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Abstract

This thesis presents a theoretical study of topological insulators coupled with superconductor and magnet.

Different physics due to these novel couplings and the topological properties are discussed, including rotating

spin density wave phase, spin Josephson effect, inverse pumping effect, fractional charge.
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Chapter 1

Introduction
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This thesis presents a theoretical study of topological insulators coupled with superconductor and magnet.

We discuss different physics due to these novel couplings and the topological properties.

Chapter 2 describes the background of the research projects. We present different Quantum Hall systems,

discuss their topological properties. Also we provide some basic formulas in Luttinger liquid theory, which

will be used heavily in this thesis.

Chapter 3 presents different phases we discovered in 2D topological insulators. We explore the phases

exhibited by an interacting quantum spin Hall edge state in the presence of finite chemical potential (applied

gate voltage) and spin imbalance (applied magnetic field). We find that the helical nature of the edge

state gives rise to orders that are expected to be absent in non-chiral one-dimensional electronic systems.

For repulsive interactions, the ordered state has an oscillatory spin texture whose ordering wavevector

is controlled by the chemical potential. We analyze the manner in which a magnetic impurity provides

signatures of such oscillations. We find that finite spin imbalance favors a finite current carrying groundstate

that is not condensed in the absence of interactions and is superconducting for attractive interactions. This

state is characterized by FFLO-type oscillations where the Cooper pairs obtain a finite center of mass

momentum.

Chapter 4 describes the new spin Josephson effect. We explore a spin Josephson effect in a system of

two ferromagnets coupled by a tunnel junction formed of 2D time-reversal invariant topological insulators.

In analogy with the more commonly studied instance of the Josephson effect for charge in superconductors,

we investigate properties of the phase-coherent spin current resulting from the misalignment of the in-plane

magnetization angles of the two ferromagnets. We show that the topological insulating barrier offers the

exciting prospect of hosting a fractional spin Josephson effect mediated by bound states at the ferromagnet-

topological insulator interface. We provide multiple perspectives to understand the 4π periodic nature of

this effect. We discuss several measurable consequences, such as, the generation of a transverse voltage signal

which allows for purely electrical measurements, an inverse of this effect where an applied voltage gives rise

to a transverse spin-current, and a fractional AC spin-Josephson effect.

Chapter 5 presents the inverse spin pumping effect. We study the dynamics of a quantum spin Hall edge

coupled to a magnet with its own dynamics. Using spin transfer torque principles, we analyze the interplay

between spin currents in the edge state and dynamics of the axis of the magnet, and draw parallels with

circuit analogies. As a highlighting feature, we show that while coupling to a magnet typically renders the

edge state insulating by opening a gap, in the presence of a small potential bias, spin-transfer torque can

restore perfect conductance by transferring angular momentum to the magnet. In the presence of interactions

within the edge state, we employ a Luttinger liquid treatment to show that the edge, when subject to a
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small voltage bias, tends to form a unique dynamic rotating spin wave state that naturally couples into the

dynamics of the magnet. We briefly discuss realistic physical parameters and constraints for observing this

interplay between quantum spin Hall and spin-transfer torque physics.

Chapter 6 discusses possible mass terms in 3D topological insulators. We provide a characterization of

tunneling between coupled topological insulators in 2D and 3D under the influence of a ferromagnetic layer.

We explore conditions for such systems to exhibit integer quantum Hall physics and localized fractional

charge, also taking into account interaction effects for the 2D case. We show that the effects of tunneling are

topologically equivalent to a certain deformation or folding of the sample geometry. Our key advance is the

realization that the quantum Hall or fractional charge physics can appear in the presence of only a single

magnet unlike previous proposals which involve magnetic domain walls on the surface or edges of topological

insulators respectively. We give illustrative topological folding arguments to prove our results and show that

for the 2D case our results are robust even in the presence of interactions.
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Chapter 2

Topological materials - Basic
Concepts
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2.1 Topological states of matter

Several states of matter can be characterized through local orders and spontaneous symmetry breaking as

proposed by Landau, including superconductor and magnetic orders. However, some systems do not follow

any of these categories, such as topological ordered states. The recently discovered topological ordered

system – the quantum spin Hall[1–3] has been attracting extensive interest due to its topological ordered

electronic states, which is characterized by the topological properties of the bulk band structure[4]. Since

the bulk states are gapped, the interesting low energy physics only occurs at the edge. This new kind of

edge states can be used to provide novel phenomena, such as the Majorana fermions when coupled with

superconductor and magnet[5].

The local order is characterized by an order parameter. However, in this new topological state, there

is no existing local order parameter. In fact, locally they just look the same as the usual materials. What

makes them different is the global topological properties, just like the number of holes in a 2D manifold,

torus for example. Usually this number is related to the topological number or Chern number.

The gapped bulk states of topological materials provide a natural platform for us to use this powerful

topology machinery. We take the band structure in the momentum space as our manifold, and classify them

according to their topological properties. We will take an example in the following quantum Hall system,

where you can see topological number is related to some physical observable quantity.

2.2 The quantum Hall system

A simple example of topological insulator is the Integer Quantum Hall Effect (IQHE),[6] where the Hall

conductance has quantized value σxy = n e
2

h at each plateau.
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Figure 2.1: The Quantum Hall Effect, the red line shows different plateaus.[7]

The quantized value of the Hall conductance is related to the Chern number of the bands through the

Kubo formula.[4, 8]

σxy =
e2

h
Ch

where Ch is the Chern number. One can intuitively think that the chern number is just an integral of

a curvature (Berry curvature) over a surface (Brillouin Zone), this chern number is a topological number in

the sense that it will not change upon continuous deformation.

Tsui[9] discovered that the Hall conductance can even be quantilzed at fractional number, i.e.σxy = ν e
2

h ,

here, ν = m
2n+1 . This fractional quantum hall effect(FQHE) challenges our usual interpretation of electron

gas under perpendicular magnetic field. We can understand Klizting’s experimental results simply by landau

levels, where we regard the electron gas to be free. However, this simple physical picture cannot work well

in FQHE. We have to include the electron–electron interaction. The interaction term is much bigger than

the Kinetic term, thus we cannot simply do the perturbation calculation from the free electron gas model.

Instead one has to write down the ground state wavefunction directly.

Such wave function at filling factor ν = 1/m is:

Ψm =
∏
j<k

(zj − zk)mexp(−1

4

∑
i

|zi|2) (2.1)

here, zi = (xi + iyi)/l, xi, yi is the ith electron coordinate, l =
√
~c/eB is the so-called magnetic length.
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Figure 2.2: The Hall resistance as a function of the magnetic field [10].

However, the IQHE/FQHE needs a magnetic field to break the time reversal symmetry. This is in

strong contrast with the fact that lots of materials in nature seem to conserve time reversal symmetry, thus

the search of time reversal invariant materials like IQHE is very important. The example of Topological

insulators which preserve time reversal symmetry is the Quantum Spin Hall Effect (QSH) predicated in

Graphene[1] due to spin-orbit coupling. This model has similar idea with the earlier work of Haldane.[11]

This time reversal invariant topological insulator was then proposed in HgTe quantum well[3] and verified

afterward.[12] This experimental success has stimulated a lot of research in the field of topological insulators

like the 3D topological insulators and the ten symmetry class classification of topological insulators.[13, 14]

Quantum Spin Hall(QSH) edge state is a chiral state, where momentum and spin are locked together.

Spin up moves to right, and spin down moves to left. Those gapless states are stable against non-magnetic

impurity, since they are Time-Reversal(T) symmetry protected.
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Figure 2.3: QSH edge states, spin up(down) moves to right(left)

This stability provides us a new way to explore the next generation quantum device and perhaps even

the topological computer. The chiral nature of the QSH edge states has been confirmed in the transport

experiment, and its generalization to 3D has been observed(single Dirac cone) in ARPES data.

Since the vacuum can be thought as a trivial insulator which can be regarded as taking the atom inter-

distance to infinity , and QSH has a gap which has a relative minus sign as compared with the gap in

trivial insulator, thus there will be edge modes at the boundary between the QSH insulator and the trivial

insulator.[13] Or if one takes the inter-particle distance in QSH system to be infinity, the bulk gap will be

closed at some inter-particle distance value. For a simple model where the QSH system occupies x > 0

region and has mass m < 0, and vacuum occupies x < 0 region and has mass m > 0, we will find the edge

modes:

ψk(x, y) ∼ eikye
´ x
0
m(x)dx

The best example is the chiral edge modes in the IQHE, the number of edge modes determines the

quantized value of the Hall conductance, which is related to a topological number–Chern number. Since

usually QSH can be regarded as two copies of Quantum Hall system (QH), there will be two edge modes,

which are related to each other by time reversal symmetry as shown in Fig. (1.3).

2.3 The two-dimensional topological insulator

Although the first proposal of the QSH is in Graphene system, the very small spin orbit coupling energy

makes it impossible for the experimental realization. The first experimental realization is in HgTe quantum

well, where the conductance of 2 e
2

h for two edges is observed.[12]

The edge state of the QSH is fundamentally different from the 1D electron gas (1DEG); this unusual

liquid is called a Helical liquid which is composed of two chiral modes related by Time Reversal symmetry.
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Figure 2.4: Conductance in HgTe quantum well, the red line shows the conductance of 2e2/h, which is a
experimental signature of the QSH edge state[12]

[15]

2.4 The three-dimensional topological insulator

The generalization of topological insulator from 2D to 3D is not trivial. One can imagine this by considering

QHE, the first model of topological insulator. To realize QHE 2d is very essential, there is no 3D QHE.

However, the unique feature of spin-orbit coupling gives rise to the birth of 3D topological insulator. The

surface state of 3D topological insulator has very rich spin structure.

3D topological insulators (TI) have unique surface states where spin and momentum are coupled together.

Figure 2.5: Surface states of 3D TI, momentum and spin are coupled together. [16]

At low energy one can effectively describe these surface states using Hamiltonian[17]:

Hsurface = (−→σ ×−→p ) · −→n
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where −→σ = (σx, σy, σz) and σi are the Pauli matrix for the spin degree using basis (ψ↑, ψ↓)
T (ψ↑/↓ is the

electron annihilationoperator for spin up/down), and −→n is the normal vector of the 3D TI surface.

These non-trivial surface states have been confirmed from the APRES data:

Figure 2.6: 3D topological insulator – ARPES data for Bi2Se3[13]

This spin structure of 3D TI gives us a platform to couple it with magnet and superconductor. In both

cases exotic physics will emerge like Majorana fermions and fractional charges.

2.5 Luttinger liquid

We present here the basic formalism of Luttinger liquid, which will be used heavily in our analysis of QSH

edge states.

2.5.1 One dimension electron liquid

In general the interacting electron system is hard to solve. However, in 1D one can use the Bosonization

technique to transform the fermionic field into bosonic field. In the new bosonic field bases the original

interacting hamiltonian becomes free. We will give a quick introduction to the general formalism of Luttinger

liquid theory.

The first step is to write the fermionic field in terms of low energy modes around the two fermi points:

C(x) = eikF xCR(x) + eikF xCL(x)

here C(x) is the fermion annihilation operator, kF is the fermi momentum, CR(L)(x) is the low energy

mode around right (left) fermi point,x is the coordinate along the 1D electron liquid.

Then one can write down the kinetic energy as:

10



HK.E. =

ˆ L

0

dx (C†R(x)C†L(x))

 −i~v∂x − µ 0

0 i~v∂x − µ

 (CR(x)CL(x))T ,

where µ is chemical potential, v is the fermi velocity, x is the coordinate on the edge of the QSH

sample,and L is the length of the 1D wire.

We consider the interaction terms as:

HI = g2

ˆ
dxC†R(x)C†L(x)CL(x)CR(x)

+
g4

2

ˆ
dx(C†R(x)C†R(x)CR(x)CR(x) + C†L(x)C†L(x)CL(x)CL(x)),

these interaction terms can be regarded as coming from short range density-density interaction:HI =

g
´
dxρ(x)ρ(x), ρ(x) = C†R(x)CR(x) + C†L(x)CL(x).

2.5.2 Bosonization of the interacting Hamiltonian

This interacting system can be solved by the method of Bosonization [18]:

CR(x) =
UR√
2πα

e−i(φ(x)−θ(x)),

CL(x) =
UL√
2πα

ei(φ(x)+θ(x)), (2.2)

where φ(x), θ(x) are the dual boson fields.

The interacting Hamiltonian H = HK.E. +HI in terms of Boson fields is ( [18] P37):

H =
1

2π

ˆ
dx(uK(∇θ)2 +

u

K
(∇φ)2)

+

ˆ
dx
µ

π
∇φ,

where

11



u = v((1 +
g4

2πv
)2 − (

g2

2πv
)2)1/2

K = (
1 + g4

2πv −
g2

2πv

1 + g4

2πv + g2

2πv

)1/2

One can clearly identify that the above hamiltonian is nothing but a free hamiltonian describing free

bosonic modes. In fact through Eq.(2.2) one can easily transform back into the original fermionic fields.

Here we keep a finite chemical potential term in case that we want to consider the response of the system

like gate voltage.

The chemical potential term µ
π∇φ can be absorbed into the free boson terms:

φ̃ = φ+ µ
K

u
x,

θ̃ = θ,

now the free boson Hamiltonian is:

H =
1

2π

ˆ
dx(uK(∇θ̃)2 +

u

K
(∇φ̃)2).

The commutation relation ([18] P380):

[φ̃(x),
∇θ̃(x′)
π

] = i~δ(x− x′)

In this chapter, we presented basic concepts of topological insulator here. In the following chapters we

will first discuss QSH – an example of 2D TI. There we will study the interaction effect in the edge state

of QSH, and possible phases due to repulsive or attractive interaction. Then, we will study a new spin

Josephons effect, where a spin current carrying bound state is explored. In chapter 5, we will discuss spin

pumping effect and its inverse effect. Finally we will study new physics in 3D TI due to this coupling with

magnet and superconductor. We also provide a mass term classification for bilayer 3D TIs.
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Chapter 3

Phases in the quantum spin Hall
(QSH)
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We explore the phases exhibited by an interacting quantum spin Hall edge state in the presence of finite

chemical potential (applied gate voltage) and spin imbalance (applied magnetic field). The helical nature of

the edge state gives rise to orders that are expected to be absent in non-chiral one-dimensional electronic

systems. For repulsive interactions, the ordered state has an oscillatory spin texture whose ordering wavevec-

tor is controlled by the chemical potential. We analyze the manner in which a magnetic impurity provides

signatures of such oscillations. We find that finite spin imbalance favors a finite current carrying ground-

state that is not condensed in the absence of interactions and is superconducting for attractive interactions.

This state is characterized by FFLO-type oscillations where the Cooper pairs obtain a finite center of mass

momentum.

3.1 Potential ordering in the QSH

We begin with a heuristic analysis of the non-interacting QSH edge in the presence of finite chemical potential

and spin imbalance, focusing on the fundamental differences that give rise to new order when compared with

a typical 1DEG. As shown in Fig. 3.1a, the QSH edge consists of linearly dispersing spin-dependent modes

associated with a Dirac point centered at zero momentum, and is described by the Hamiltonian

H0 = v

ˆ
dx
[
ψ†R↑(x)(−i∂x)ψR↑(x)

− ψ†L↓(x)(−i∂x)ψL↓(x)
]

(3.1)

where v is the velocity and x is the coordinate tangent to the edge of the QSH sample. The operator

ψR↑(L↓)(x) annihilates electron moving to the right(left) with up(down) spin at position x. The effects of a

non-zero chemical potential and a spin imbalance can be described by

Hµ =

ˆ
dx(−µ↑ψ†R↑(x)ψR↑(x)− µ↓ψ†L↓(x)ψL↓(x)), (3.2)

where µ↑(↓) is an effective chemical potential for up (down) spin in the helical liquid. The chemical potential,

µ = 1
2 (µ↑ + µ↓), can be controlled by tuning a gate voltage, and the spin imbalance, δS = µ↑ − µ↓, may be

controlled by applying magnetic field in the direction perpendicular to the QSH plane (or more generally,

parallel to the direction of spin-polarization of the edge state). In fact, because of the spin-momentum

locking on the edge, a spin imbalance acts to give rise to a charge current.

Given the fundamental fields comprising the QSH edge, the two lowest order operators that could develop

14



non-vanishing expectation values in an ordered phase are

Om = ψ†R↑(x)ψL↓(x), O∆ = ψR↑(x)ψL↓(x), (3.3)

These order parameters represent magnetic order (〈Om〉) and superconducting order (〈O∆〉) and are dual to

one another with regards to charge and spin in that the former carries charge 0 and spin 2~/2 while 〈Om〉

carries charge 2e and spin 0.

We now argue that for non-vanishing µ and δS , these order parameters have the striking property that

they are inhomogeneous in space, exhibiting oscillatory behavior over a characteristic length scale. We begin

by tuning µ = δS = 0 and considering magnetic order. The system is tuned to the Dirac point and and any

ferromagnetic order perpendicular to the spin-polarization of the edge states would open a gap at k = 0 since

it would couple via a constant multiplying a Pauli spin matrix. If one tunes µ away from zero then, in order

to open a gap at the Fermi-level, the magnetic order must have a finite wave-vector of q
(0)
m ≡ −2µ/v = −2kF

where the superscript refers to the free limit(see Fig. 3.1a). Thus, we induce a spin-density wave so that a

gap can open at the Fermi-level as opposed to a gap opening at the (buried) Dirac point for ferromagnetic

ordering. This type of chemical potential driven spin-density wave is unique to the helical liquid as seen by

noting the form of a magnetic order parameter for a full 1DEG:

ψ†↑(x)ψ↓(x) ∼
(
e−ikF xψ†R↑(x) + eikF xψ†L↑(x)

)
×
(
eikF xψR↓(x) + e−ikF xψL↓(x)

)
= ψ†R↑ψR↓ + ψ†L↑ψL↓ +

(
e−2ikF xψ†R↑ψL↓ + c.c.

)
.

For the full 1DEG the non-oscilliatory terms generically dominate, but these terms are completely absent for

the helical liquid which only has e−2ikF xψ†R↑ψL↓ non-vanishing. Thus, the existence of a spin-density wave

is a unique signature of the reduced degrees of freedom of the helical liquid as compared to a conventional

1DEG.

Now let us consider the effects of a non-zero δS in the non-interacting limit for which we will return to

the free-fermion Hamiltonian. In the Bogoliubov-de Gennes formalism the Hamiltonian can be re-written

HBdG =

ˆ
dxΨ†(x) (−iv∂xI⊗ σz − (δS/2)τz ⊗ σz) Ψ(x)

where τa represents particle-hole space and σa spin space, and Ψ(x) = (ψR↑(x) ψL↓(x) ψ†R↑(x) ψ†L↓(x))T .

This has energy levels E± = ±|vk| ± δS/2 (with uncorrelated signs). A homogenous s-wave pairing cannot
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Figure 3.1: Non-interacting picture for spin density wave and chiral FFLO-type superconductor state for-
mation (a)Edge state energy spectra at chemical potential µ. It is energetically favorable to open a gap at
the Fermi-level as opposed to the Dirac point, thus forming a spin-density wave with wavevector 2kF . (b)
Bogoliubov-de Gennes spectrum for non-zero δS . Solid lines are electron states, dashed lines are hole states.
Hybridization must occur between a solid and dashed line with opposite spin leading to a finite pairing
wavevector of δS/v.

open a gap at the Fermi-level if δS 6= 0 and is thus energetically frustrated. As shown in Fig. 3.1b the

pairing term must have a finite wave-vector q
(0)
∆ ≡ δS/v in the non-interacting limit to open a gap. A full

1DEG would have both ψ†R↑ψ
†
L↓ + ψ†R↓ψ

†
L↑ pairing terms while the QSH edge only has the former. Thus, in

the helical case there is always a ground state current of Cooper pairs in one direction picked by the sign

of δS since the order parameter oscillates like eiq∆x instead of cos(q∆x), as in fact originally considered by

Fulde and Ferrell[19] .We refer to this state as a chiral FFLO state.

3.2 Rotating Spin Wave Phase (RSWP) and Fulde Ferrell

Larkin Ovchinnikov phase

We now turn to the effects of interactions and their crucial role in determining the fate of the QSH edge

state and energetically favorable ordered states. We derive the corresponding phase diagram by analyzing

the form of the susceptibilities associated with each order and show, as might be expected, that magnetic

(superconducting) order is stabilized by repulsive (attractive) interactions. We note that we are only con-

sidering equilibrium states. As in previous treatments[15, 20, 21], we ignore Umklapp scattering and employ

the following form for interactions between QSH electrons:

HI =
g4

2

ˆ
dxψ†R↑(x)ψR↑(x)ψ†R↑(x)ψR↑(x)

+
g4

2

ˆ
dxψ†L↓(x)ψL↓(x)ψ†L↓(x)ψL↓(x)

+ g2

ˆ
dxψ†R↑(x)ψR↑(x)ψ†L↓(x)ψL↓(x), (3.4)
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K=1K<1 K>1

RSWP FFLO

<Ο  >m = m exp[−2iμxK/u]
0

<Ο  >Δ = Δ exp[ iδ x/uK]
0 S

Figure 3.2: T = 0 phase diagram of QSH edge for interactions characterized by K, finite chemical potential
µ and finite spin imbalance δS .

where g2(4) represents the forward scattering strength of different (identical) species. These terms come

directly from short range density-density interactions and have been extensively studied in Refs. [15, 20].

As done previously[15, 20, 21], the interacting system can be explored within a Luttinger liquid framework

by representing the fermion fields in terms of boson fields φ and θ: ψR↑(x) ∼ e−i(φ(x)−θ(x)), ψL↓(x) ∼

ei(φ(x)+θ(x)). Thus, the interacting helical liquid described by H = H0 +Hµ+HI is mapped into a free boson

gas with a Hamiltonian

H =
1

2π

ˆ
dx
[
uK(∇θ)2 +

u

K
(∇φ)2 + 2µ∇φ− δS∇θ

]
, (3.5)

where u = v((1 + g4

2πv )2− ( g2

2πv )2)1/2 is the renormalized velocity and K =
(

1+
g4

2πv−
g2

2πv

1+
g4

2πv+
g2

2πv

)1/2

is the Luttinger

parameter. Values of K < (>)1 represent repulsive (attractive) interactions. The chemical potential terms

µ and δS can be absorbed as inhomogeneous shifts of the bosonic fields

φ̃(x) = φ(x) + µKx/u, θ̃(x) = θ(x)− δSx/2Ku, (3.6)

which transforms the Hamiltonian to the standard form H = 1
2π

´
dx(uK(∇θ̃)2 + u

K (∇φ̃)2). Thus, while

the QSH system bears key differences in the physics, at the technical level, several of its properties can be

mapped to the extensively analyzed Luttinger liquid system describing the low-energy physics of a spinless

interacting 1DEG.

From Eq. (3.6), it immediately follows that the magnetic and superconducting orders are both associated

with oscillations that are renormalized by the interactions. By noting that Om ∼ e2iφ(x), O∆ ∼ e2iθ(x) and

using the shifted forms Om ∼ e−2iµKx/uÕm, O∆ ∼ eiδSx/(uK)Õm, we conclude that

〈Om〉 = m0 exp [iqmx] , 〈O∆〉 = ∆0 exp [iq∆x] (3.7)

where qm = −2µK/u and q∆ = δS/uK. To determine which of the orders dominates, we inspect the form of

the associated susceptibilities, given by χm/∆(x, τ) = −〈TτOm∆(x, τ)O†m∆(0, 0)〉, where τ is imaginary time.
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(a)

(b)

Figure 3.3: Magnetization oscillations around a single-magnetic impurity on a quantum spin Hall edge which
decay as one moves away from the impurity. (a)µ = 0 in the weakly repulsive regime leads to a ferromagnetic
domain(b) µ > 0 in the weakly repulsive regime leads to a domain with oscillatory magnetization direction.

We adapt the standard Luttinger liquid treatment[18] to our situation to obtain the following temperature

dependence in the Fourier domain:

χm(k = qm, ω = 0) ∼ T 2K−2,

χ∆(k = q∆, ω = 0) ∼ T (2K−1−2). (3.8)

The finite wave-vector dependence reflects the oscillatory behavior in Eq. (3.7) and the stability of a

particular order is indicated by the divergence of the associated susceptibility for T → 0, as summarized in

the phase diagram of Fig. 3.2. Hence, for repulsive interactions, K < 1, the system magnetically orders

and is characterized by oscillations whose wave-vector qm is controlled by the applied chemical potential.

For attractive interactions, K > 1, the system tends to form a superconducting state that shows chiral

FFLO-type oscillations having the beautiful feature that the wave-vector q∆ is completely tunable via an

applied spin imbalance.

3.3 Wave-vector oscillation

Given that the currently available QSH systems are all in the repulsively interacting regime, we now focus on

probing the magnetic phase associated with K < 1. We show that a weak, localized magnetic impurity that

provides an in-plane magnetic field H(x) = Hδ(x) acts as the simplest means of observing the oscillations

in the magnetic order of Eq. (3.7). The coupling to the edge liquid due to such a magnetic perturbation is

given by

HH = −µBψ†(σxHx + σyHy)δ(x)ψ,

= −µB |H|(Om(x)e−iξ +O†m(x)eiξ)δ(x),
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where µB is the Bohr magneton, ψ = (ψR↑ ψL↓)
T and ξ = tan−1(Hy/Hx). As shown in Fig. 3.3a, a spin

up electron impinging the impurity effectively backscatters into a spin down electron and vice-versa. The

magnetic perturbation, upon suppressing the spin indices in the (ψR↑ ψL↓) fields, exactly maps to the well-

known quantum impurity problem in spinless quantum wires whose scaling properties can be easily analyzed

within the Luttinger liquid framework[18]. In fact, the response to the impurity in our situation parallels

the features of Friedel oscillations in the vicinity of a non-magnetic impurity in a spinless Luttinger[22]. At

high energies and short distances, set by the bare magnetic impurity strength, the impurity can be treated

perturbatively. Meanwhile at low energies and large distances, interactions renormalize its strength and the

behavior is governed by the strong coupling fixed point wherein the impurity effectively splits the system into

two pieces. The resultant magnetization in the helical liquid m+(x, t) ≡ mx(x, t)+imy(x, t) = 2µB〈Om(x, t)〉

takes the form

m+(x) =
µB
πα

ei(qmx+ξ)f(x, T,K, |H|), (3.9)

where α is a short distance cut-off determined by the bulk energy gap, and f is a dimensionless decaying

envelope function whose form depends on the regime being probed [23]. For instance, in the perturbative

regime, the susceptibility of the impurity-free system χm determines the response to the local impurity.

For T → 0, this gives f ∼ x1−2K for α � x � x0, where x0 is a characteristic scale set by the bare

impurity strength. On the other hand, for x � x0, the strong coupling analysis gives f ∼ x−K . For a

more general form of magnetic quantum impurity coupling, the helical liquid shows a rich range of behavior,

including modified Kondo physics [24, 25] which, in this context, necessitates an investigation of the finite

gate-potential induced RSWP physics.

Regardless of the strengths of the impurity and interactions, and the regimes being probed, the ubiquitous

feature of the magnetization is the 2qm dependence in Eq. (3.9) that reflects RSWP ordering. As illustrated

in Fig. 3.3, the impurity thus creates oscillations in the magnetization which decay with distance. More

explicitly, if for example Hx 6= 0 and Hy = 0 we have (mx,my) ∼ (cos(2Ku µx),− sin(2Ku µx)). To heuristically

understand why this oscillation occurs, consider the free system (K = 1) where for a given a Fermi level

µ, the Kramers’ pair of states at the Fermi points are eikF x| ↑〉, e−ikF x| ↓〉 (Fig. 3.1a). In this basis,

the superpositions |±〉 = 1√
2L

(eikF x| ↑〉 ± e−ikF x| ↓〉) have magnetizations m+ ∼ ±e−2ikF x and Mz = 0.

A local magnetic field Hxδ(x) breaks the time-reversal symmetry of the pure QSH system, removes the

degeneracy between the two states |+〉, |−〉 since 〈+|Hxδ(x)σx|+〉 = −〈−|Hxδ(x)σx|−〉 6= 0, and forces

an incomplete compensation in magnetization. We emphasize that, in contrast to the oscillations that

yield RKKY interactions, the helical nature of the QSH gives rise to spin oscillations in direction while the

magnitude remains fixed.

19



The helical nature of the QSH is unique in giving rise to ordered oscillatory phases in the presence of

finite chemical potential and spin imbalance. The experimental feasibility of realizing and detecting the

RSWP phase is promising. For instance, in HgTe quantum wells we expect the interactions to be weakly

repulsive and v ∼ 105m/s which leads to a characteristic tunable wavelength of around 200/µ nm where

µ is the chemical potential tuned from the edge state Dirac point in meV. As mentioned, depending on

the temperature this oscillation will be modulated by a (perhaps strongly) decaying envelope function. To

detect the oscillations, one could perhaps employ scanning tunneling microscopy as has been successfully

used to observe the RKKY oscillation[26, 27] of the magnetization near a magnetic impurity, and Friedel

oscillations[28] near a charged impurity[29]. While oscillations in the magnetization direction are harder

to detect, any gate-voltage dependent oscillations would be indicative of our proposed RSWP phase. The

only modification to current setups would be the necessity of a back gate so that the oscillations could be

accessed. Finally, the possibility to induce attractive interactions in the QSH system, as has been achieved

in 1D cold atomic gases, would open up the fascinating prospect of realizing the chiral FFLO oscillatory

superconducting phase.
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Chapter 4

The Spin Josephson Effect in QSH
systems
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Previous chapter is about phases in QSH edge states. In this chapter we explore a spin Josephson

effect in a system of two ferromagnets coupled by a tunnel junction formed of 2D time-reversal invariant

topological insulators. In analogy with the more commonly studied instance of the Josephson effect for

charge in superconductors, we investigate properties of the phase-coherent spin current resulting from the

misalignment of the in-plane magnetization angles of the two ferromagnets. We show that the topological

insulating barrier offers the exciting prospect of hosting a fractional spin Josephson effect mediated by bound

states at the ferromagnet-topological insulator interface. We provide multiple perspectives to understand

the 4π periodic nature of this effect. We discuss several measurable consequences, such as, the generation of

a transverse voltage signal which allows for purely electrical measurements, an inverse of this effect where

an applied voltage gives rise to a transverse spin-current, and a fractional AC spin-Josephson effect.

4.1 Superconductor Josephson effect and Spin Josephson effect

We briefly review standard superconducting (SC) Josephson junction physics to set the stage for the spin

Josephson effect (SJE) analog. An S-I-S junction consists of two SC regions separated by an insulating

barrier. At zero bias-voltage, while the SC gap prevents a single electron from tunneling, charge current can

result from Cooper pairs tunneling across the barrier at zero energy cost. The phase difference between the

SC order parameters on the left and right sides of the junction, ∆φ = φR − φL, determines the properties

of this Josephson current, and is canonically conjugate to the difference in the number of Cooper pairs

N = NR −NL:

[∆φ,N ] = i, (4.1)

The form of the current is determined by the Hamiltonian for the junction:

HSC = −EJ cos(∆φ) +
2e2

C
N2 (4.2)

where C is the capacitance of the tunnel junction, and EJ > 0,. Specifically, the Josephson current I =

2e〈Ṅ〉 = −2ei[N,HSC ]/~ = −2eEJ sin ∆φ/~ is driven by a difference in the phases of the order parameters

rather than an applied voltage, making it a dissipationless supercurrent. In the presence of an applied

voltage V = 2eN/C the equation of motion for the phase is ∆φ̇ = 2eV/~, yielding the AC Josephson effect.

In fact, a phase-induced Josephson-like current can arise in a variety of systems having phase coherence,

where the “charge” is the appropriate quantity that is canonically conjugate to the phase difference. One

notable example is in quantum Hall bilayers, where phase coherence between the layers has been used to
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explain a zero-bias conductance peak [30]. Here, we focus on the case of a tunnel junction between two

ferromagnetic (FM) insulators, first establishing the analogy with the standard superconductor Josephson

physics. Phase-coherent tunneling between two FMs across a non-magnetic barrier can thus produce a

spin current analogous to the charge current in the SC case. Such a SJE has been observed in He3 thin

films [31], and proposed to exist in a FM junction having an excitonic insulator barrier [32]. Josephson-like

physics requires a magnetic easy-plane anisotropy, either intrinsic or induced by a substrate material (as

in e.g. Ref. [33]), giving rise to an effective “spin”-capacitance. Each ferromagnet is characterized by an

in-plane order parameter M0e
iθL/R (right/left FMs). The phase angles θL/R, which define the directions of

the magnetization in the easy-plane, are canonically conjugate to the z-component of the total spin in each

of the FMs (denoted SzL/R)[33, 34]:

[θL/R, S
z
L/R] = i~. (4.3)

To explicitly see how the conjugate relationship results in phase coherent spin current, consider an FM

tunnel junction connecting regions with unequal phases, θL 6= θR. The FM junction can be described by the

Hamiltonian

HFM = −ES cos(∆θ) + α(SzL)2 + α(SzR)2 (4.4)

where ∆θ = θR−θL, Es reflects the exchange coupling between the ferromagnets and the terms proportional

to α represent the magnetic-anisotropy induced ‘spin-capacitance’ . The spin current across the junction,

Is = 〈dSzR/dt〉 = −i[SzR, HFM ]/~, becomes IS = −ES sin ∆θ. Additionally the rate of change of phase

∆θ̇ = −i[∆θ,HFM ]/~ = 2α(SzR − SzL) can be compared to ∆φ̇ = 2eV/~ for the AC charge Josephson effect.

The analogy between the charge current in the SC case and spin current in the FM case may be made

explicit by performing a particle-hole conjugation on one of the spin sectors [35]. In the former case, a spin-

up electron impinging the SC cannot be transmitted through but can Andreev reflect as a spin-down hole

(with angular momentum +~/2 assuming s-wave pairing in the SC). The net effect is to transport a Cooper

pair of charge 2e and zero spin into the superconductor. An analogy was proposed in Ref. [32] to explain a

similar effect in a FM junction between two excitonic insulators. The FM regions impose an energy cost to

a single spin-up electron. The FM regions can be heuristically described as polarized excitonic condensates

themselves which can absorb a ferromagnetic exciton, consisting of a spin-up electron and a spin-down hole,

at zero energy. Therefore a spin-up electron incident on an FM region can be reflected back as a spin-down

electron, as the FM region absorbs an exciton pair and ~ spin. In this case, no net charge is transported

into the FM region, but there is a non-zero spin current.

Turning to the fractional Josephson effect, it is once again instructive to first review the SC case discussed
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Figure 4.1: Two ferromagnetic islands connected by two-edges of a 2D topological insulator which are
themselves tunnel coupled. Bound states mediate a fractional spin Josephson effect which gives rise to a 4π
periodic spin current and voltage signal between points A and B as a function of the winding of the relative
phase between the ferromagnets.

in Ref. [36]. Consider a Josephson junction comprised of two s-wave superconductors separated by a FM

barrier, all on a single TI edge. The proximity-coupling to the SC and FM regions opens a gap in the edge

states but the system supports mid-gap modes, one localized at each end of the junction at the places where

the two competing mass terms are equal[36]. These bound states are Majorana fermions, quasiparticles that

are their own antiparticle. The presence of these states alters the transport properties of the Josephson

junction as the Majorana bound states mediate the transfer of single electrons, as opposed to Cooper pairs,

across the junction [36–38]. The resulting Josephson current goes as I ∝ sin ∆φ/2 and is thus 4π-periodic

in the phase difference, in contrast to the 2π-periodic expression found in typical Josephson junctions.

The question we examine here is how to create a fractional spin-Josephson effect using an analogous FM

junction. Following the arguments of Ref. [39], we find that the relevant mass term that competes with the

FM mass gap is an inter-edge tunneling term. Thus, we consider a junction consisting of two FM regions

coupled to the edge states of two TI systems (Fig. 4.1). An alternative would be a single 2D TI with an

etched or ablated weak link that would serve as the tunnel junction region. Either way we assume that

electrons can tunnel between the lower edge of one and upper edge of the other with tunneling amplitude

t0 and interact with the magnetic order parameter on the islands via the Zeeman coupling[40]. In the basis

(c↑,top c↓,top c↑,bot c↓,bot)
T

, the Hamiltonian is

H = −i~v∂xτzσz + <M(x)σx + =M(x)σy + t(x)τx, (4.5)

where M(x), t(x) represent spatial dependent magnetic and tunneling terms respectively, σi(τ i) are Pauli

matrices acting on the spin (edge) sector and the tensor product is implicit. We note that Eq. 4.5 has the
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same matrix structure, up to a unitary transformation, to that of the Josephson junction on the 2D TI

edge discussed above[36]. The essential difference is the identification of the real and imaginary parts of the

SC order with the x and y components of the in-plane magnetization (as expected from the charge/spin

analogy) and the replacement of the competing magnetic gap in the SC case with the competing tunnel gap

in the FM case.

Consider the magnetization in the FM regions lying in the plane perpendicular to the spin polarization of

the TI edge states (for example, for the Bernevig-Hughes-Zhang model of Ref. [41] the magnetization would

lie in the plane of the TI system). This is important because a magnetization in the same direction as the

TI spin-polarization will not open a gap. The inter-edge tunneling and Zeeman coupling open competing

gaps in the TI edge spectrum; for a uniform system, the gap is equal to the minimum of |t0 ±M0|. For

the junction geometry shown in Fig. 4.1, M(x) vanishes inside the junction and the gap saturates to t0. In

the proximity of one of the magnets we have |M0| > |t0|. The energy gap thus switches sign leading to a

trapped mid-gap electron state on each end of the junction where |t0| = |M0|. An analytic solution can be

obtained when the inter-edge tunneling is restricted to the region between the FM islands, described by the

mass profile

M(x) = M0Θ(−x) +M0e
iθ(x− L), (4.6)

t(x) = t0Θ(−x+ L)Θ(x). (4.7)

In this case, there are two bound states, bL and bR, localized at x = 0 and x = L respectively, which are

coupled through the effective Hamiltonian

H(∆θ) = Γ cos
∆θ

2
b†µyb ≡ F (∆θ)b†µyb (4.8)

Γ =
2M0t0e

−Lt0/~v

M0 + t0

where b = (bL bR)T and µy is Pauli matrix for the bound-state subspace and not related to physical spin.

The energies of the boundstates are E± = ±F (∆θ) and are plotted in Fig. 4.2. It is important to observe

that, as written, it appears that H(∆θ + 2π) = −H(∆θ) but this is because we have performed a gauge

transformation on the bL/R so that if, for example θL is fixed and θR advances by 2π then b → µzb and

H(∆θ) remains invariant. We see that at ∆θ = (2n+ 1)π there exist degeneracies in the spectrum at E = 0.

Assuming that the other occupied modes do not contribute, the spin current is obtained from the derivative

25



Δθ

Δθ
2π 4ππ 3π0

Ε 0

Γ

−Γ

Figure 4.2: Energy of two boundstates as a function of ∆θ., where Γ = 2M0t0e
−Lt0/~v

M0+t0
. The top portion

of figure indicates the in-plane spin of the bound-states (red(solid)/blue (dashed) color coded) and the
magnetization directions of the two ferromagnets (black arrows). The system only returns to the original
state when ∆θ → ∆θ + 4π.

of E±(∆θ)

Is(∆θ) = ±1

2
Γ sin

∆θ

2
. (4.9)

Eq. 4.9 is the magnetic analog of the result in Ref. [36]: a gradient in the phase of the magnetic order

parameter drives a spin current across the junction. As the magnetization at the right end of the junction

rotates by 2π, the Hamiltonian returns to its original form, while Is(∆θ) 6= Is(∆θ+ 2π). This indicates that

the system experiences a non-trivial change when ∆θ → ∆θ + 2π, only returning to its initial state after

∆θ → ∆θ + 4π. A simple physical picture illustrates the nature of this periodicity (see top portion of Fig.

4.2). The average spin-polarization (~S) of the bound states is

~S = ±Ξ

2

(
cos θL+θR

2 , sin θL+θR
2 , 0

)
(4.10)

Ξ = 2M0t0

L
~v + 2

M0+t0

M0 + t0
e−Lt0/~v.

So initially if the in-plane angle difference of two magnets is zero, i.e. (θL = θR = 0), the two boundstates

have in-plane magnetic moments aligned and anti-aligned with the magnetization, respectively (as shown in

Fig. 4.2). Now if we fix θL = 0 and set θR = ∆θ then the magnetic moment of the bound state is frustrated

in that it encounters an ambiguity in the direction. The optimum choice is for the boundstates to pick a

compromising direction between the two external moments, specifically, θL+θR
2 = ∆θ/2. Hence, rotating θR

by 2π causes the magnetic moment of the boundstates to only rotate by π. The state that was initially

26



aligned becomes anti-aligned (and vice-versa), and in order to return to the initial state θR must rotate by

an additional 2π.

4.2 Bound states – spin current carring states

The nature of the 4π periodicity can be further gleaned by formally decomposing the boundstate operators

at the two interfaces bL, bR into pairs of Majorana fermions bL = (η1 + iη2)/2, bR = (γ1 + iγ2)/2. In

the basis of Majorana operators the effective boundstate Hamiltonian can be expressed as two separate

copies of the effective Majorana Hamiltonian in the fractional charge Josephson effect[36], i.e., H(∆θ) =

(i/2)F (∆θ) (γ1η1 + γ2η2) where F (∆θ) is the 4π-periodic function defined in Eq. 4.8. In terms of new

complex fermion operators d1 = (γ1 + iη1)/2, d2 = (γ2 − iη2)/2 which are combinations of both bL/R and

b†L/R, the Hamiltonian is simplified to H(∆θ) = F (∆θ)
(
d†1d1 − d

†
2d2

)
and can be thought of as a pseudo-

spin degree of freedom in a ∆θ-dependent Zeeman field. When ∆θ → ∆θ+2π the lowest energy pseudo-spin

state flips direction and only returns back to the initial state when the phase-difference advances by 4π, as

expected. For example, for the case θL = 0, θR = ∆θ = 2π we have seen that bL → bL and bR → −bR

which means γ1/2 → −γ1/2. This implies that this shift of ∆θ sends d1/2 → d†1/2 which switches leaves the

fermion parity invariant since it transforms both particle states to hole states.This physics is reminiscent of

the fermion parity flip seen in the fractional charge Josephson effect[36]. Here, while the doubling of the

Majorana fermions renders the parity a constant, the pseudo-spin of the lowest energy bound state flips for

every advance of 2π.

Turning now to observation of the SJE, measuring the spin current, perhaps through magnetic or optical

means, would be an obvious possibility but an electrical detection method would be experimentally preferable

to other detection schemes. As a corollary, we find that as ∆θ changes the charge density between the

ferromagnets oscillates between the two edges with a 4π periodicity. The probability that the low-energy

boundstates lie on the top or bottom edges behaves, for the boundstate with E(∆θ) = ±F (∆θ), as

Ptop =
1

2
± Ξ

2
sin

∆θ

2
, Pbottom =

1

2
∓ Ξ

2
sin

∆θ

2
. (4.11)

Thus the voltage drop between points A and B in Fig. 4.1 would also show a 4π periodic signal. While the

voltage signal would be small, since it is essentially coming from the fluctuation of a single charge, it should

be possible to measure using single-electron transistor/Coulomb blockade techniques (see e.g. Ref. [42]).

A dual effect can be induced by applying a voltage difference between the two edges, as captured by
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HV = 1
2V τ

z. The bound state energies and spin-current become

E± = ±
(

Γ cos ∆θ
2 +

1

2
V Ξ sin ∆θ

2

)
= ±JS cos ∆θ−φ0

2

(4.12)

Is = ±JS2 sin ∆θ−φ0

2 (4.13)

where JS =
√

Γ2 + V 2Ξ2/4 and φ0 = 2 arctan V Ξ
2Γ . Thus the spin current can be adjusted by applying an

inter-edge voltage difference (as seen in the φ0 dependence). For example, even if ∆θ = 0 we can turn on

the spin-current by applying a voltage and as V → ∞ we see that the spin-current reaches a maximum

as sin(φ0/2) → 1. This physical phenomenon is like the intrinsic spin-Hall effect where the an applied

voltage generates a spin-current flowing perpendicular to the electric field. Thus, as indicated in our earlier

arguments, the spin-current induced from a ∆θ will produce an inter-edge voltage due to an inverse spin

Hall effect. Moreover, this voltage term generates a spin-Josephson φ0 junction which is an analog of the

Josephson φ0 junction[43].

In analogy with the SC case, we also consider the AC SJE in the presence of an inter-edge voltage. The

effective low-energy Hamiltonian of FM/TI/FM junction can be written as:

HSJ = −JS cos ∆θ−φ0

2 + α(SzR)2 + α(SzL)2, (4.14)

where α represents the easy-plane anisotropy energy. Using the canonical relations introduced in Eq. 4.3

we can derive the Josephson relations

Is = −JS2 sin ∆θ−φ0

2 , ∆θ̇ = 2α(SzR − SzL) (4.15)

Thus an Sz imbalance acts like a ‘spin-voltage’ and results in a time-dependent ∆θ. If one induces a static

Sz imbalance using applied magnetic fields then there would be an AC fractional SJE current. In addition,

an oscillating voltage signal would be present from the same mechanism as the above which can be measured

using voltage probes or via the accompanying microwave radiation[38].

Finally, we discuss two issues for the measurement of the fractional SJE, first, a stringent requirement

of particle-hole symmetry. This naturally appears in the SC case because of the Bogoliubov-de Gennes

redundancy, but is absent in the SJE setting. The presence of a local potential would therefore move bound

states away from zero energy, obscuring and altering the spin-Josephson signal. To fix this issue we require

that a gate (which applies the same voltage to both edges) be available to locally tune the boundstate
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energies in the tunnel-junction region. The other consideration is that in the real 2D TI material there exist

inversion symmetry breaking terms that remove the conservation of the Sz spin carried by the spin-Josephson

current. Since our prediction does not involve a quantized signal, the primary effect of the (usually very

weak) non-conservation terms would be to reduce the amplitude of the spin-current from our calculated

value. Thus, assuming that we can add a gate to our system, neither of these issues qualitatively alter our

predictions.

We have thus shown that several testable effects appear in ferromagnetic tunnel junctions which are

unique to 2D topological insulators. In conjunction with the work of some of the authors in Ref. [39], a

number of predictions have now been made based on the understanding that the magnetic gap and the

tunneling gaps compete and can yield bound states. The advantage of having ways to electrically perturb

and measure these spin effects makes experimental observation more accessible . We are optimistic that these

rich phenomena are robust, devoid of ultra-fine tuning, and can be observed in systems such as HgTe/CdTe

quantum wells.
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Chapter 5

Microwave – response in
ferromagnet-QSH hybrids
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In this chapter we study the dynamics of a quantum spin Hall edge coupled to a magnet with its own

dynamics. Using spin transfer torque principles, we analyze the interplay between spin currents in the edge

state and dynamics of the axis of the magnet, and draw parallels with circuit analogies. As a highlighting

feature, we show that while coupling to a magnet typically renders the edge state insulating by opening

a gap, in the presence of a small potential bias, spin-transfer torque can restore perfect conductance by

transferring angular momentum to the magnet. In the presence of interactions within the edge state, we

employ a Luttinger liquid treatment to show that the edge, when subject to a small voltage bias, tends to

form a unique dynamic rotating spin wave state that naturally couples into the dynamics of the magnet. We

briefly discuss realistic physical parameters and constraints for observing this interplay between quantum

spin Hall and spin-transfer torque physics.

V

QSH

Magnet

x < 0 x > 0

IS(x<) IS(x>)

V
R

R L

(a)

(b)

Figure 5.1: Quantum spin Hall insulator system coupled to a magnetic island on a single edge in the presence
of a finite bias voltage. (a) We schematically illustrate the basic setup and zoom in the region of the island.
(b) Circuit analogy for the Hall bar and magnet. Resistors represent the quantized h/e2 resistance of each
edge and the inductor represents the effect of the magnetic island.

The basic idea is as follows. A standard unbiased QSH bar carries gapless chiral edge currents of

opposite spin (say polarized along ẑ ) traveling in opposite directions, thus carrying zero charge current but

two quantized units of spin current, if we ignore spin relaxation for now. The presence of a magnet, as in

Fig. 5.1, couples the left and right movers and gaps these modes if the magnetization is not entirely along ẑ.

The gap renders the QSH edge a charge insulator, in that there is no initial charge current for a bias voltage

with associated energy less than that of the magnet-induced gap. However, because of the spin-momentum

locking, taking into account the spin degree of freedom yields more complex behavior. In the presence of

such a bias the edge initially carries excess spin current on one side of the magnet. This imbalance of spin-

current on the sides of the magnet provides a spin torque that results in the transfer of angular momentum

and subsequent bias-controlled dynamics of the magnet. Again, because of the spin-momentum locking, the

induced dynamics of the magnet in turn affects the QSH dynamics. For instance, in spite of the charge gap
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exceeding the applied voltage, the magnet induces a charge current in the edge as it rotates[44] due to the

spin-transfer torque. Hence, we show that the magnet can act as an inductive circuit element instead of a

capacitive element.

5.1 Spin transfer torque physics

In what follows, we model the QSH-magnet coupled system and explore its dynamics employing spin-transfer

torque methods. We analyze the approach to steady state, the nature thereof and characteristic relaxation

times, and draw parallels with electrical circuit analogies. Applicable to experimental realizations, we

estimate the effect from typical parameters of the QSH in HgTe/CdTe quantum wells and with the magnetic

system of K2CuF4[45]. We then study the interplay between magnetization dynamics and bias voltage in

the presence of interactions in the QSH edge states. Previously, within a Luttinger liquid framework, we

have shown an instability towards an unusual spin-density wave ordering[46]; here we find that the bias

voltage endows this textured phase with unique dynamics.

Beginning with the free helical liquid, let us consider the QSH edge description which has the associated

Hamiltonian[15, 20] as introduced in the previous chapters.

As shown in Fig. 5.2, these correspond to linearly dispersing edge states moving along the x-direction

with speed v, where the operator ψR↑(L↓) annihilates an electron moving to the right(left) with up(down)

spin. The proximity coupling between the magnet with magnetization
−→
M = (Mx,My,Mz) and the QSH

edge is given by the usual Zeeman coupling

HM = −µ0µB
−→
M · −→σ (5.1)

where µ0 is the the vacuum permeability, µB is the Bohr magneton and the Pauli matrices −→σ = (σx, σy, σz)

act on the space ψ = [ψR↑(x), ψL↓(x)]T . In the region near the magnet, the QSH edge spectrum is effec-

tively
√

(vp− µ0µBMz)2 + (µ0µB)2(M2
x +M2

y ) which has an excitation gap induced by the magnet with

magnitude ∆ = 2µ0µB(M2
x +M2

y )1/2.

Let us now consider the effect of a voltage bias V , which, for instance, we apply at the lead on the left in

Fig. 5.1. Initially the spin currents in the left and right regions of the magnet are different, giving rise to a

spin current imbalance ∆
−→
I S = [

−→
I S(x<)−

−→
I S(x>)], where

−→
I S(x) = ~

2ψ
† 1

2 (vσz
−→σ +−→σ vσz)ψ, and x<(x>)

is on the left (right) of the magnet as indicated in Fig. 5.1a. Because of the spin-momentum locking of the

helical liquid, the spin current imbalance generically depends on the rotation frequency of the magnet. For

simplicity, let us consider the case when the magnet rotates in-plane at a frequency (ΩM
2π ). We can transform
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the full edge Hamiltonian H = H0 +HM to the rotating frame via the transformation H ′ = UHU†− iU∂U†,

where U = ei
ΩMt

2 σz [47]. In the new basis, the Hamiltonian takes the resultant form

Hrot =

 ~(−iv∂x − ΩM
2 ) −µ0µBMs

−µ0µBMs ~(iv∂x + ΩM
2 )

 , (5.2)

where there is a rotation-induced voltage shift of ~ΩM/e which is opposite for each spin component (see Fig.

5.2b). After imposing the appropriate boundary conditions and matching ψ fields at the interfaces between

the unperturbed helical liquid and the magnet, we find the initial spin current imbalance

∆
−→
I S(t = 0) =

eV − ~ΩM
2π

ẑ. (5.3)

Here have assumed that the length of magnet, LM , is long enough , LM � ~v
µ0µBMs

, that a low-energy

electron incident on the magnet barrier is completely reflected; accounting for tunneling requires a simple

modification.

The spin-current imbalance applies a torque on the magnet and we can appeal to spin transfer torque

(STT) physics to analyze the coupled dynamics between QSH edge currents and the magnet. Applying the

well-established STT formalism[48, 49], the dynamics is described by the Landau-Lifshitz equation

γ−1∂t
−→
M = −D

−→
M ×Mz ẑ +

1

VM
M̂ × (∆

−→
I S × M̂) (5.4)

where γ is the gyromagnetic ratio of the magnet, VM is the volume of the magnet, and M̂ is the unit vector

directed along the magnetization
−→
M . The first term on the right-hand side accounts for the easy-plane

anisotropy energy 1
2DM

2
z VM of the magnet [50]. The source of the anisotropy can be either intrinsic, as

for an easy-plane magnet, or induced by the coupling to the edge states itself, though the latter effect is

weak compared to usual magnetic energy scales. Thus we would generally desire the intrinsic anisotropy to

be large to observe interesting dynamics since the edge coupling is usually small. The second term on the

right-hand side accounts for the torque due to the spin current imbalance ∆
−→
I S derived above. Since the

magnitude of the magnetization is effectively fixed, the spin torque along the direction of the magnetization

has no effect; only the transverse part of this imbalanced spin current exerts the torque on the magnetization.

We will see that the effect of this term is to drive the edge from an insulating state to a conducting state.

In general, the dynamics derived from substituting the spin imbalance expression of Eq. (5.3) into the

dynamical equation of motion Eq. (5.4) has no simple solution. However, in most of the physical cases of
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interest we can make the approximation that the magnet always stays in-plane, i.e. Mz � MS , where MS

is the magnitude of the spontaneous magnetization. This condition holds for small enough bias voltages,

i.e., bias voltages that are small compared to the magnet-induced gap, as will be justified in the proposed

experimental setup to follow. With this approximation, we obtain the simple solution:

∆
−→
I S =

eV

2π
e
− γ2D~

2πVM
t
ẑ

IC =
e2V

h
(1− e−

γ2D~
2πVM

t
)

Mx + iMy = MSe
i
´ t
0

ΩMdt
′

Mz =
2π

eγD
IC (5.5)

where IC = eψ†vσzψ is the charge current on the edge. Thus, we can immediately see that the dynamics

involves a characteristic relaxation time τ = 2πVM
γ2D~ . The smaller the magnet and larger the anisotropy, the

faster the relaxation.

We can simply illustrate the consequences of the dynamics. The STT on the magnet due to the spin

current imbalance (∆
−→
I S) decays to zero, while the in-plane magnetization begins to rotate; the rotation

frequency increases to the constant value eV
h . Interestingly, in spite of the magnet-induced gap, the charge

current ramps up to its quantized saturation value of e2

h V , rendering the magnetic barrier transparent to

charge. The spin transfer torque provides a magnetization along the z direction, which reaches a new

equilibrium value eV
γD~ . In fact, this z direction magnetization acts as an effective magnetic field causing the

in-plane magnetization to precess. The charge current that flows here is essentially due to the same charge-

pumping mechanism reported in Ref. [44] for a rotating magnet. However, for our case the magnetization

dynamics and the rotation frequency are intrinsically controlled by the applied bias voltage.

An even simpler picture for understanding the dynamics involves representing the geometry in Fig. 5.1a

as an effective electrical circuit analog shown in Fig. 5.1b. The upper and lower QSH edges in Fig. 5.1 each

provide a resistance of R = h
e2 . What our dynamical solution has shown is that the coupling of the edge

states to the magnet can effectively be represented by an inductor with inductance L = τR. Hence, for this

set up, charge is only transported through the lower edge initially, which yields an effective conductance of

e2/h. As with a real inductor, which stores energy in an induced field, here the energy is stored in the form of

the anisotropy energy of the easy-plane magnet. Over time, the inductive component becomes transparent,

allowing current to pass through. In the final steady state, the upper and lower edges both conduct perfectly

and the conductance of the system rises and saturates to its quantized value of 2e2/h.

Let us briefly consider a physical magnetic system, for which we focus on K2CuF4, known for its large
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Figure 5.2: (a) Spectrum of the free helical liquid at finite chemical potential. With repulsive interactions
present, system forms a gapped spin-density wave order parameter with wave vector 2kF , which nests the
Fermi-points. (b) Spectrum of a free current-carrying helical liquid in the presence of a finite bias voltage.
Alternatively, when coupled to a magnet,in the rotating frame of the magnet, the helical edges show a relative
chemical potential shift. The magnetic order parameter that can effectively gap the associated Fermi-points
has to thus connect states at different energies, exhibiting finite frequency dynamics.

easy-plane anisotropy[45, 51]. This material possesses a spontaneous magnetization of µ0Ms = 0.124T, a

gyromagnetic ratio γ = −2 × 1011s−1T −1, and an out-of-plane anisotropy field BA = 0.280T, i.e. D =

BA
Ms

= 2.26µ0. For a typical magnet of volume VM = 104nm × 102nm × 102nm these parameters provide a

relaxation time estimate of τ = 10−1s. In order to be consistent with our approximation that Mz � MS

,we require an applied voltage to be smaller than 1mV . This constraint confines the rotational frequency

of the magnet (ΩM = eV
h ) and the associated radiation to lie in the microwave range which indicates that

microwave cavity resonator experiments may be useful for the observation of this effect.

While we have so far presented a clean, optimistic description of the effect, it must be mentioned that in

addition to the primary contribution to the dynamics stemming from spin transfer torque, one also expects

two sources of dissipation: (i) Gilbert damping of the magnetization dynamics and (ii) spin-relaxation of

the helical liquid due to spin-orbit scattering. Gilbert damping contributes an additional term α
Msγ

−→
M × d

−→
M
dt

to the right-hand side of Eq. (5.4) , where α is the damping constant. As shown in Appendix B we

find that the damping provides an additional channel for relaxation, modifying the relaxation rate in Eq.

(5.5) to τ−1 = γ2D( ~
2πVM

+ αMS

|γ| ). More importantly, it also changes the precession frequency to ΩM =

eV/(~+α2πVMMS/|γ|). The effects of spin-orbit scattering will cause the spin carried by the helical liquid

to relax as the charge current is carried from the leads to the magnetic island. This will reduce the amount

of spin-current imbalance by a geometry and impurity-dependent factor ζ and subsequently the precession

frequency will be reduced by the same factor. Both of these effects alter ΩM , and since the charge current

is simply eΩM , these two sources of dissipation will reduce the saturation conductance of the magnet-

coupled edge from its quantized value. Notably, experiments indicate that spin-orbit scattering effects do

not dominate the spin physics in HgTe/CdTe quantum wells[52], however the Gilbert damping of the magnet

will surely reduce the effective edge conductance, though hopefully not below an observable value.
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5.2 Effects of interactions

So far we have neglected interactions within the QSH edges; we now examine the stability of the magne-

tization dynamics presented above in the presence of interactions. First we will consider the possibility of

new interaction-driven phenomena, initially analyzing the QSH system in and of itself without the coupling

to the magnet. As done previously[15, 20, 46, 53, 54], the interacting helical liquid can be explored within

a Luttinger liquid framework through the bosonization of the fermion fields. We can use the boson fields

φ and θ and the correspondence ψR↑(x) ∼ e−i(φ(x)−θ(x)), ψL↓(x) ∼ ei(φ(x)+θ(x)) to bosonize the helical

liquid. The Hamiltonian in Eq. (5.2), along with interactions, can be bosonized to yield the Luttinger liquid

Hamiltonian[18]

H =
1

2π

ˆ
dx
[
uK(∇θ)2 +

u

K
(∇φ)2 + 2µ∇φ

]
, (5.6)

where u = v((1 + g4

2πv )2 − ( g2

2πv )2)1/2 is the renormalized velocity, K = (
1+

g4
2πv−

g2
2πv

1+
g4

2πv+
g2

2πv

)1/2 is the Luttinger

parameter, and the g2, g4 represent the standard interaction coupling constants[18]. Values of K < (>

)1 represent repulsive (attractive) interactions, and here we only consider repulsive interactions. We have

also included a chemical potential (µ) term to account for the edge Fermi-level not lying exactly at the

Dirac point, a condition that leads to interesting physics in the presence of interactions (see Fig. 5.2a for

an illustration in the free case). For repulsive interactions, the system is unstable to spontaneously breaking

time-reversal symmetry and generating in-plane ferromagnetic order which opens a gap at the Fermi-energy

when µ = 0. If the chemical potential is not exactly tuned to be at the Dirac point, the system instead

exhibits a spatial oscillation of the in-plane magnetic order, forming spin density wave (SDW) [18, 46].

For the remainder of the calculations it is convenient to transform into the Lagrangian formulation,

yielding the Lagrangian associated with Eq. 5.6

Lγ =
1

2πuK
((∂tφ)2 − u2(∇φ)2 − 2µuK∇φ) + ∂t(γφ). (5.7)

Here the last term corresponds to a total derivative, which does not affect the classical equations of motion,

but allows us to add a non-vanishing charge current. The parameter γ represents an additional freedom that

should be fixed by a physical quantity, which we choose to be the particle current operator j given by

j =

〈
∂tφ

π

〉
,

thus fixing the choice: γ = −j/Ku.

The effect of repulsive interactions on the helical liquid can be seen by evaluating the appropriate suscep-
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tibilities. The primary quantity of interest is the susceptibility of the operator O+(x, t) ≡ ψ†R↑(x, t)ψL↓(x, t)

which is related to the in-plane magnetization of the edge state via m+(x, t) ≡ mx(x, t) + imy(x, t) =

2µB〈O+(x, t)〉. To evaluate the spin susceptibility associated with the in-plane magnetization, χm(x, t) =

−i~θ(t)〈[O+(x, t), O†+(0, 0)]〉, it is easiest to first shift the φ field in the Lagrangian in Eq. (5.7) as φ̃(x, t) =

φ(x, t) + µKx/u + πuKγt, and then employ standard Luttinger liquid techniques. As a function of tem-

perature T we find that the Fourier-transformed susceptibility in momentum and frequency space diverges

as

χm(ω = −2πj, k = −2Ku µ) ∼ T 2K−2

near (ωc, kc) = (−2πj,−2Kµ/u).

The divergence of the spin susceptibility is indicative of an intrinsic instability towards a magnetically

ordered phase in the presence of repulsive interactions. As we discussed in previous work [46], the finite

momentum at which the spin susceptibility diverges indicates that for µ 6= 0 SDW order is preferred in

which the in-plane magnetization spatially rotates over a length scale ∼ πu
Kµ . A new effect is that, in the

presence of an injected current, the susceptibility diverges at finite-frequency, i.e., the SDW order rotates

at the frequency 2πj as a function of time. Thus, the edge can be carrying current and in a gapped,

intrinsically-magnetized state if the SDW order rotates as a function of time.

We can heuristically illustrate why the time oscillation of the SDW occurs by resorting to the free-fermion

description (K = 1) where the current j induced by a bias voltage V can be determined by the filling of

the single-particle energy spectrum as shown in Fig. 5.2b. In the presence of the repulsive interaction term

Hint = ψ†R↑ψR↑ψ
†
L↓ψL↓ = O+(x, t)O†+(x, t) the system will try to develop in-plane magnetic order 〈O+(x, t)〉,

in order to induce a mass term ψ†R↑ψL↓〈O
†
+(x, t)〉, that will open up a gap and lower the energy of the system.

Notice that the most efficient way to lower the energy is to open up the gap at the Fermi points. When the

current vanishes this implies that SDW order will form with a wave-vector that nests the two degenerate

Fermi-points (see Fig. 5.2a). However, when there is finite current in this system, then, effectively, the two

Fermi points are not at the same energy. In order to couple these two Fermi points that lie at different

energies, the SDW has to have a time dependent part 〈O+(x, t)〉 ∼ eieV t/~ which is exactly why we observe

a divergent spin susceptibility at finite frequency.

Finally, we revisit the coupling to the external magnet in the presence of interactions. Since the external

magnetic island has been assumed to be uniform, we expect that to achieve the strongest coupling between

QSH edge (with SDW order) and the external magnet, the length of the magnet should be smaller than the

SDW wavelength ∼ πu
Kµ . The presence of a magnet, as in the non-interacting case, opens up a gap in the

helical liquid. This is easy to see in the Luttinger liquid formalism, where the coupling between the edge
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state and external magnet in Eq.(5.1) has the Sine-Gordon form cos(2φ− θH), where θH is the angle of the

in-plane magnetization. This coupling is relevant in the renormalization group sense, and hence locks the

phase 2φ = θH at low temperature. In previous work, we have analyzed the static effect of external magnets

on the helical liquid at finite µ [46]. For the dynamic situation we are considering in this work, one can

derive the particle current as j =
〈
∂tφ
π

〉
= ∂tθH

2π which is simply the adiabatic charge pumping on the QSH

edge as derived in Ref. [44, 55, 56], but now including interactions.

If the magnet is not initially rotating then, just as in the non-interacting case, we expect an initial spin

current imbalance across the magnet when a voltage is applied. We can calculate this spin current imbalance,

which, due to spin-momentum locking is proportional to the charge density difference across the the magnet,

∆IzS = ~
2v(ρ(x<)− ρ(x>)) = K

2π
v
ueV . Thus, even with interactions there is an initial spin-current imbalance

which will apply a STT to the magnet. While a full analysis of the spin-transfer torque in the presence

of interactions is beyond the scope of this work, we expect that just as with the non-interacting case, the

excess spin current, now accompanied by an in-plane magnetization rotation of the edge, transfers angular

momentum to the magnetic region. Once again, as with the non-interacting case, in steady state, a charge

current will flow as the magnet evolves to a steady-state of rotation at a rate proportional to the applied

voltage.

Applications - The unique combination of QSH physics and spin transfer torque gives rise to new ways

of probing and manipulating the QSH edge, particularly by exploiting well-characterized magnetic materials

and their information storage and access properties. i) Microwave resonator - We saw above that an excess

QSH spin current produced by a voltage bias V induces the magnet to precess at a frequency eV/h. This

precession would result in microwave radiation of about 24GHz for typical bias voltages of order 0.1meV. In

principle, one can envision putting an array of QSH-coupled magnets in a microwave resonator to generate

a voltage-tunable microwave laser. ii) Spin polarization detector- Thus far, we have assumed that the QSH

spin axis coincides with that of the easy plane of the spin magnet. In principle, the two need not be aligned,

effectively giving the excess QSH spin current components in the xy-plane and in turn affecting the dynamics

of the magnet. Analyzing this dynamics would provide information on spin polarization in the QSH system.

iii)AC QSH circuit - Information on the QSH edges can also be obtained by charge current measurements

from the perspective of the circuit analogy of Fig. 5.1. The circuit description can be taken further by

including a conventional capacitance element to produce oscillatory charge and spin currents. In conclusion,

here we have presented an initial glimpse of the rich physics that can emerge through the interplay of QSH

edge and spin-transfer torque physics.
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Chapter 6

Fractional charge and folding picture
in bilayer TIs
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In this chapter we provide a characterization of tunneling between coupled topological insulators in 2D

and 3D under the influence of a ferromagnetic layer. We explore conditions for such systems to exhibit

integer quantum Hall physics and localized fractional charge, also taking into account interaction effects for

the 2D case. We show that the effects of tunneling are topologically equivalent to a certain deformation

or folding of the sample geometry. Our key advance is the realization that the quantum Hall or fractional

charge physics can appear in the presence of only a single magnet unlike previous proposals which involve

magnetic domain walls on the surface or edges of topological insulators respectively. We give illustrative

topological folding arguments to prove our results and show that for the 2D case our results are robust even

in the presence of interactions. We explore heterostructures which are made using two topological insulators

with some non-zero tunneling processes between them. These heterostructures can be made using layered

growth techniques (for 3D) and possibly even through lithography and gate patterning (for 2D). We provide

a classification of conventional tunneling terms and indicate the interplay between tunneling, and proximity

induced ferromagnetism and superconductivity. Interestingly, we find a new way to generate the integer

quantum Hall effect (fractional charge) by utilizing only a single ferromagnet sandwiched between two 3D

(2D) TI’s and without a magnetic domain wall. The proposed geometries are far simpler than those proposed

in [44, 57] which require the tuning of several magnetic regions. Along with the mathematical analysis we

provide an intuitive, topological understanding of these effects.

6.1 Ten masses classification

We first focus on the case of the 3D TI and note, where important, the differences between 3D and 2D. The

surface state Hamiltonian for a 3D TI is simply given by

H = v (σ ×−→p ) · n̂ (6.1)

where σ are the spin-1/2 matrices, −→p is the surface momentum, and n̂ is the normal vector to the relevant

surface. Here we envision having two nearby 3D TI’s separated by a distance dz in the z-direction. The

decoupled, low-energy Hamiltonian for the bottom surface of the top TI and the top surface of the bottom

TI is

H = v

 pxσy − pyσx 0

0 −pxσy + pyσx

 (6.2)

= vτz ⊗ (pxσy − pyσx) (6.3)
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tR ∆+−
R ∆tb

R

∆+−
I m+− ∆++

I

∆tb
I ∆++

R tI

Table 6.1: This table of mass terms represents perturbations which open a gap in the surface-state Hamilto-
nian of two, coupled TI layers. The three mass terms in each vertical or horizontal line mutually commute
with each other, and the three mass terms in each diagonal direction (including periodic wrapping) mutually
anti-commute with each other. The remaining mass term m++ commutes with all of these nine mass terms
in the grid.

where τa represent the layer index for the fermion basis (ψt↑ ψt↓ ψb↑ ψb↓)
T where t, b represent the top and

bottom TI surfaces respectively. If the surfaces are coupled through time-reversal (T = I⊗ iσyK) invariant

tunneling processes that are also spin independent, which is natural from the form of the bulk Hamiltonian,

then the only tunneling term is Ht = tRτ
x ⊗ I. Since this matrix anti-commutes with H the spectrum is

simply E± =
√
p2
x + p2

y + t2R (we have set v = 1), which is gapped for all non-zero values of tR. To find

all allowed mass terms in the double-layer system, we tabulate all 4× 4 matrices which anti-commute with

H. There are four allowed terms which can open a gap. The first two are m++I ⊗ σz and m+−τz ⊗ σz

and are non-zero if there is a magnetization with a component parallel to the surface normal which points

in the same (m++ 6= 0) or opposite (m+− 6= 0) direction in the two layers. The other two terms are the

real and imaginary hopping terms tRτx ⊗ I and tIτy ⊗ I. They all break time-reversal symmetry except tR.

Similar terms have also been discussed in the context of a mean-field description of a topological exciton

insulator[58] although our different physical motivation is the key to our measurable predictions.

For completeness, we also consider the possibility of proximity coupling to a superconductor to induce

mass-terms[5]. The BdG equation in the Nambu spinor basis (ψt↑, ψt↓, ψb↑, ψb↓, ψ
†
t↓,−ψ

†
t↑, ψ

†
b↓,−ψ

†
b↑)

T of

this double-layer system is HK = 1
2πz ⊗ τz ⊗ (pxσy − pyσx), where the Pauli matrices πi represent particle-

hole space. Along with the magnetic and tunneling terms introduced above, surface gaps can be opened by

inducing s-wave superconductivity with the same (∆++
R/I = πx/y ⊗ I ⊗ I) or opposite (∆+−

R/I = πx/y ⊗ τz ⊗ I)

phase on the two different TIs, or even inter-TI s-wave pairing of Cooper pairs formed between the two TIs

(∆tb
R/I = πy/x ⊗ τy ⊗ σz). Each of these possible pairing terms has both real and imaginary parts indicated

by the πx/y notation giving six additional mass terms, yielding a total of ten. These ten mass terms can be

arranged into a 3 × 3 table and a 1 × 1 table shown in Table 6.1. This table has the following noteworthy

properties: (i) the terms in all vertical or horizontal lines mutually commute (ii) the terms in each diagonal

line (including wrapping as if the table had periodic boundary conditions) mutually anti-commute (iii)the

left-over mass term m++ commutes with all the other nine mass terms.

This organization of mass terms is useful in considering the natural possibility of having more than one

type of mass term present. They can be classified pairwise as (i) compatible masses and (ii) competing
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(a) (b)

(c) (d)

Figure 6.1: (a)Standard magnetic domain wall picture on the surface of a 3D TI (or edge of a 2D TI) which
gives rise to a propagating chiral mode (bound e/2 charge). Inset: illustrates the mass domain wall seen
by the Dirac fermions on the surface (edge) (b)An illustration of the folding process. Note that the chiral
modes (e/2 charge) is preserved for every step in the fold. (c) Completion of folding/gluing process which
shows that the final state is a domain wall between a ferromagnet and a tunneling region. The tunneling
region is topologically equivalent to the bulk of the TI (d)When tunneling region is removed, leaving empty
vacuum, the chiral modes (e/2 charge) are destroyed.

masses. Case (i) results from the two mass terms anti-commuting. In this case, the energy spectrum takes

the form E± = ±
√
p2 +m2

1 +m2
2, from which it is easy to see that one can adiabatically tune between the

phases dominated by m1 (m2 = 0) and the phase dominated by m2 (m1 = 0). This indicates that these two

gapped phases are adiabatically connected. The competing mass case (ii) arises when the two mass terms

commute. In this case the spectrum generically takes the form ±E± = ±
√
p2 + (m1 ±m2)2. Thus, when

going from the phase with m2 = 0 to the phase with m1 = 0 one always passes through a gapless critical

point when the magnitudes of the mass terms are equal. Interestingly, if one places a region dominated by

m1 adjacent to a region dominated by m2, there is a mass-domain wall between these regions that traps

a low-energy fermionic bound state. This is the origin, for example, of the 0D Majorana fermion bound

states at the interface between a magnet and superconductor placed on the edge of 2D TI[5]. We can easily

read-off the sets of compatible and competing mass-terms from Table 6.1.

6.2 Folding picture

We use these results to study our primary case of interest: the tunneling tR competing with the magnetization

m++ (shortened to m for convenience.) Suppose we place a magnet sandwiched between the two tunnel-
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coupled 3D topological insulators. Let the magnet have some component of its magnetization parallel to the

z-direction so that a gap m is induced in H. If tR and m are homogeneous in the interface layer, then energy

spectrum is ±E± = ±
√
p2
x + p2

y + (tR ±m)2 as mentioned above. Now suppose the mass terms vary with

position and that there is a region near the magnet where |m| > |tR| and a region past the extent of the

magnet where |m| < |tR|. In this case, there exists a mass domain wall which necesarily binds propagating

states along the 1D domain wall. Heuristically it is easy to see the character of the states that must be

present: if instead of a domain wall between m and tR we had a domain between +tR and −tR, then the

boundstates in this case would be a single-pair of time-reversed counter-propagating modes (i.e. a helical

metal) since this configuration is equivalent to an insertion of a π-flux tube. In the case at hand, the m/tR

domain-wall will only contain a single chiral fermion since the effect of m is to generate a domain-wall for

only one of the members of the Kramers’ pair. Said a different way, in a homogenous system, if m = 0

and we take tR from negative to positive then the critical point is time-reversal invariant and occurs where

four-bands touch. If instead we take m 6= 0 and tune from |tR| < |m| to |tR| > |m|, then the critical point

happens only between two-bands and is essentially half of the time-reversal invariant phase transition. This

means that only one of the Kramers’ partners sees a domain wall. This is mathematically similar to the

chiral superconductor phase transition presented in [44]. We can also analytically solve for the boundstate

given that we have periodic boundary conditions in the y-direction and that the mass-domain wall occurs

in the x-direction. For a domain wall where m 6= 0 for x < 0 and tR 6= 0 for x > 0 we pick the ansatz

ψ0(py) = ξ0e
ipyy ×


emx x < 0

e−tRx x > 0

,

where ξ0 is a constant spinor. We find the solution of the Dirac equation with ξ0 = 1/2(1, 1,−1, 1)T and an

anti-chiral dispersion relation E(py) = −py as we expected.

Thus, we find that for a domain wall between a magnetic region and a tunneling dominated region, there

exists a chiral interface state, giving rise to a quantum Hall effect. The conventional way to generate the

quantum Hall effect via a magnetic domain wall on a single TI surface is topologically equivalent to our

construction as seen in Fig. 6.1. The equivalence can be understood by starting with a single TI with a

magnetic domain wall on the surface and then deforming and folding the surface until it becomes a domain

wall between a tunneling region and a single-domain magnetic region. Note that the folding picture works for

any direction of the magnetization, assuming that a gap is opened at the surface, i.e., that the magnetization

is not exactly parallel to the surface. The quantization of the Hall conductance can also be seen following
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the arguments of Ref. [57] by integrating the magneto-electric polarizability P3 around a loop enclosing the

domain wall/hinge region. P3 is well-defined since the system is gapped along the entire line of integration

and we find

σ2D
xy =

1

2π

e2

~

˛
dP3 =

e2

h
, (6.4)

as expected for a single-chiral edge state. In calculating this we have used the fact that P3 is odd under time

reversal and thus must wind in opposite directions when passing from the 3D TI bulk through magnetic

layers having opposite polarizations. Thus, we have shown that TI structures with only one magnet can

generate an integer quantum Hall effect.

6.3 Fractional charge

To discuss the consequences of magnet-tunneling competition for phenomena in the 2D TI (quantum spin

Hall effect), as shown in Refs. [44, 57], in the presence of an anti-phase magnetic domain wall, a half-charge

is localized on the edge of the 2D TI at the location of the domain wall. We demonstrate that on an

m++ − tR domain wall there is also a localized half-charge. We note that the folding procedure in Fig. 6.1

still applies in 2D but with the chiral modes replaced with a bound ±e/2 charge. We now provide a more

general argument for the existence of the e/2 charge on a purely magnetic domain wall on a single edge

than that presented in Ref. [44] using the bosonization formalism, which is thus incorporates non-vanishing

interactions. We then carry out the argument for two edges with tunneling to show that indeed a half-charge

is induced in that case as well. The propagating states of a single QSH helical edge state are described by

the Hamiltonian[15]

H0 = v

ˆ
dx
[
ψ†(x)pxσ

zψ(x)
]

(6.5)

where ψ(x) = (ψR↑, ψL↓)
T . The coupling of the edge to a magnetic island can be described by

Hm = −JµB
ˆ
dx(m−ψ

†(x)σ+ψ(x) + h.c.), (6.6)

where µB is the Bohr magneton, J is an exchange coupling constant σ± = 1/2(σx ± iσy) and m± =

Mx ± iMy = |m|e±iθH reflects the magnetization. We can bosonize the Hamiltonian using ψR↑(x) ∼
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e−i(φ(x)−θ(x)), ψL↓(x) ∼ ei(φ(x)+θ(x)) to get

H =
1

2π

ˆ
dx
[
uK(∇θ)2 +

u

K
(∇φ)2

− 2JµB |m|
α

cos(2φ(x)− θH)

]
, (6.7)

From standard results[18], the exchange coupling is relevant for K < 2 (as we assume) and at low tempera-

tures, φ is locked to the energy minima

φ(x) = nπ +
θH
2
, (6.8)

where n is an integer. Now suppose we make m+(x) inhomogeneous with the domain wall profile m+(x) =

|m|eiθLH for x < 0 and m+(x) = |m|eiθRH for x > 0. This gives rise to the inhomogeneous form φ(x) = nπ+
θLH
2

for x < 0 and φ(x) = `π+
θRH
2 for x > 0. The charge density has the form ρ(x) = − 1

π∇φ and thus the charge

trapped on the domain wall is

QDW = − 1

π
(φ(x > 0)− φ(x < 0)) = (`− n) +

1

2π

(
θLH − θRH

)
. (6.9)

For an anti-phase domain wall the formula gives QDW = (n− `) + 1
2 as expected.

Turning to the two coupled 2D TI system, the Hamiltonian for two corresponding edges is given by

H(2)
0 = v

ˆ
dxΨ†(x)

 pσz 0

0 −pσz

Ψ(x), (6.10)

where Ψ(x) = (ψtR↑ ψtL↓ ψbR↓ ψbL↑)
T and t, b indicate top and bottom edges. To bosonize this Hamil-

tonian, care requires defining the fermions as ψtR↑(x) = UtR√
2πα

e−i(φt(x)−θt(x)), ψtL↓(x) = UtL√
2πα

ei(φt(x)+θt(x)),

ψbR↓(x) = UbR√
2πα

e−i(φb(x)−θb(x)), ψbL↑(x) = UbL√
2πα

ei(φb(x)+θb(x)) where α is the momentum cut-off and the Uab

are the Klein factors preserving electron anti-commutation rules, where U†tRUbLU
†
bRUtL = −U†tRUtLU

†
bRUbL[18].

Let us consider the perturbing mass terms for the double-edge system. The magnetic region couples to

the two edges independently leading to two copies of Eq. 6.6 which when bosonized yields:

H(2)
m = −JµB |m|

πα

ˆ
dx(cos(2φt(x)− θH)

+ cos(2φb(x) + θH)) (6.11)

where we used the choices U†tRUtL = U†bRUbL = U†tRUbL = −U†tLUbR = 1 which satisfies the constraint above.
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Figure 6.2: Quantum spin Hall state in an H-bar geometry. Edge states conform to the geometry and in the
lower half travel around an inset ferromagnet whose magnetization direction is shown by the arrows. An
e/2 charge is localized between the two spots at the corners of the ferromagnet. In the ideal case with this
geometry there are e/4 charges localized at the location of each corner spot.

The inter-edge tunnel coupling is

Ht = −tR
ˆ
dx (ψ†tR↑ψbL↑ + ψ†tL↓ψbR↓ + h.c.)

=
−2tR
πα

ˆ
dx(sin(φt + φb) sin(θt − θb)) (6.12)

Thus, since J and tR are relevant for weak interactions (2 −
√

3 < K < 2) we know that both terms will

lock their phases in regions where they are present giving:

(φt + φb)(x)=


nπ magnetic region

π
2 + lπ tunneling region

(6.13)

where n, ` are integers. The total charge density is ρ(x) = − 1
π∇(φt + φb) yielding a trapped charge on a

magnetic/tunneling domain wall: QDW = q+ 1
2 for an integer q. We remark that the Klein factors, and thus

Fermi statistics (since electrons can now exchange positions by moving to the other TI and then coming

back), were crucial for this derivation; one only finds integer charge if they are neglected. A simicclar

topological argument to Eq. 6.4 based on the topological electromagnetic response of 2D Z2 topological

insulators given in Ref. [57] can also be given.

The folding picture provides a useful illustration of the tunneling domain, but there are some other

geometries where the same physics is also apparent. Notably one can study the “H-bar” geometry, such

as that used in non-local transport experiments in HgTe/CdTe quantum wells[59]. In Fig. 6.2 we have
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shown such a geometry flanked by a ferromagnet in one of the U-shaped regions of the ‘H.’ The presence

of a magnet-tunneling domain wall, which should give rise to e/2 charge localized on the cross-bar, can be

seen by treating the two vertical legs as two separate QSH systems connected by a small strip of tunneling

(the crossbar). Physically, the geometry replaces the folding. The edge state, upon entering the first part

of the ‘U’ from the left, experiences a magnetization that points to the left relative to it’s velocity while,

upon exiting the ‘U’ on the right, experiences a relative magnetization pointing to the right. Thus, skirting

around the magnet yields a changing magnetization, giving rise to the localized charge. If the path does not

perfectly reverse direction, the charge is not quantized to be perfectly e/2 since the edge electron does not

encounter a crisp, anti-phase domain-wall. The charge is given by the relative angle between the incident and

exiting effective magnetizations in units of e/2π and, for instance, could split into two e/4 charges localized

near the corners where the relative magnetization typically changes by π/2. An extension of this geometry

to the 3D case would yield a chiral edge state. It is important to note in that case that the existence of the

chiral modes does not depend on the precise reversal of the path direction.

To summarize, in this chapter we have shown that two sought after phenomena– quantum Hall states

and fractional charge,– can be achieved in 2D and 3D TI’s with experimentally viable fabrication. In 3D one

must simply grow a magnetic layer sandwiched between two TI layers, and in 2D one must simply fabricate

an H-bar geometry and deposit a magnetic island on one of the indentations of the H. We also performed a

cursory examination of similar geometries where the magnet was replaced by an s-wave superconductor and

found that the effects, while interesting, were not feasible for current experimental capabilities.
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Chapter 7

Conclusion

This thesis provides a study of topological insulator coupled with superconductor and magnet. Various

techniques are used in this thesis like field theory, Lutthinger liquid theory, and renormalizaiton group

method. Our investigation starts from the study of different phases in QSH edge states due to interaction.

This study gives us numerous ideas about the future projects which are also presented in this thesis.

We first discovered RSWP, which gives us a spatial rotation of the local magnetic moment. This vector

rotation can be induced by local magnetic impurity. The wave-vector of this rotation can be controlled by

the gate voltage.

Then in chapter3, we further study the magnetic properties of QSH edge, where a new spin Josephson

effect is discussed. The important thing of this study is the spin current carrying state which is very similar

to the charge carrying state in the Josephson effect.

Along this line, we also discussed inverse pumping effect in QSH edge states, which is also due to the

coupling to the magnet. We make a device composed of QSH edge and magnets, and apply bias voltage on

this device. This particular device gives us a control of the frequency of microwave. Simply by applying bias

voltage, one can generate microwave. We also make analogous to the inductor.

In chapter 6, we expand our study into 3D topological insulator, where we first classify the mass term in

bi-layer 3D topological insulators. We also studied fractional charge, and present a folding picture.

In summary, the newly discovered topological insulator provides us a new platform, where various tech-

niques and ideas can be applied in this new material. By analysis lots of exotic physics phenomena can be

realized in this platform.
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danger, Nature Physics 6, 187 (2010).

[28] J.Friedel, Adv. Phys. 3, 446 (1954).

[29] M. F. Crommie, C. P. Lutz, and D. M. Eiglerr, Nature 363, 524 (1993).

[30] B. Wang, J. Peng, D. Y. Xing, and J. Wang, Phys. Rev. Lett. 95, 086608 (2005).

[31] A. S. Borovik-Romanov, Y. M. Bunkov, V. V. Dmitriev, Y. M. Mukharskiy, and D. A. Sergatskov,
Phys. Rev. Lett. 62, 1631 (1989).

[32] B. Wang, J. Peng, D. Y. Xing, and J. Wang, Phys. Rev. Lett. 95, 086608 (2005).

[33] F. S. Nogueira and K.-H. Bennemann, Europhys. Lett. 67, 620 (2004).

[34] J. Villain, J. Phys. 35, 27 (1974).

[35] P. W. Anderson, Phys. Rev. 112, 1900 (1958).

[36] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408 (2009).

[37] A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).

[38] H.-J. Kwon, K. Sengupta, and V. Yakovenko, Europhys. B 37, 349 (2003).

[39] Q. Meng, S. Vishveshwara, and T. L. Hughes, ArXiv e-prints (2012), arXiv:1202.5297 [cond-mat.mes-
hall] .

[40] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Nat. Phys. 4, 273 (2008).

[41] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).

[42] E. T. J. H. S. D. M. V. U. S. Ilani, J. Martin and A. Yacoby, Nature 427, 328 (2004).

[43] A. Buzdin, Phys. Rev. Lett. 101, 107005 (2008).

[44] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78, 195424 (2008).

[45] I. Yamada, Journal of the Physical Society of Japan 33, 979 (1972).

[46] Q. Meng, V. Shivamoggi, T. L. Hughes, M. J. Gilbert, and S. Vishveshwara, Phys. Rev. B 86, 165110
(2012).
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Appendix A

Spin Josephson effect

A.1 Projected Hamiltonian

The Hamiltonian for the two-edge system in the basis (ψt↑, ψt↓, ψb↑, ψb↓)
T is

Htwo-edge = pzσz ⊗ σz +MxI ⊗ σx +MyI ⊗ σy + tσx ⊗ I

Now consider the following junction model:


magnet with in plane angel θR z < 0

tunneling 0 < z < L

magnet with in plane angel θL z > L

the corresponding Hamiltonian is: (M, t > 0)

H =


pzσz ⊗ σz +M cos θLI ⊗ σx +M sin θLI ⊗ σy z < 0

pzσz ⊗ σz + tσx ⊗ I 0 < z < L

pzσz ⊗ σz +M cos θRI ⊗ σx +M sin θRI ⊗ σy z > L

(A.1)

then the bound state at x = 0 is:

1√
2( 1
M + 1

t )



e−iθL

i

−ie−iθL

−1


 eMz z < 0

e−tz z > 0

the bound state at x = L is:
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1√
2( 1
M + 1

t )



e−iθR

−i

ie−iθR

−1


 et(z−L) z < L

e−M(z−L) z > L

now in the subspace of these two bound states, the Hamiltonian in Eq. (A.1) is projected as:

H =
e−tL

1
M + 1

t

(− sin θσx + (1 + cos θ)σy) (A.2)

here θ = θR − θL.

A.2 Bound state as function of θ

The solution of this projected Hamiltonian in Eq. (A.2) is:

1√
2

 1

ieiθ/2

 , E =
e−tL

1
M + 1

t

2 cos
θ

2

1√
2

 −1

ieiθ/2

 , E = − e−tL

1
M + 1

t

2 cos
θ

2

then go back to the original basis (ψt↑, ψt↓, ψb↑, ψb↓)
T , obtain the wavefunction corresponding the two

bound states:E = ± e−tL
1
M + 1

t

2 cos θ2 as shown in Appendix.

from this we can work out the probability on the top and bottom edge:

Ptop = 1
2 +A sin θ

2

Pbottom = 1
2 −A sin θ

2

, E =
e−tL

1
M + 1

t

2 cos
θ

2

Ptop = 1
2 −A sin θ

2

Pbottom = 1
2 +A sin θ

2

, E = − e−tL

1
M + 1

t

2 cos
θ

2

here A =
L+ 2

M+t
1
M + 1

t

e−tL. From here one can see that particle jump between two edges with 4π periodicity.

In some limit like M + t, L = 0, (although we can not set Lt� 1 in the large separation limit, which is our

starting point), one can recover the full oscillation, i.e. at some angle particle is completely localized at one

edge, but in general we can only get partial oscillation.
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Two bound states wavefunction in the basis (ψt↑, ψt↓, ψb↑, ψb↓)
T are (at limit tL� 1):

in the region 0 < z < L

1

2
√

( 1
M + 1

t )



e−iθL(1e−tz + ie−iθ/2e−t(L−z))

ie−tz + eiθ/2e−t(L−z)

−ie−iθL(1e−tz − ie−iθ/2e−t(L−z))

−(e−tz + ieiθ/2e−t(L−z))


, E =

e−tL

1
M + 1

t

2 cos
θ

2

1

2
√

( 1
M + 1

t )



e−iθL(−e−tz + ie−iθ/2e−t(L−z))

−ie−tz + eiθ/2e−t(L−z)

−ie−iθL(−e−tz − ie−iθ/2e−t(L−z))

−(−e−tz + ieiθ/2e−t(L−z))


E = − e−tL

1
M + 1

t

2 cos
θ

2

in the region z < 0

1

2
√

( 1
M + 1

t )



e−iθL(1eMz + ie−iθ/2e−t(L−z))

ieMz + eiθ/2e−t(L−z)

−ie−iθL(1eMz − ie−iθ/2e−t(L−z))

−(eMz + ieiθ/2e−t(L−z))


, E =

e−tL

1
M + 1

t

2 cos
θ

2

1

2
√

( 1
M + 1

t )



e−iθL(−eMz + ie−iθ/2e−t(L−z))

−ieMz + eiθ/2e−t(L−z)

−ie−iθL(−eMz − ie−iθ/2e−t(L−z))

−(−eMz + ieiθ/2e−t(L−z))


E = − e−tL

1
M + 1

t

2 cos
θ

2

in the region L < z

1

2
√

( 1
M + 1

t )



e−iθL(1e−tz + ie−iθ/2eM(L−z))

ie−tz + eiθ/2eM(L−z)

−ie−iθL(1e−tz − ie−iθ/2eM(L−z))

−(e−tz + ieiθ/2eM(L−z))


, E =

e−tL

1
M + 1

t

2 cos
θ

2

1

2
√

( 1
M + 1

t )



e−iθL(−e−tz + ie−iθ/2eM(L−z))

−ie−tz + eiθ/2eM(L−z)

−ie−iθL(−e−tz − ie−iθ/2eM(L−z))

−(−e−tz + ieiθ/2eM(L−z))


E = − e−tL

1
M + 1

t

2 cos
θ
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Appendix B

Gilbert damping

Now we include the Gilbert damping term in the spin transfer torque analysis of the Landau-Lifshitz-Gilbert

equation:

γ−1∂t
−→
M = −D

−→
M ×Mz ẑ +

1

VM
M̂ × (∆

−→
I S × M̂)

+
α

Msγ

−→
M × d

−→
M

dt
(B.1)

where the last term is due to Gilbert damping. Now we can write Eq. B.1 in terms of components, and

furthermore continue our approximation from the body of the text where we assume Mz � MS for total

in-plane magnetization MS . Additionally, making an ansatz that Mx = MS cos θ(t), My = MS sin θ(t),

γ−1∂tMz =
eV − ~θ̇(t)

2πVM
+
α

γ
MS θ̇(t)

γ−1∂tMx = −DMS sin θ(t)Mz −
α

γ
θ̇(t) cos θ(t)Mz

γ−1∂tMy = DMS cos θ(t)Mz −
α

γ
θ̇(t) sin θ(t)Mz.

In general the dynamics can be complicated, even after assuming Mz �MS . Let us consider our physical

system of interest K2CuF4 where we estimate that DMS = 0.28T . Thus for small voltages V < 1mV , then

DMS > −αγΩM , as long as α < 10−1. With this approximation we have

γ−1∂tMz =
eV − ~θ̇(t)

2πVM
+
α

γ
MS θ̇(t)

γ−1∂tMx = −DMS sin θ(t)Mz

γ−1∂tMy = DMS cos θ(t)Mz.

From here we see that Gilbert damping will just provide another channel for the damping of the imbalanced
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spin current, which will decrease relaxation time to

τ =

[(
~

2πVM
+ α

MS

|γ|

)
γ2D

]−1

(B.2)

and decrease the rotation frequency to

ΩM =
eV

~ + α2πVMMS/γ
. (B.3)
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