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ABSTRACT

Image and video representation and modeling is an important topic in com-

puter vision and image processing. An image model provides an abstraction

of the large amount of data contained in an image and enables the system-

atic development of algorithms for accomplishing a particular image-related

task, such as detection, recognition and segmentation (analysis) as well as

inpainting, summarization and colorization (synthesis). Since an image is

usually comprised of millions of pixels, developing models in such a high

dimensional space is not always feasible. One of the most popular ways of

modeling images is to break them into patches; the reason is that not only

is the dimensionality reduced, but it is easier to define similarities between

patches as they experience less distortion as compared with defining simi-

larity between images. Patch-based image models are often more flexible in

modeling appearances by exploring redundancies in image and videos. By

adjusting the patch size, these models trade off the good qualities of each

end of the spectrum - the discriminative power of images and the representa-

tional power of pixel histograms. When breaking an image into a collection

of patches, one must be able to model two kinds of information in order to

describe the image completely. On one hand, one must be able to model the

patch appearance with some statistical model; on the other hand, there must

be some other statistics to describe how the patches are organized together in

an image. We call the first kind the “appearance model” and the second the

“layout model”. In this thesis, we describe the historical progress made in

the past decade starting from patch-based appearance models without con-

sidering layout information, onto how spatial modeling improves performance

and enables applications in analysis tasks such as recognition, detection and

segmentation as well as synthesis tasks such as colorization by explaining

our works in the past three years. This thesis proposes both a discriminative

formulation as well as a generative formulation in describing patch layouts.
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The algorithm developed upon the discriminative framework achieves state-

of-the-art results in the joint detection and its subcategory recognition prob-

lem. Algorithms developed for these models are also discussed in the process

with results and examples.
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CHAPTER 1

INTRODUCTION

Image and video representation and modeling has been an important topic in

computer vision and image processing. Image models can help to develop al-

gorithms for specific image-related tasks or several related tasks at hand, for

example, object detection and object recognition. These two problems have

been studied for many years due to both scientific and industrial interests.

The two problems have been studied extensively but separately until recent-

ly when the detection and recognition features started to be jointly learned

in [1] from a multi-task deep learning perspective [2]. Feature learning s-

trategies such as dictionary learning and sparse coding [3, 4] and especially

deep learning [5] have achieved huge success in recent years in the big data

era. One may have the impression that as long as the dataset is huge, deep

learning by itself can be the strategy that achieves the state-of-the-art per-

formance. In this thesis, we argue that not only is feature learning important

for the joint recognition and detection problem, but also the normalization

strategies with respect to layouts of the patches in the image. We show that

by normalizing across layouts of image patches in a discriminative setting,

one can achieve even better results than treating deep learning as a black

box. And it also improves various performance benchmarks in a generative

setting.

Our layout normalization strategy not only improves performances of de-

tection and recognition results, but also has the potential to provide infor-

mation such as pose, which is important in industries such as retail analytics

as well as inferring human behaviors.

Hence, we motivate our layout normalization strategy from two aspects.

Firstly in section 1.1 we shall look at several real industrial examples that

motivate the joint detection and recognition framework with our layout nor-

malization strategy, which has the potential to provide additional related

information which is important to particular industries. And then we show
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that the normalization strategy with respect to layouts, complementary to

the feature learning framework, can improve the bias-variance trade-off [6]

by a significant portion and therefore yields better performance on detection

and recognition while the normalization and feature extraction process are

only performed once.

1.1 Motivations

The video analytics industry is burgeoning with applications in retail analyt-

ics as shown in Figure 1.1, government and industrial surveillance (as shown

in Figure 1.2), traffic analysis and so on. The challenge here is to harness the

real big data in video storage to ensure safety as well as providing supporting

evidences and insights for business as well as government decisions. In re-

tail analytics, owners hope to analyze shopper behavior in order to enhance

sales as shown in Figure 1.1. This type of application requires detecting and

tracking people in surveillance cameras from overhead position and also de-

tecting parts such as arms. Furthermore, the orientation of the body is also

important to indicate the type of product that the customer may be looking

at. The orientation of the body can be derived if we consider and estimate

pose while performing detection and recognition.

1.1.1 Subcategory recognition

Apart from retail analytics, government or industrial tender also calls for

subcategory recognition in which the differences between the subcategories

appear to be more subtle than the intra-class variations.

Here we refer to the requirement specification of a recent tender, the mobile

analytics system, which involves multiple mobile cameras. Tracking across

camera networks has been a longstanding goal in surveillance; the system in

this tender requires the following two items as quoted from the tender:

• Facial recognition. The video analytics system shall perform near-

real-time facial recognition on video footages streamed from body-worn

cameras and in-vehicle camera systems against a database of at least

one thousand (1,000) subjects.
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Figure 1.1: Object detection and recognition applied to retail analytics
where shop owners are provided with information such as the number of
people who have stopped by or touched certain products.

• Repeated subject appearance. The video analytics system shall be able

to detect and index a subject who is not in the aforementioned database

and who makes repeated appearances in the field of view of the camera

network.

Both requirements following the same vein as a single category must be

detected from the video; after that a subcategory recognition system must

be able to distinguish between different sub-classes that share similar ap-

pearances for which in later chapters we show that a normalization strategy

achieves better performance if we consider the problems together.

1.1.2 Attribute analysis

Another recent tender, “Leasing of a video trawling and analytics system”

asks for describing “physical attributes of a person, which include, but not

limited to the following: age, gender, headdress; sunglasses; and backpacks,

colours, clothe patterns, textures.” Not to our surprise, the state-of-the-art

attribute modeling framework [7] uses a pose normalized part-based model

on a deep neural network.
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Figure 1.2: Joint detection and person recognition for surveillance
application.

1.1.3 Pose and behavior estimation

In the context of pose and behavior estimation, a sample of industry require-

ment is as follows:

• The system shall detect a subject waving at the system.

• The system shall detect a subject with his head completely occluded

from the Surveillance camera(s).

• The system shall detect a subject who is banging his head against the

wall or door.

• The system shall detect a subject who is kicking the wall or door.

This system must be able to recognize all the joints of a human body before

these items can be realized. These joints are then estimated robustly with

the algorithm [8] that is implemented in the Kinect system, not surprising-

ly, which also uses parts for training which means pose normalization and

estimation are performed.
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1.1.4 Multiple requirements in one software

It can be readily observed from the previous sections that a full-fledged sys-

tem that includes detection, recognition and tracking components, which are

required for the full solution, and often, these requirements have to be carried

out in real time. As feature extraction is the most time consuming part, it is

required that the feature extraction and normalization part of the algorithm

can only be performed once and for all. In the following section, we shall

discuss in depth the reason why layout normalization procedures are com-

plementary to powerful feature learning and as important for achieving the

state-of-the-art in the joint detection and its subcategory recognition system.

1.2 Layout Normalizations and Patch-Based Systems

Achieving high detection and recognition accuracy has been at the core of

the goals of the computer vision field for many years. High accuracy can

be achieved via a good feature representation which can maximize the inter-

class distance while keeping the intra-class distance small. The ideal feature

representation should allow zero intra-class distance and infinite inter-class

distance as stated in the kernel target alignment work [9]. Recent advances on

deep learning show that, as we go up the feature hierarchy, images with same

labels tend to cluster together whereas images with different labels tend to

be away from each other [10]. In the same vein, [11] achieves state-of-the-art

performance in face identification by explicitly maximizing and minimizing

inter-class distance and intra-class distance respectively.

Another way to maximize inter-class distance and minimize intra-class dis-

tance is to break the image into patches, and cluster the patches with similar

appearances while keeping dissimilar patches apart from each other. Patch-

based image and video representation has been a prevailing way of performing

various tasks in the image processing and computer vision community for the

past decade. In 1999, Leung and Efros [12] convincingly demonstrated the

capability of synthesizing a large class of textures by sampling patches from a

reference image. Since then, patch-based image models have shown increas-

ingly more vitality and have found many other successful image processing

applications, a few of the prominent ones being image inpainting [13, 14],

image denoising [15], image super-resolution [16] and so on. A large amount
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of work in computer vision representations and applications has come to use

patch as the basic operating element. Why is patch-based representation

such a good idea? It is because local patches often experience much less

distortion than global images and therefore it becomes easier to define the

similarity between two local patches. This idea is essentially the key to the

success of a class of local keypoint descriptors such as SIFT [17], local bina-

ry pattern (LBP) [18] and SURF[19], which are essentially based on image

patches.

Patch-based representation is a trade-off between template and histogram

representations, and the parameter that defines this trade-off is the patch

size. Pixel layout information is inherently related to this trade-off param-

eterized by patch size. In a template-based method, layout information is

completely retained, but its generalization ability suffers and can only rep-

resent a limited amount of images. As the patch size gets smaller, similar

patches occur with higher and higher frequency, until it reaches the other

end of the spectrum, i.e. histogram-based representation of an image with

just 256 possibilities of occurrence (assuming 8 bit), though the spatial in-

formation is completely lost; however, it can represent a very large number

of images and it is invariant to many forms of transformations, e.g. rotation,

translation, etc. By choosing the patch size sensibly, we are able to reduce

the variations between intra-class distances and increase the inter-class dis-

tances.

1.3 Variations, Invariance, Normalization

Feature extraction methods are traditionally designed for capturing high vari-

ance components, such as principal component analysis, which provides a

projection of each input vector to a low-dimensional coordinate vector. Vari-

ations in the directions of the principal components are perfectly captured

by the PCA, whereas changes in the directions that are orthogonal to the

principle components are lost. The assumption that we use PCA is that di-

rections where there is very little change in the data do not matter and can

be considered noise. However, the directions with low-variance need not be

uninformative; in fact in practice, these directions can bear very important

information in distinguishing between subcategories. For example in face
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recognition, the detected faces from videos often have mis-alignment, pose

variations as well as scaling differences, in this scenario, as most variations in

the pixel space will be explained by these causes, so identity bearing informa-

tion will lie in the low-variance components. While cutting the low-variance

directions out it is quite possible that the most important information that

can distinguish between different faces is lost. This is the reason that align-

ment must be performed in face recognition tasks. In the recent deep face

work [20], the authors also show that an alignment step is crucial to large

scale face verification. This empirically implies that deep learning is also

not able to discover distinguishing information while large variations exist.

The alignment step in this work [20] is a normalization step that reduces the

intra-class distance while increases the inter-class distance.

The notion of invariance involves discounting variations in image detection

and recognition tasks. We summarize here two related approaches that can

be used to achieve invariance: the informative invariance that we achieve

by normalization, i.e. to estimate the dominant orientation of the gradient

and extract feature by normalizing the image to the dominant direction, and

the uninformative invariance for which we find an invariant operator that

maps images subject to the same type of variation to one target vector in

the output space ( for example, by dividing a color vector by the sum of its

components). Uninformative invariance is also achieved by representing the

image by its histogram, or by modifying the training data set of a classifier

by adding jittered samples.

Uninformative invariance By the definition in [21] and restated in [22],

an invariant operator is a non-invertible function on the space of features

x which maps all features belonging to an orbit of the group actions into

the same point. Its trade-off between discriminative power and invariance is

studied in [22], which concluded that, from an information-theoretic point of

view, imposing invariance results in reduced (rather than improved) system

performance. The example here is a face verification scenario when the train-

ing images are not aligned. A descriptor can be designed to be viewpoint

invariant, which means the statistical description of the descriptor is simpler.

This will result in high bias classifier (not enough parameters to describe ap-

pearances), which has higher potential to lose discriminative details. The

authors of [22],[23] try to learn an optimal trade-off between discriminative
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power and invariance of a classifier.

Another common approach is to feed images of different variations into a

learning machine, and hope the invariant properties can be learned. This

approach is the prevailing one now in image classification [24, 25]. This type

of approach may not be as good as its informative counterpart in capturing

discriminative variation components. For example, in face verification [20],

suppose instead of performing alignment, one can feed all the labeled but u-

naligned images into the network classifier. If our classification model is too

“simple” and has very few parameters, then it may have large bias (but small

variance) and the learned feature may lose identity bearing information; if

we design the model to be too “complex” with many parameters to describe

the large variations, then it may suffer from overfitting (but have smaller

bias) if we do not have enough data samples. Another example is that, if

we have a large amount of different pose configurations of pedestrians, we

need a large amount of training data to be able to learn a dense complex

manifold that spans the space of all pose variations. This complex classifier

will have more parameters and thus requires more samples to train. These

viewpoints are also argued in [2], which states that as generalization is mostly

achieved by a form of local interpolation between neighboring training ex-

amples that is based on the smoothness assumption in the data manifold, it

is insufficient to deal with the curse of dimensionality, because as the num-

ber of interacting variation factors such as pose, viewpoints and illumination

grow, the complexity of the target function may grow exponentially with the

number of relevant interacting factors, which needs exponentially more sam-

ples according to the sample complexity bounds. As the number of training

samples goes up, the variance of the classifier goes down and subsequently

yields lower generalization error.

Informative Invariance Invariance can also be achieved by normalization

procedures, such as breaking the object into parts as in pose normalization.

The set of parts to detect is much more common in appearance: first, they

are smaller in size and thus appear similar due to natural invariance to view-

point deformations and secondly, though the number of classes will increase,

by decomposing the object into parts, one will have part-models that are

trained by as many samples as there are for the object. In this way, the

manifold of appearance models becomes simpler, and at the same time can
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be trained by the same number of training samples. According to the sample

complexity bound, at high probability, the generalization error will decrease

exponentially with respect to the number of training samples. Furthermore,

by training models with respect to parts, one is able to estimate the pose pa-

rameters during the testing time, which are useful and important information

that needs to be extracted out from images and videos.

It is important to distinguish between the related but distinct goals of un-

informative invariance, which is the learning invariant features rather than

to learn to disentangle explanatory factors. One important difference is the

preservation of information. Invariant features, by definition, have reduced

sensitivity in the direction of invariance with a non-invertible mapping, which

may lose discriminative information which is essential to achieve high accu-

racy, and furthermore, we may not be able to get the information about that

variation parameter, for example the pose parameters or the configuration of

parts.

Variations are common among different tasks Although detection

and subcategory recognition are different tasks, the variations that we face

here are exactly the same, such as pose variations, viewpoint, illumination,

local translation, scale. Here in this thesis we propose to handle these varia-

tions once and for all the tasks at hand, namely pose normalization as well

as translation normalization.

Multi-task features In order to save computation further, we propose to

perform feature extraction only once throughout the image and use the ex-

tracted features for both detection and recognition. Here we use Overfeat [1]

in this thesis as it is trained in a multi-task scenario. In multi-task feature

learning works [2], different tasks with supervisions can help to disentangle

the information better as multi-task learning exploit commonalities between

different learning tasks in order to share statistical strength by learning rep-

resentations that capture underlying factors. This hypothesis seems to be

confirmed by a number of empirical results.
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1.4 Generative Layout Models

The bag-of-words model [26],[27] balances the advantages of both sides and

uses a histogram of patches as features for image classification. The BoF

model treats an image as a loose collection of unordered appearance descrip-

tors (e.g., the SIFT descriptor[17]) extracted from local patches, quantizes

them into discrete visual words, and then computes a compact histogram

representation for semantic image classification. However, the BoF model

discards all the global layout information of the local descriptors, which is

informative or even crucial for discriminative analysis, and therefore its per-

formance is limited. To be able to describe global patch layout, spatial pyra-

mid matching (SPM) [28] has been employed and become extremely popular.

The SPM method partitions the image into increasingly finer spatial sub-

regions and computes histograms of local descriptors from each sub-region.

The resulting spatial pyramid representation is a computationally efficient

extension of the orderless BoF model, and has shown very promising perfor-

mance in various benchmarks. Since then, modelling spatial information has

become a trend in image analysis. [29] improved the SPM method by max

pooling over the sparse representations of the local descriptors with respect

to a learned over-complete dictionary. Perronnin and Dance [30] proposed

a Fisher kernel approach based on the Gaussian mixture model (GMM) to

aggregate the set of descriptors by considering their zero-, first- and second-

order statistics. By mapping the image into a high-dimensional feature space,

the obtained image feature works rather well with linear classifiers. Zhou et

al. [31] proposed a similar approach by modelling the spatial information

from global and local statistics of a Gaussian mixture model.

In Gaussian mixture model, the parameters of the Gaussian components

are not shared; sharing of parameters can allow a better generalization of the

Gaussian mixture model. The work epitome was proposed by another senior

Nebojsa by allowing the GMM to share their parameters across the individual

Gaussian components, which resembles panorama stitching work in the image

domain; therefore in this work it is called parameter panoramization. It

allows the model to represent larger and more sophisticated patterns with

a smaller parameter space with less variance. These models are learned by

compiling patches drawn from input images into a condensed image model.

It was shown in [32] that the image epitome is an image summary of high
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“completeness.” The epitome idea has also found its use in representing audio

information [33] and human activities [34]. In [32], the image frames from a

panoramic video are automatically stitched together to form a panorama due

to epitome’s ability in exploring image similarities. However these panoramic

parametric models did not try to model spatial information; therefore, when

it comes to classification related tasks, the performance suffers [35]. It also

does not preserve the original layout while it generates the summary and

many applications beyond that.

1.5 Contributions

This thesis makes four main contributions to the goal of modeling spatial

patch layout for the tasks in detection and recognition. Firstly, it proposes

a latent variable based layout normalization framework which delivers state-

of-the-art results in the problem of joint detection and recognition with a

discriminative model. Secondly, for analysis applications such as recognition

and detection in a generative setting, it proposes a principled way of mod-

eling spatial layout of patches in the existing panoramic GMM model and

provides an algorithm to perform learning and inference; these algorithms

significantly improve the performance of the original work. After that, for

synthesis applications such as colorization that require spatially smooth re-

sults, we propose to consider inter-patch layout during the inference process.

1.6 Thesis Outline

Discriminative layout model The first part of the thesis (Chapters 2-5)

proposes a normalization framework which improves the bias-variance trade-

off of classifiers for both detection and its subcategory recognition. The

model is trained in a discriminative setting by a latent SVM via iterative

refinement process to improve detection precision. The work is evaluated

on the bird dataset [36] for the joint detection and recognition task and has

achieved state-of-the-art performance.
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Generative layout model In Chapters 6-9, we [35] propose to model

patch global layout in generative probabilistic model where the parameters

specify the spatial distributions of the patches in the panoramic GMM model.

Therefore the extended model is able to achieve good performance in various

inverse problems such as image completion, misalignment face recognition

and object detection.

Inter-patch Layout Chapter 10 discusses the colorization application by

considering inter-patch layouts. Patches of similar texture can be from very

different parts of the object; in many applications such as image classification

and summarization we do not need to distinguish because that information

is accurate while essential statistics are extracted to perform the analysis.

However, sometimes it is necessary to impose the smoothness constraint to

encourage neighboring patches to have similar labels. This constraint, which

is implemented by an MRF, is essential to our work in image automatic

colorization [37] especially while two regions that are of similar textures are

from different parts of an object. The layout-smooth constraint, which makes

sure that each region is consistently colorized and results in a more pleasant

result visually, is common among graphics applications such as seam carving

[38] and content-driven retargeting [39]. We also extended this work to a

more general learning problem in the same year [40].

Chapter 11 concludes this thesis.
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CHAPTER 2

LATENT PATCH LAYOUT MODEL FOR
JOINT DETECTION AND SUBCATEGORY

RECOGNITION

Single object-category detection and its corresponding subcategory recogni-

tion are two related important research directions that are shown to be the

problem abstraction of following three research problems as well as industrial

system pipelines:

1. Face detection and verification

2. Person detection and re-identification

3. Fine-grained categorization

These problems have been extensively motivated in Chapter 1 due to their

industrial significance.

2.1 Characteristics of the Joint Detection and

Subcategory Recognition Problem

To be able to achieve high accuracy in the problem of joint detection and

recognition, we found that the problem has several characteristics once the

two component problems are put together.

Challenges faced by the two problems are common Both detection

and recognition tasks require us to account for variations such as pose, illu-

mination, viewpoint and translation; in this work, these variations are dealt

with once and for all for the two connected problems. Namely, we address

a latent variable model for translation normalization, part layout model for

pose normalization and a mixture model for viewpoint normalization. The

three normalization schemes are applied once to the system for both detection

and recognition problems.
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Importance of detection/localization precision in the pipeline A-

mong the two components in this pipeline, detection and recognition, the lat-

ter is dependent on the former. Current detection research [41, 42, 43, 44, 45]

evaluates detection algorithms using protocols such as PASCAL VOC 2006,

2007, 2010 [46, 47]. These datasets provide ground-truth bounding boxes for

a number of object classes. At test time, the goal is to predict the bounding

boxes of all objects for a particular class in an image or report that the ob-

ject class is not found. The system will output a set of predicted bounding

boxes with corresponding scores. A predicted bounding box is considered

correct if it overlaps more than 50 percent with a ground-truth bounding

box; otherwise, the bounding box is considered a false positive detection.

Under this evaluation criterion, a good detector does not necessarily consti-

tute a good initialization for the later recognition task, because the misalign-

ment will induce large translation variations for the recognizer, especially in

the fine-grained case such as the capability to differentiate between pedes-

trians, faces as well as subcategories of birds, as the appearance variations

induced by translation will be larger than the differences between the sub-

categories. Hence an accurate and precise detection is even more important;

otherwise, the error will propagate to the recognition stage which renders

poor recognition performance. Therefore in this work we propose a latent

model for “good positive mining” in the detection phase to perform concur-

rently with “hard negative mining” for precise detection of objects.

Task dependent selection of deep features Detection aims to dis-

tinguish the foreground objects from the background whereas subcategory

recognition is set to differentiate between objects (cropped out by detection-

s) from the same category. First of all, the features that we use must be

different for the two different tasks. The feature that is used for detection

must be able to distinguish the basic category and the background whereas

the feature that is used for recognition must be able to differentiate between

the parts of subcategories. Feature learning of the joint detection and recog-

nition problem has recently been considered in the deep learning literature

[1], which shows that the different tasks can be learned simultaneously using

a single shared network and demonstrate that the same feature can be used

in tasks such as detection, recognition and localization and achieve high ac-

curacy on the ImageNet challenge [25]. This is the work that is most similar
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to this thesis. However this work [1] focuses on the feature learning side

of the problem by sharing the bottom feature extraction layers for different

tasks which is also envisioned in [2]. This recent work does not consider

the problem such as importance of normalization operations that deals with

subcategory dissimilarities, nor does it explore single-category similarities

through a better Bias-Variance trade-off as discussed in 1. Moreover their

evaluation dataset ILSVRC13 is mostly comprised of basic-level categories;

it is not designed for evaluating the problem of the joint single category

detection and subcategory recognition.

We approach the subcategory detection and recognition problem from a

vision system perspective by exploring same-category similarities and propose

a new mechanism for the industrial system pipeline.

As feature per say, traditional pipelines such as GRID often use different

features for detection (Haar) and recognition (Eigenface); this requires the

system to perform feature extraction twice through the data at the detect-

ed regions. Nevertheless, the Overfeat work [1] trains a feature extractor

through a convolutional network to simultaneously classify, locate and de-

tect objects in images which can boost the classification accuracy and the

detection and localization accuracy of all tasks. Also another recent work

that performs extensive evaluation for deep features [48] shows that features

learned through a deep neural network (only classifiers are different) are al-

most all good for all tasks including object detection, basic-category recogni-

tion as well as subcategory recognition (fine-grained recognition). In light of

these evidences, our approach uses pretrained deep network features (Over-

feat [1]) which are then trained and selected by SVMs for different tasks,

namely detection and recognition. Hence the expensive feature extraction

computation is only performed once through the data, while the resulting

feature vectors can be used by two tasks at the same time.

2.2 Normalization-based learning for joint detection

and recognition

In this thesis, we choose to perform normalization against different varia-

tions instead of using an invariant classifier as a black box. Among all the

variations that are detrimental to detection and recognition performances,
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Table 2.1: Traditional research problems

Research Problem Evaluation assumptions References
Detection 50% overlap with groundtruth, Pascal VOC 2010

Subcategory recognition bounding box is given [49, 50]
Classification predicted labels only ILSVRC 2013
Localization object presence given ILSVRC 2013

pose/articulation, viewpoint and translation are the three that have the most

effect on the detection and recognition accuracy. In this work we propose

normalizations can be used effectively to account for these different varia-

tions and improve performance for the joint detection-recognition pipeline.

The normalization schemes we adopt here are pose normalization, viewpoint

normalization and translation normalization.

Especially for translation normalization, the concept of ”good positive

mining” is proposed and operated concurrently with the hard negative min-

ing to accurately position the bounding boxes of the parts in our new joint

detection-recognition learning algorithm 1.

Here we discuss the assumptions and evaluation methods of the tradi-

tional research problem of detection, subcategory recognition, classification

and localization, and compare with the research problem when all of these

independent problems are considered jointly.

As in Table 2.1, for a detection to be considered correct, the predicted

box must match the groundtruth by at least 50 percent (using the PAS-

CAL criterion of union over intersection), regardless of the subsequent tasks

such as subcategory recognition which requires precise alignment from the

detection result. However, the current subcategory recognition works[49][50]

[51][52][53][54] assumes that an accurate bounding box is given before the

subcategory recognition task is performed while such information is provid-

ed in the subcategory recognition dataset [36]. As subcategory recognition

relies heavily on the precise localization of object parts, there seems to be

a gap between the detection-recognition system pipeline. Another difference

with traditional object detection is that, although we are able to detect and

recognize multiple subcategories, there is only one general category that we

propose to detect. This specific problem allows us to explore similar struc-

tures that are shared between different subcategories and also avoid building

separate detectors for each subcategory which is computationally expensive.
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Image classification on the ImageNet [24] database regards the accuracy of

predicted image labels as the evaluation criteria irrespective of localization

as well as detection. Similarly, the localization task [55] assumes object

presence information is given by the image classification/detection task and

sometimes assumes that there is one type of class in each image [1, 56], hence

the localization operation is often performed after classification or detection.

The detection task differs from localization in that there can be any number

of objects in each image (including zero)[1].

The normalization framework proposed here considers the joint problem of

detection and recognition, in which we account for the imprecise localization

problem from traditional detection research with a latent variable model that

also performs pose normalization, translation normalization and viewpoint

normalization that helps with all tasks such as detection, recognition and

localization. These normalizations are only performed once for all the tasks to

achieve high accuracy in detection, localization and subcategory recognition.

2.2.1 Pose Normalization

According to research in human kinetics [57], the human body has 244 degrees

of freedom. There are around 230 joints in the body, most of which have one

degree of freedom (DoF). Some joints have multiple degrees of freedom (DoF)

- for example, the hip and the shoulder joints have at least 3 DoF. A bird has

many degrees of freedom too, such as the different orientations while the bird

is flying. The visual differences between the same type of bird with wings

open and closed is arguably much larger than the difference between different

types of birds as we can observe in [36]. To achieve pose normalization in

detection and recognition, a part-based approach is generally adopted. This

normalization framework for joint detection and recognition is illustrated in

Figure 2.1.
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Figure 2.1: Joint detection and subcategory recognition results from four
different viewpoints.

Part-based pose normalization for subcategory recognition The

premise of fine-grained classification is the assumption that the objects of

a super-category share common shape configuration among all subclasses.

Research in cognitive psychology [58] has suggested that fine-grained recog-

nition relies on identifying the subtle differences in appearance of specific

object parts. Recent works in computer vision have shown the part-based

mechanism to be an effective approach for fine-grained recognition [50, 51],

Birdlets [52], DPD [53] and POOF [54] in which descriptor for each pair of

keypoints is learned for discriminative mid-level features. In [52], the authors
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proposed a pose-normalized representation for recognition using poselets [44],

whereas deformable part models [42] were used in [53] for part localization.

In recent work [49] part annotations are transferred from objects with simi-

lar global by a nonparametric label transfer technique. Application of deep

features also uses a part-based pose normalization for attribute prediction

[7].

Part-based pose normalization for detection It has also been shown

that part-based pose normalization is an effective approach for object detec-

tion, starting with explicit modeling of body parts with pictorial structures

[59, 60] and the later poselets [44, 61] and related works. These strongly

supervised models often suffer from imprecise human labeling of part bound-

ing boxes. Through implicit modeling of object parts, the deformable parts

model (DPM) was proposed [42] and won the PASCAL challenge in 2009.

This work models parts with additional learned filters in positions anchored

with respect to the whole object bounding box, allowing parts to be displaced

from this anchor with learned deformation costs. However, as the optimiza-

tion is non-convex, the results are not always optimal as mentioned in the

strongly supervised DPM [62], which adapted the weakly supervised method

[42] for the strongly supervised setting in which part locations are annotated

at training time to improve initialization of the optimization.

2.2.2 Translation normalization

Normalizing translations and performing alignment during training is impor-

tant to both the task of object detection and its subcategory recognition. The

other approach to deal with the issue of translation is to feed in the classifier

with a lot of translated examples to make it translation invariant; however,

the object appearance manifold coupled with its translated variants can form

a space where the manifold is discontinuous so that translated objects are

not accounted for in the learned classifier, especially when the classifier is of

a large capacity [63]. Hence, translation normalization, a.k.a. precise align-

ments, are better suited for variations induced by different translations. In

the subsequent paragraphs we argue that translation normalization operation

is beneficial for both object detection as well as its subcategory recognition.
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Translation normalization for detection Human are better at quali-

tative and conceptual decisions while machines are better at decisions that

requires very high precision. Detectors are trained with bounding boxes that

are labeled by human subjects. Hence the bounding boxes that are used

during the training phase are not precise. This is shown experimentally in

Figure 6 of the DPM work [64]. This result shows that, when a part-based

model is not used, a latent correction operation of human labeled bounding

boxes can improve the detection by 33%. However their work allows the

parts to be discovered by the algorithm which loses the semantic meaning

and its optimization is sensitive to poor initialization.

Latent good positive and hard negative mining To achieve transla-

tion normalization, we use a latent variable approach for which we use the

term “good positive mining” in contrast to the “hard negative mining”[65, 42]

in the detection literature. To achieve a very low false positive rate, hard

negative mining is often used to retrain the detection system iteratively. In

this iterative process, an initial model is trained using all positive examples

and a randomly selected subset of negative examples, and this initial training

set is progressively augmented with false positive examples produced while

scanning the images with the model learned so far [65]. While mining hard

negatives is important to remove false alarms, we argue that good positive

must also be mined to achieve high localization performance. In each iter-

ative process, the initial model is used to generate updated bounding boxes

which are in turn to be used as the new set of positive examples for the

new detector training. In this thesis, good positive mining and hard negative

mining are performed concurrently and iteratively following an E-M style as

presented in Algorithm 1.

Translation normalization for recognition Translation normalization

literature is most extensive in the area of image alignment and face recogni-

tion. As a subcategory recognition problem, face recognition, face alignment

is often performed as an intermediate step after face detection. In image

alignment, it is often shown that unsupervised alignment performs better

than its supervised counterparts [66, 67, 68, 69, 70, 71, 72]. These alignment

methods presume that the object class as well as an initial bounding box is

given beforehand, and most of these methods are computationally expensive.
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Hence we propose that a good positive mining approach should directly solve

the alignment problem in the detection phase through good positive mining

through a unsupervised latent approach. The recent deep face work [20] also

shows that an alignment step is crucial to large scale face verification. It is

also supported by empirical evidence that the unsupervised alignments often

perform better than supervised ones [73] in subcategory recognition tasks.

Contribution To summarize our contributions, we firstly propose a nor-

malization framework to account for variations such as pose and translation

in the industrially motivated joint detection and recognition problem. We

formulate and implement a latent variable model which yields a positive-

negative retraining algorithm for mining good positives and hard negatives

concurrently for translation normalization. In the end we provide evaluation

on the Caltech-UCSD Birds-200-2011 [36] and our method is compared favor-

ably with other state-of-the-art methods on the joint detection-recognition

problem. The rest of the related chapters are organized as follows. We de-

scribe the normalization framework and apply it to a joint detection and

recognition problem in Chapter 3 and Chapter 4, Experimental evaluation

of the method is presented in Chapter 5.
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CHAPTER 3

JOINT DETECTION AND RECOGNITION
WITH LATENT PART LAYOUT

The part-based latent layout model is proposed here for both detection and

subcategory recognition. Here we roughly follow the notation of [64, 42]

and introduce more notations and equations when necessary. Let P =

[P0, P1...Pn] denote the object P0 and its n parts where Pi = {wdi , wri , vi, di}ni=1.

Here the wdi and wri refers to the detection weights and the recognition weight-

s that are learned through different objective functions during the training

stage. [wd0, w
d
1, ..., w

d
n] denotes the corresponding whole-object SVM detection

weight and its part SVM detection weights. vi is a two-dimensional vector

specifying an anchor position for part Pi relative to the root position, and

di is a four-dimensional vector specifying coefficients of a quadratic function

defining a deformation cost for each possible placement of the part relative

to the anchor position. Let Z = [z0, z1, ..., zn] denote the a placement of

bounding boxes of object P0 and its n parts, where zi = [xi, yi]; here zi is

a two-dimensional vector indicating the top left corner of the object/parts.

To simplify the notation we assume that the scale level is fixed in an image

pyramid.

CNN features are extracted from placements of parts as well as the whole

object to yield a feature representation of [φ(z0), ..., φ(zi)..., φ(zn)] where z0

and z1, ..., zn are whole-object and part locations and φ(zi) is the feature

representation of part Pi. In our experiments, we extract deep convolutional

features φ(zi) from an ImageNet pre-trained CNN Overfeat [1] as it is trained

with multi-task applications in mind as discussed in previous sections. Crops

of each region are warped to 231 × 231 to suit the Overfeat network input

size.
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3.1 Inference: Detection and Recognition

In this section, we would assume that the latent part model is learned, i.e.

{wdi , wri }ni=1 have been instantiated during the training stage which is dis-

cussed later in Chapter 4.

Detection phase Similar to [42], during the detection phase, the scoring

function of a placement Z is given by the sum of scores of each inner product

which do not incorporate any knowledge of how objects and their parts are

constrained geometrically, plus a score of the placement of each part relative

to the root (the regularization term), which is often referred to as the de-

formation cost that penalizes the cases where the parts are placed far away

from its statistics of its original positions during the training time:

J(Z) =
n∑
i=0

wdi · φ(zi)−
n∑
i=0

di · φd(dxi, dyi) + b (3.1)

where

(dxi, dyi) = (xi, yi)− (2(x0, y0) + vi) (3.2)

gives the displacement of the i-th part relative to its anchor position and

φd(dx, dy) = (dx, dy, dx2, dy2) (3.3)

are deformation costs extended by putting into their respective quadratic

terms. To compute the detection probability map, for root locationz0, we

compute the overall score for the best placement of corresponding part loca-

tions, which is a set of Z, Z = [z0, ..., zn] such that

Z∗0 = arg max
Z

J(Z) (3.4)

and the final score for this location z0 is computed as J(Z∗0).

We then adopt a sliding window approach to compute J(Z∗0) for each z0.

A detection probability map can then be generated for the entire image. It

is obvious that each location z0 is coupled with an optimal placement of its

parts Z∗0 . The locations Z∗0 with the responses of R∗T = {Z∗|S(Z∗0) > T}
(R to denote only root locations in the entire image, R = {z0}) and T

the detection threshold, following a non-maximum-suppression (NMS)[74],
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are considered to be the final predicted bounding boxes. Following the im-

plementation strategy of [1], though, we are implementing this in a sliding

window manner, rather than computing the entire convolutional neural net-

work for each window of the input one at a time. Because the convolution

operations share computations common to overlapping regions, we just apply

each convolution over the entire image, so that the computations common to

neighboring windows are only done once.

Recognition phase After the objects and their parts have been detected

and localized as m bounding boxes with respect to the root locations, R∗T =

{r∗l }ml=1. We learn a one-versus-all linear SVM using the same deep feature

representation as we used during the detection phase [φ(z0), ..., φ(zi)..., φ(zn)].

Suppose that the n part-based SVM classifiers for each type of subcategory

has been learned to have parameters W r = {wri }ni=0 for all category types

s ∈ S, where S is the set of all objects and parts labels. Recognition of

the object at a detected location rl can be performed with the equation as

follows:

Cs(rl) =
n∑
i=0

wri · φ(z∗i ),∀s ∈ {S} (3.5)

where

z∗0 = rl (3.6)

is the root location that is selected during the detection phase. The subcat-

egory type that has the highest score of Cs(rl) among all s ∈ {S} is chosen

to be the correct type of subcategory. Note that our approach uses the deep

features once which are then selected by SVM for different tasks; therefore

during the inference stage the feature extraction part which is the most com-

putationally expensive operation is only performed once throughout the data.

Thanks to the deep feature in [1], which is learned in a multi-task setting,

enough information is contained to be selected by SVM for different tasks.
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CHAPTER 4

JOINT TRAINING FOR DETECTION AND
RECOGNITION

As our task is to detect a single object category and be able to distinguish be-

tween its subcategories, and all subcategories should share the same types of

parts, the part model can be hand-crafted once rather than letting the algo-

rithm discover automatically [42] which is more suitable for a database with

a large number of class types. Therefore we model the part configurations

explicitly as in the strongly supervised case in [62].

In the training samples, each image contains objects that are annotat-

ed with their bounding boxes and the image coordinates of the parts B =

[b0, ..., bi, ..., bn]. Each annotated object and its parts are also labeled with

the category types as well as the part types, S = [s0, ..., sk, ..., sn].

For detector training, we define positive examples to be the ones that

overlap with the annotated bounding box B by at least 70% which is also

the threshold that is used by the current state-of-the-art [45] in ImageNet

object detection challenge [25]. Negative examples are sampled from the

images or the rest part of images that do not contain the target object to

avoid confusion with positive examples.

We use the classical latent SVM to train the detector. Let D = (< x1, y1 >

, ..., < xN , yN >) be a set of labeled examples, where yi ∈ {−1, 1} indicating

negative and positive labels. Given a part image x that we want to classify,

and some learned model parameters wd, we select a label yi ∈ {−1, 1} as

follows:

y = sign(fwd(x)) (4.1)

where fwd(x) is a scoring function defined as:

fwd(x) = max
z∈Z

wdφ(x, z) (4.2)

where z is a latent variable chosen among the set Z. For object detection, Z
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is a set of bounding boxes locations over the object or one of its parts x, and

maximizing over Z amounts to finding a bounding box containing the object

or one of its parts. Once we are given the training data D, we can train the

system by optimizing the latent SVM formulation,

min
wd

1

2
‖wd‖2

2 + C
N∑
i=1

L(yi,max
z∈Z

wdφ(x, z)) (4.3)

where L is the hinge loss defined as L(y, ŷ) = max(0, 1 − yŷ). It has been

noted in literature that this objective function is semi-convex [64, 42] in which

if the latent position z is fixed then the scoring function f becomes convex

in wd. If the latent values z for the positive examples are not fixed we can

compute a local optimum of Eqn. 4.3 using an EM-like coordinate descent

algorithm:

1. Set wd to be fixed and search over the latent positions over the positive

examples, which is essentially the inference step.

z∗ = arg max
z∈Z

wd · φ(x, z) (4.4)

2. Set z∗ to be fixed for positive examples and optimize the objective

function in Eqn. 4.3.

A coordinate descent algorithm will always improve or maintain the value of

the objective function and will converge to a local minimum [75]. However in

practice, the search space for the first step is huge, so here we adopt a strategy

of iterative refinement within a limited search range. We initialize the latent

part positions to be the annotated positions, i.e. Z0 = [z0
0 , ..., z

0
i , ..., z

0
n] =

[b0, ..., bi, ..., bn] = B and define the search range to be within one percent

of the size of the image, i.e. 3 × 5 pixels if the image size is 300 × 500.

This threshold should be changed with respect to the accuracy of human

annotation of the dataset.
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4.1 Concurrent Good-Positive and Hard-Negative

Mining

As discussed in the previous section, for the positive examples we treat both

the part locations and the annotated location of the object as latent variables

Z with initialization Z0 provided by the annotations. This initialization is

refined in each iteration until the consecutive detection results do not differ

more than one pixel in position, either horizontal or vertical. In the same

iteration, hard negatives are also discovered during the inference phase of

the iteration, i.e. Eqn. 4.4, but this time we search in the range of nega-

tive examples. These examples are then cumulatively added to the negative

training set for the next round of iteration following the procedure in [42].

4.2 SVM Training as Feature Selection

For training the classifiers for subcategory recognition, we employ a one-

versus-all linear SVM using the final locations Z∗ refined by the good pos-

itive mining procedure elaborated in the previous section. We still use the

pre-trained Overfeat [1] deep feature representation extracted from the re-

fined locations Z∗ for training these SVMs. Since the part type labels

S = [s0, ..., sk, ..., sn] are being shifted together during the refinement phase,

these original labels are still used for training the one-versus-all linear SVMs

for the subcategory recognition task; we choose to minimize the following

objective for each object/part s:

min
wrs

1

2
‖wrs‖2

2 + C

N∑
i=1

L(li, w
r
sφ(x)) (4.5)

where

li = 1 if s = sk, else li = −1.
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Algorithm 1 Joint training of latent variable detection and recognition

Require: Positive and negative examples D sampled from initialized posi-
tions Z0 = [z0

0 , ..., z
0
i , ..., z

0
n] and training labels, S = [s0, ..., sk, ..., sn] of all

respective latent objects and their parts.
Extract deep feature φ(x) in a sliding window manner as in[1].
for all < xi, yi >∈ D, samples in the detection training set do

Initialize Z0 ← Z0

while ‖Zt−1 − Zt‖ > 1 do
Learn detection weights W d

t by optimizing Eqn.4.3
with positive locations Zt and augmented negative set E,
Zt−1 ← Zt

Good positive mining by inference Zt
with updated weights W d

t using Eqn. 4.4
Hard negative mining of set E ′ with updated weights W d

t

E← E ∪ E′

end while
end for
Learn recognition weights W r

by optimizing Eqn.4.5 with training labels S and final detection locations
Z∗

return W d,W r
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CHAPTER 5

EVALUATION ON THE JOINT
ALGORITHM

For evaluation of our proposed framework and algorithm, the fine-grained

Caltech-UCSD birds dataset [36] (CUB200-2011) is used as the benchmark.

We chose this dataset for evaluation of our algorithm because it best simulates

the single category detection with its subcategory recognition scenario while

not assuming that the bounding box is given at the testing time. It contains

11,788 images of 200 bird species. Each image has one bird inside and is

annotated with its bounding box and 15 part locations per image; these

parts are the beak, back, breast, belly, forehead, crown, left eye, left leg,

left wing, right eye, right leg, right wing, tail, nape and throat. Along with

the dataset there also comes 322 binary attribute labels from Mechanical

Turk workers. The only catch is that our method has the ability for multiple

object detection in a single image while the birds dataset does not have

multiple subcategory objects in one image. We use the suggested train-test

splits in the dataset, which includes around 30 training samples for each

species. Two types of parts from the dataset are used for our evaluation, the

head and body, following the common protocol of [52] which is also followed

by [53]. For current subcategory recognition methods such as POOF [54],

DPD [53], DeCaf [76], NP-Transfer [49], Align [73], the bounding boxes are

given during the testing time. It is interesting to show that our detection-

recognition framework can achieve performance which is on par with the

state-of-the-art when the bounding box is unknown at the testing time as

in Table 5.1. We can observe in Table 5.1 that our framework can achieve

similar performance in a more difficult scenario than other methods. Some

examples of our joint detection and recognition are shown in Figure 5.1.
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Table 5.1: Comparison of states-of-the-art in subcategory recognition

POOF[54] with bounding box 56.9%
DPD[53] with bounding box 51.0%

NP-Transfer[49] with bounding box 57.8%
DeCaf[76] with bounding box 65.0%
Align[73] with bounding box 62.7%
Ours without bounding box 64.8%

Table 5.2: Effects of pose and translation normalizations in subcategory
recognition.

With Without Normalization Effect
Translation normalization 64.8% 59.5% +5.3%

Pose normalization 64.8% 51.7% +13.1%

5.1 Pose/translation normalization effect

As discussed in Chapter 1, here we show evidence that deep learning, though

it has huge capacity and describing power, can still be improved by finding

a better bias-variance trade-off; in this work we use the strategy of normal-

ization. In these further experiments we first evaluate the effect of pose

normalization. Here we still use the deep feature of Overfeat [1], but only

preserve the object z0 and remove the part-based configurations [z1, ...zn],

and we observe that the performance drops by 13.1%. This shows that a

pose normalization procedure helps to get a better bias-variance trade-off

even with the most powerful features and classifiers, which also counteracts

the arguments that vision research may not be as helpful as deep learning

research.

The second experiment we conduct here is to evaluate the effect of trans-

lation normalization. Here, only during the training time, we remove the

iterative refinements of the bounding boxes of objects and its parts; i.e. the

latent variables Z are instantiated by the annotated bounding boxes B with-

out subsequent “good positive mining” iterative procedure. Note that in our

experiment, the learned weights for detection W d are not used for the later

recognition task, but we use the human annotated parts for learning the sub-

category recognition weights W r. A performance drop of 5.3% is observed in

this experiment scenario. The effects of pose and translation normalization

are summarized in Table 5.2.
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Figure 5.1: Joint detection and subcategory recognition results from four
different viewpoints.

5.2 Conclusion and Future Work

In this chapter, we propose a normalization framework to account for vari-

ations in the joint detection and recognition problem and devise a unified

normalization-based algorithm for joint learning of detection and recognition

tasks. This chapter also proposes and implements a latent variable model

which yields a positive-negative retraining algorithm for mining good posi-

tives and hard negatives for translation normalization and therefore yields

higher accuracy than counterpart algorithms that do not perform the itera-

tive fine-tuning process. In future works, we can formulate the problem into

regression so as to utilize the circulant structure to incorporate the retrain-

ing stage into one-round of training. The deep feature that is learned by

Overfeat [1] is for detection and recognition of general object classes, which

is not designed specifically for single category detection and its subcategory

recognition problem. In future work it is possible to devise a new network
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to train features for joint detection and subcategory recognition. Other im-

portant quantities that can be estimated from this framework such as pose

and attributes can be determined simultaneously.
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CHAPTER 6

LAYOUT-AWARE EPITOME

Recently, epitome has been successfully applied in computer vision as a

patch-based generative model of image(s) or video [77, 78]. As a maximum

likelihood representation for image data, it can be considered as a tradeoff

representation in-between template and histogram. The balance between vi-

sual resemblance and generalization of image and video can be adjusted by

the sizes of epitome and patch. It has attracted more and more attention in

computer vision due to its impressive abilities in many vision tasks.

The “epitomes” were first introduced as simple appearance and shape mod-

els in [78]. These models are learned by compiling patches drawn from input

images into a condensed image model. It was shown in [32] that the image

epitome is an image summary of high “completeness.” The epitome idea has

also found its use in representing audio information [33] and human activi-

ties [34]. Jigsaw proposed in [79] took the epitome beyond square patches and

modeled local spatial coherence. The epitome model was also extended to lo-

cation recognition [80], where it uses each of the entire input image as a patch

in which the mappings are fixed during learning and inference. The image

frames from a panoramic video are automatically stitched together to form

a panorama due to the epitome’s ability in exploring image similarities [32].

Most recently, epitome priors were investigated for image parsing in which

non-overlapping patches are associated with labels of object classes [81].

Under the generative model framework, the learned epitome is a condensa-

tion of image patches, which are however not able to regenerate a meaningful

image without guidance by an input image to give a meaningful spatial lay-

out. The input image serves as a location map during the learning and

inference process. Since the expected mapping posteriors are only estimated

from patch-similarity measurements in inference, it will often cause ambigu-

ities in reconstruction and recognition during the inference process due to

the lack of spatial constraints. For example, epitome was used to recover the
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Figure 6.1: A 36× 36 spatialized epitome (in the first column) is learned
from the image in the third column. The distribution in the middle column
shows the positions of the significant patches. Note that most locations are
of zero value due to regularization. The leftmost image in each row
highlights a significant patch in the spatialized epitome. Its associated
Gaussian mixture which represents the spatial arrangement of the
significant patch in the input image is shown as ellipse contours in the third
column.

occluded part of the object in a video by replacing the occlusion with the

patches learned from the nearby images without occlusions. However, the

conventional epitome model can only assign a patch in the model to a patch

in the image according to the patch-wise similarity of intensity. When the

occluded area contains patches that are of different appearance from nearby

patches in the image, the model would generally fail to assign the correct

patch to replace the occlusion. Therefore, the epitome might not be appli-

cable for recognition/detection tasks because of this ambiguity caused by

the lack of information about where the patches come from and how similar-

patches are distributed on the input images. In [82], a few pairs of long-range

patches are randomly selected for each patch for spatial constraints in image

reconstruction. Such pairs represent a few specific spatial correlations. They

cannot model the general spatial distributions of similar patches, and, in
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worse cases, may capture false correlation between two long-range patches,

e.g. the foreground patch with background patch. As for rebuilding from

compressed image, Wang et al. [83] proposed to record the fixed mapping to

copy the patches from the epitome to the image locations. The flexibility

and optimality of image summarization and inference by generative models

are lost in such a hard-coding approach.

Motivated by the aforementioned observations, we propose a new graphical

model of epitome to integrate information about the appearance summary

and spatial arrangement of patches in the image(s). A set of Gaussian mix-

tures is introduced into the original graphical model of epitome to relate

the appearance and shape with their spatial arrangements on the input im-

ages; see Figure 6.1 for illustration. In this way, the model is self-contained

with appearance, shape, as well as patch spatial distribution in input im-

ages. So by sampling the learned model itself, the spatialized epitome is

capable of synthesizing the scenes and objects it “saw” during training (see

Section 9.1). With spatial constraints included in the epitome model, the

misalignment problem with various variations can be solved automatically

because the proposed model allows the patches to organize adaptively dur-

ing inference. To evaluate on a few tough vision tasks, we investigate by

applying the proposed spatialized epitome for misaligned face recognition

and cross-pose face recognition, which means to recognize people with pos-

es unseen in the training set. The main contributions of this thesis can be

summarized as follows:

1. A new graphical model of epitome which combines the information

about patch appearance and its associated spatial distributions.

2. An EM procedure to learn the optimized appearance summary and

cluster the spatial distributions of image patches.

3. A likelihood probability by image inference from the spatialized epito-

me.

4. Investigation on applying the spatialized epitome for a few tough vision

tasks including colorization.

Later chapters regarding this work are structured as follows: In Chapter 7,

we present the spatialized epitome model and the derivation of the learning
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procedure. We derive the inference process in Chapter 8. Experiments,

including the comparisons with the original epitome, on face recognition

with misalignments, cross-pose face recognition, and car detection with and

without occlusions, are presented in Chapter 9. The application of epitome

for colorization is presented in Chapter 10.
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CHAPTER 7

LEARNING A SPATIALIZED EPITOME

An image does not merely consist of patches, and it also depends on how

the patches are spatially arranged. In existing epitome [78, 82], for each

patch Zk, the likelihood probability was calculated by an intensity similarity.

Therefore, the process of inference and reconstruction on an input image

is purely guided by intensity-similarity measure with respect to the training

images regardless of how patches are arranged in the training or probe image.

We show the problem of this under-constrained process in Chapter 8.

Here we present a generative model combining both patch appearances

and arrangements in an image or a collection of images. Suppose P patches

are sampled from M images and denote each patch as Zk. The corresponding

mapping random variable is denoted as Tk, which is hidden and unknown.

The patch is sampled from the position yk in the original image, so yk is

observed. For each patch in the epitome, we use Gaussian mixture models

(GMM) to model the image locations from which the patches are originated.

If the size of the epitome is a, then we have a × R such GMMs. Ck is an

R-dimensional binary random variable in which a particular element Ckr is

equal to 1 and all other elements are equal to 0 when the component r is

active. For each observed location yk, there is a corresponding latent variable

Ck. We now define the generative process:

1. Choose a position in the epitome, Tk ∼ Cat(π).

2. For each of the chosen position Tk,

(a) Choose a patch Zk from p(Zk|Tk, e).

(b) Choose a component Ck from the GMMs for the given location

Tk: Ck ∼ p(Ck|Tk).

(c) Choose a coordinate yk from the component Ck for patch Zk:

yk ∼ p(yk|Tk, Ck).
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This process is illustrated in Figure 7.1. The generation of each patch (in-

tensity) is formulated as:

P (Zk|Tk, e) =
∏
i∈Sk

N (zi,k;µTk(i), φTk(i)), (7.1)

where Sk is the set of the coordinates of all pixels in the patch Zk. The

generation of the coordinate of each patch is formulated as:

P (yk|Tk, Ckr = 1) = N (yk;ρ
r
Tk=e,Σ

r
Tk=e), (7.2)

where e represents the location in the epitome that the patch maps to, and

the superscript r indicates the rth component of the GMM. Write it in a

compact distribution form:

p(yk|Tk, Ck) =
R∏
r=1

N (yk;ρ
r
Tk=e,Σ

r
Tk=e)

Ckr . (7.3)

Given the mapping Tk of the patch Zk, there are several Gaussian compo-

nents in the location Tk = e to choose from, where e denotes a particular

location in the epitome. The probability distribution of choosing each Gaus-

sian component given the location e is

p(Ck|Tk) =
R∏
r=1

π̃
CTk=e,r
Tk=e,r . (7.4)

Since p(Ck, Tk) = p(Ck|Tk)p(Tk) and the prior on both parameters shall be

learned, we use the joint distribution of Ck and Tk to perform parameter

estimation on the mixing coefficients.

7.1 Learning procedure for spatialized epitome

For the P patches generated independently, we have the joint distribution:

p({Zk, Tk, Ck,yk}Pk=1, e,π) =

p(e,π)
P∏
k=1

p(Zk|Tk, e)p(yk|Tk, Ck)p(Ck, Tk), (7.5)
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Figure 7.1: The graphical model representations of the epitome and the
spatialized epitome. The boxes are “plates” representing replicates.

where π are the parameters of the mixing proportions on Tk and Ck. Since

we cannot observe Ck and Tk, we sum over all possible values that they might

be taking, and

logP ({Zk,yk}Pk=1) = log
∑
{Ck,Tk}

∫
e,π

p({Zk, Tk, Ck,yk}Pk=1, e,π)d(e,π)

= log
∑
{Ck,Tk}

P∏
k=1

p(Zk|Tk, e)p(yk|Tk, Ck)p(Ck, Tk). (7.6)

Now we first assume that the prior on the parameters are flat. We use varia-

tional approximation to put the log inside the
∑

for tractable optimization,

the auxiliary distribution q({Tk, Ck}Pk=1) is put into the likelihood of data,

and then we use the Jensen’s inequality [84]:

logP ({Zk,yk}Pk=1) = log
∑
{Ck,Tk}

q({Tk, Ck}Pk=1)p({Zk, Tk, Ck,yk}Pk=1)

q({Tk, Ck}Pk=1)

≥
∑
{Ck,Tk}

q({Tk, Ck}Pk=1) log
p({Zk, Tk, Ck,yk}Pk=1)

q({Tk, Ck}Pk=1)

=
∑
{Ck,Tk}

q({Tk, Ck}Pk=1) log p({Zk, Tk, Ck,yk}Pk=1)

−
∑
{Ck,Tk}

q({Tk, Ck}Pk=1) log q({Tk, Ck}Pk=1) = B. (7.7)

39



Since q({Tk, Ck}Pk=1) =
∏P

k=1 q(Tk, Ck) due to the independence assumption

by variational mean field theory [84], we have

logP ({Zk,yk}Pk=1) ≥ B =∑
{Ck,Tk}

P∏
k=1

q(Tk, Ck) log
P∏
k=1

p(Zk|Tk, e)p(yk|Tk, Ck)p(Ck, Tk)

−
∑
{Ck,Tk}

q({Tk, Ck}Pk=1) log q({Tk, Ck}Pk=1)

=
P∑
k=1

∑
Ck,Tk

q(Tk, Ck)[log p(Tk, Ck)+

log p(yk|Tk, Ck) + log p(Zk|Tk, ê)]− E. (7.8)

When q(Tk, Ck) = p(Tk, Ck|Zk,yk, ê), the lower bound is tight and the en-

tropy E = 0, which can be proved by substituting the posterior into the

bound. Note that here we can update p(Ck, Tk), p(yk|Tk, Ck) and p(Zk|Tk, ê)

independently. By iteratively optimizing the bound B, we can derive an EM

procedure to learn the spatialized epitome.

The E-Step: By setting the auxiliary distribution to be the posterior of

hidden variables, there is

q(Tk, Ck) = p(Tk, Ck|Zk,yk, ê) =
p(Zk, Tk, Ck,yk, ê)

p(Zk,yk, ê)

=
p(Zk|Tk, ê)p(yk|Tk, Ck)p(Ck, Tk)

p(Zk,yk, ê)

∼ p(Zk|Tk, ê)p(yk|Tk, Ck)p(Ck, Tk)

=
∏
i∈Sk

N (zi,k;µTk(i), φTk(i))
R∏
r=1

N (yk; ρ
r
Tk=e,Σ

r
Tk=e)

Ckrp(Ck, Tk). (7.9)

The M-Step: Note the equal sign indicates that the bound is tight at this

moment; the bound B can be separated into three parts: B = B1 + B2 +

B3, where B1 is related to the epitome appearance, B2 is related to spatial

distributions, and B3 is related to mixing weights. Hence, we can derive the

update rules for the three sets of parameters separately.

a) Updating the appearance

Only the term B1 in B relates to the epitome appearance ê. Let us denote
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the estimated distribution q(Tk, Ck) as qk for simplicity. B1 can be expressed

as

B1 =
P∑
k=1

∑
Ck,Tk(i)=j

qk log p(Zk|Tk, ê) =

=
P∑
k=1

∑
Ck,Tk(i)=j

∑
i∈Sk

qk

[
−1

2
log 2πφj −

(zi,k − µj)2

2φj

]
. (7.10)

Finding the solution for ∂B1/∂ê = 0 is equivalent to finding the solutions for
∂B1

∂µj
= 0 and ∂B1

∂φj
= 0, respectively. Hence, the updating rule for µj can be

obtained as:

µj =

∑P
k=1

∑
Ck,Tk(i)=j

∑
i∈Sk q(Tk, Ck)zi,k∑P

k=1

∑
Ck,Tk(i)=j

∑
i∈Sk q(Tk, Ck)

, (7.11)

and the corresponding updating rule for φj is:

φj =

∑P
k=1

∑
Ck,Tk(i)=j

∑
i∈Sk q(Tk, Ck)(zi,k − µj)

2∑P
k=1

∑
Ck,Tk(i)=j

∑
i∈Sk q(Tk, Ck)

. (7.12)

This is similar to the original epitome updating rules.

b) Update GMM Means and Covariances

From Eq. (7.8), the bound for the GMM term is simplified as:

B2 =
P∑
k=1

∑
Ck,Tk

q(Tk, Ck) log p(yk|Tk, Ck) =

=
P∑
k=1

∑
Ck,Tk

q(Tk, Ck)
R∑
r=1

Ckr logN (yk;ρ
r
Tk=e,Σ

r
Tk=e). (7.13)

Set the derivative w.r.t. ρrTk=e to be 0, i.e. ∂B2

∂ρre
= 0, then there is

∂

∂ρre

P∑
k=1

∑
Ck,Tk

q(Tk, Ck)
R∑
r=1

Ckr logN (yk;ρ
r
Tk=e,Σ

r
Tk=e)

=
∂

∂ρre

P∑
k=1

∑
Ck,Tk

q(Tk, Ck)Ckr logN (yk;ρ
r
Tk=e,Σ

r
Tk=e)

=
P∑
k=1

∑
Ck,Tk

q(Tk, Ck)Ckr(yk − ρre)
T (Σr

e)
−1 = 0. (7.14)
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From the equation 7.14, we can obtain the updating rule for ρre as:

(ρre)
T =

∑P
k=1

∑
Ck,Tk=e q(Tk, Ck)CkryTk∑P

k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr

. (7.15)

Applying the same deduction for the GMM mean, we take derivative w.r.t

(Σr
e)
−1 and set it to be 0:

∂

∂(Σr
e)
−1

P∑
k=1

∑
Ck,Tk

q(Tk, Ck)Ckr logN (yk;ρ
r
Tk=e,Σ

r
Tk=e)

=
∂

∂(Σr
e)
−1

P∑
k=1

∑
Ck,Tk

q(Tk, Ck)Ckr[− log 2π − 1

2
log |Σr

e|−

1

2
(yk − ρre)

T (Σr
e)
−1(yk − ρre)]

=
P∑
k=1

∑
Ck,Tk

q(Tk, Ck)Ckr[+
1

2
Σr
e −

1

2
(yk − ρre)

T (yk − ρre)] = 0. (7.16)

Therefore we obtain the updating rule for Σr
e as

Σr
e =

∑P
k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr(yk − ρre)(yk − ρre)

T∑P
k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr

. (7.17)

c) Update mixing coefficients

From Eq. (7.8), the term related to mixing coefficients can be expressed:

B3 =
P∑
k=1

∑
Ck,Tk

q(Tk, Ck) log p(Tk, Ck). (7.18)

Denoting p(Tk = e, Ck = r) = πer, we can maximize the bound B3 subject

to
∑

e,r p(Tk = e, Ck = r) = 1 as:

∂

∂πer
(B3 + λ(

∑
e,r

πer − 1))

=
∂

∂πer

P∑
k=1

∑
Ck=r,Tk=e

q(Tk, Ck) log p(Tk = e, Ck = r) + λ

=
P∑
k=1

q(Tk = e, Ck = r)
1

πer
+ λ = 0. (7.19)
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Table 7.1: The number of parameters for spatialized epitome model.

Epitome(ê) Gaussians(ρ,Σ) Mixing Coefficients (π)

N ×N × 2 N ×N × 2 N ×N ×R

Then, we can obtain λ = −P and the updating rule of the mixing coefficient

as

πer =

∑P
k=1 q(Tk = e, Ck = r)

P
. (7.20)

7.2 Bayesian Regularization and Priors

Suppose we have R Gaussian components at one epitome location e. The

number of parameters for our epitome with a size of N ×N is N2× (R+ 4).

The details are listed in Table 7.1. Since we have a finite training set and

a relatively large set of parameters, in order to avoid overfitting, on each

location in the epitome we put a Dirichlet-Normal-Wishart prior on the three

sets of parameters {ρre,Σr
e}Rr=1 and πe, i.e.

p({ρre,Σr
e}Rr=1,πe) = b(γe)

R∏
r=1

(πre)
γre−1

R∏
r=1

N
(
ρre|νre ,

Σr
e

ηre

)
Wi((Σr

e)
−1|βre , τ re ), (7.21)

where b(γe) is the normalizing factor of the Dirichlet distribution and Wi(.|)
denotes a Wishart distribution. By determining appropriate values for the

hyper-parameters {γre ,νre ,Σr
e, η

r
e ,β

r
e , τ

r
e } we state our beliefs about the data

generation process in terms of a prior distribution. The use of such prior is

justified in [85]. By incorporating the prior, the updating rules are derived

to be:

(ρre)
T =

∑P
k=1

∑
Ck,Tk=e q(Tk, Ck)CkryTk + ηreν

r
e∑P

k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr + ηre

, (7.22)
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Σr
e =

∑P
k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr(yk − ρre)(yk − ρre)T∑P

k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr + 2τ re − 2

+
ηre(µ

r
e − νre )(µ

r
e − νre )

T + 2βre∑P
k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr + 2τ re − 2

, (7.23)

πer =

∑P
k=1 q(Tk = e, Ck = r) + γre − 1

P +
∑R

r=1 γ
r
e −R

. (7.24)

The prior penalizes singularities in the log-likelihood function in the case

when an epitome patch has only one corresponding patch in the image(s).

We also encode our prior belief that the covariance matrices of GMMs are

diagonal with diagonal values to be the width of the training image. We

adjust the strength of the prior by modifying γ, β and τ which are functions

of the equivalent sample size in Bayesian terms. A sparsity inducing prior

(Dirichlet) with α = 0.05 is used so that most of the mixing coefficients tend

to zero and the corresponding Gaussian components will not contribute in

modeling the distributions, as shown in Figure 6.1.
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CHAPTER 8

INFERENCE BASED ON SPATIALIZED
EPITOME

8.1 Inference

We denote the set of learned parameters {ρ̂, Σ̂, ê, π̂} of training set D as Θ̂.

Given the data of a training set D, the probability of seeing a given probe

image can be directly calculated as:

logP (I|D) ' logP (I|Θ̂) = logP (I|ρ,Σ, ê,π)

= logP ({Zk,yk}Pk=1|ρ,Σ, ê,π)

= log
P∏
k=1

P (Zk,yk|ρ,Σ, ê,π)

=
P∑
k=1

log
∑
Ck,Tk

P (Zk,yk, Ck, Tk|ρ,Σ, ê,π)

=
P∑
k=1

log
∑
Ck,Tk

p(Zk|Tk, e)p(yk|Tk, Ck)P (Ck, Tk)

=
P∑
k=1

log
∑
Ck,Tk

∏
i∈Sk

N (zi,k;µTk(i), φTk(i))

R∏
r=1

N (yk;ρ
r
Tk=e,Σ

r
Tk=e)

CkrP (Tk, Ck). (8.1)

This inference formulation is similar to the way of evaluating the probability

value of seeing a new data under a learned GMM. The first step of this deriva-

tion follows [86]. The third step uses the assumption that all the patches are

independently sampled. The calculated probability value in Eq. 8.1 indicates

how likely the probe image is generated by the learned model, and can be

directly used for image recognition and object detection purposes.
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8.2 Recognition and Detection

Suppose there are N epitomes with parameters {Θi}Ni=1 learned from N

classes of visual objects. Denote the label of the input image to be C and

we assume no prior knowledge on label C, so the recognition is achieved by

computing the label posterior p(C|I) using:

p(C|I) =
p(I|C)p(C)

p(I)
∼ p(I|C), (8.2)

and select the one with the maximum posterior value:

Ĉ = arg max
i
P (I|C = i) = arg max

i
P (I|Θi), (8.3)

where P (I|Θi) can be calculated from Eq. (8.2) which is in turn calculated

by Eq. (8.1).

Detection If we scan the input image with multi-scale windows (W ), we

can perform object detection. In this way, Eq.(8.2) becomes

p(C|W ) =
p(W |C)p(C)

p(W )
∼ p(W |C). (8.4)

The mean-shift approach can be used to select local maxima to locate the

target objects in the image.

8.3 Epitomic Reestimation

Using existing epitome for image reestimation, for each patch Zk, the infer-

ence step evaluates how likely each epitome patch is to generate Zk. Then

the estimation step will replace the initialized values of Zk with the average

votes from the epitome patches according to q(Tk). Consequently, the esti-

mated texture will be more consistent with the epitome texture. This is how

denoising, video super-resolution and other video repairing applications are

achieved. However, the position posterior q(Tk) is evaluated purely based on

the intensity similarity between the epitome patches and the image patch-

es [78, 82]. This may give an incorrect estimation when the occluded part

has different appearances from nearby patches.
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Occluded area:
    Epitome 

re-estimation

Spatialized Epitome

     re-estimation

12x12

20x20

Figure 8.1: The comparison of image reestimation results between epitome
and spatialized epitome. Both 40× 40 epitomes are learned with patch
sizes of 8× 8 and 4× 4 which is also the patch size used in the reestimation
process. During the reestimation process, 40, 000 patches are uniformly
sampled from the input image to ensure that all the coordinates are covered
for the reestimated image. Since the original epitome just uses a
color/intensity similarity to estimate the position posterior, the patches
probabilistically chosen from the epitome generate artifacts in the occluded
region. In contrast, the spatialized epitome estimates the position posterior
based on both intensity similarity and location information; thus, many
fewer artifacts are generated due to the spatial constraint. For non-uniform
image regions with occlusion, e.g. the second row, spatialized epitome can
also restore the occluded region with proper patches.

The reestimation process of spatialized epitome will automatically solve

this problem as the position posterior q(Tk, Ck) takes also the spatial ar-

rangement into account as in Eq. (7.9) in image reestimation. The compari-

son of existing epitome and spatialized epitome on image reestimation from

partially occluded image is given in Figure 8.1.
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CHAPTER 9

EXPERIMENTS ON SPATIALIZED
EPITOME

In the proposed spatialized epitome, the correlation between the local ap-

pearance and spatial arrangement is introduced. This makes it possible to

employ epitome for image recognition, object detection, and image reestima-

tion from partial occlusions. To evaluate the performance of the spatialized

epitome, several experiments were conducted, including the comparison with

existing epitome on face recognition, and applications to several tough vision

tasks, e.g., face recognition with misalignments, cross-pose face recognition,

occlusion detection, and car detection with a few training samples. The de-

tails are described in the following sections. We will provide functional codes

such as spatialized epitome learning, inference and synthesis to reproduce

the results in this thesis. The codes for the current state-of-the-art results

on misalignment face recognition are also provided to facilitate future works.

9.1 Synthesis

Being a self-contained generative model, with both patch intensity and asso-

ciated spatial distribution, images can be synthesized by ancestral sampling

of the proposed model. We show the synthesis results for a scene epitome

model (where scene images often consist of large number of redundant patch-

es) as well as for a face epitome model learned from multiple images of the

same person in Figure 9.1.

9.2 Generative Face Recognition

In this experiment, we evaluate the effectiveness of our spatialized epitome

formulation by face recognition. This generative method does not need to

go through any feature extraction or dimensionality reduction step but just
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Figure 9.1: The left half of the figure shows the synthesis results for a
spatialized epitome learned from a scene image. At the right half of the
figure, we show synthesis results for a spatialized epitome model learned
from multiple images from the same person.

uses the intensity image as the input and give out the results in probability

terms. In order to evaluate the effectiveness of including spatial information,

we need to derive a recognition algorithm for the original epitome proposed

in [82, 78]. Following the same principle in Chapter 8, the inferred probability

of seeing a new image with original epitome is:

logP (I|D) ' logP (I|ê) = logP ({Zk}Pk=1|ê)

=
P∑
k=1

log
∑
Tk

∏
i∈Sk

N (zi,k;µTk(i), φTk(i))P (Tk). (9.1)

In this experiment, two benchmark face databases, e.g. ORL and CMU PIE 1

are used. The ORL database contains 400 images of 40 persons, where each

image is manually cropped and normalized to the size of 32× 32 pixels. The

CMU PIE (Pose, Illumination, and Expression) database contains more than

40,000 facial images of 68 people. In our experiment, a subset of five near

frontal poses (C27, C05, C29, C09, and C07) with illumination indexed as 08

and 11 are used and manually normalized to the size of 32× 32 pixels. Both

original and spatialized epitomes are evaluated with two different patch sizes.

1Available at http://www.face-rec.org/databases/.
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Table 9.1: Recognition accuracy rates (%) on two face databases.

Database: ORL PIE

Patch Size: 4× 4 6× 6 4× 4 6× 6

Epitome 12.0 15.5 8.2 11.2

Spatialized 67.5 88.5 74.1 78.8

We can observe from Table 9.1 that the incorporation of spatial information

considerably increases the recognition accuracy. Therefore, the performance

of original epitome in later more complex applications are not evaluated.

9.3 Occlusion Detection

For a facial image with occlusions, the occluded parts can be revealed by

evaluating the likelihood for one patch or a set of few nearby patches by

Eq. (8.1). The set of patch samples with the probabilities lower than a cer-

tain threshold are considered to be the patches that are occluded. In this

experiment we examine the occlusion detection capability of our spatialized

epitome formulation on the CMU PIE and ORL databases. We randomly

pick five images of each subject for training; the remaining five images of

each person serve as probe images. Then an 18 × 18 artificial occlusion is

generated at a random position in each probe image. Seven images are ran-

domly selected from the probe set and the occlusion detection results are

shown in Figure 9.2, where the first row shows the original face images, the

second row shows the images with occlusions, the third row shows the de-

tected occlusion regions, and the fourth row shows the reconstructed images

by the spatialized epitome.

9.4 Face Recognition with Misalignments

In most of the techniques for face recognition, explicit semantics is assumed

for each feature. But for computer vision tasks, e.g., face recognition, the

explicit semantics of the features may be degraded by spatial misalignments.

Face cropping is an inevitable step in an automatic face recognition system,

50



Figure 9.2: Examples of occlusion detection.

and the success of subspace learning for face recognition relies heavily on the

performance of the face detection and face alignment processes. Practical

systems or even manual face cropping, may bring considerable image mis-

alignments, including translations, scaling and rotation, which consequently

change the semantics of two pixels with the same index but in different im-

ages [87]. To a certain extent, the spatialized epitome proposed here can

naturally adapt to misaligned inputs because: (1) a moderate amount of co-

ordinate shifts caused by the misalignments can also have a high probability

value under a Gaussian mixture distribution as long as the “data point” is

still in the vicinity; (2) the spatialized epitome is learned from patches of

images of different expressions (ORL) or different poses (PIE), so the de-

formation is learned to account for misalignments on the patch level; and

(3) the misalignment effect is reduced from the image level to patch level.

We evaluate the performance of our algorithm with respect to each of the

misalignment factors, e.g., translation, scaling, and rotation as well as the

mixed spatial misalignments to simulate the misalignments brought by the

automatic face alignment process. These experiments are also conducted on

two benchmark face databases, e.g. ORL and PIE with spatial misalign-

ments for the testing data and no misalignments for the training data. A set

of four images from each subject is used for training while the remaining six

images of each person are artificially misaligned with a rotation α ∈ [−5◦, 5◦],

a scaling s ∈ [0.95, 1.05], a horizontal shift Tx ∈ [−1,+1], or a vertical shift

Ty ∈ [−1,+1]. The value of each misalignment factor is drawn from a uni-
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Table 9.2: Recognition accuracy rates (%) on two databases with mixed
misalignments. The patch size of 6× 6 is used in both learning and
recognition.

Database: ORL PIE

Methods PCA LDA Ours PCA LDA Ours

Results 63.2 51.7 88.0 65.9 54.0 67.9

Table 9.3: Cross-pose recognition accuracy rates (%) on PIE database.
Each column shows the respective results for each pose. The patch size of
6× 6 is used in both learning and recognition.

Methods: c09 c27 c07 Overall

PCA 34.3 36.1 33.4 34.6

LDA 65.3 66.3 49.1 60.2

Ours 82.4 66.2 72.1 73.6

form distribution. The performance of our algorithm for each misalignment

factor is evaluated in Table 9.2 and compared with baseline algorithms such

as PCA and LDA (the results come from [87] with four training samples).

In the mixed spatial misalignment configuration, the aforementioned effects

are added in a random order to the original test image, and the results are

shown in Table 9.2.

9.5 Cross-Pose Face Recognition

In the real-world scenario, we may often have to recognize a face with a pose

that we have not seen before. We show in this experiment that our spatialized

epitome can adapt to unknown pose variations to a certain extent. Here we

use a different subset of the PIE database. For each subject in the PIE

database, three images with illumination index 8, 11, 21 from each of the

two near frontal poses, namely c05 and c29 are chosen as training set. Three

images from each of the five different poses (c09, c27, c07, c37, and c11) for

each subject are then selected for testing. In both learning and testing, we

use patch size of 6× 6. Detailed results and comparison with PCA and LDA

(with K-nearest neighbor classifier) baselines are listed in Table 9.3.
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Figure 9.3: The ROC curve of car detection.

9.6 Car Detection

In order to show the detection ability of our spatialized epitome, the UIUC

side-view car dataset2 was used for evaluation. Six representative cars are

chosen for learning the car model. During learning, we use gradient images

which are extracted from the six Gaussian-smoothed positive training images.

We slide the window of size 30×90 over the entire query image and calculate

the probability value given by Eq. (8.1). The windows that have probability

values above a threshold t are considered to be the locations of the cars. We

evaluate performance by comparing the bounding box of detection to the

“ground truth” bounding box Bt in manually annotated data. We follow the

procedure adopted in the Pascal VOC competition, and compute the area

ratio a of Bp

⋂
Bt and Bp

⋃
Bt. If a > 0.5, then Bp is considered a true

positive. By varying the threshold on this confidence, we compute the ROC

curve as shown in Figure 9.3. Our method achieves reasonable performance

under a less restrictive condition which requires a few training samples and no

negative training samples are needed. In this case, conventional supervised

learning algorithms are not applicable.

In these experiments, we have shown the strong abilities of spatialized

epitome for image representation, pattern recognition, and object detection.

Especially, the tests on some tough vision tasks like misaligned and cross-

pose face recognition demonstrate the advantages of the spatialized epitome

2http://l2r.cs.uiuc.edu/ cogcomp/Data/Car/.
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in adapting to variations in real-world conditions.
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CHAPTER 10

COLORIZATION BY EPITOME

Colorization adds color to grayscale images by assigning color values to im-

ages which only contain a grayscale channel. It not only increases the visu-

al appeal, but also enhances the information conveyed by scientific images.

For example, the grayscale images acquired by scanning electron microscopy

(SEM) can be made more illustrative by adding different colors to different

parts of the images. However, the manual colorization is tedious and time

consuming, so it is not suitable for batch process. To overcome this prob-

lem, we propose an automatic colorization method by epitome. We train the

epitome from one manually colorized nano mushroom-like image, and use

that epitome to automatically colorize the other nano mushroom-like image,

which eliminates the need for human labor and makes the batch colorization

process possible.

Based on the source of the color information used to colorize the grayscale

images, existing colorization techniques fall into two main categories: user

scribble based methods and color transfer methods. The user scribble based

method in [88] asked users to draw color scribbles in the grayscale image,

and the algorithm propagated the user-provided color to the whole image re-

quiring that similar neighboring pixels should receive similar color. Later, L.

Qing et al. [89] proposed a method which required less human intervention.

The user scribbles were employed for texture segmentation and user-provided

color was propagated within each segment. Using a similar color image as a

reference, the color transfer methods such as [90] performed colorization by

transferring the color from the reference image to the grayscale image, either

automatically or with user intervention. However, the pixel-level matching

based on luminance value and neighborhood statistics adopted by [90] suf-

fered from spatial inconsistency and the user-provided swatches were required

to guide the matching process in many cases. Using [91] improved the spatial

consistency by an image space voting scheme. Their method first transferred
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color to a few pixels in the target image with high confidence, then applied

the method in [88] to colorize the whole image, treating the colorized pixels in

the first step as the scribbles. However, their method required a robust seg-

mentation of the reference image, which was difficult in many cases without

user intervention.

Similar to [90], our automatic colorization method transfers the color in-

formation from the reference image to the target grayscale image. Since

most existing colorization methods need user interactions for color selection

or segmentation, a robust and automatic colorization algorithm is preferable.

In order to approach this problem, it is worthwhile to exploit the biological

characteristics of human visual system. The average human retina contains

many more rods than cones [92] (92 million rods versus 4.6 million cones).

Rods are more sensitive to cones but they are not sensitive to color, so that

most of visually significant variation arises only from luminance differences.

This fact suggests that we do not need to search the whole reference image

for the color patches to colorize the target image; instead we can reduce the

search space for color patches, or equivalently find an effective color summary

of the reference image, to improve the efficiency and alleviate color assign-

ment ambiguity. In [90], such a color summary is a set of source color pixels

randomly sampled, which is, however, subject to noise in the raw pixels.

In order to find an effective and compact summary of the color information

in the reference image, we adopt the condensed image appearance and shape

representation, i.e. epitome [93]. Epitome consolidates self-similar patches

in the spatial domain, and the size of the epitome is much smaller than that

of the image it models. By virtue of the generative graphical model, epitome

can be interpreted as a tradeoff between template and histogram for image

representation and it has been applied to many computer vision tasks such

as object detection, location recognition, and synthesis [94, 35]. Epitome

summarizes a large number of raw patches in the reference image by only

representing the most constitutive elements. In our epitomic colorization

scheme, the color patches used to colorize the target grayscale image are

retrieved from the epitome trained with the reference image, rather than from

the raw image patches. Epitome proves to be an effective summary of the

color information in the reference image, which produces more satisfactory

colorization results than [90] in the experiments.
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10.1 Description of Automatic Colorization by

Epitome

Given a reference color image cI and the target grayscale image gI, we aim to

automatically colorize gI with the color information from cI. We achieve this

goal by first training an epitome e from the reference image, then performing

inference in e so as to transfer the color information of the color patches

of ê to the corresponding grayscale patches of gI. Note that the grayscale

channel of gI is retained as the luminance channel after the color transfer

process. We will illustrate the training and inference process in detail in the

following subsections.

10.2 Training the Epitome

Epitome is a latent representation of an image, which comprises hidden vari-

ables and parameters required to generate the image patches according to

the epitome graphical model. Epitome summarizes a large set of raw image

patches into a condensed representation of a size much smaller than the o-

riginal image, and it approaches this goal in a manner similar to Gaussian

mixture model with overlapping means and variances.

The epitome e of an image I of size M ×N is a condensed representation

of size Me × Ne where Me < M and Ne < N . The epitome contains two

parameters: e = (µ,φ). µ and φ represent the Gaussian mean and variance,

respectively, and both are of size Me ×Ne. Suppose Q patches are sampled

from the reference image, i.e. {Zk}Qk=1, and each patch Zk contains pixels

with image coordinates Sk. Similar to [93], the patches are square and we

use fixed patch size throughout this chapter. These patches are densely

sampled and they can be overlapping with each other to cover the entire

image. We associate each patch Zk with a hidden mapping Tk which maps the

image coordinates Sk to the epitome coordinates, and all the Q patches are

generated independently from the epitome parameters and the corresponding

hidden mappings as follows:

p(Zk|Tk, e) =
∏
i∈Sk

N (zi,k;µTk(i),φTk(i)), k = 1..Q (10.1)
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Figure 10.1: The mapping Tk maps the image patch Zk to its corresponding
epitome patch with the same size, and Zk can be mapped to any possible
epitome patch according to Tk.

and
Q∏
k=1

p({Zk}Qk=1|{Tk}
Q
k=1, e) =

Q∏
k=1

p(Zk|Tk, e). (10.2)

where zi,k is the pixel with image coordinates i from the k-th patch. Since

zi,k is independent of the patch number k, we simply denote it as zi in the

following text. N (·;µ, φ) represents a Gaussian distribution with mean µ̂

and variance φ̂

N (·; µ̂, φ̂) =
1√
2πφ̂

exp
− (·−µ̂)2

2φ̂ .

Based on Eq. (10.1), the hidden mapping Tk can be interpreted as a

hidden variable that indicates the location of the epitome patch from which

the observed image patch Zk is generated, and it behaves similar to the

hidden variable in the traditional Gaussian mixture models that specifies the

Gaussian component from which a specific data point is generated. Also, Tk
maps the image patch to its corresponding epitome patch, and the number

of possible mappings that each Tk can take, denoted as L, is determined

by all the discrete locations in the epitome (L = Me × Ne in our setting).

Figure 10.1 illustrates the role that the hidden mapping variables play in the

generative model, and Figure 10.2 shows the epitome graphical model, which

again demonstrates its similarity to Gaussian mixture models. π
∆
= {πl}Ll=1

indicates the prior distribution of the hidden mapping. Suppose Tk,l is the

l-th mapping that Tk can take, then

58



e

e
Tk

Zk

k 1..P=

π

Figure 10.2: The epitome graphical model.

p(Tk) =
L∏
l=1

πl
δ(Tk=Tk,l),

which holds for any k ∈ {1..Q}. δ is an indicator function and δ equals to 1

when its argument is true, and 0 otherwise.

Our goal is to find the epitome ê that maximizes the log likelihood function:

ê = arg max
e

log p
(
{Zk}Qk=1|e

)
. (10.3)

Given the epitome e, the likelihood function for the complete data, i.e. the

image patches {Zk}Qk=1 and the hidden mappings {Zk}Qk=1, is derived in the

following according to the epitome graphical model:

p({Zk, Tk}Qk=1|e,π) =

Q∏
k=1

p(Zk, Tk|e,π)

=

Q∏
k=1

p(Tk)p(Zk|Tk, e)

=

Q∏
k=1

L∏
l=1

[
πl
∏
j∈Sk

N (zj;µTk,l(j),φTk,l(j))

]δ(Tk=Tk,l)

(10.4)

We use the expectation-maximization algorithm [95] to maximize the like-

lihood function Eq. (10.3) and learn the epitome ê, following the procedure

introduced in [96].

The E-step: The posterior distribution of the hidden variables, i.e. the

hidden mapping is
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q(Tk)
∆
= p(Tk|Zk, e,π)

=
p(Zk|Tk, e)p(Tk)∑
Tk p(Zk|Tk, e)p(Tk)

=

∏L
l=1

[
πl
∏

j∈Sk N (zj;µTk,l(j),φTk,l(j))
]δ(Tk=Tk,l)

∑
Tk

∏L
l=1

[
πl
∏

j∈Sk N (zj;µTk,l(j),φTk,l(j))
]δ(Tk=Tk,l)

.

(10.5)

We observe that q(Tk) corresponds to the responsibility in Gaussian mix-

ture models.

The M-step: We obtain the expectation of the log-likelihood function for

the complete data with respect to the posterior distribution of the hidden

mapping from the E-step as follows:

E
[
log p

(
{Zk, Tk}Qk=1|e,π

)]
=

Q∑
k=1

L∑
l=1

q(Tk = Tk,l) · [log πl + log p (Zk|Tk = Tk,l, e)]. (10.6)

Maximizing Eq.(10.6) with respect to (e,π), we get the following update

of the parameters of the epitome and π:

µj =

Q∑
k=1

∑
i∈Sk

∑
Tk δ(Tk(i) = j)q(Tk)zi

Q∑
k=1

∑
i∈Sk

∑
Tk δ(Tk(i) = j)q(Tk)

(10.7)

φj =

Q∑
k=1

∑
i∈Sk

∑
Tk δ(Tk(i) = j)q(Tk)(zi − µj)

2

Q∑
k=1

∑
i∈Sk

∑
Tk δ(Tk(i) = j)q(Tk)

(10.8)

πl =

Q∑
k=1

p (Tk = Tk,l)

Q
, l = 1..L. (10.9)

The index j indicates the epitome coordinates in Eq. (10.7) and Eq. (10.8).
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We alternate between E-step and M-step until convergence or the maximum

number of iterations (20 in our experiments) is achieved, and then obtain

the resultant epitome ê from the reference image cI.

Note that the preceding training process is applicable for a single type of

feature of cI. We use two types of feature to train the epitome, i.e. the YIQ

channels and the dense sift feature [28]. We convert cI from the RGB color

space to the YIQ color space where Y channel represents the luminance and

IQ channels represent chrominance information. Moreover, dense sift feature

is computed for each sampled patch. A K × K patch is evenly divided

into R × R grids, and the orientation histogram of the gradients with eight

bins is calculate for each grid, which results in an 8R2-dimensional dense

sift feature vector for each patch. R is typically set to be 3 or 4. We then

train the epitome e =
(
eY IQ, edsift

)
for the YIQ channels and the dense sift

feature, and the epitome for YIQ channels (eY IQ) share the same hidden

mapping with the epitome for the dense sift feature (edsift) in the inference

process [94]:

p(Zk|Tk, e) = p(ZY IQ
k |Tk, eY IQ)λp(Zdsift

k |Tk, edsift)1−λ, (10.10)

where ZY IQ
k and Zsift

k represent the YIQ channel and the dense sift feature

of patch Zk respectively, eY IQ and edsift represent the epitome trained from

the YIQ channels and dense sift feature of cI respectively. 0 ≤ λ ≤ 1 is a

parameter balancing the preference between color and dense sift feature.

10.3 Colorization by Epitome

With the epitome ê learned from the reference image, we colorize the target

grayscale image gI by inference in the epitome graphical model. Similar to

the epitome training process, we densely sample Q̂ patches {Ẑk}Q̂k=1 from gI

(these patches cover the entire gI). With the hidden mapping associated

with patch Ẑk denoted as T̂k, the most probable mapping of the patch Ẑk,

i.e. T̂ ∗k , is formulated as follows:

T̂ ∗k = arg max
T̂k

p
(
T̂k|Ẑk, ê,π

)
(10.11)

which is essentially the same as the E-step Eq. (10.5). We take the grayscale

61



channel of gI as the luminance channel (Y channel) of itself. Since the

color information (IQ channels) is absent in gI, we only use the epitomes

corresponding to the Y channel and the dense sift feature to evaluate the

right-hand side of Eq. (10.12). The color information is then transferred

from the epitome patch, whose location is specified by T̂ ∗k , to the grayscale

patch Ẑk. We denote the target image after colorization as gIc. Since {Ẑk}Q̂k=1

can be overlapping with each other, the final color (the value of IQ channels)

of a pixel i in image gIc is averaged according to:

gIc (i) =

Q̂∑
k=1

∑
j∈Ŝk

δ (j = i)êIQT̂ ∗k (j)

Q̂∑
k=1

∑
j∈Ŝk

δ (j = i)

, (10.12)

where Ŝk is the image coordinates of patch Ẑk, and eIQT̂ ∗k (j)
represents the value

of the IQ channels in the epitome e at location T̂ ∗k (j).

10.4 Experimental Results

We show colorization results in this section. As mentioned in section 10.2, we

use square patches of size K×K, and the size of epitome is half of the size of

the reference image. We densely sample patches with horizontal and vertical

gap of ωK pixels, where ω is a parameter between [0, 1] and it controls the

number of sampled patches.

Figure 10.3 shows the result of colorization for the dog image. We convert

the original image to grayscale as the target image. The patch size is 12×12

and the parameter λ balancing between the color and the dense sift feature is

0.5. We compare our method to [90] which transfers color from the reference

image to the target image by pixel-level matching. The result produced by

[90] lacks spatial continuity and we observe small artifacts throughout the

whole image. On the contrary, our method renders a colorized image very

similar to the ground truth. This example also demonstrates that the learned

epitome, which is a summary of a large number of sampled patches, contains

sufficient color information for colorization.

Figures 10.4 and 10.5 show the colorization result for the nano mushroom-
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like images and the cheetah. The patch size is chosen as 12 × 12 and 15 ×
15, respectively, and λ is set to be 0.8 for both cases. The method of [90]

still generates artifacts around the top and bottom of the mushroom-like

structure, while our method produces a much more spatially coherent result.

Moreover, we transfer the correct color for the cheetah to the target image,

which results in a more natural colorization result than that of [90].

Figure 10.3: The result of colorizing the dog. From left to right: the
reference image, the target image (obtained by converting the reference
image to the grayscale), the result by [90], and our result.

Figure 10.4: The result of colorizing the nano mushroom-like images.

Figure 10.5: The result of colorizing the cheetah.
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CHAPTER 11

CONCLUSIONS

In this thesis, we proposed layout-aware models for the problems of object

detection and recognition. A discriminative latent layout model is proposed

for pose as well as translation normalization. The new model is capable

of normalizing with respect to variations for both detection and recognition

problems and achieves the state-of-the-art result in the joint detection and

its subcategory recognition task. In a generative setting, a new graphical

model for epitome, i.e. the spatialized epitome, is proposed to model spa-

tial layout of the patches. The new epitome model integrates both the local

appearance and spatial arrangement for image representation. Employing

the powerful generative model framework in both learning and inference, the

spatialized epitome is flexible for image representation, discriminative for

pattern recognition, adaptive to variation, and robust for object detection.

Experiments on several tough vision tasks have shown its superiority over the

original epitome model in image modeling. In addition, we present an auto-

matic colorization method using epitome in this thesis. While most existing

colorization methods require tedious and time-consuming user intervention

for scribbles or segmentation, our epitomic colorization method is automat-

ic. Epitomic colorization exploits the color redundancy by summarizing the

color information in the reference image into a condensed image shape and

appearance representation. Experimental results show the effectiveness of

our methods.
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