-cost optimal control framework

and show that the construction of an optimal information-constrained con-

troller reduces to a variant of the linear-programming representation of the

average-cost optimal control problem, subject to an additional mutual in-

formation constraint on the randomized stationary policy. The resulting

optimization problem is convex, and admits a decomposition in terms of the
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Bellman error, which is the subject of study in approximate dynamic pro-

gramming. This decomposition reveals a fundamental connection between

information-constrained controller design and rate-distortion theory [16], a

branch of information theory that deals with optimal compression of data

subject to information constraints.

The theoretical methodology developed is then used to analyze the clas-

sic linear-quadratic-Gaussian (LQG) control problem [17, 18] in the rational

inattention framework. Various information- or communication-constrained

versions of the LQG problem have been studied in the literature (see, e.g.

[1,11,13,14]). In particular, Sims [1] constructed an information-constrained

control law for the LQG problem with discounted cost. His solution relies

on the certainty equivalence principle — let the control be the same linear

function of a suitable noisy state estimate as one would use in the perfect-

information case, and then optimize the observation channel to satisfy the

information constraint in steady state. However, the derivation in [1] is based

on several ad hoc assumptions and leaves open the question of closed-loop

stability when the information constraint is so severe that the control must

be nearly independent of the state.

The next contribution is explicit construction of rationally inattentive con-

trol laws for the LQG problem from first principles, using the convex-analytic

approach we have developed. In particular, we show the following:

1. If the controlled linear system is open-loop stable, then the certainty-

equivalent control law of the type proposed by Sims [1] induces sta-

ble closed-loop dynamics for all values of the mutual information con-

straint.

2. This control law is suboptimal in the regime of very low information. In

this regime, it is outperformed by another control law that has similar

structure (a linear noisy observation channel followed by linear gain),

but both the linear gain and the noise characteristics of the channel

depend explicitly on the value of the information constraint.

3. When the controlled system is unstable, we give a simple sufficient con-

dition (lower bound) on the value of information constraint to guarantee

that the certainty-equivalent control law will stabilize the system.
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CHAPTER 2

PRELIMINARIES AND NOTATION

All spaces are assumed to be standard Borel (i.e., isomorphic to a Borel subset

of a complete separable metric space), and will be equipped with their Borel

σ-algebras. If X is such a space, then B(X) will denote its Borel σ-algebra,

and P(X) will denote the space of all probability measures on (X,B(X)). We

will denote by M(X) the space of all measurable functions f : X→ R and by

Cb(X) ⊆M(X) the space of all bounded continuous functions. We will often

use bilinear form notation for expectations: for any f ∈ L1(µ),

〈µ, f〉 ,
∫
X

f(x)µ(dx) = E[f(X)],

where in the last expression it is understood that X is an X-valued random

object with Law(X) = µ.

Given two spaces X and Y, a mapping K(·|·) : B(Y) × X → [0, 1] is a

Markov (or stochastic) kernel if K(·|x) ∈ P(Y) for all x ∈ X and x 7→ K(B|x)

is measurable for every B ∈ B(Y). The space of all such Markov kernels will

be denoted by M(Y|X). Markov kernels K ∈ M(Y|X) act on measurable

functions f ∈M(Y) from the left as

Kf(x) ,
∫
Y

f(y)K(dy|x), ∀x ∈ X

and on probability measures µ ∈ P(X) from the right as

µK(B) ,
∫
X

K(B|x)µ(dx), ∀B ∈ B(Y).

Moreover, Kf ∈M(X) for any f ∈M(Y), and µK ∈ P(Y) for any µ ∈ P(X).

The relative entropy (or information divergence) between any two µ, ν ∈ P(X)
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[3] is defined as

D(µ‖ν) ,


〈
µ, log

dµ

dν

〉
, if µ ≺ ν

+∞, otherwise

.

Given any probability measure µ ∈ P(X) and any Markov kernel K ∈
M(Y|X), we can define a probability measure µ ⊗ K on the product space

(X× Y,B(X)⊗B(Y)) via its action on the rectangles A×B, A ∈ B(X), B ∈
B(Y):

(µ⊗K)(A×B) ,
∫
A

K(B|x)µ(dx).

Note that µ ⊗K(X × B) = µK(B) for all B ∈ B(X). The Shannon mutual

information [3] in the pair (µ,K) is

I(µ,K) , D(µ⊗K‖µ⊗ µK), (2.1)

where, for any µ ∈ P(X) and ν ∈ P(Y), µ⊗ ν denotes the product measure

defined via (µ ⊗ ν)(A × B) , µ(A)ν(B) for all A ∈ B(X), B ∈ B(Y). The

functional I(µ,K) is concave in µ and convex in K. If (X, Y ) is a pair

of random objects with Law(X, Y ) = Γ = µ ⊗ K, then we will also write

I(X;Y ) or I(Γ) for I(µ,K).

Finally, given a triple of jointly distributed random objects (X, Y, Z) with

Γ = Law(X, Y, Z), we will say that they form a Markov chain X → Y → Z

if there exist Markov kernels K1 ∈M(Y|X) and K2 ∈M(Z|Y) so that Γ can

be disintegrated as Γ = µ⊗K1⊗K2 (in words, if X and Z are conditionally

independent given Y ). The mutual information satisfies the data processing

inequality: if X → Y → Z is a Markov chain, then

I(X;Z) ≤ I(X;Y ). (2.2)

In words, no additional processing can increase information.
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CHAPTER 3

SOME GENERAL CONSIDERATIONS

Consider a model in which the controller is constrained to observe the system

being controlled through an information-limited channel. This is illustrated

in the block diagram shown in Figure 3.1, consisting of:

• the (time-invariant) controlled system, specified by an initial condition

µ ∈ P(X) and a stochastic kernel Q ∈ M(X|X × U), where X is the

state space and U is the control (or action) space;

• the observation channel, specified by a sequence W of stochastic kernels

Wt ∈M(Z|Xt× Zt−1×Ut−1), t = 1, 2, . . ., where Z is some observation

space; and

• the feedback controller, specified by a sequence Φ of stochastic kernels

Φt ∈M(U|Z), t = 1, 2, . . ..

The X-valued state process {Xt}∞t=1, the Z-valued observation process {Zt}∞t=1,

and the U-valued control process {Ut}∞t=1 are defined on a common probabil-

Controlled system

Observation channel

Controller

Xt

ZtUt

Figure 3.1: System model.
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ity space (Ω,F ,P) and have the causal ordering

X1, Z1, U1, . . . , Xt, Zt, Ut, . . . (3.1)

where, P-almost surely, P(X1 ∈ A) = µ(A) for all A ∈ B(X), and for all

t = 1, 2, . . ., B ∈ B(Z), C ∈ B(U), D ∈ B(X) we have

P(Zt ∈ B|X t, Zt−1, U t−1) = Wt(B|X t, Zt−1, U t−1) (3.2a)

P(Ut ∈ C|X t, Zt, U t−1) = Φt(C|Zt) (3.2b)

P(Xt+1 ∈ D|X t, Zt, U t) = Q(D|Xt, Ut). (3.2c)

This specification ensures that, for each t, the next state Xt+1 is conditionally

independent of X t−1, Zt, U t−1 given Xt, Ut (which is the usual case of a con-

trolled Markov process), and that the control Ut is conditionally independent

of X t, Zt−1, U t−1 given Zt. In other words, at each time t the controller takes

as input only the most recent observation Zt, which amounts to the assump-

tion that there is a separation structure between the observation channel and

the controller. This assumption is common in the literature [10,12,13].

In the spirit of the rational inattention framework, we assume that the

amount of information flow that can be maintained across the observation

channel per time step is constrained, and wish to design a suitable channel W

and a controller Φ to minimize a given performance objective under the in-

formation constraint. For maximum flexibility, we grant the system designer

the freedom to choose the observation space Z as well. In other words, the

designer is allowed to choose an optimal representation for the data supplied

to the controller.

As we will demonstrate shortly, the choice Z = P(X) (i.e., letting Z be the

space of beliefs on the state space) is information-theoretically optimal. For

now, let us see how much insight we can gain in the case of a fixed Z. Then

the problem of optimal control with rational inattention can be formulated

as follows. Let c : X× U → R+ be a given measurable one-step state-action

cost function. Given a fixed finite horizon T and some R ≥ 0, we seek an
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observation channel W and a controller Φ in order to

minimize E

[
T∑
t=1

c(Xt, Ut)

]
(3.3a)

subject to I(Xt;Zt) ≤ R, t = 1, 2, . . . , T. (3.3b)

Later we focus on a related average-cost performance criterion.

3.1 Key structural result

The optimization problem (3.3) seems formidable: for each time step t =

1, . . . , T we must design stochastic kernelsWt(dzt|xt, zt−1, ut−1) and Φt(dut|zt)
for the observation channel and the controller, and the complexity of the fea-

sible set of Wt’s grows with t. However, the facts that (a) both the controlled

system and the controller are Markov, and (b) the cost function at each stage

depends only on the current state-action pair, permit a drastic simplification

— at each time t, we can limit our search to memoryless channels Wt(dzt|xt)
without impacting either the average cost in (3.3a) or the information flow

constraint in (3.3b):

Theorem 3.1.1 (Memoryless observation channels suffice) Under the

specified information pattern (3.2), for any controller specification Φ and any

channel specification W , there exists another channel specification W ′ con-

sisting of stochastic kernels Wt(dzt|xt), t = 1, 2, . . ., such that

E

[
T∑
t=1

c(X ′t, U
′
t)

]
= E

[
T∑
t=1

c(Xt, Ut)

]

and

I(X ′t;Z
′
t) = I(Xt;Zt), t = 1, 2, . . . , T

where {(Xt, Ut, Zt)} is the original process with (µ,Q,W,Φ), while {X ′t, U ′t , Z ′t)}
is the one with (µ,Q,W ′,Φ).

Proof To prove the theorem, we follow the approach used by Wistenhausen

in [19]. We start with the following simple observation that can be regarded
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as an instance of the Shannon–Mori–Zwanzig Markov model [20]:

Principle of Irrelevant Information. Let Ξ,Θ,Ψ,Υ be four random

variables defined on a common probability space, such that Υ is condition-

ally independent of (Θ,Ξ) given Ψ. Then there exist four random vari-

ables Ξ′,Θ′,Ψ′,Υ′ defined on the same spaces as the original tuple, such that

Ξ′ → Θ′ → Ψ′ → Υ′ is a Markov chain, and moreover the bivariate marginals

agree:

Law(Ξ,Θ) = Law(Ξ′,Θ′)

Law(Θ,Ψ) = Law(Θ′,Ψ′)

Law(Ψ,Υ) = Law(Ψ′,Υ′).

Using this principle, we can prove the following two lemmas (see Appendices

for the proofs):

Lemma 3.1.2 (Two-Stage Lemma) Suppose T = 2. Then the kernel

W2(dz2|x2, z1, u1) can be replaced by another kernel W ′
2(dz2|x2), such that

the resulting variables (X ′t, Z
′
t, U

′
t), t = 1, 2, satisfy

E[c(X ′1, U
′
1) + c(X ′2, U

′
2)] = E[c(X1, U1) + c(X2, U2)]

and I(X ′t;Z
′
t) = I(Xt;Zt), t = 1, 2.

Lemma 3.1.3 (Three-Stage Lemma) Suppose T = 2, and Z3 is condi-

tionally independent of (Xi, Zi, Ui), i = 1, 2, given X3. Then the kernel

W2(dz2|x2, z1, u1) can be replaced by another kernel W ′
2(dz2|x2), such that

the resulting variables (X ′i, Z
′
i, U

′
i), i = 1, 2, 3, satisfy

E

[
3∑
t=1

c(X ′t, U
′
t)

]
= E

[
3∑
t=1

c(Xt, Ut)

]

and I(X ′t;Z
′
t) = I(Xt;Zt) for t = 1, 2, 3.

Proof Armed with these two lemmas, we can now prove the theorem by

backward induction and grouping of variables. Fix any T . By the Two-Stage-

Lemma, we may assume that WT is memoryless, i.e., ZT is conditionally

independent of XT−1, ZT−1, UT−1 given XT . Now we apply the Three-Stage
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Lemma to ∣∣∣XT−3, ZT−3, UT−3, XT−2︸ ︷︷ ︸
Stage 1
state

, ZT−2︸ ︷︷ ︸
Stage 1

observation

, UT−2︸ ︷︷ ︸
Stage 1
control

∣∣∣
∣∣∣XT−1︸ ︷︷ ︸

Stage 2
state

, ZT−1︸ ︷︷ ︸
Stage 2

observation

, UT−1︸ ︷︷ ︸
Stage 2
control

∣∣∣ XT︸︷︷︸
Stage 3
state

, ZT︸︷︷︸
Stage 3

observation

, UT︸︷︷︸
Stage 3
control

∣∣∣ (3.4)

to replace WT−1(dzT−1|xT−1, zT−2, uT−2) with W ′
T−1(dzT−1|xT−1) without af-

fecting the expected cost or the mutual information between the state and

the observation at time T−1. We proceed inductively by merging the second

and the third stages in (3.4), splitting the first stage in (3.4) into two, and

then applying the Three-Stage Lemma to replace the original observation

kernel WT−2 with a memoryless one.

3.2 Long-term average cost criterion

Despite the simplification afforded by Theorem 3.1.1, the optimization prob-

lem (3.3) is still difficult even when the observation space Z is fixed, and the

only general way of solving it is via infinite-dimensional dynamic program-

ming.

Our goal is to gain theoretical insight into the structure of optimal control

policies in the rational inattention framework. To that end, we make several

simplifications:

1. We replace the finite-horizon cost criterion in (3.3a) with the one based

on the long-term average cost.

2. We consider only stationary (time-invariant) observation channels and

controllers.

3. Instead of separately optimizing over the observation space, the obser-

vation channel, and the controller, we collapse these decision variables

into the choice of a Markov randomized stationary (MRS) control law

Φ ∈M(U|X) satisfying the information constraint.

Of these, Item 3) requires some explanation; in essence, it is justified by

the simple fact that the mutual information I(X;U) between two random
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variables (X,U) can be expressed as

I(X;U) = inf
{
I(X;Z) : X → Z → U

}
,

where the infimum is over all standard Borel spaces Z and all Z-valued ran-

dom objects Z jointly distributed with (X,U), such that X → Z → U forms

a Markov chain. Indeed, for any such triple we have I(X;U) ≤ I(X;Z)

by the data processing inequality; the other direction follows by consid-

ering the “degenerate” Markov chain X → U → U . Consequently, for

any choice of µ ∈ P(X), Z, W ∈ M(Z|X) and Φ ∈ M(U|Z), the ker-

nel Ψ = Φ ◦ W ∈ M(U|X) will satisfy I(µ,Ψ) ≤ I(µ,W ) (recall nota-

tion from (2.1)). Conversely, we can always factor any given Ψ ∈ M(U|X)

through some standard Borel space Z as Ψ = Φ ◦W with Φ ∈ M(U|Z) and

W ∈M(Z|X), such that I(µ,W ) = I(µ,Ψ).

In view of the above, we focus on the following problem: find an MRS

control law Φ ∈M(U|X) to

minimize lim sup
T→∞

1

T
E

[
T∑
t=1

c(Xt, Ut)

]
(3.5a)

subject to lim sup
t→∞

I(Xt;Ut) ≤ R, t = 1, 2, . . . (3.5b)

11



CHAPTER 4

ONE-STAGE PROBLEM: SOLUTION VIA
RATE-DISTORTION THEORY

Before we analyze the infinite-horizon problem (3.5), let us show that the one-

stage case can be solved completely using rate-distortion theory [16] (a branch

of information theory that deals with optimal compression of data subject

to information constraints). To the best of our knowledge, this solution is

originally due to Stratonovich [21] (see also [22, Sec. 9.7]). Because our

subsequent development builds on these ideas, we briefly describe them here.

Moreover, this analysis will provide additional justification for eliminating the

decision variables Z and W ∈M(Z|X) in favor of an information-constrained

controller Φ ∈M(U|X) directly connected to the system being controlled.

When T = 1, the problem in (3.3) becomes

minimize E [c(X,U)] (4.1a)

subject to I(X;Z) ≤ R (4.1b)

for a given law µ ∈ P(X) for X, where the minimization is over all observation

channels W ∈ M(Z|X) and controllers Φ ∈ M(U|Z). If we denote the

optimum value attained in (4.1) by V (R,Z), then the quantity of interest is

V (R) , inf
Z
V (R,Z), (4.2)

where the infimum is over all standard Borel observation spaces. In other

words, we seek an observation space Z∗, an observation channelW ∗ ∈M(Z∗|X),

and a controller Φ∗ ∈ M(U|Z∗), such that I(X;Z∗) ≤ R and the resulting

expected cost E[c(X,U∗)] is minimized.

In order to properly frame the main result of [21], we need to make

some preliminary observations. If we fix Z and an observation channel

W ∈ M(Z|X), then the optimal choice of the controller Φ∗W ∈ M(U|Z)

12



is to let Φ∗W (du|z) be supported on the set of all u∗ ∈ U, such that

E[c(X, u∗)|Z = z] = min
u∈U

E[c(X, u)|Z = z].

In fact, under suitable assumptions on c, there exists a deterministic mea-

surable selector ϕ∗W : Z→ U, so that

E[c(X,ϕ∗W (z))|Z = z] = min
u∈U

E[c(X, u)|Z = z].

With this, we would then use the deterministic controller Φ∗W (du|z) = δϕ∗W (z)(du),

where δu denotes the Dirac measure concentrated at u ∈ U. Thus,

V (R,Z) = inf
W∈M(Z|X)
I(X;Z)≤R

E[c(X,ϕ∗W (Z))]

= inf
W∈M(Z|X)
I(X;Z)≤R

E
[
min
u∈U

E[c(X, u)|Z]

]
.

We also need to introduce some notions from rate-distortion theory [16]. For

a given µ ∈ P(X) and a given R ≥ 0, consider the set

Iµ(R) ,
{
K ∈M(U|X) : I(µ,K) ≤ R

}
.

The set Iµ(R) is nonempty for every R ≥ 0. To see this, note that any kernel

K� ∈ M(U|X) for which the function x 7→ K�(B|x) is constant (µ-a.e. for

any B ∈ B(U)) satisfies I(µ,K�) = 0.

The Shannon distortion-rate function (DRF) of µ is defined as

Dµ(R) , inf
K∈Iµ(R)

〈µ⊗K, c〉. (4.3)

We use the more cumbersome notation Dµ(R; c) when we need to specify the

dependence of the DRF on the underlying cost function c. Starting with the

easily proved variational expression

I(µ,K) = inf
ν∈P(U)

D(µ⊗K‖µ⊗ ν)

(where the infimum is achieved uniquely by ν = µK), we can introduce the
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Lagrangian relaxation

Lµ(K, ν, s) , sD(µ⊗K‖µ⊗ ν) + 〈µ⊗K, c〉

for s ≥ 0 and ν ∈ P(U), and establish the following key results [16,23]:

Proposition 4.0.1 The DRF Dµ(R) is convex and nondecreasing in R. If

Dµ(R) < ∞, then a Markov kernel K∗ ∈ M(U|X) attains the infimum in

(4.3) if and only if I(µ,K∗) = R and the Radon–Nikodym derivative of µ⊗K∗

w.r.t. µ⊗ µK∗ takes the form

d(µ⊗K∗)
d(µ⊗ µK∗)

(x, y) = α(x)e−
1
s
c(x,u), (4.4)

where α : X→ R+ and s ≥ 0 are such that∫
X

α(x)e−
1
s
c(x,u)µ(dx) ≤ 1, ∀u ∈ U (4.5)

and −s is the slope of a line tangent to the graph of Dµ(R) at R:

Dµ(R′) + sR′ ≥ Dµ(R) + sR, ∀R′ ≥ 0. (4.6)

Proposition 4.0.2 The DRF Dµ(R) can be expressed as

Dµ(R) = sup
s≥0

inf
ν∈P(U)

s

[〈
µ, log

1∫
U
e−

1
s
c(x,u)ν(du)

〉
−R

]
.

We are now in a position to state and prove the main result of this section:

Theorem 4.0.3 (Stratonovich) For any R ≥ 0 such that Dµ(R) < ∞,

we have V (R) = Dµ(R), and the infimum over Z in (4.2) is attained at

Z∗ = P(X).

Proof (Sketch) One direction, V (R) ≥ Dµ(R), is relatively straightfor-

ward. Fix Z, and suppose that W ∗ ∈ M(Z|X) and Φ∗ ∈ M(U|Z) attain

the optimal value V (R,Z). Consider the Markov kernel K ∈ M(U|X) ob-

tained by composing Φ∗ and W ∗: K = Φ∗ ◦ W ∗. The joint action of

W ∗ and Φ∗ can be described by a Markov chain X → Z∗ → U∗, where

Law(X) = µ, Law(Z∗|X = x) = W ∗(·|x), and Law(U∗|X = x, Z∗ =

z) = Law(U |Z∗ = z) = Φ∗(·|z). Moreover, Law(X,U∗) = µ ⊗ K. Since
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I(X;Z∗) ≤ R, we have K ∈ Iµ(R) by the data processing inequality (2.2).

Consequently, Dµ(R) ≤ 〈µ ⊗ K, c〉 = V (R,Z). Taking the infimum over Z,

we get Dµ(R) ≤ V (R).

To prove the other direction, let Z = P(X)1 and consider the optimal kernel

K∗ ∈M(U|X) that achieves the infimum in (4.3). Using (4.4) and the Bayes’

rule, we can compute the posterior distribution (belief state)

Ǩ∗(dx|u) =
e−

1
s
c(x,u)µ(dx)∫

X
e−

1
s
c(x,u)µ(dx)

.

Using the minimal sufficiency property of the belief state [24,25] and the fact

that K∗ attains the DRF, it can be shown that the kernel W ∈ M(Z|X)

given by the composition of K∗ and the deterministic mapping u 7→ Ǩ∗(·|u)

is feasible for the problem (4.1) with Z = P(X). Moreover, if we choose the

controller Φ ∈ M(U|Z) in such a way that Φ(du|z) is supported on the set

{u ∈ U : Ǩ∗(·|u) = z}, then the resulting cost will not exceed Dµ(R). Again,

taking the infimum over Z, we get V (R) ≤ Dµ(R).

1Note that because X is standard Borel, the space Z = P(X) is a complete separa-
ble metric space w.r.t. any metric that compatible with weak convergence of probability
measures, and so Z is standard Borel as well.
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CHAPTER 5

AVERAGE-COST OPTIMAL CONTROL
WITH RATIONAL INATTENTION

We now turn to the analysis of the infinite-horizon control problem (3.5) with

an information constraint. In multi-stage control problems, such as this one,

the control law has a dual effect [26]: it affects both the cost at the current

stage and the uncertainty about the state at future stages. The presence of

the mutual information constraint (3.5b) enhances this dual effect, since it

prevents the controller from ever learning “too much” about the state. This,

in turn, limits the controller’s future ability to keep the average cost low.

These considerations suggest that, in order to bring rate-distortion theory to

bear on the problem (3.5), we cannot use the one-stage cost c as the distortion

function. Instead, we must modify it to account for the effect of the control

action on future costs. As we will see, this modification implies a certain

stochastic relaxation of the Average Cost Optimality Equation (ACOE) that

characterizes optimal performance achievable by any MRS control law in the

absence of information constraints.

5.1 Reduction to single-stage optimization

To construct this modification in a principled manner, we first reduce the

dynamic optimization problem (3.5) to a suitable static (single-stage) prob-

lem. Once this has been carried out, we will be able to take advantage of the

results of Section 4. The reduction is based on the so-called convex-analytic

approach to controlled Markov processes [27] (see also [28, 29]), which we

briefly summarize here. Given a Markov control problem with initial state

distribution µ and transition kernel Q, the long-run expected average cost of
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an MRS control law Φ ∈M(U|X) is given by

Jµ(Φ) = lim sup
T→∞

1

T
E

[
T∑
t=1

c(Xt, Ut)

]
. (5.1)

We wish to find an MRS control law Φ∗ that would minimize Jµ(Φ) simulta-

neously for all µ. Any MRS control law Φ induces a transition kernel QΦ on

the state space X:

QΦ(A|x) ,
∫
U

Q(A|x, u)Φ(du|x), ∀A ∈ B(X).

We say that Φ is stable if:

1. There exists a probability measure πΦ ∈ P(X) which is invariant to QΦ,

i.e., πΦ = πΦQΦ.

2. The average cost JπΦ
(Φ) is finite, and moreover

JπΦ
(Φ) = 〈ΓΦ, c〉 =

∫
X×U

c(x, u)ΓΦ(dx, du),

where ΓΦ , πΦ ⊗ Φ.

Let K ⊂M(U|X) denote the space of all such stable laws.

Theorem 5.1.1 Suppose that the following assumptions are satisfied:

• (A.1) The one-stage cost function c is nonnegative, lower semicontinu-

ous, and coercive, i.e., there exist two sequences of compact sets Xn ↑ X
and Un ↑ U such that

lim
n→∞

inf
x∈Xcn,u∈Ucn

c(x, u) = +∞.

• (A.2) The transition kernel Q is continuous, i.e., Qf ∈ Cb(X× U) for

any f ∈ Cb(X).

Let J∗ , infΦ infµ Jµ(Φ). Then there exists a control law Φ∗ ∈ K, such that

JπΦ∗ (Φ
∗) = J∗ = inf

Φ∈K
〈ΓΦ, c〉. (5.2)
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5.2 Bellman error minimization via marginal

decomposition

For our purposes, it is convenient to decompose the infimum over Φ in (5.2)

by first fixing the marginal π ∈ P(X). Consider the set of all stable control

laws that leave π invariant,

Kπ ,
{

Φ ∈ K : π = πΦ

}
.

This set may very well be empty for some π. Regardless, assuming that the

conditions of Theorem 5.1.1 are satisfied, we can write

J∗ = inf
Φ∈K
〈ΓΦ, c〉 = inf

π∈P(X)
inf

Φ∈Kπ
〈π ⊗ Φ, c〉.

We are now in a position to introduce the information constraint. Let

Kπ(R) , Kπ ∩ Iπ(R). Then we define the optimal steady-state value of

the information-constrained average-cost control problem as

J∗(R) , inf
π∈P(X)

inf
Φ∈Kπ(R)

〈π ⊗ Φ, c〉. (5.3)

As a first step to understanding solutions to (5.3), we consider each candidate

invariant distribution π ∈ P(X) separately:

Proposition 5.2.1 For any π ∈ P(X), let

J∗π(R) , inf
Φ∈Kπ(R)

〈π ⊗ Φ, c〉.

Then

J∗π(R) = inf
Φ∈Iπ(R)

sup
h∈Cb(X)

〈π ⊗ Φ, c+Qh− h〉. (5.4)

Remark The function h ∈ Cb(X) plays the role of a Lagrange multiplier

associated with the constraint Φ ∈ Kπ, which is what can be expected from

the theory of average-cost optimal control [28, Ch. 9].

On setting η = 〈π⊗Φ, c〉, the function c+Qh−h−η is the Bellman error

associated with h that is central to approximate dynamic programming.

Remark Both in (5.4) and elsewhere, we can extend the supremum over h
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to all h ∈ L1(π) without affecting the value of J∗π(R).

Proof Define the function

ιπ(Φ) ,

0, Φ ∈ Kπ

+∞, Φ 6∈ Kπ

.

Then we can write

J∗π(R) = inf
Φ∈Iπ(R)

[〈
π ⊗ Φ, c

〉
+ ιπ(Φ)

]
. (5.5)

Moreover,

ιπ(Φ) = sup
h∈Cb(X)

[〈
πQΦ, h

〉
−
〈
π, h

〉]
. (5.6)

Indeed, if Φ ∈ Kπ, then the right-hand side of (5.6) is zero. On the other

hand, suppose that Φ 6∈ Kπ. Since X is standard Borel, any two probability

measures µ, ν ∈ P(X) are equal if and only if 〈µ, h〉 = 〈ν, h〉 for all h ∈ Cb(X).

Consequently, there exists some h0 ∈ Cb(X) such that 〈π, h0〉 6= 〈πQΦ, h0〉.
There is no loss of generality if we assume that 〈πQΦ, h0〉−〈π, h0〉 > 0. Then

by considering functions hn0 = nh0 for all n = 1, 2, . . . and taking the limit

as n → ∞, we can make the right-hand side of (5.6) grow without bound.

Thus, we have proved (5.6). Substituting it into (5.5), we get (5.4).

To analyze the optimization problem (5.3), let us fix some π and consider

the dual value

J∗,π(R) , sup
h∈Cb(X)

inf
Φ∈Iπ(R)

〈π ⊗ Φ, c+Qh− h〉. (5.7)

Clearly, J∗π(R) ≥ J∗,π(R) for all π and R. Moreover:

Proposition 5.2.2 Suppose that assumption (A.1) above is satisfied, and

that J∗π(R) < ∞. Then the primal value J∗π(R) and the dual value J∗,π(R)

are equal.

Proof Let P0
π,c(R) ⊂ P(X× U) be the closure, in the weak topology, of the

set of all probability measures Γ ∈ P(X × U), such that Γ(A × U) = π(A),
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I(Γ) ≤ R, and 〈Γ, c〉 <∞. Since J∗π(R) <∞ by hypothesis, we can write

J∗π(R) = inf
Γ∈P0

π,c(R)
sup

h∈Cb(X)

〈Γ, c+Qh− h〉. (5.8)

Because c is coercive and nonnegative, the set {Γ ∈ P(X× U) : 〈Γ, c〉 <∞}
is tight [30, Proposition 1.4.15], so its closure is weakly sequentially compact

by Prohorov’s theorem. Moreover, because the function Γ 7→ I(Γ) is weakly

lower semicontinuous [3], the set {Γ : I(Γ) ≤ R} is closed. Therefore, the set

P0
π,c(R) is closed and tight, hence weakly sequentially compact. Moreover,

the sets P0
π,c(R) and Cb(X) are both convex, and the objective function on

the right-hand side of (5.8) is affine in Γ and linear in h. Therefore, by Sion’s

minimax theorem [31] we may interchange the supremum and the infimum

to conclude that J∗π(R) = J∗,π(R).

We are now in a position to relate the optimal value J∗π(R) to a suitable

rate-distortion problem. For the sake of conciseness, we remind ourselves of

the notation in (4.3) and denote the DRF of π w.r.t. the distortion function

c+Qhπ with

Dπ(R; c+Qhπ) , inf
Φ∈Iπ(R)

〈π ⊗ Φ, c+Qhπ〉. (5.9)

The key to our set-up is the existence of a h∗π which is the sufficient con-

dition to assure that J∗(R) has a solution corresponding to π.

Theorem 5.2.3 Consider a probability measure π ∈ P(X) such that J∗π(R) <

∞, and the supremum over hπ ∈ Cb(X) in (5.7) is attained by some h∗π. Then

there exists an MRS control law Φ∗ ∈ M(U|X), such that I(π,Φ∗) = R, and

we have

J∗π(R) + 〈π, h∗π〉 = 〈π ⊗ Φ∗, c+Qh∗π〉 = Dπ(R; c+Qh∗π). (5.10)

Proof Using Proposition 5.2.2 and the definition (5.7) of the dual value

J∗,π(R), we can express J∗π(R) as a pointwise supremum of a family of DRF’s:

J∗π(R) = sup
hπ∈Cb(X)

[Dπ(R; c+Qhπ)− 〈π, hπ〉] . (5.11)

Since J∗π(R) < ∞, we can apply Proposition 4.0.1 separately for each hπ ∈
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Cb(X). In particular, we can take h∗π ∈ Cb(X) that achieves the supremum in

(5.11) (the existence is assumed).

Remark: Upon substituting J∗π(R) < ∞ in Equation (5.10) with λπ,

Equation (5.12) as below is derived which can be interpreted as Information-

Constrained Bellman Equation (IC-BE) in contrast to standard Bellman

Equation(BE) for the average cost [18]. One can notice the intuitive sim-

ilarity between the two:

BE: h(x) + λ = inf
u∈U

[c(x, u) +Qh(x, u)]

IC-BE: 〈π, hπ〉+ λπ = inf
Φ∈Iπ(R)

〈π ⊗ Φ, c+Qhπ〉. (5.12)

Note that while in standard BE the controller has access to the exact value

of the state, in IC-BE it just has access to the ergodic distribution of the

state π which is the prior based on which the decision is made. Moreover,

while the control belongs to U in BE, it has to be constrained to Iπ(R) in

IC-BE. In part 5.2.1 we show how the standard BE can be recovered in the

limit R→∞.

Utilizing the results in Propositions 4.0.1 and 4.0.2 to substitute forDπ(R; c+

Qhπ), we can have the form of optimal randomized Markov policy under the

condition of Theorem 5.2.3.

Theorem 5.2.4 Under the condition of Theorem 5.2.3, the Radon–Nikodym

derivative of π ⊗ Φ∗ w.r.t. π ⊗ πΦ∗ takes the form

d(π ⊗ Φ∗)

d(π ⊗ πΦ∗)
(x, u) =

e−
1
s
d(x,u)∫

U
e−

1
s
d(x,u)πΦ∗(du)

, (5.13)

where d(x, u) , c(x, u) +Qh∗π(x, u), and s ≥ 0 satisfies

Dπ(R′; c+Qh∗π) + sR′ ≥ Dπ(R; c+Qh∗π) + sR (5.14)

for all R′. Moreover, the optimal value J∗π(R) admits the following variational
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representation:

J∗π(R) = sup
s≥0

sup
h∈Cb(X)

inf
ν∈P(U)

{
− 〈π, h〉

+ s

[〈
π, log

1∫
U
e−

1
s

[c(x,u)+Qh(x,u)]ν(du)

〉
−R

]}
. (5.15)

Proof For the first part, using (4.4) with

α(x) =
1∫

U
e−

1
s
d(x,u)πΦ∗(du)

results in (5.13). In the same way, (5.14) follows from (4.6) in Proposition

4.0.1. The form of optimal value can be obtained immediately from (5.11)

and Proposition 4.0.2.

The central role of having the existence and form of Lagrange multiplier h∗π

becomes evident through Theorems 5.2.3 and 5.2.4. While the first one guar-

antees the existence of optimal stationary policy dependent on the existence

of h∗π in dual problem corresponding to a candidate π, the second one char-

acterize the form of the optimal policy based on the form of h∗π. Moreover,

Theorem 5.2.3 also provides a necessary condition in the form of Equation

(5.12) (or equally 5.10), for h∗π to satisfy corresponding to a candidate ergodic

state distribution π.

One may be tempted to consider (5.12) as a fixed point equation to be

solved for hπ, or having a converse to Theorem 5.2.3, which is a common

approach in similar perfect information situations.

However, the most we can get from Equation (5.12), is to have optimality

among the family of policies which keep the expected value of a function of

the form h constant over time. In general, this does not even mean that

the candidate distribution is invariant with respect to the controlled kernel.

Note that in order to prove that a policy Φ induces a kernel QΦ for which π

is invariant, a necessary and sufficient condition is to show that this policy

keeps the expected value of every h ∈ Cb(X) constant over time (or the

supremum, as we see in primal function).

However, one can show that if (5.12) holds for some (π, hπ, λπ) and the

resulting control policy Φ can keep the candidate distribution π invariant
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with respect to the controlled kernel, then one may claim that the policy

actually attains the infimum for that candidate distribution.

Theorem 5.2.5 Suppose there exist hπ ∈ L1(π), λπ < ∞ and a stochastic

kernel Φ∗ ∈ Kπ(R) such that

〈π, hπ〉+ λπ = Dπ(R; c+Qhπ) = 〈π ⊗ Φ∗, c+Qhπ〉.

Then Φ∗ ∈M(U|X) achieves the infimum in (3.5) which is equal to λπ.

Proof For the proof of this theorem, refer to section A.5

To complete the computation of the optimal steady-state value J∗(R)

defined in (5.3), we need to consider all candidate invariant distributions

π ∈ P(X) for which Kπ(R) is nonempty, and then choose among them any π

that attains the smallest value of J∗π(R) (assuming this value is finite).

On the other hand, if J∗π(R) < ∞ for some π, then Theorem 5.2.3 en-

sures that there exists a suboptimal control law satisfying the information

constraint.

5.2.1 Some implications (recovery of perfect information case)

Using Theorem 5.2.4, we see that J∗π(R) is equal to the value of the following

optimization problem:

maximize λ

s.t. s

〈
π, log

1∫
U
e−

1
s

[c(x,u)+Qh(x,u)]ν(du)
− h

s

〉
≥ λ+ sR,

∀ν ∈ P(U) λ ≥ 0, s ≥ 0, h ∈ Cb(X).

Let us examine what happens as we relax the information constraint, i.e., let

R→∞. From the fact that the DRF is convex and nondecreasing in R, and

from the characterization (5.14) of−s as the slope of a tangent to the graph of

the DRF at R, this is equivalent to letting s approach 0 (with the convention

that sR→ 0 even as R→∞). Let us recall Laplace’s principle [32]: for any

ν ∈ P(U) and any measurable function F : U → R such that e−F ∈ L1(ν),
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we have

− lim
s↓0

s log

∫
U

e−
1
s
F (u)ν(du) = ess inf

u∈U
F (u),

where the essential infimum is defined w.r.t. ν. In view of this, the limit of

J∗π(R) as R→∞ is the value of

maximize λ

s.t.

〈
π, inf

u∈U
[c(x, u) +Qh(x, u)]− h

〉
≥ λ

λ ≥ 0, h ∈ Cb(X).

Performing now the minimization over π ∈ P(X) as well, we see that the

limit of J∗(R) as R→∞ is given by the value of the following problem:

maximize λ

s.t. inf
u∈U

[c(x, u) +Qh(x, u)]− h ≥ λ

λ ≥ 0, h ∈ Cb(X).

In particular, under Assumptions (A.1) and (A.2) of Theorem 5.1.1, there

exists a function h∞ and constant λ∞ ≥ 0 that solve the Average Cost

Optimality Equation (ACOE)

h∞(x) + λ∞ = inf
u∈U

[c(x, u) +Qh∞(x, u)] ,

and J∗(R)→ λ∞ as R→∞.
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CHAPTER 6

INFORMATION-CONSTRAINED LQG
PROBLEM

We now formulate the scalar LQG problem in the rational inattention regime.

Consider the following linear time-invariant stochastic system:

Xt+1 = aXt + b Ut +Wt, t ≥ 1, (6.1)

where a, b 6= 0 are the system coefficients, {Xt}∞t=1 is a real-valued state

process, {Ut}∞t=1 is a real-valued control process, and {Wt}∞t=1 is a sequence

of independent and identically distributed (i.i.d.) Gaussian random variables

with mean 0 and variance σ2. The initial state X1 has some given distribution

µ. Here, X = U = R, and the controlled transition kernel Q ∈ M(X|X × U)

corresponding to (6.1) is

Q(dy|x, u) = γ(y; ax+ bu, σ2) dy,

where

γ(y;m, σ2) =
1√

2πσ2
exp

(
−(y −m)2

2σ2

)
is the probability density of a Gaussian distribution with mean m and vari-

ance σ2, and dy is the Lebesgue measure.

We focus on the quadratic performance objective

lim sup
T→∞

1

T
E

[
T∑
t=1

pX2
t + qU2

t

]

with p, q > 0. Following the formalism of Section 5, we seek a pair consisting

of an invariant distribution π ∈ P(X) and an MRS control law Φ ∈M(U|X)

to attain the steady-state value with c(x, u) = px2+qu2 under the information

constraint I(π,Φ) ≤ R.
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6.1 Main result and some implications

We now state the main result of this thesis, which gives an upper bound on

the information-constrained average cost in the LQG problem of Section 6:

Theorem 6.1.1 Suppose that the system (6.1) is open-loop stable, i.e., a2 <

1. Fix an information constraint R > 0. Let m1 = m1(R) be the unique pos-

itive root of the information-constrained discrete algebraic Riccati equation

(IC-DARE)

p+m(a2 − 1) +
(mab)2

q +mb2
(e−2R − 1) = 0, (6.2)

and let m2 be the unique positive root of the standard DARE

p+m(a2 − 1)− (mab)2

q +mb2
= 0. (6.3)

Define the control gains k1 = k1(R) and k2 by

ki = − miab

q +mib2
(6.4)

and steady-state variances σ2
1 = σ2

1(R) and σ2
2 = σ2

2(R) by

σ2
i =

σ2

1−
[
e−2Ra2 + (1− e−2R) (a+ bki)

2] . (6.5)

Then

J∗(R) ≤ min
(
m1σ

2,m2σ
2 + (q +m2b

2)k2
2σ

2
2e
−2R
)
. (6.6)

Also, let Φ1 and Φ2 be two MRS control laws with Gaussian conditional

densities

ϕi(u|x) =
dΦi(u|x)

du

= γ
(
u; (1− e−2R)kix, (1− e−2R)e−2Rkiσ

2
i

)
, (6.7)

and let πi = N(0, σ2
i ) for i = 1, 2. Then the first term on the right-hand side
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of (6.6) is achieved by Φ1, the second term is achieved by Φ2, and

Φi ∈ Kπi(R), i = 1, 2.

Moreover, in each case the information constraint is met with equality: I(πi,Φi) =

R, i = 1, 2.

Before we proceed with the proof of Theorem 6.1.1, we pause to examine

a few consequences. First of all, the controllers Φ1 and Φ2 coincide and

attain global optimality in both the no-information (R = 0) and the perfect-

information (R = +∞) cases. Indeed, when R = 0, the quadratic IC-DARE

(6.2) reduces to the linear Lyapunov equation [17]

p+m(a2 − 1) = 0,

so the first term on the right-hand side of (6.6) is

m1(0)σ2 =
pσ2

1− a2
.

On the other hand, using Eqs. (6.3) and (6.4), we can show that the second

term is equal to the first term, so from (6.6)

J∗(0) ≤ pσ2

1− a2
. (6.8)

Since this is the minimal average cost in the open-loop case, we have equality

in (6.8). Also, the controllers Φ1 and Φ2 are both realized by the deterministic

open-loop law Ut ≡ 0 for all t, as expected. Finally, the steady-state variance

is

σ2
1(0) = σ2

2(0) =
σ2

1− a2
,

and π1 = π2 = N(0, σ2/(1−a2)), which is the unique invariant distribution of

the system (6.1) with Ut ≡ 0 for all t (recall the stability assumption a2 < 1).

On the other hand, in the limit R→∞ the IC-DARE (6.2) reduces to the

usual DARE (6.3). Hence, m1(∞) = m2, and both terms on the right-hand

27



side of (6.6) are equal to m2σ
2. This gives

J∗(∞) ≤ m2σ
2. (6.9)

Since this is the minimal average cost attainable in the scalar LQG control

problem with perfect information, we have equality in (6.9), as expected.

The controllers Φ1 and Φ2 are again both deterministic and have the usual

linear structure Ut = k2Xt for all t. The steady-state variance is

σ2
1(∞) = σ2

2(∞) =
σ2

1− (a+ bk2)2
,

which is the steady-state variance induced by the optimal controller in the

standard LQG problem.

In the presence of a nontrivial information constraint (0 < R < ∞), the

two control laws Φ1 and Φ2 are no longer the same. However, they are both

stochastic and have the form

Ut = ki

[
(1− e−2R)Xt + e−R

√
1− e−2RV

(i)
t

]
, (6.10)

where {V (i)
t }∞t=1 is a sequence of i.i.d. N(0, σ2

i ) random variables independent

of {Wt}∞t=1 and X1. The corresponding closed-loop system is

Xt+1 =
[
a+

(
1− e−2R

)
bki
]
Xt + Z

(i)
t , (6.11)

where {Z(i)
t }∞t=1 is a sequence of i.i.d. Gaussian random variables with mean

0 and variance

σ̄2
i = e−2R(1− e−2R) (bki)

2 σ2
i + σ2.

Theorem 6.1.1 implies that, for each i = 1, 2, this system is stable and has the

invariant distribution πi = N(0, σ2
i ). Moreover, this invariant distribution is

unique, and the closed-loop transition kernels KΦi , i = 1, 2, are ergodic.

We also note that the two controllers in (6.10) can be realized as a cascade

consisting of an additive white Gaussian noise (AWGN) channel and a linear
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gain:

Ut = kiX̂
(i)
t

X̂
(i)
t = (1− e−2R)Xt + e−R

√
1− e−2RV

(i)
t .

We can view the stochastic mapping from Xt to X̂
(i)
t as a noisy sensor or

state observation channel that adds just enough noise to the state to satisfy

the information constraint in the steady state, while introducing a minimum

amount of distortion. The difference between the two control laws Φ1 and Φ2

is due to the fact that, for 0 < R <∞, k1(R) 6= k2 and σ2
1(R) 6= σ2

2(R). Note

also that the deterministic (linear gain) part of Φ2 is exactly the same as in

the standard LQG problem with perfect information, with or without noise.

In particular, the gain k2 is independent of the information constraint R.

Hence, Φ2 as a certainty-equivalent control law which treats the output X̂
(2)
t

of the AWGN channel as the best representation of the state Xt given the

information constraint. A control law with this structure was proposed by

Sims [1] on heuristic grounds for the information-constrained LQG problem

with discounted cost. On the other hand, for Φ1 both the noise variance σ2
1 in

the channel Xt → X̂
(1)
t and the gain k1 depend on the information constraint

R. Numerical simulations show that Φ1 attains smaller steady-state cost for

all sufficiently small values of R (see Figure 6.1), whereas Φ2 outperforms

Φ1 when R is large. As shown above, the two controllers are exactly the

same (and optimal) in the no-information (R → 0) and perfect-information

(R→∞) regimes.

Finally, we comment on the unstable case (a2 > 1). A simple sufficient con-

dition for the existence of an information-constrained controller that results

in a stable closed-loop system is

R >
1

2
log

a2 − (a+ bk2)2

1− (a+ bk2)2
, (6.12)

where k2 is the control gain defined in (6.4). Indeed, if R satisfies (6.12),

then the steady-state variance σ2
2 is well-defined, so the closed-loop system

(6.11) with i = 2 is stable.

29



F1

F2

0.00 0.02 0.04 0.06 0.08 0.10

20

40

60

80

100

R in nats

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R in nats

Figure 6.1: Comparison of Φ1 and Φ2 at low information rates (top:
steady-state values, bottom: difference of steady-state values of Φ2 and Φ1).
System parameters: a = 0.995, b = 1, σ2 = 1, cost parameters: p = q = 1.
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CHAPTER 7

CONCLUSION

The main contributions of this thesis are to pose a general rational inatten-

tion model for optimal control with information constraints, and to reveal

structure for the associated optimal control equations. We also find a tight

upper bound on the optimal steady-state value attainable in the scalar LQG

control problem subject to a mutual information constraint. We have shown

that there are two distinct control policies with different performances in

the presence of a nontrivial information constraint, which reduce to optimal

deterministic control laws in the two extreme cases of no information and

perfect information.

A direction for future work can include the construction of reinforcement

learning algorithms that make use of the general structure of the optimal so-

lution in this thesis to obtain approximately optimal policies based on online

measurements of the system to be controlled. This is especially important

since most empirically verified utility functions in finance have more compli-

cated forms.
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APPENDIX PROOFS

A.1 Proof of the Principle of Irrelevant Information

Let M(dυ|ψ) be the conditional distribution of Υ given Ψ, let Λ(dψ|θ, ξ)
be the conditional distribution of Ψ given (θ, ξ), and disintegrate the joint

distribution of Θ,Ξ,Ψ,Υ as

P (dθ, dξ, dψ, dυ) = P (dθ)P (dξ|θ)Λ(dψ|θ, ξ)M(dυ|ψ).

If we define Λ′(dψ|θ) by

Λ′(·|θ) =

∫
W (·|θ, ξ)P (dξ|θ)

and let the tuple (Θ′,Ξ′,Ψ′,Υ′) have the joint distribution

P ′(dθ, dξ, dψ, dυ) = P (dθ)P (dξ|θ)Λ′(dψ|θ)M(dυ|ψ),

then it is easy to see that it has all of the desired properties.

A.2 Proof of the Two-Stage Lemma

Note that Z1 only depends on X1, and that only the second-stage expected

cost is affected by the choice of W2. We can therefore apply the Principle

of Irrelevant Information to Θ = X2, Ξ = (X1, Z1, U1), Ψ = Z2 and Υ =

U2. Because both the expected cost E[c(Xt, Ut)] and the mutual information

I(Xt;Zt) depend only on the corresponding bivariate marginals, the lemma

is proved.
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A.3 Proof of the Three-Stage Lemma

Again, Z1 only depends on X1, and only the second- and the third-stage

expected costs are affected by the choice of W2. By the law of iterated

expectation, we have

E[c(X3, U3)] = E[E[c(X3, U3)|X2, U2]] = E[h(X2, U2)],

where h(X2, U2) , E[c(X3, U3)|X2, U2]. Note that the functional form of h

does not depend on the choice of W2, since for any fixed realizations X2 = x2

and U2 = u2 we have, by hypothesis,

h(x2, u2) =

∫
c(x3, u3)P (dx3, du3|x2, u2)

=

∫
c(x3, u3)Q(dx3|x2, u2)W3(dz3|x3)Φ3(du3| dz3).

Therefore, applying the Principle of Irrelevant Information to Θ = X2, Ξ =

(X1, Z1, U1), Ψ = Z2, and Υ = U2,

E[c(X ′2, U
′
2) + c(X ′3, U

′
3)] = E[c(X ′2, U

′
2) + h(X ′2, U

′
2)]

= E[c(X2, U2) + h(X2, U2)]

= E[c(X2, U2) + c(X3, U3)],

where the variables (X ′t, Z
′
t, U

′
t) are obtained from the original ones by re-

placing W2(dz2|x2, z1, u1) by W ′
2(dz2|x2).

A.4 The Gaussian distortion-rate function

Given a Borel probability measure µ on the real line, we denote by Dµ(R) its

distortion-rate function w.r.t. the squared-error distortion d(x, x′) = (x−x′)2:

Dµ(R) , inf
K∈M(R|R):
I(µ,K)≤R

∫
R×R

(x− x′)2µ(dx)K(dx′|x) (7.1)

(where the mutual information is measured in nats). Let µ = N(0, σ2). Then

we have the following [16]:

• Dµ(R) = σ2e−2R .
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• The optimal kernel K∗ that achieves the infimum in (7.1) has the form

K∗(dx′|x)

= γ
(
x′; (1− e−2R)x, (1− e−2R)e−2Rσ2

)
dx′ (7.2)

and achieves the information constraint with equality: I(µ,K∗) = R.

• K∗ can be realized as a stochastic linear system

X ′ = (1− e−2R)X + e−R
√

1− e−2RV, (7.3)

where V ∼ N(0, σ2) is independent of X.

A.5 Proof of Theorem 6.1.1

We want to show that, for i = 1, 2, the pair (hi, λi) with

h1(x) = m1x
2, λ1 = m1σ

2

h2(x) = m2x
2, λ2 = m2σ

2 + (q +m2b
2)k2

2σ
2
2e
−2R

solves the information-constrained ACOE (5.12) for πi, i.e.,

〈πi, hi〉+ λi = Dπi(R; c+Qhi), (7.4)

and that the MRS control law Φi achieves the value of the distortion-rate

function in (7.4) and belongs to the set Kπi(R). Then the desired results will

follow.

A.5.1 Existence, uniqueness, and closed-loop stability

In preparation for the proof, we first demonstrate that m1 = m1(R) indeed

exists and is positive, and that the steady-state variances σ2
1 and σ2

2 are finite

and positive. This will imply that the closed-loop system (6.11) is stable and

ergodic with the unique invariant distribution πi.

Lemma A.5.1 For all nonzero a, b and all p, q, R > 0, Eq. (6.2) has a unique

positive root m1 = m1(R).
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Remark Uniqueness and positivity of m2 follow from well-known results on

the standard LQG problem.

Proof Consider the function

F (m) , p+ma2 +
(mab)2

q +mb2
(e−2R − 1).

We have

F ′(m) = a2 +
(ab)2(e−2R − 1) (2q +mb2)m

(q +mb2)2

F ′′(m) =
2a2b6(e−2R − 1)

(q +mb2)3
.

whence it follows that F is strictly increasing and concave for m > −q/b2.

Therefore, the fixed-point equation F (m) = m has a unique positive root

m1(R). (See the proof of Proposition 4.1 in [18] for a similar argument.)

Lemma A.5.2 For all a, b 6= 0 with a2 < 1 and p, q, R > 0,

e−2Ra2 + (1− e−2R)(a+ bki)
2 ∈ (0, 1), i = 1, 2. (7.5)

Consequently, the steady-state variance σ2
i = σ2

i (R) defined in (6.5) is finite

and positive.

Proof We write

e−2Ra2 + (1− e−2R)(a+ bki)
2

= e−2Ra2 + (1− e−2R)

[
a

(
1− mib

2

q +mib2

)]2

≤ a2,

where the second step uses (6.4) and the last step follows from the fact that

q > 0 and mi > 0 (cf. Lemma A.5.1). By the assumption of open-loop

stability (a2 < 1), we get (7.5).
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A.5.2 A quadratic ansatz for the relative value function

Let h(x) = mx2 for an arbitrary m > 0. Then

Qh(x, u) =

∫
X

h(y)Q(dy|x, u)

= m(ax+ bu)2 +mσ2,

and

c(x, u) +Qh(x, u)

= mσ2 + px2 + qu2 +m(ax+ bu)2

= mσ2 + (q +mb2)u2 + 2mabux+ (p+ma2)x2.

Let us complete the squares by letting x̃ = − mab

q +mb2
x:

c(x, u) +Qh(x, u)

= mσ2 + (q +mb2) (u− x̃)2 +

(
p+ma2 − m2(ab)2

q +mb2

)
x2.

Therefore, for any π ∈ P(X) and any Φ ∈M(U|X), such that π and πΦ have

finite second moments, we have

〈π ⊗ Φ, c+Qh− h〉

= mσ2 +

(
p+m(a2 − 1)− (mab)2

q +mb2

)∫
X

x2π(dx)

+ (q +mb2)

∫
X×U

(u− x̃)2π(dx)Φ(du|x).

36



A.5.3 Reduction to a static Gaussian rate-distortion problem

Now we consider the Gaussian case π = N(0, υ) with an arbitrary υ > 0.

Then for any Φ ∈M(U|X) we have

〈π ⊗ Φ, c+Qh− h〉

= mσ2 +

(
p+m(a2 − 1)− (mab)2

q +mb2

)
υ

+ (q +mb2)

∫
X×U

(u− x̃)2π(dx)Φ(du|x).

We need to minimize the above over all Φ ∈ Iπ(R).

If X is a random variable with distribution π = N(0, υ), then its scaled

version

X̃ = − mab

q +mb2
X ≡ kX (7.6)

has distribution π̃ = N(0, υ̃) with υ̃ = k2υ. Since the transformation X 7→ X̃

is one-to-one and mutual information is invariant under one-to-one transfor-

mations [3], we can write

Dπ(R; c+Qh)− 〈π, h〉

= inf
Φ∈Iπ(R)

〈π ⊗ Φ, c+Qh− h〉 (7.7)

= mσ2 +

(
p+m(a2 − 1)− (mab)2

q +mb2

)
υ

+ (q +mb2) inf
Φ̃∈Iπ̃(R)

∫
X×U

(u− x̃)2π̃(dx̃)Φ̃(du|x̃). (7.8)

We recognize the infimum in (7.8) as the DRF for the Gaussian distribution

π̃ w.r.t. the squared-error distortion d(x̃, u) = (x̃ − u)2. (For the reader’s

convenience, the Appendix contains a summary of standard results on the
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Gaussian DRF.) Exploiting this fact, we can write

Dπ(R; c+Qh)− 〈π, h〉

= mσ2 +

(
p+m(a2 − 1)− (mab)2

q +mb2

)
υ + (q +mb2)υ̃e−2R

= mσ2 +

(
p+m(a2 − 1) +

(mab)2

q +mb2
(e−2R − 1)

)
υ (7.9)

= mσ2 +

(
p+m(a2 − 1)− (mab)2

q +mb2

)
υ

+ (q +mb2)k2υe−2R, (7.10)

where Eqs. (7.9) and (7.10) are obtained by collecting appropriate terms and

using the definition of k from (7.6). We can now state the following result:

Lemma A.5.3 Let πi = N(0, σ2
i ), i = 1, 2. Then the pair (hi, λi) solves the

information-constrained ACOE (7.4). Moreover, for each i the controller Φi

defined in (6.7) achieves the DRF in (7.4) and belongs to the set Kπi(R).

Proof If we let m = m1, then the second term in (7.9) is identically zero for

any υ. Similarly, if we let m = m2, then the second term in (7.10) is zero for

any υ. In each case, the choice υ = σ2
i gives (7.4).

From the results on the Gaussian DRF (see Appendix), we know that, for

a given υ > 0, the infimum in (7.8) is achieved by the kernel

K∗i (du|x̃) = γ
(
u; (1− e−2R)x̃, e−2R(1− e−2R)υ̃

)
du.

Setting υ = σ2
i for i = 1, 2 and using the fact that x̃ = kix and υ̃ = k2

i σ
2
i ,

we see that the infimum over Φ in (7.7) in each case is achieved by the

composition of the deterministic mapping

x̃ = kix = − miab

q +mib2
x (7.11)

with K∗i . It is easy to see that this composition is precisely the stochastic

control law Φi defined in (6.7). Since the map (7.11) is one-to-one, we have

I(πi,Φi) = I(π̃i, K
∗
i ) = R.

Therefore, Φi ∈ Iπi(R).
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It remains to show that Φi ∈ Kπi , i.e., that πi is an invariant distribution

of QΦi . This follows immediately from the fact that QΦi is realized as

Y = (a+ bkie
−2R)X + bkie

−R
√

1− e−2RV (i) +W,

where V (i) ∼ N(0, σ2
i ) and W ∼ N(0, σ2) are independent of one another

and of X [cf. (7.3)]. If X ∼ πi, then the variance of the output Y is equal to

(a+ bkie
−2R)2σ2

i + (bki)
2e−2R(1− e−2R)σ2

i + σ2

=
[
e−2Ra2 + (1− e−2R) (a+ bki)

2]σ2
i + σ2

= σ2
i ,

where the last line follows from (6.5). This completes the proof of the lemma.

Putting together Lemmas A.5.1–A.5.3, we obtain Theorem 6.1.1.
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