
c© 2014 by Ehsan Totoni. All rights reserved.

POWER AND ENERGY MANAGEMENT OF MODERN ARCHITECTURES IN
ADAPTIVE HPC RUNTIME SYSTEMS

BY

EHSAN TOTONI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Doctoral Committee:

Professor Laxmikant V. Kalé, Chair
Professor Josep Torrellas
Professor Maŕıa Jesús Garzarán
Doctor Fabrizio Petrini, IBM TJ Watson Research Center

Abstract

Power and energy efficiency are important challenges for the High Performance Computing

(HPC) community. Excessive power consumption is a main limitation for further scaling of

HPC systems, and researchers believe that current technology trends will not provide Ex-

ascale performance within a reasonable power budget in near future. Hardware innovations

such as the proposed Exascale architectures and Near Threshold Computing are expected

to improve power efficiency significantly, but more innovations are required in this domain

to make Exascale possible.

To help shrink the power efficiency gap, we argue that adaptive runtime systems can be

exploited. The runtime system (RTS) can save significant power, since it is aware of both

the hardware properties and the application behavior. We use application-centric analysis

of different architectures to design automatic adaptive RTS techniques that save significant

power in different system components, only with minor hardware support.

In a nutshell, we analyze different modern architectures and common applications and

illustrate that some system components such as caches and network links consume exten-

sive power disproportionately for common HPC applications. We demonstrate how a large

fraction of power consumed in caches and networks can be saved using our approach auto-

matically. In these cases, the hardware support the RTS needs is the ability to turn off ways

of set-associative caches and network links. We also present some required RTS techniques,

such as recognizing the running application’s pattern using pattern recognition to predict

its future and adapt the hardware appropriately. Furthermore, we address two types of

prevalent heterogeneity: utilization of accelerator devices and process variation. To study

accelerators, we analyze and optimize an example application on a heterogeneous architec-

ture and demonstrate techniques for efficient mapping on different devices (CPU and GPU).

To address process variation challenges, we develop accurate models that let the RTS sched-

ule efficiently in the presence speed and power consumption variation. Using the models,

ii

we develop a novel scheduling framework that uses integer linear programming to enforce

different performance and power consumption constraints.

iii

To my loving family and friends, who helped me on this journey.

iv

Acknowledgments

Ph.D. is a long and difficult journey, which one cannot possibly finish successfully without

extensive support of others. I would like to thank my advisor, Prof. Kale, for letting me

explore different research ideas. He was patient with me and gave me invaluable insights

throughout my Ph.D. program. He also provided me the support I needed to achieve my

goals.

University of Illinois is a great institution with world class faculty members. I profited from

the advise and support of many other faculty members as well. For each of the research topics

I pursued, I was able to work with a world-renowned expert of that field. I would like to thank

Prof. Torrellas, Prof. Garzaran, and Prof. Heath for helping me in various projects. Their

advice and support made finishing my research projects possible. Through my interactions

with these experienced researchers, I learned how to approach a research problem, how to

analyze the tradeoffs and find solutions, and how to present the results. I also need to thank

Dr. Fabrizio Petrini (IBM Research) for providing me feedback, motivation, and insight

about the big picture.

Parallel Programming Laboratory (PPL) is filled with many amazing students and staff.

Their accomplishments and brilliant research ideas were constant sources of inspiration for

me. Many ideas came out of our discussions, and they also assisted me in many other ways.

I would like to thank Phil and Michael for proofreading my manuscripts and helping me

prepare my presentations. Thanks to Nikhil for helping me solve technical problems and

Esteban for motivating me. Also, thanks to Osman and Akhil for collaborating with me in

power-related projects.

My life out of the lab was very important during these years. Champaign-Urbana’s com-

munity, especially Iranians, welcomed me from the very first moment I arrived. I had an

amazing time these years, learned a lot of things, and made some of my best friends. All in

all, my life in Champaign was an unforgettable experience!

v

Last but not least, the emotional support from my family and friends was very important

these years. In the most difficult times, I always felt loved and supported, which helped me

carry on and continue to make progress. I will always be grateful to them.

vi

Grants

This work was partially supported by the following sources:

• Illinois-Intel Parallelism Center (I2PC), which is supported by Intel Corporation, par-

tially supported this research.

• This work was also partially supported by U.S. Department of Energy grant DE-

SC0006706.

• This research used resources of the Argonne Leadership Computing Facility at Ar-

gonne National Laboratory, which is supported by the Office of Science of the U.S.

Department of Energy under contract DE-AC02-06CH11357.

vii

Table of Contents

List of Figures . xi

List of Tables . xiii

List of Algorithms . xiv

CHAPTER 1 Introduction . 1
1.1 Dissertation Overview . 4

CHAPTER 2 Performance, Power, and Energy Evaluation of Modern Architec-
tures . 6
2.1 Platforms . 8

2.1.1 Intel Single-chip Cloud Computer . 8
2.1.2 Other Platforms . 10

2.2 Applications . 11
2.3 Evaluation Results . 13

2.3.1 Intel SCC . 14
2.3.2 Intel Core i7 Processor . 17
2.3.3 Intel Atom D525 . 18
2.3.4 Nvidia ION2 Platform . 19
2.3.5 Load Balancing . 20

2.4 Comparison of Different Architectures . 22
2.5 Related Work . 26
2.6 Conclusion . 27

CHAPTER 3 Heterogeneous On-Chip Architectures: Case Study With Object
Detection . 29
3.1 Environmental Setup . 32

3.1.1 ViVid . 32
3.1.2 Blockwise Distance . 33
3.1.3 Cell Histogram Kernel . 33
3.1.4 Pairwise Distance . 34

viii

3.1.5 Ivy Bridge Architecture . 34
3.1.6 Evaluation Methodology . 35

3.2 Optimization of Kernels in OpenCL . 37
3.2.1 Filter Kernel . 37
3.2.2 Cell Histogram Kernel . 38
3.2.3 Classifier Kernel . 39
3.2.4 Performance Evaluation . 39

3.3 Comparison with Other Programming Paradigms 44
3.3.1 OpenMP with Compiler Vectorization 44
3.3.2 OpenMP with Manual Vectorization 45
3.3.3 OpenCV Library Calls . 46
3.3.4 Performance and Effort Comparison 48
3.3.5 Possible Hardware and Software Improvements 51

3.4 Application Performance and Energy . 52
3.4.1 Mapping Strategies . 55
3.4.2 Saving Energy with DVFS . 58
3.4.3 Trading Accuracy for Energy . 58

3.5 Related Work . 59
3.6 Conclusions . 60

CHAPTER 4 Adaptive Cache Hierarchy Reconfiguration in Adaptive HPC Run-
time Systems . 62
4.1 Background and Motivation . 63
4.2 HPC Systems . 65

4.2.1 Provisioning Practices . 65
4.2.2 Applications . 65
4.2.3 Runtime Systems . 68

4.3 Cache Hierarchy . 69
4.3.1 Cache Structure . 69
4.3.2 Cache Power . 69
4.3.3 Architectural Opportunities . 70
4.3.4 Streaming . 70

4.4 Reconfiguration in Adaptive Runtime Systems 71
4.4.1 Overview of Our Approach . 71
4.4.2 Generalization . 74
4.4.3 Practical Details . 77

4.5 Evaluation of Runtime Cache Reconfiguration 79
4.5.1 Methodology . 79
4.5.2 Results . 80

4.6 Reconfigurable Streaming . 84
4.7 Related Work . 86
4.8 Conclusion . 88

ix

CHAPTER 5 Power Management of Extreme-scale Networks with On/Off Links
in HPC Runtime Systems . 89
5.1 Background and Motivation . 92

5.1.1 Related Work . 92
5.1.2 Network Power Management Support on Current Machines 93
5.1.3 Extreme-scale Networks . 93
5.1.4 Application Communication Patterns 94

5.2 Potentials of Basic Network Power Management 97
5.2.1 Link Usage of Modern HPC Networks 98
5.2.2 Different Mappings . 102

5.3 Implementation in Runtime System and Hardware 103
5.3.1 Runtime System Support . 104
5.3.2 Hardware Support . 105

5.4 Power Model for Network Links . 106
5.5 Effect of on/off Transition Delay . 109
5.6 Conclusions and Future Work . 111

CHAPTER 6 Runtime Scheduling in Presence of Process Variation Heterogeneity . 113
6.1 Background on Process Variation . 115
6.2 Evaluation Setup . 116
6.3 Programming Systems . 117

6.3.1 Impact on Load Balance . 118
6.4 Performance and Power Modeling . 120

6.4.1 Model 1 . 122
6.4.2 Model 2 . 122
6.4.3 Model 3 . 125
6.4.4 Model 4 . 125
6.4.5 Summary of Performance Models . 127
6.4.6 Modeling Dynamic Power . 128

6.5 Model Driven Scheduling . 130
6.5.1 Efficient Configuration Space Exploration 130
6.5.2 Incorporating DVFS . 131
6.5.3 Incorporating Communication Performance 132
6.5.4 Adapting to Application Phases . 134

6.6 Evaluation . 134
6.7 Related Work . 136
6.8 Conclusion and Future Work . 137

CHAPTER 7 Concluding Remarks . 139
7.1 Future Research Directions . 141

REFERENCES . 143

x

List of Figures

2.1 Architecture overview of the SCC . 8
2.2 Power breakdown of the SCC in full-power and low-power mode 9
2.3 Speedup on different numbers of SCC cores 15
2.4 Power consumption on different numbers of SCC cores 16
2.5 Energy consumption on different numbers of SCC cores 17
2.6 Speedup on different numbers of threads in the Intel Core i7 18
2.7 Power consumption on different numbers of threads in the Intel Core i7 . . . 19
2.8 Energy consumption on different numbers of threads in the Intel Core i7 . . 20
2.9 Speedup on different numbers of threads in the Atom processor 21
2.10 Power consumption on different numbers of threads in the Atom processor . 22
2.11 Energy consumption on different numbers of threads in the Atom 23
2.12 Speed, power, and energy running on the ION2 platform 24
2.13 Utilization of the threads before and after balancing the load on the SCC

and Core i7 platforms . 25
2.14 Speed on the different platforms relative to Atom 26
2.15 Power consumption on the different platforms 27
2.16 Energy consumption on the different platforms 28

3.1 Change of coefficient data layout for vectorization 38
3.2 Execution time of kernels with different optimizations 41
3.3 Performance comparison of filter kernel in different paradigms 48
3.4 Execution time and power consumption of kernels 53
3.5 Energy consumption . 54
3.6 Running full application on CPU or GPU or utilizing both 56
3.7 Accuracy vs. energy consumption . 59

4.1 5-point 2D stencil example . 67
4.2 Time between calls to Allreduce in MILC . 72
4.3 Timeline view of phases of MILC . 75
4.4 PTA for sample abc . 75
4.5 Different communication calls are combined if too close in time 78
4.6 Time penalty and cache energy saving of reconfiguration 81
4.7 Reconfiguration with different input sizes . 83

xi

4.8 Performance of different streaming configurations for HPCCG 86
4.9 Statistics of different streaming configurations for HPCCG 87

5.1 IBM PERCS - a two-level directly-connected network 95
5.2 Communication patterns of different applications 96
5.3 Fraction of links used during execution . 98
5.4 Fraction of links used during execution of stencil codes 99
5.5 Fraction of links used during execution on PERCS 100
5.6 Fraction of links used during execution of stencils on PERCS 100
5.7 Fraction of links used during execution on tori 101
5.8 Fraction of links used during execution of stencils on tori 102
5.9 Fraction of links used with different mappings 103
5.10 Network capacity utilization of different applications 109
5.11 Potential link power saving on PERCS network 111
5.12 Potential link power saving on 6D Torus network 111
5.13 Potential total machine power saving for different approaches 112

6.1 An example of core frequency variation on the same chip 116
6.2 An example of load balancing across cores with different frequencies 118
6.3 The load imbalance across all configurations with different over-decomposition

ratios . 120
6.4 Performance scaling with cores . 121
6.5 Performance scaling with frequency . 121
6.6 Distribution of errors of different models for performance of Jacobi3D 123
6.7 Distribution of errors of different models for performance of miniMD 124
6.8 Model 4 predictions as a function of actual performance 127
6.9 Prediction accuracy of different models for Jacobi3D 127
6.10 Prediction accuracy of different models for MiniMD. 128
6.11 Distribution of errors of Model 4 for power consumption prediction 129
6.12 Assigning communication scores to different cores on a chip 133
6.13 Comparison of our ILP-based scheduling approach to simple heuristics for

miniMD . 135
6.14 Comparison of our ILP-based scheduling approach to simple heuristics for

Jacobi3D . 136

xii

List of Tables

2.1 Intel Core i7 processor specifications . 10
2.2 Intel Atom D525 processor specifications . 11
2.3 NVIDIA ION2 graphics card specifications 12
2.4 Performance counters for the applications . 13
2.5 SCC configuration used in the experiments 14

3.1 Intel Ivy Bridge processor specifications . 35
3.2 Software environment used for experiments 36
3.3 Effective optimizations for filter and classifier kernels 42
3.4 Software metrics for different implementations of the filter kernel 50

4.1 Simulated processor’s parameters . 80
4.2 Application domain sizes . 80
4.3 Best configuration found with lowest energy 82

6.1 Simulated processor’s parameters . 117
6.2 Example scheduling case comparing various schemes 136

xiii

List of Algorithms

1 Filter kernel . 33

2 Build PTA from sample . 75

3 Greedy variation-aware load balancing algorithm 119

xiv

CHAPTER 1
Introduction

Power and energy issues are increasingly important for computers at different scales. The

number of transistors on a chip continues to increase as predicted by Moores law, but the

chip’s power and energy consumption do not scale as before. Previous generations of CMOS

could scale down the voltage (known as “Denard scaling” [1]) resulting in much lower power

and energy consumption. However, the voltage of the transistors cannot be scaled much

further easily because of the physical limitations. Therefore, the limited power budget of

the processors should be used most efficiently.

Power and energy limitations have a direct impact on science and engineering applications

in High-Performance Computing (HPC) environments. The HPC community is aiming

to keep the total power intake of future Exascale machines (the next generation of faster

computers) at tens of mega watts (MW), whereas current systems with only 10 PetaFLOPS

of performance are already consuming over 10 MW of power. Multiple innovations must be

developed to dramatically reduce the total power usage of supercomputers.

Realizing Exascale systems is mostly limited by power and energy consumption issues,

and new design approaches are needed. Exascale systems are required to deliver 100-1000x

higher performance compared to today’s Petascale machines, but stay within similar power

envelope. Various analyses in the literature, such as the comprehensive Exascale Computing

Study [2], conclude that Exascale cannot be reached by following the current trends of

energy efficiency. Hence, much more energy-efficient approaches are needed for the design

of computer systems, potentially changing multiple layers, from hardware to applications.

There are various efforts to improve hardware’s power efficiency towards Exascale, such as

new architectures that are proposed in order to fulfill this objective [3,4]. To reduce various

overheads, they include a large number of relatively simple processor cores rather than fewer

complex cores. Simple cores do not have the overheads of power consuming features of

1

heavy cores, such as out-of-order execution and speculation. In essence, simple cores use

the available power to execute useful operations, rather than spending power for scheduling

instructions (e.g. out-of-order execution). However, they require more parallelism in the

application to attain the same performance levels. In addition, Exascale architectures use

heterogeneity to map different tasks to best matching processor type. For example, large

latency-optimized cores are used for operating system and runtime, while simple cores are

used for the applications calculations. Furthermore, these architectures strive to improve

the energy efficiency of memory systems. For example, they do not provide full-chip cache

coherence to avoid its overheads.

One major direction for power efficiency improvement is low voltage operation [5,6]. The

reason is that decreasing the supply voltage (Vdd) reduces dynamic power quadratically

and also reduces static power. Researchers believe that the highest energy-efficiency can

be obtained when the supply voltage is only slightly higher than the transistor’s threshold

voltage [7]. For current technologies, it roughly corresponds to Vdd of 0.5V, rather than

the conventional 1V value. This regime is called Near-Threshold Computing (NTC). NTC

can potentially decrease the chip’s power consumption more than 40 times. However, low

voltage operation slows down the processors significantly, brings more reliability challenges,

and increases the effects of process variation. Therefore, circuits and devices need to be

redesigned for low voltage operation.

Although these hardware innovation are expected to be significant, they are not enough

to attain the power efficiency required for Exascale, based on the comprehensive Exascale

report analysis [2]. Therefore, more innovations are required that are potentially software-

centric. Among the software layers, the runtime system seems very promising comparatively.

The runtime system is aware of both the running application and the hardware. Targeting

the runtime most often avoids changing the application code, which is harder to change. It

also avoids drastic changes and overheads in the hardware.

An HPC Runtime system (RTS) provides many services for the running application, and

has great potential for power and energy management as well. The use of a runtime sys-

tem for management of the application’s communication and other parallel services is well

known [8, 9]. However, research has demonstrated the capabilities of runtime systems for

other features such as load balancing [10], fault tolerance [11], and power management as

well [12, 13]. We take advantage of an introspective software component that is aware of

both the current hardware status as well as the application evolution.

In this research, we demonstrate that an adaptive runtime system can improve the power

efficiency of HPC systems without significant changes in the application, and only with

minor hardware support. It can do so by monitoring both the application and the hardware,

2

and adapting to their properties. We only change the runtime layer of the system, since

it is arguably the easiest to change compared to the hardware and the application layers.

Our runtime studies follow a common theme. First, we exploit the capabilities of adaptive

runtime systems as they are powerful tools that observe both the hardware status and

the application behavior. Second, we analyze the relevant characteristics of common HPC

applications and exploit them in our methods. Third, we propose small necessary hardware

support, considering the properties and opportunities in modern hardware.

Avoiding drastic changes in the hardware and application is an important advantage of

our approach. The approaches for power and energy efficiency can either make dramatic

(revolutionary) hardware changes or incremental (evolutionary) ones. It is often argued

that drastic revolutionary changes are required at this stage. However, small incremental

changes had been more common so far because they are easier to sustain. Revolutionary

changes for the benefit of only one domain (e.g. HPC) can potentially impair us from using

commodity pieces, among other problems. For example, many large-scale supercomputers

use commodity processors mainly designed for servers. Furthermore, even when the proces-

sors themselves are different, often times the same architecture design is used across various

scales by just varying some parameters. For instance, Intel’s Haswell microarchitecture [14]

is used in processors from low power mobile devices to high-performance servers. Various

instances of the architecture have different parameters such as the number of cores and the

frequency range, but the underlying design is almost the same. Thus, incremental changes

that allow the use of commodity hardware are highly preferred.

We argue that the same commodity processor can be used for more energy-efficient HPC

machines as well, often with minor HPC-specific support. Thus, we strive to improve the

power and energy efficiency of HPC machines while keeping them economically viable. Al-

though we develop our methods mainly for HPC systems, they can be adopted for other

domains as well (see Chapter 3 for an example).

Our proposals for power and energy efficiency are orthogonal with the mentioned hardware

innovations and can be utilized at the same time. In some cases, our methods complement

the hardware ones. For example, our variation-aware scheduling framework (see Chapter 6)

addresses some of the challenges of process variation caused by low voltage operation.

Overall, we follow a cross-layer approach that focuses on the characteristics of HPC appli-

cations, capabilities of the adaptive runtime system, and the opportunities in different com-

ponents (e.g. caches) of modern hardware. First, we analyze different architectural designs

using multiple applications, focusing on the opportunities of heterogeneous and many-core

architectures. Second, we study the opportunities and challenges (e.g. programmability) of

heterogeneous architectures and propose energy efficient runtime methods to exploit on-chip

3

heterogeneity. Third, we strive to improve the energy efficiency of processor caches using

adaptive runtime systems, since they consume a large fraction of processors power. Forth, we

propose a similar adaptive runtime system based approach to improve the energy efficiency

of large-scale networks. Fifth, we tackle the challenges of semiconductor process variation

by intelligent runtime scheduling. These studies complement each other, and provide insight

for better power and energy efficiency in different systems.

1.1 Dissertation Overview

This dissertation is organized as follows. Chapter 2 evaluates and analyzes different parallel

architectures, such as heterogenous and many-core architectures. We use Intel Single-Chip

Cloud Computer (SCC) to analyze many-core architectures and compare them to others.

The analysis criteria in this study are speed, power, energy, programmability, and application

portability. The results show that many-cores represent a balanced point in terms of these

metrics, since they can run existing code fast with low power. On the other hand, we show

that heterogeneous architectures can be exceptionally superior for some applications, but

they are difficult to program. We study them in more detail in the subsequent chapter.

In addition, we study one important challenge for many-cores, namely process variation,

in Chapter 6. In general, we use the insights of this chapter to tackle various power and

efficiency challenges in later chapters.

In Chapter 3, we study the energy efficiency opportunities and challenges of heterogeneous

architectures that were identified in the previous chapter. The opportunities include mapping

different kernels of the running application to the more efficient device (CPU or GPU in this

case) for that kernel. On the other hand, programmability is a main challenge, for example.

To study the issues, we optimize and analyze a vision application on a heterogeneous on-

chip architecture and improve its energy efficiency. This mobile application is very similar

to large-scale HPC applications in various aspects, and hence, our results are extensible to

other domains. We demonstrate that a unified programming paradigm such as OpenCL can

increase programmer productivity since the same or similar codes can run on both devices. In

addition, the results suggest that trying to get the maximum utilization of the heterogeneous

platform naively is not efficient, and one has to map the kernels carefully. Since a fixed power

budget is shared among devices, techniques such as software pipelining that map each kernel

to the best device, while increasing utilization can be the most effective.

We continue by focusing on the cache hierarchy in Chapter 4, since caches consume a large

fraction a processors power budget. We analyze the memory access patterns of common HPC

4

applications and demonstrate why many of these applications cannot take advantage of all

the cache capacity effectively in many cases. On the hardware side, since the caches are

usually set-associative, they are already partitioned. Therefore, one can turn some of the

ways of set-associative caches off to save significant power. We introduce a runtime system

based method to reconfigure caches in this manner adaptively. In the context of this study,

we illustrate how an HPC application’s pattern can be identified and expressed using formal

language theory. This helps the runtime system predict the future of the application and

adapt effectively. In addition, we introduce a software-controlled streaming method that is

controlled by the runtime system to adapt to the applications pattern. Overall, our approach

makes the cache hierarchy more power-efficient for HPC applications.

We apply the same methodology we used for caches to improve power-efficiency of the

large-scale networks in Chapter 5. Similar to caches, networks consume substantial power

disproportionately, even when the running applications do not need it. We show that com-

mon HPC applications do not use a large fraction of the network links in modern high-radix

topologies. In this case, the hardware property that we exploit for power efficiency is that

some network links can be turned off. Therefore, we develop a runtime system based method

to improve the power efficiency of large-scale HPC networks by turning links on and off adap-

tively. Note that we use the previous chapter’s ideas to design our runtime techniques for

a different component of the system, which shows the generality of our adaptive runtime

system approach.

We return to many-core architectures in Chapter 6 and study their inherent heterogene-

ity, which is caused by process variation. This problem is different than previous ones, and

therefore, it needs different runtime techniques. Because of process variation, different cores

have different power and performance characteristics. The runtime needs to choose a con-

figuration (a set of cores) that delivers the best performance while staying within the power

budget. The number of configurations is exponential in the number of cores and hence,

sampling all of the configurations is not possible. To solve this problem, we develop models

that let the runtime system predict the performance and power consumption of different

configurations of cores. Using these models, we develop a novel scheduling framework based

on integer linear programming that lets the runtime enforce different performance and power

constraints effectively. For example, the runtime can choose the set of cores that provide

the best performance under a certain power budget. This runtime scheduling framework

is also capable of enforcing other constraints, such as task mapping constraints for better

communication performance.

Finally, we summarize our contributions in Chapter 7. This chapter also includes the

possible future research directions based on this dissertation’s insights.

5

CHAPTER 2
Performance, Power, and Energy Evaluation of

Modern Architectures .

Following Moore’s law, the number of transistors that can be placed on a chip keeps increas-

ing rapidly with each technology generation. Not surprisingly, users expect the performance

to also improve over time with the increase in the number of transistors. However, perfor-

mance depends on multiple factors beyond the transistor count.

The architecture community has historically tried to turn the higher transistor count into

higher performance. For example, during the single-thread era, excess transistors were used

for architectural features such as pipelining, branch prediction, or out-of-order execution.

These features were able to improve performance while largely keeping the application un-

changed.

However, in the last several years, some key technology parameters such as the supply

voltage have stopped scaling. This has led to chips with unsustainably-high power, power

density and energy consumption. This fact combined with the diminishing returns from

single-thread architectural improvements, has pushed forward thread parallelism as the only

solution to make effective use of the large number of transistors available. The result has

been a paradigm shift toward parallelism.

A key architectural challenge now is how to support increasing parallelism and scale per-

formance, while being power and energy efficient. There are multiple options on the ta-

ble, namely “heavy-weight” multi-cores (such as general purpose processors), “light-weight”

many-cores (such as Intel’s Single-Chip Cloud Computer (SCC) [15]), low-power proces-

sors (such as embedded processors), and SIMD-like highly-parallel architectures (such as

General-Purpose Graphics Processing Units (GPGPUs)).

The Intel SCC [15] is a research chip made by Intel Labs to explore future many-core

6

architectures. It has 48 Pentium (P54C) cores in 24 tiles of two cores each. The tiles are

connected by a four by six mesh in the chip. The SCC naturally supports the message passing

programming model, as it is not cache-coherent in hardware. We have ported Charm++ [16]

and Adaptive MPI (AMPI) [16] to this platform to be able to run existing sophisticated

applications without any change.

The goal of this chapter is to explore various trade-offs between the SCC and the other

types of processors. We use five applications to study their power and performance: NAMD,

Jacobi, NQueens, Sort and CG (conjugate gradient). These applications exhibit different

characteristics in terms of both computation and communication. The processors used are

the Intel SCC as a light-weight many-core, the Intel Core i7 as a heavy-weight multi-core,

the Intel Atom as a low-power processor, and the Nvidia ION2 as a GPGPU. These pro-

cessors represent different cutting-edge architectures. To compare these architectures, the

applications are executed with the same input parameters and we measure speed, power,

and energy consumption.

Our results show that each of the designs is effective in some metric or condition and there

is no single best solution. For example, the GPGPU provides a significant advantage in terms

of power, speed and energy in many cases, but its architecture is not general enough to fit

all the applications efficiently. In addition, the GPGPU requires significant programming

effort to achieve this efficiency (as we had to use different codes to run on the GPGPU) and

cannot run legacy codes.

The Intel SCC results suggest that light-weight many-cores are an opportunity for the

future. The SCC has lower power than the heavy-weight multi-core and runs faster than the

low-power design. Also, the light-weight many-core is general enough to run legacy code and

is easy to program (in contrast to the GPGPU). However, some weaknesses of the platform

should be addressed in future designs to make it competitive with sophisticated multi-cores.

One such weakness that we identified is slow floating-point performance.

This chapter also proves that the low-power processor does not necessarily result in less

energy consumption. As shown by our data on the Intel Atom platform, the extra delay has

a greater effect than the power savings achieved.

The rest of this chapter is organized as follows. Section 2.1 describes the architecture

of the platforms that we study. Section 2.2 briefly introduces the applications, as their

characteristics are very important to understand their scaling and power consumption on

different platforms. Section 2.3 evaluates the platforms using the applications. We compare

the architectures in Section 2.4 using the results of the previous section and analyze the

tradeoffs of each one. We discuss the related work in Section 2.5 and conclude in Section 2.6.

7

2.1 Platforms

Here we describe the platforms that we evaluate, with a focus on their design concept and

level of parallelism. Among these platforms, the SCC is a research chip while the others are

examples of commodity platforms, which are being widely used in different machines.

2.1.1 Intel Single-chip Cloud Computer

The “Single-Chip Cloud Computer” (SCC) is Intel’s new research many-core architecture.

It has 48 Pentium cores connected through a mesh interconnect. It has been created by Intel

Labs to facilitate software research on future many-core platforms. This chip is not cache

coherent and it naturally supports the message passing parallel programming paradigm.

Figure 2.1 shows the architecture overview of the SCC [15]. The cores are arranged in

groups of two in 24 tiles. The tiles are connected in a four by six mesh configuration. The

cores are simple second-generation off-the-shelf Pentium cores (P54C). Each core has 16KB

L1 data and 16KB L1 instruction caches as well as a 256KB unified L2 cache. Each tile

has a 16KB SRAM called Message Passing Buffer (MPB), which is used for communication

inside the chip. These MPBs form a shared address space used for data exchange. The cores

and MPB of a tile are connected to a router by Mesh Interface (I/F) unit. The SCC also

has four DDR3 memory controllers in the four corners of the mesh network to connect cores

to memory.

Figure 2.1: Architecture overview of the SCC.

The SCC is implemented in 45nm CMOS technology and has 1.3 billion transistors. The

area of each tile is 18 mm2 with a total die area of 567 mm2. Power for the full chip ranges

from 25W to 125W. It consumes 25W at 0.7V, with 125MHz cores, 250MHz mesh, and

50◦C. It consumes 125W at 1.14V, with 1GHz cores, 2GHz mesh, and 50◦C. Power for the

on-die network is 6W for a 1.5 Tb/s bisection bandwidth and 12 W for a 2 Tb/s bisection

8

bandwidth. Figure 2.2 shows the power breakdown of the chip in two different modes: full

power and low power [17].

Figure 2.2: Power breakdown of the SCC in full-power and low-power mode
(from J. Howard et al. [17]).

The SCC was designed with power management in mind. It includes instructions that let

programmers control voltage and frequency. There are 8 voltage domains on a chip: one

for the memory controllers, one for the mesh, and six to control voltage for the tiles (at the

granularity of 4-tile blocks). Frequency is controllable at the granularity of an individual

tile, with a separate setting for the mesh, thereby providing a total of 25 distinct frequency

domains. The RCCE library [18] provides easy access to these features, but it is more limited

than the available hardware features [17].

As mentioned, message passing is the natural way of programming this non-cache-coherent

chip. For this purpose, there is a low level message passing interface called RCCE that

provides low level access to the communication features of the SCC. It was designed so that

the chip can still operate without any operating system (“bare metal mode”) to reduce the

overheads [18]. However, Linux can also be run on the SCC, which is the most common

usage, and we ran our experiments in this mode. In addition, there is another interface called

Rckmb, which provides the data link layer for running network services such as TCP/IP.

We used the latter to port Charm++ and run existing applications. Using other layers to

port Charm++ could result in some communication performance improvement; however, it

would not change our conclusions.

Porting Charm++ and the applications did not involve any conceptual difficulty as the

SCC can be easily viewed as a cluster on a chip. However, there are many technical issues

involved in working with it. These include dealing with old compilers, an old operating

9

system, and unavailability of some standard software and libraries. Unfortunately, we could

not perform many of the intended experiments because of these technical issues and others

took much more time than expected.

2.1.2 Other Platforms

Intel Core i7 Processor The Intel Core i7 is a 64-bit x86-64 processor. We have used the

Core i7 860 Nehalem processor chip, which has four CPU cores and on-chip cache memory

on one 45nm die. Hyperthreading support allows it to appear to the OS as eight processing

elements. The cores cycle at 2.8GHz (disregarding Turbo Mode), which is a relatively high

frequency. Each of the four cores has 32KB instruction and 32KB data Level 1 caches,

and 256KB of Level 2 cache. The four cores share an inclusive 8MB Level 3 cache. The

specification of the Intel Core i7 is shown in Table 2.1.

Table 2.1: Intel Core i7 processor specifications.

Processor Number i7-860
of Cores 4
of Threads 8
Clock Speed 2.8 GHz
Cache Size 8 MB
Lithography 45 nm
Max TDP 95W
VID Voltage Range 0.65V-1.40V
Processing Die Size 296 mm2

of Processing Transistors on Die 774 million

Intel Atom D525 The Intel Atom is the ultra-low-voltage x86-64 CPU series from Intel.

It is designed in 45 nm CMOS and used mainly in low power and mobile devices. Hyper-

threading is also supported in this processor. However, there is no instruction reordering,

speculative execution or register renaming.

Due to its modest 1.8 GHz clock speed, even the fastest Atom D525 is still much slower

than any desktop processor. The main reason behind our selection of the Atom for our

experiments is that, while desktop chips have a higher frequency, the Atom is hard to beat

when it comes to power consumption. Atom allows manufacturers to create low-power

systems. However, low power does not always translate into high efficiency, meaning that

10

Atom may have low performance per watt consumed. We have explored this issue in our

experiments.

The specification of the Intel Atom processor that we used is shown in Table 2.2.

Table 2.2: Intel Atom D525 processor specifications.

Processor Number D525
of Cores 2
of Threads 4
Clock Speed 1.80 GHz
Cache Size 512 KB
Lithography 45 nm
Max TDP 13W
VID Voltage Range 0.800V-1.175V
Processing Die Size 87 mm2

of Processing Transistors on Die 176 million

Nvidia ION2 Platform Nvidia ION is a system/motherboard platform that includes

Nvidia’s GPU, DDR3 or DDR2 SDRAM, and the Intel Atom processor. The Nvidia ION2

has a dedicated graphics card for the new Atom CPUs. The ION2 is based on the GT218

chip (GeForce 305M, 310M) with dedicated memory (compared to the old ION that was a

chipset graphics card). ION2 systems can use CUDA (Nvidia’s General-Purpose Computing

on Graphics Processing Units technology) as well as OpenCL (Open Computing Language),

to exploit the parallelism offered by the CPU and the GPU together. This platform is used in

low-power devices, and yet is equipped with a GPU. Hence it has the potential to offer great

benefits in performance and power at the same time. We have used a 12” ION2 Pinetrail

netbook platform for our experiments.

The specification of the CPU was mentioned in Table 2.2. The specification of the graphics

processor is shown in Table 2.3.

2.2 Applications

The characteristics of the applications are important to understand their different behavior

and derive conclusions about the architectures. In this section, we describe the applications

we used to examine the different parallel architectures. We choose scalable parallel applica-

tions that use Charm++ [16] or MPI message passing paradigms. For the GPU platform,

11

Table 2.3: NVIDIA ION2 graphics card specifications.

ION Series ION2
GPU Number GT218
of CUDA Cores 16
Clock Speed 475 MHz
Memory 256 MB
Memory bus width 64-bit
Power consumption 12W

we use appropriate versions of the applications based on the OpenCL or CUDA models. The

benchmarks are reasonably optimized but not highly optimized for any particular architec-

ture. These applications represent different classes of programs with different characteristics

to stress the platforms.

Iterative Jacobi The Jacobi calculation is a useful benchmark that is widely used to

evaluate many platforms and programming strategies. A data set (2D array of values in

our case) is divided among processors and is updated in an iterative process until a con-

dition is met. The communication is mostly a nearest neighbor exchange of values. An

OpenCL implementation was used for ION2, while a Charm++ version was used for the

other platforms.

We selected Jacobi in our experiments since it is representative of stencil computations,

which are widely used in scientific programs.

NAMD NAMD is a highly scalable application for Molecular Dynamics simulations [19].

It uses hybrid spatial and force decomposition to simulate large molecular systems with

high performance. It is written in Charm++ to exploit its benefits such as portability,

adaptivity and dynamic load balancing. It typically has a local neighbors communication

pattern without bulk synchronization and benefits from communication and computation

overlap. It also tries to keep its memory footprint small in order to utilize caches and

achieve better memory performance. We chose this application to represent dynamic and

complicated scientific applications. We used the ApoA1 system as input, which has 92,224

atoms.

NQueens The NQueens puzzle is the problem of placing n chess queens on an n × n

chessboard so that no two queens attack each other. The program will find the number

12

of unique solutions in which such valid placement of queens is possible. This problem is

a classic example of the state space search problems. Since NQueens is an all-solutions

problem, the entire solution tree needs to be explored. Thus, this problem also presents a

great opportunity for parallelization with minimum communication.

We selected this problem since it is an integer program, as opposed to the other floating-

point problems, and it represents state space search applications.

CG Conjugate Gradient is one of the NAS Parallel Benchmarks (NPB) [20], which are

widely used to evaluate the performance of different parallel systems. CG is an iterative

method and involves lots of communication and data movement. We chose it to stress the

communication capabilities of our platforms. Unfortunately, we did not have a version of it

available on our GPU system.

Integer Sort Parallel sorting is a widely used kernel to benchmark parallel systems be-

cause it represents commercial workloads with few computation and heavy communication.

It does not have the massive floating point computations and regular communication pat-

terns (such as nearest neighbors) of many scientific workloads. We use a straightforward

implementation of Radix Sort in OpenCL and a similar Charm++ version.

Table 2.4 shows some performance counter values for the applications. They are obtained

using the PAPI library running on the Core i7 system. The numbers are normalized with

respect to the number of dynamic instructions executed. Since the applications are already

well-known, these few numbers give enough insight to help explain the results.

Table 2.4: Performance counters for the applications.

Jacobi NAMD NQueens CG Sort
L1 Data Misses 0.0053 0.0053 0.0003 0.0698 0.0066
Cond. Branches 0.0205 0.0899 0.1073 0.1208 0.0556
Float-pt operations 0.0430 0.3375 0.0004 0.2078 0.0001

2.3 Evaluation Results

We now run the applications on the proposed platforms and measure the scaling behavior

and the power and energy consumption. The data provides insight into the effectiveness of

different architectural approaches. We focus on the ability of the applications to exploit the

13

parallelism of the platform and how using more parallelism will affect power and energy con-

sumption. We connected power meters to the whole systems (rather than just the processor

chips) to measure the power consumption.

2.3.1 Intel SCC

We have ported Charm++ to the SCC using the network layer (TCP/IP) provided by

Rckmb. Thus, Charm++ programs can run on the SCC hardware without any change to

the source code. This simplifies the porting of software significantly. We used the highest

performance options available in the SCC software toolkit (1.3) to run the experiments and

characterize the system. Table 2.5 shows the SCC configuration used in the experiments.

Table 2.5: SCC configuration used in the experiments.

Operating mode Linux
Communication mechanism TCP/IP
Tile frequency 800 MHz
Mesh frequency 1600 MHz
Memory controller frequency 1066 MHz
Supply Voltage 1.1 V
Idle power 39.25 W

Figure 2.3 shows the speedup of the five applications on different numbers of cores. It

can be observed that using more cores improves performance, and that all the applications

except CG are scalable on this platform. In addition, these Charm++ applications are

scalable without any change to the source code. In Jacobi, the execution time per step on

one core is 7.87s, and on the full machine is 0.32s. This corresponds to a 24.6 speedup

on 48 cores. NQueens takes 568.36s to execute on one core and 19.66s on 48 cores. The

resulting speedup is 28, which is even higher than Jacobi. In NAMD, the time per step is

34.96s on one core and 1.23s on all the cores. This also corresponds to a speedup of 28 on

48 cores. Thus, NAMD is an example of a full-fledged application that can use many-core

architectures effectively.

Sort is the most scalable application, with a 32.7 speedup. This shows that the network

can handle the communication effectively.

On the other hand, CG is the worst-scaling application, with a speedup of just 4.91 on

32 cores. We could not run it on more cores because this application requires the number

of cores to be a power of two. The reason why CG is not scalable is the fine-grain global

14

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

Sp
ee

du
p

Number of Cores

NAMD
Jacobi

NQueens
CG

Sort

Figure 2.3: Speedup of the applications on different numbers of SCC cores.

communication present in the algorithm. For example, there is a global reduction after

each phase. Specifically, the performance counter data of Table 2.4 shows that CG has a

high number of L1 cache misses on Core i7. Since the problem size is small and fits in the

cache, the misses are caused by high communication. Thus, the SCC communication system

(network and software) may not be suitable for this application. Optimizing the network for

global communication such as by adding a collectives network can help significantly in this

case. Also, tuning the runtime system such as by tuning the collective algorithms may help.

As indicated above, CG requires a power-of-two number of cores. This is an important

consideration when designing many-cores, since some programmers may assume the number

of cores to be a power of two for simplicity. A promising solution is to use virtualization, and

use any number of virtual processors that the application needs on the available physical

processors. This feature is available in Charm++ but we do not evaluate it here.

Finally, we ran four of the applications on every possible number of cores – from 1 to 48.

The speedups are consistent in all the applications. In NAMD, there is some noise due to

the application’s dynamic and adaptive behavior.

Figure 2.4 shows the power consumption of the platform using different numbers of cores.

These values are the maximum values seen during the run time of each individual application.

For Jacobi, the power goes from 39.58W using just one core to 73.18W using all the 48 cores.

NAMD’s power consumption is similar to Jacobi. NQueens consumes more power, and goes

up to 85.5W.

CG and Parallel Sort consume less power compared to the other applications. This is

15

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 5 10 15 20 25 30 35 40 45 50

Po
w

er
 (W

)

Number of Cores

NAMD
Jacobi

NQueens
CG

Sort

Figure 2.4: Power consumption of the applications on different numbers of SCC
cores.

mainly because these applications are communication-bound and processors often stall, wait-

ing for the communications to be completed. CG consumes the least power because it has

the most stall time.

Figure 2.5 shows the energy consumed by each application, which is the power multiplied

by time of execution. The energy of each application with a given number of cores is

normalized to the application’s energy using all the cores. This allows us to compare the

applications. The general trend shows that using more cores to run the applications results in

less energy consumption on the SCC. This is because the performance improvement attained

by the added cores is higher than the power increases. Note that on the left side of Figure

2.5 there is a large reduction in energy as we use more cores. This is because the idle power

of the system is high compared to the power added by adding one core, while the execution

time decreases notably. For example, when going from one to two cores, the execution time

drops to nearly half, while the power difference is small. Therefore, the energy consumption

drops to nearly half.

The highest energy drop is for Sort and the lowest is for CG. This is because Sort is

scalable, and the time savings is more significant than the power added by using more cores.

Conversely, the inferior scalability of CG results in a small drop in energy consumption.

Again, one should keep in mind the idle power when analyzing power and energy consumption

because it offsets the power increase with more cores, and the time savings become more

important.

16

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

 E
ne

rg
y

Number of Cores

NAMD
Jacobi

NQueens
CG

Sort

Figure 2.5: Energy consumption of the applications on different numbers of SCC
cores. The data is normalized to the energy consumed with all the cores.

2.3.2 Intel Core i7 Processor

We have used the Charm++ infrastructure for the Intel x86 64 platform. In addition, we

have used the same Jacobi, NAMD, NQueens, and Sort programs written in Charm++ and

the same CG written in MPI as the ones we ran on the SCC. Since the Intel Core i7 is a

quad core processor with hyperthreading, we can run up to 8 threads.

Figure 2.6 shows the speedup of these applications on different numbers of threads. By

increasing the number of threads, we initially observe good speedups. Note the reduction in

speedup when 5 threads are used as opposed to 4 threads. This is probably because at least

two threads have to share the resources of one core. Therefore, they become slower and slow

down the whole application. However, with increased parallelism, the application becomes

faster and the slowdown is compensated.

Figure 2.7 shows the power consumption of the Core i7 platform using different numbers

of threads. As expected, the power used by this processor increases as the number of threads

increases. However, the increase is much higher than in other platforms. The power range

of the Core i7 system is from around 51W for the idle power up to 150W, which is much

higher than the SCC power.

Figure 2.8 presents the energy consumed by each application, which is the power multiplied

by the execution time. As in the case of the SCC, the energy is normalized to the energy

consumed when running all the threads. The general trend is that with more cores, the

energy consumption goes down. Again, as we saw in the case of speedup, when using 5

17

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

NAMD
Jacobi

NQueens
CG

Sort

Figure 2.6: Speedup of the applications on different numbers of threads in the
Intel Core i7.

threads, we had some increase in the runtime and, therefore, in energy consumption. Note

that the reduction in energy is not as large as in the SCC case.

2.3.3 Intel Atom D525

The Atom D525 is a dual core processor in which each core is 2-way hyper-threaded. All the

4 threads can execute independently. Hence we can specify up to 4 processors to Charm++.

In Figure 2.9, we observe good speedups with the increase in the number of threads for

several programs.

Figure 2.10 shows that the Atom system consumes much less power than the other plat-

forms. The increase in power per thread added is less than 1 W. Since the idle power of the

entire system is about 27.5 W, the power increase due to having all four threads active is

about 15% of the idle power.

In Figure 2.11, we observe that using more threads leads to less energy consumption, like

in the other platforms. The power used by the Atom increases with an increase in the number

of threads. However, the increase is not as rapid as in the Core i7 because of Atom’s simpler

architecture. At the same time, execution time reduces considerably with more threads, and

hence the energy consumption decreases.

18

 80

 90

 100

 110

 120

 130

 140

 150

 160

 1 2 3 4 5 6 7 8

Po
w

er
 (W

)

Number of Threads

NAMD
Jacobi

NQueens
CG

Sort

Figure 2.7: Power consumption of the applications on different numbers of
threads in the Intel Core i7.

2.3.4 Nvidia ION2 Platform

We leverage the parallel computing power of the Nvidia ION2 platform using OpenCL for

Jacobi, NQueens and Sort, and CUDA for NAMD. Unfortunately, we could not get a rea-

sonably tuned version of CG. GPUs are very effective at data parallel applications due to

the high number of simplistic SIMD compute units available in them. However, because the

GPU is a coprocessor on a separate PCI-Express card, data must first be explicitly copied

from the system memory to the memory on the GPU board. In general, applications which

require a large amount of computation per data element and/or make full use of the wide

memory interface are well suited to the GPU programming model.

Figure 2.12 shows data on the speed, power, and energy of the applications running on the

ION2 platform. We use all 16 CUDA cores in the GPU, and do not change the parallelism of

the applications because there would not be a significant difference in power. The speed bars

show the speedup of the applications running on the ION2 platform relative to running on the

Atom platform with the maximum number of threads. We see that the speedup is 22.65 for

Jacobi and 16.68 for NQueens. While these are high speedups, given the number of compute

cores available in the GPU, we would have expected higher speedups. The copying of device

memory buffers at the end of each iteration forms the bottleneck in this computation. Note

also that NAMD is no faster on ION2 than on Atom. NAMD has had scalable results on

GPGPUs and we believe that, with careful tuning, it is possible to achieve better results.

However, the effort was estimated to be high. Finally, Sort is 1.76 times slower than all the

19

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 E
ne

rg
y

Number of Threads

NAMD
Jacobi

NQueens
CG

Sort

Figure 2.8: Energy consumption of the applications on different numbers of
threads in the Intel Core i7. The data is normalized to the energy consumed
with all the threads.

threads on the Atom. Thus, Sort is not suitable to run on GPGPUs.

The power bars show the absolute power consumption of the ION2 platform in W using

all the 16 CUDA cores. We see that the power consumption ranges from 25 W to 35 W.

These numbers are much lower than those of the Core i7. Note that we have not performed

our experiments on more powerful GPUs, which are expected to provide better performance,

albeit at the cost of some more power consumption. In any case, we do not expect the power

consumption to rise as high as a heavy-weight processor like the Core i7.

The final bars show, for each application, the energy consumed by the ION2 normalized

to the energy consumed by the Atom. We normalize the energies to the Atom numbers

to be able to compare the energy of the different applications — otherwise, long-running

applications would dwarf short-running ones. For these bars, we use the Y axis on the right

side. Overall, from the figure, we see the ION2 is more energy-efficient than the Atom for

Jacobi and NQueens; the opposite is true for NAMD and Sort.

2.3.5 Load Balancing

As the number of cores per chip increases, load balancing becomes more important (and

challenging) for efficient use of the available processing power. Here, we investigate the

effectiveness of dynamic load balancing on the SCC (with 48 threads) compared to the Core

i7 (with 8 threads). We use LBTest, which is a benchmark in the Charm++ distribution,

20

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4

Sp
ee

du
p

Number of Threads

NAMD
Jacobi

NQueens
CG

Sort

Figure 2.9: Speedup of the applications on different numbers of threads in the
Atom processor.

with RefineLB as the balancer. LBTest creates a 3D mesh graph where the nodes have

objects that perform random computation. Each object also sends a message (of a size that

can be specified) to one of its neighbors randomly. In our case, the size of the messages is

very small compared to the computational load, so communication does not matter much.

RefineLB is a simple load-balancing strategy that tries to balance the load by gradually

removing objects from overloaded threads.

Figure 2.13 shows the utilization of each of the threads in the SCC and Core i7 platforms

before and after applying the load balancer. The figure is obtained using Projections [21],

which is a performance visualization tool in the Charm++ infrastructure. From the figure,

we can see that the load balancer perfectly balances the load on the Core i7 platform and

somewhat improves the balance on the SCC platform. On average, it increases the average

thread utilization from 35% to 50% in the SCC, and from 59% to 99% in the Core i7. Load

balancing is more difficult in a platform like SCC, which has many cores. The load balancer

has increased the average utilization of the SCC cores significantly, but at 50% average

utilization, it is clear that more effective methods are needed in the future. Overall, it can

be shown that the load balancer improves the performance of the benchmark (with the same

input parameters) by 30% in the SCC and by 45% on the Core i7.

21

 28.5

 29

 29.5

 30

 30.5

 31

 31.5

 32

 1 2 3 4

Po
w

er
 (W

)

Number of Threads

NAMD
Jacobi

NQueens
CG

Sort

Figure 2.10: Power consumption of the applications on different numbers of
threads in the Atom processor.

2.4 Comparison of Different Architectures

In this section, we use the data of previous sections to analyze and compare the architec-

tures. For each of the three metrics (speedup, power and energy consumption), we run the

applications on all the parallel threads of each platform, to use all the resources available.

On all the platforms except the ION2, we use the same source codes, written either in

Charm++ (Jacobi, NAMD, NQueens, and Sort), or in MPI (CG). For the ION2, we use

OpenCL for Jacobi, NQueens and Sort, and CUDA for NAMD. Unfortunately, we could not

get a reasonably tuned version of CG for the ION2.

When comparing the SCC to the other platforms, one should keep in mind that the SCC

is a research chip, whereas the other platforms are highly-optimized production machines.

With this in mind, one main purpose of the comparison is to find the weaknesses of the SCC

and propose improvements for the future.

Figure 2.14 shows the speed of the five applications on the different platforms relative

to Atom. As can be seen, the ION2 shows significantly better performance than the other

platforms for Jacobi and NQueens, but not for NAMD or Sort. Jacobi and NQueens are

simple highly-parallel applications with regular memory access and communication patterns.

They match this “SIMD-like” ION2 hardware nicely. In contrast, Sort has irregular memory

accesses and communication patterns, which make it unsuitable for the ION2. Finally,

we could not obtain good speedups for NAMD on ION2 with our minimal porting and

tuning effort, even though NAMD has been shown to scale well on GPGPUs elsewhere.

22

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 1 2 3 4

N
or

m
al

iz
ed

 E
ne

rg
y

Number of Threads

NAMD
Jacobi

NQueens
CG

Sort

Figure 2.11: Energy consumption of the applications on different numbers of
threads in the Atom. The data is normalized to the energy consumed with all
the threads.

Porting applications to GPGPUs is one of the most important issues in these highly-parallel

architectures. There are millions of lines of existing legacy parallel code, which cannot

exploit GPGPUs easily (for example, scientific communities have a lot of parallel code mostly

written in MPI). In addition, the effort for tuning and writing new code is high for GPGPUs.

Generating highly-optimized codes on GPGPUs is not easy for an average programmer, and

is not the subject of this work.

Overall, GPGPUs (and other architectures that are similar to SIMDs in general) are

attractive for applications with simple control flow and high parallelism. However, they fail

to provide good performance in other classes of applications.

In Figure 2.14, the Intel Core i7 is much faster than the other platforms for NAMD, CG

and Sort. This shows that heavy-weight multi-cores are attractive solutions for dynamic

applications with complex execution flow such as NAMD. The higher performance is due to

high floating-point performance, support for short-length vector instructions such as SSEs,

support for complex control flow (through aggressive branch prediction and speculation), and

support for a high degree of instruction-level parallelism (attained by out-of-order execution).

In addition, these multi-cores are suitable for applications with irregular accesses and

fine-grained communications, such as CG and Sort. These traditional platforms have highly-

optimized cache hierarchies, share memory, and need less thread-level parallelism for high

performance. Thus, irregular accesses are handled properly by the cache hierarchy, fine-

grained communications are less costly because of shared memory, and there is less commu-

23

 0

 5

 10

 15

 20

 25

 30

 35

 40

Jacobi NAMD NQueens Sort
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

Sp
ee

du
p,

 P
ow

er
 (W

)

R
el

at
iv

e
E

ne
rg

y

Speedup
Power (W)

Relative Energy

Figure 2.12: Speed, power, and energy of the applications running on the ION2
platform.

nication because of less parallelism.

Focusing on the SCC, the figure shows that, in general, the SCC speedups are not that

good. The SCC is faster than the Core i7 for NQueens, but slower for the other applications.

For such applications, it is comparable to the Atom. The fine-grain communication in CG

is especially hard to support well in the SCC.

According to table 2.4, NQueens is an integer application, with few floating-point opera-

tions. On the other hand, Jacobi, which has a similar scaling behavior on the SCC, has many

floating point-operations. Hence, low floating-point performance is a weakness of the SCC

and enhancing it can improve performance substantially. Also, since §2.3 showed that all the

applications except CG have scalable performance on the SCC, we believe that by improving

sequential performance, the SCC can be much faster. The SCC needs more sophisticated

cores, which is easily to attain because CMOS scaling will bring more transistors on chip

in the near future. In addition, network performance also needs to be improved along with

the cores, to keep the system balanced, which is also possible. Thus, an upgraded SCC

many-core architecture can become a very attractive alternative for the future.

The Atom is slower than the other processors in most of the cases, which is expected by

its low-power design.

Figure 2.15 shows the power consumption of the applications on the different platforms.

In the figure, the Atom and the ION2 platforms consume low power. The Core i7 consumes

the most power, because of its higher frequency and its many architectural features such as

out-of-order execution. As can be seen in the figure, the power consumption of the SCC is

24

(a) SCC Unbalanced (b) SCC Balanced

(c) Core i7 Unbalanced (d) Core i7 Balanced

Figure 2.13: Utilization of the threads before and after balancing the load on
the SCC and Core i7 platforms.

somewhere in between the low-power and the high-power platforms. The SCC decreases the

power consumption compared to heavy-weight machines through more parallelism and lower

frequency. It is an appealing platform because it moderates the high power consumption

of conventional multi-cores, while still being general enough to avoid the usability issues of

GPGPUs, and is generally faster than low-power designs like the Atom.

Figure 2.16 shows the energy consumption of the applications on the different platforms

normalized to the energy consumed on the Atom platform. We use this nomalized-energy

metric to be able to compare the different applications which, potentially, have a very dif-

ferent execution time. The figure shows that the ION2 platform is very energy-efficient for

Jacobi and NQueens. For these regular applications, ION2 consumes low power and executes

fast. However, ION2 is not so energy-efficient for the NAMD and Sort applications, because

of their long execution time.

The Core i7 platform exhibits good energy efficiency across the board. The Atom platform

is less energy-efficient. Although it uses low power, it has a relatively longer execution time

and, therefore, the energy consumption is higher than in the Core i7 platform. Thus, low-

power design does not necessarily lead to less energy consumption.

25

 0

 5

 10

 15

 20

 25

 30

Jacobi NAMD NQueens CG Sort

R
el

at
iv

e
Sp

ee
d

Atom (4 Threads)
Core i7 (8 Threads)

SCC (48 Threads)
ION2 (16 Threads)

Figure 2.14: Speed of the applications on the different platforms relative to
Atom.

The SCC platform is somewhat less energy-efficient than the Core i7 and Atom platforms

for most applications, although it is still competitive. In the case of NQueens, the SCC is

very energy-efficient. One exception is CG, where the SCC consumes substantially more

energy. This is because CG has little computation and much communication. Overall, it

is likely that an upgraded and refined SCC will have good energy efficiency for all of these

applications.

2.5 Related Work

Marker et al. [22] port a dense matrix computations library to the SCC. They use the RCCE

communications library and replace the collective communications. Using a lower-level com-

munications library may have performance advantages, but it causes porting difficulties,

especially when the collective is not implemented in the library. Our approach of porting

the runtime system made running the applications possible without any change to the source

code.

Power management is another topic of research for the SCC [23], because of its extensive

DVFS support. Different parts of the SCC design, such as the network [24] or communication

libraries [18] are described elsewhere [15,17].

Different communication libraries, including MPI, have been studied and implemented for

the SCC [25–27]. Porting Charm++ on top of them is a future study, which may result in

26

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Jacobi NAMD NQueens CG Sort

Po
w

er
 (W

)

Atom (4 Threads)
Core i7 (8 Threads)

SCC (48 Threads)
ION2 (16 Threads)

Figure 2.15: Power consumption of the applications on the different platforms.

performance improvements.

Esmaeilzadeh et al. [28] provide an extensive report and analysis of the chip power and

performance of five different generations of Intel processors with a vast amount of diverse

benchmarks [28]. Such work, however, does not consider many-cores or GPUs, which are

promising architectures for the future of parallel computing.

2.6 Conclusion

Large increases in the number of transistors, accompanied by power and energy limitations,

introduce new challenges for architectural design of new processors. There are several al-

ternatives to consider, such as heavy-weight multi-cores, light-weight many-cores, low-power

designs and SIMD-like (GPGPU) architectures. In choosing among them, several possibly

conflicting goals must be kept in mind, such as speed, power, energy, programmability and

portability. In this work, we evaluated platforms representing the above-mentioned design

alternatives using five scalable Charm++ and MPI applications: Jacobi, NAMD, NQueens,

CG and Sort.

The Intel SCC is a research chip using a many-core architecture. Many-cores like the

SCC offer an opportunity to build future machines that consume low power and can run

Charm++ and MPI code fast. They represent an intersting and balanced design point,

as they consume lower power than heavy-weight multi-cores but are faster than low-power

processors and do not have the generality or portability issues of GPGPU architectures. In

27

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Jacobi NAMD NQueens CG Sort

R
el

at
iv

e
E

ne
rg

y

Atom (4 Threads)
Core i7 (8 Threads)

SCC (48 Threads)
ION2 (16 Threads)

Figure 2.16: Energy consumption of the applications on the different platforms
normalized to the energy on the Atom platform.

our analysis of the SCC, we suggested improvements in sequential performance, especially

in floating-point operation speed, and suggested adding a global collectives network.

We showed that heavy-weight multicores are still an effective solution for dynamic and

complicated applications, as well as for those with irregular accesses and communications.

In addition, GPGPUs are exceptionally powerful for many applications in speed, power and

energy. However, they lack the sophisticated architecture to execute complex and irregular

applications efficiently. They also require a high programming effort to write new code, and

are unable to run legacy codes. Finally, as seen from the Intel Atom experiments, we observe

that low-power designs do not necessarily result in low energy consumption, since they may

increase the execution time significantly. Therefore, there is no single best solution to fit all

the applications and goals.

28

CHAPTER 3
Heterogeneous On-Chip Architectures: Case

Study With Object Detection

In the previous chapter, we concluded that heterogeneous architectures, such as the ones

with GPU accelerators, can be exceptionally powerful in performance, power, and energy

efficiency. However, there are various challenges such as the difficulty of heterogeneous

parallel programming. In this chapter, we study the challenges of heterogeneity and illustrate

how to improve energy efficiency with less programming effort. Our insights can be used

by the designers for more efficient heterogeneous runtime system designs. For this study,

we consider a mobile application, which is considerably similar to HPC applications. Our

results demonstrate that our techniques are general and applicable to many domains, and

are not limited to the HPC domain. This is due to the prevalence of parallel architectures

in various domains.

Many computing platforms used by consumers are portable devices such as notebooks,

tablets, smart phones and more. Since these devices are usually battery powered, achieving

high energy efficiency is a crucial challenge. On the other hand, because of their portabil-

ity, mobile devices encounter many situations where they are expected to understand their

environment in a natural way. For example, many photo applications need to automatically

adjust the focal range based on the size of faces looking at a camera. In addition, gestures

are frequently preferred to classical keyboard and mouse based input. Furthermore, search

engines can allow a query to be formulated using visual inputs without requiring the user

to provide the semantic translation of the visual content. Most natural interactions, such as

the examples mentioned, require some usage of vision and video analytics algorithms. These

tend to be floating-point intensive and computationally demanding, but also regular, which

make them good candidates for parallelism.

29

Such data parallel algorithms adapt well to GPU type architectures, resulting in higher

performance and energy efficiency [29]. However, general purpose programming of GPUs

requires knowledge of new programming paradigms, such as CUDA and OpenCL, which

decreases programmer productivity.

Traditionally, the GPU has been a peripheral component, used as a computational aid

to the CPU (which is needed for latency-oriented functions such as the operating system).

However, deploying stand-alone GPUs may not be desirable (or even practical) for portable

platforms for different reasons. First, using an extra chip increases the system design and

implementation cost significantly. Second, the extra chip, along with its associated over-

heads such as power supplies, increases the power and energy consumption. Third, the

off-chip connection between the CPU and the GPU may have high performance and energy

overheads.

A reasonable alternative for deploying a GPU is to put it on the same chip as the CPU,

and create a heterogeneous on-chip architecture. Advancements in system-on-chip design

and increases in the number of available on-chip transistors has made hybrid architectures

practical. Emerging examples such as Intel Ivy Bridge [30], AMD Fusion [31] and NVIDIA

Tegra 250 [32] have implemented this idea.

For this study, we have chosen an application, object detection using ViVid [33], as a rep-

resentative of vision applications. The domain of our study is on-chip hybrid architectures,

which are most predominantly found in mobile platforms. We believe that object detection

is a representative mobile application because it is fairly computationally demanding and

it processes streamed visual input from a camera. Similar to our study, most vision appli-

cations that would be utilized in mobile devices (e.g. recognition, tracking, stabilization)

consist of a pipeline of small number of kernels, where kernels are the core compute inten-

sive components of an application. Of course, there is a large variety of kernels across the

spectrum of vision applications. However, from a computational perspective, the pipeline

in this chapter provides a good mixture of kernels efficient on GPU, CPU or both. In ad-

dition, object detection is an important application for future portable devices, which has

not yet been realized beyond basic face detection. Notice that our focus on one application

allows us to go deeper into the details of individual kernels. We describe and evaluate the

steps one might take to improve performance and energy efficiency: (1) Code optimization,

(2) Mapping strategies, (3) Dynamic Voltage and Frequency Scaling (DVFS) [34] and (4)

Algorithmic tradeoff of accuracy. We report the lessons learned, which would give insight to

application developers and system designers.

In this chapter, we evaluate and analyze different programming paradigms and strategies

for energy efficiency. We implement and execute (on the Ivy Bridge architecture) four

30

different code versions of ViVid using 1) OpenCL, 2) OpenMP + auto-vectorization, 3)

OpenMP + vector intrinsics, and 4) the OpenCV vision library. The OpenCL version runs on

both the CPU and the GPU, while the other versions only run on the CPU. Our experimental

results show that OpenCL does not deliver the performance that can be attained when using

lower level interfaces (e.g. vector intrinsics on CPU), but provides a reasonable performance

(Section 3.3). The OpenCL code processes 40 frames per second (fps) for accurate object

detection (Section 3.4), so it can be used for applications that require real-time object

detection (33fps). Notice that the performance of our OpenCL implementation is superior

or similar to recent works using much more capable discrete GPUs [35,36].

We also show that mapping each kernel to the device (CPU or GPU) where it executes

more efficiently and overlapping the computation of the kernels is the best approach. Our

results show that with these heterogeneous platforms it is possible to find mappings that,

while executing relatively faster, are less energy efficient (this is discussed in Section 3.4).

In addition, it is possible to gain better energy efficiency by sacrificing a small amount of

accuracy algorithmically. For our application, we can reduce 20% of the energy consumed

at the cost of an increase of only 1% miss-rate on image detection (Section 3.4.3).

Note that manufacturers do not know how to design hardware and software of future

portable devices to support new interfaces (e.g. for human interaction). For instance, spe-

cialized hardware accelerators and optimized vision libraries are considered. We show that

using a unified programming paradigm (e.g. OpenCL), vision applications can deliver the

required performance (for a typical number of frames per seconds) and energy efficiency on

heterogeneous on-chip architectures. To the best of our knowledge, the literature only con-

siders large discrete GPUs with very different trade-offs in performance and energy efficiency

for these applications.

The rest of this chapter is organized as follows. Section 3.1 describes our application

and experimental setup briefly. Section 3.2 evaluates and analyzes different optimizations

for our kernels using OpenCL for the CPU and the GPU. Next, Section 3.3 compares the

performance and programming effort of the OpenCL paradigm to others for the CPU. After

that, Section 3.4 evaluates the performance and energy consumption of different kernels on

either the CPU or GPU. It also optimizes the full application’s performance and energy

consumption using different mapping methods. Finally, Section 3.5 reviews some related

work and Section 3.6 concludes the chapter.

31

3.1 Environmental Setup

3.1.1 ViVid

We focus our study on an object (e.g., face) detection algorithm [33] for finding objects

with a specific shape or appearance in unconstrained visual input. This object detector is

analogous to most practical approaches [37, 38] to this problem, which follow a common

work-flow called “sliding window object detection”. This process involves describing the

visual information inside small rectangular regions of the image or video frame hypothesized

to contain the object, and applying a decision function that yields a binary output indicating

the presence or absence of the object in each of such rectangles. Sliding window detection

is the most established approach for the unconstrained object detection problem. Other

popular methods include generalized voting frameworks [39] or contour matching [40]. In

all cases, object detection is a very computationally demanding application because image

information needs to be evaluated densely over all the potential locations which may contain

the object. ViVid’s sliding window approach breaks up the problem into two distinct parts:

1) describing the image information, and 2) classifying it. The image information is described

by correlating the gray-scale image with numerous 3 × 3 patterns and summarizing these

correlations in terms of spatially local histograms. The classification is achieved by processing

these histograms through linear support vector machines [41].

Other than object detection, there are numerous applications of computer vision on mobile

devices including video stabilization, panorama stitching, gesture recognition etc. However,

the data description followed by a data association work-flow is a common pattern. Typi-

cally, the data description part touches every pixel at least once and builds a summarization

of structures of interest (e.g. colors, gradients, textures). The data association part measures

the distance between the data summaries against stored exemplars. In classification applica-

tions, these can be templates for objects, and in segmentation applications these are usually

cluster centers. The computational stages in a mobile computer vision application may be

computationally balanced or particular stages may give rise to performance bottlenecks. In

our selected object detection algorithm, the data description and data association steps are

well balanced in terms of their computational load. Therefore, we believe it comprises a

good case study with challenges in both stages.

To build our object detector pipeline, we use the ViVid library1. ViVid includes several

atomic functions common to many vision algorithms. We have used ViVid successfully in

event detection applications [42,43].

1http://www.github.com/mertdikmen/vivid

32

For the purposes of this work, we extended ViVid by adding OpenCL equivalents of several

kernels. We use the C++ interface to orchestrate the calls to these OpenCL functions or

kernels.

3.1.2 Blockwise Distance

This kernel needs to find the maximum response (normalized cross correlation) of 100 filters

on a small square image patch (in this application, 3 × 3) centered at every pixel of the

image, while remembering which filter delivered this maximum at every pixel. Algorithm 1

outlines the overall algorithm.

for each 3 by 3 image patch centered at a pixel do
for each filter j of 100 filters do

response = 0;
for each coefficient i of the 9 coefficients of filter[j] do

response += filter[j][i]*pixel[i];
end
if response > max response then

max response = response;
max index = j;

end

end

end
Algorithm 1: Filter kernel.

3.1.3 Cell Histogram Kernel

Cell histogram kernel is the second stage of data description, where the low level informa-

tion collected by the filter kernel is summarized for small, non overlapping square blocks

of the image. A 100 bin histogram is populated for each of these blocks by accumulating

the “max response” values in their respective bins (given by “max index”) from every pixel

inside the block. Note that this operation is different from well known image histogramming

problem, for which many parallel implementations exist. Our approach differs in two im-

portant aspects: (1) the histogram bins represent a weighted sum (not a simple count) and

(2) we build many local histograms not a single global one.

33

3.1.4 Pairwise Distance

This kernel is the data association step in our application. It finds the Euclidean distance

between two sets of vectors, where one vector corresponds to the histogram previously gen-

erated and the other vector represents the template. This kernel measures how close each

descriptor is to the template of the object of interest. If the distance is small enough, it shall

output a detection response.

The kernel is structurally similar to the matrix multiply operation, which finds the dot

product between every row of one matrix and every column of another one. However, in

pairwise distance, we compute the square of the two values’ differences, instead of just

multiplying them.

3.1.5 Ivy Bridge Architecture

For the experiments reported in this chapter, we use the two different platforms shown in

Table 3.1, both based on the Intel Ivy Bridge architecture. The first one is a 3.3 GHz

quad-core used for Desktops and the second one is 1.7 GHz dual-core used for Ultrabooks.

Both platforms have an integrated GPU that can be programmed using OpenCL2. GPUs

exploit Single Instruction Multiple Thread (SIMT) type of parallelism by having an array

of Compute Units (CUs). Each CU is assigned a work-group, where work-items in each

group run in lock-step, executing the same instruction on different data. GPUs are designed

to efficiently exploit data parallelism. Branchy codes may run poorly on GPUs, as all the

different paths in a control flow need to be serialized. Note that the Ivy Bridge’s GPU is

simpler than Nvidia [44] or AMD/ATI [45] GPUs. It has a small number of compute units

and simpler memory hierarchy, for instance.

The Ivy Bridge CPU contains multiple cores, where each core supports Advanced Vector

Extensions (AVX) that apply the same instruction on multiple data simultaneously. AVX

supports 256-bit wide vector units that allow vector operations to operate on 8 floating-point

numbers simultaneously. Unless otherwise stated, the experiments reported in the chapter

use the Ultrabook platform. For comparison purposes, we have also run experiments on the

Desktop platform and an Nvidia Fermi GPU.

For the evaluation, we use Intel SDK for OpenCL [46] to run OpenCL codes. We also

wrote OpenMP code with and without vector intrinsics that we compiled using the intel ICC

compiler and /O3 compiler flags. Table 3.2 summarizes the software environment we use

for the experiments. OpenCL is a unified programming paradigm, used to write programs

2http://www.khronos.org/opencl/

34

Table 3.1: Intel Ivy Bridge (Core i5 3350 & 3317U) processor specifications.

Platform Desktop Ultrabook
Processor Number i5-3550 i5-3517U
of Cores 4 2
Base Clock Speed 3.3 GHz 1.7 GHz
Max Turbo Frequency 3.7 GHz 2.6 GHz
Base CPU peak 105.6 GFLOPs 27.2 GFLOPs
Max CPU peak 118.4 GFLOPs 41.6 GFLOPs
Cache Size 6 MB 3 MB
Lithography 22 nm 22 nm
Max TDP 77 W 17 W
Intel HD Graphics 2500 4000
GPU Execution Units 6 16
GPU Base Frequency 650 MHz 350 MHz
GPU Max Dynamic Frequency 1.15 GHz 1.05 GHz
Base GPU peak 31.2 GFLOPs 44.8 GFLOPs
Max GPU peak 55.2 GFLOPs 134.4 GFLOPs

for heterogeneous platforms. OpenCL programs can use an address space qualifier (such as

global for global variables or local for local variables) when declaring a variable to specify

the memory region where the object should be allocated. The OpenCL implementations for

the GPU in the Ivy Bridge accesses memory through the GPU-specific L3 cache and the

CPU and GPU Shared Last Level Cache (LLC). Accesses to global variables go through

the GPU L3 cache and the LLC. Accesses to local memory (also referred as shared local

memory because this local memory is shared by all work-items in a work-group) is allocated

directly from the GPU L3 cache. Thus, GPU L3 cache can be used as a scratch-pad or as a

cache. The size of this memory is 64KB (obtained using the standard ”clGetDeviceInfo()”

OpenCL call) for both platforms, the Desktop and the Ultrabook. The CPU does not have

hardware support for local memory, so in principle codes running in the CPU do not benefit

from using local memory. Additional details can be found in [47].

3.1.6 Evaluation Methodology

For the experimental results, we measure the time of thousands of iterations of the applica-

tion and report the average. This is realistic for many vision applications, which are expected

to perform analysis (e.g. detection) over a continuous input of frames, fed from the device

35

Table 3.2: Software environment used for experiments.

Operating System Windows 8 Build 9200
GPU driver Intel 9.17.10.2867
OpenCL SDK Intel 3.0.0.64050
Compiler Intel ICC 13.0.1.119

camera. This setup is especially important for the Ivy Bridge GPUs, since the running times

have high variance in the first few iterations, but stabilize after some “warm up” iterations.

For all the experiments reported here, our input image size is 600 by 416 pixels.

For power and energy measurements, we use hardware energy counters available in the

Ivy Bridge architecture [48]. They measure three domains: “package”, “core” and “uncore”.

Package means the consumption of the whole chip, including CPU, GPU, memory con-

trollers, etc. Core is CPU domain and Uncore is the GPU domain. For power measurement

of the whole system, we plug a power meter to the machine’s power input.

The new Intel Turbo Boost Technology 2.0 [49] makes the measurements complicated on

this architecture. In a nutshell, it accumulates “energy budget” during idle periods and

uses it during burst activities. Thus, the processor can possibly go over the Thermal Design

Power (TDP) for a while. It takes it a few seconds to reach that limit and several seconds

to go back to the TDP limit. This can change the performance and power of the processor

significantly. One might turn this feature off for accurate measurements. However, it is

an advanced strength of the architecture that can enhance the user experience significantly

(e.g. for interactive use), so it should not be ignored. For our measurements, we run each

program for around 10 seconds (which seems to be a valid common use case) and average

the iteration times and power consumption.

We used the machine peak performance numbers reported in the Intel documentation3.

However, those values are computed using the maximum frequency value and AVX vector

units, but, as mentioned, the processor cannot be at the maximum frequency for a long

time. Thus, in many cases, peak performance numbers are upper bounds of the actual peak

performance.

3http://download.intel.com/support/processors/corei7/sb/core i7-3700 d.pdf

36

3.2 Optimization of Kernels in OpenCL

In this section, we describe the optimizations we applied to the OpenCL kernels described in

Section 3.1. Then, in Section 3.2.4, we analyze the performance impact of each optimization.

The OpenCL codes run in both the CPU and the GPU, but it is possible that an optimization

that works well for the GPU would hurt the performance when running on the CPU or vice

versa. From now on, we will refer to the Blockwise Distance Kernel as filter, the Cell

Histogram Kernel as histogram, and the Pairwise Distance kernel as classifier.

3.2.1 Filter Kernel

Here, we describe the optimizations that we applied to the filtering algorithm shown in

Figure 1.

Parallelism

We exploit parallelism by dividing the image across multiple work-groups with several work-

items. Then, each work-item runs the 100 filters on its image block. We use 16 by 16 work-

group size following Intel OpenCL SDK’s recommendation (considering also our working set

memory size). In addition, we use the Kernel Builder (from the Intel OpenCL SDK) tool’s

work-group size auto-tuning capabilities to make sure this is the best size.

Loop Unrolling

We completely unroll the inner loop, which has 9 iterations.

Vectorization

This transformation tries to exploit the CPU’s AVX vector units. Without vectorization, this

kernel calculates the response of every filter on a three-by-three image patch, keeping track

of the maximum one. This requires nine multiply-add operations, followed by an update

guarded by an if statement. In this form, the inner loop cannot be fully vectorized. Since

AVX supports 8 operations at a time, we can vectorize eight of the multiplies and partially

vectorize the sum reduction, but still need to run one sequentially. Thus, to enable efficient

vectorization, instead of working on one filter at a time, one can consider eight of them at

the same time. Note that the number of filters (100) is not a multiple of eight so we need to

37

handle the last four filters separately. Each pixel value needs to be replicated (broadcast) in

a vector to participate in the vector operations.

This transformation needs a reorganization of the filter coefficients’ data structure in the

memory. Originally, a filter’s nine coefficients are located in consecutive memory locations

(Figure 3.1(a)). However, we need the first coefficients of eight filters to be together to

be able to load them in a SIMD vector (Figure 3.1(b)). Figure 3.1 illustrates these layouts

using different colors for different filters, and numbers for different elements of a filter. Thus,

effectively, we are transposing each 8 × 9 sub-matrix of eight filter coefficients to an 9 × 8

one. This transformation is generally useful for vectorizing various filters of different sizes

since the number of coefficients most probably does not match the SIMD size. Note that

this transformation can be thought of as a customized instance of the Array of Structures

(AoS) to Structure of Arrays (SoA) transformation.

1 2 ... 9 1 ...

1 1 1 ... 2 2 ...

#9 floats

#8 floats
(a) original coefficient layout

1 2 ... 9 1 ...

1 1 1 ... 2 2 ...

#9 floats

#8 floats

(b) vectorized coefficient layout

Figure 3.1: Change of coefficient data layout for vectorization.

Local Memory

This optimization is specific to the GPU. The filter kernel operates on an image and the 100

filter coefficients. The filter coefficients occupy 3.5KB that we copy (using all the work-items

in parallel) to the local memory. Each work-group also copies the image block it needs. This

optimization may hurt performance when the code runs on the CPU due to the copying

overheads. This is evaluated in Section 3.2.4.

3.2.2 Cell Histogram Kernel

The parallelism is achieved through a scatter operation. Every work-item in a work-group

accumulates a subset of the values inside the image block to their respective histogram

bins. Note that this is a potential race if two or more work-items in the same work-group

38

try to increment the same histogram bin. This race can be avoided if the language and

the hardware allow for “atomic add” directives for floating point numbers. However, these

atomic operations serialize memory accesses and can hurt the performance significantly.

We allow this race in our OpenCL kernel because our Monte Carlo simulations have shown

that the probability of such a race is low given the distribution of filter indexes in natural

image patches. Therefore we do not expect the race conditions to change the shape of

the histograms drastically, and we have validated this through experiments. Unlike scientific

applications, media programs do not need full accuracy in many cases, and we should exploit

this for better performance and energy efficiency.

3.2.3 Classifier Kernel

Parallelization

Parallelizing this code is similar to a tiled matrix multiply, where a work-group is responsible

for a tile of the output matrix (as with the filter, we use 16x16 tiles).

Loop Unrolling

We manually unroll the innermost loop, which has 16 iterations.

Vectorization

Vectorizing this code is easy as operations are done in an element by element fashion, with

elements in consecutive memory locations. After accumulating differences in a vector, a sum

reduction is required (which we implement as a dot product with an identity vector).

Local Memory

All the work-items load the two blocks of elements they want to work on in parallel in the

local memory.

3.2.4 Performance Evaluation

In this section, we evaluate the performance impact of each of the optimizations. Fig-

ure 3.2(a) shows the execution time for filter when running on the CPU or the GPU. The bars

39

show the cumulative impact of the different transformations. Thus, Unroll+Vec+LocalMem

corresponds to the execution time after all the optimizations have been applied. As Fig-

ure 3.2(a) shows, after applying all the above optimizations, this kernel runs more than 10

times faster on the GPU than the original non-optimized code. It now takes only 8.46ms. It

also made it 6.4 times faster on the CPU (takes 25.5ms for the same image). Loop unrolling

speeds up this kernel for both the CPU and the GPU. Vectorization speeds up filter for

the CPU significantly. Also, even though the GPU does not have CPU-like vector units,

execution times decreases by about 16% (discussed later). We also note that the use of the

local memory for the filter coefficients does not have a significant overhead on the CPU.

Thus, the same kernel code can be used for both architectures.

Figure 3.2(b) shows the results for the classifier. As the figure shows, both unroll and

vectorization improve the performance significantly. However, the use of local memory de-

grades performance for both devices. Hence, we did not use the local memory for classifier

and, again, the same code is used for both the CPU and the GPU.

To assess the utilization of the CPU and GPU, we measured the MFLOPs for both filter

and classifier. Numbers on top of the bars in Figures 3.2(a) and 3.2(b) show the performance

of each code as a percentage of the peak performance of the machine. Our numbers show

that filter runs at 45% and 42% of the peak performance on the CPU and GPU, respectively.

Classifier runs at 49% and 9% on the CPU and GPU, respectively. Thus, filter utilizes both

the CPU and GPU very well, while classifier only has that level of utilization on the CPU.

The inefficiency of GPUs for certain workloads has been discussed in related work [50].

However, 9% utilization might be considered high for certain workloads on the GPU.

Note that a more optimized code usually results in faster and more energy-efficient execu-

tion. In fact, in our experiments we observed that the programs were consuming the same

or similar power before and after the optimization. Thus, decreasing execution time almost

directly results in lower energy consumption in this case.

Table 3.3 summarizes our results about which optimizations were effective on each device.

Note that the OpenCL filter kernel that we use in the following sections uses the local

memory optimization, since it does not hurt performance, and this allows us to have a single

code version for both devices.

Next, we discuss the performance results, specifically the impact of using local memory,

branching effects, and vectorization in more detail.

40

 0

 20

 40

 60

 80

 100

 120

 140

 160

b
a
se

U
n
ro

ll

U
n
ro

ll+
V
e
cto

r

U
n
ro

ll+
V
e
c

+
L
o
ca

lM
e
m

E
xe

cu
tio

n
tim

e
(m

s)

CPU

7%

18%

44% 45%

GPU

4%

19%
22%

42%

*

(a) Filter kernel

 0

 20

 40

 60

 80

 100

 120

 140

 160

b
a
se

U
n
ro

ll

U
n
ro

ll+
V
e
cto

r

U
n
ro

ll+
V
e
c

+
L
o
ca

lM
e
m

E
xe

cu
tio

n
tim

e
(m

s)

CPU

8%

13%

49%

17%

3%
3%

9%
8%

GPU

*

(b) Classifier kernel

Figure 3.2: Execution time of kernels with different optimizations (on Ultra-
book); *- percentage of peak performance.

Local Memory Usage

Our results in Figures 3.2(a) and 3.2(b) show that the use of local memory is important for

the filter kernel but undesirable for the classifier.

Using the local memory is essential for the filter kernel on the GPU. The reason is that a

41

Table 3.3: Effective optimizations for filter and classifier kernels on Ultrabook.

Kernel
GPU CPU

Same code?
Unroll SIMD Local-Mem Unroll SIMD Local-Mem

filter yes yes yes yes yes no yes
classifier yes yes no yes yes no yes

small set of constant data (the filter coefficients) are needed for the whole execution (all the

iterations of the outer loop). Relying on the GPU L3 cache is not effective because the data

from the image that is being accessed at the same time might replace the filter coefficient in

the cache.

On the other hand, using the local memory is detrimental for the classifier kernel on

the GPU of our Ivy Bridge Ultrabook. However, using the local memory for the classifier

improves the performance on the smaller GPU (HD Graphics 2500 device) of the Desktop

platform by 35%, even though the architecture is essentially the same (the Desktop GPU

has only 6 CUs, while the Ultrabook GPU has 16 CUs).

To understand the differences in performance (in the absence of performance counters), we

used the memory streaming micro-benchmark of uCLbench package [51] that measures the

effective bandwidth to memory. This benchmark allocates arrays in memory (either local

or global), that are accessed by all the work-items repeatedly. Our experimental results

show that the effective bandwidth of local memory is less for the Ultrabook GPU than for

the Desktop GPU (7.8 GB/s for the Ultrabook vs. 10.3 GB/s for the Desktop) when local

arrays are accessed. On the other hand, the effective bandwidth of global memory is about

the same for both machines (7 GB/s for the Ultrabook vs. 7.4 GB/s for the Desktop) when

global arrays are accessed. Notice that the working set of the classifier is just the data that

we are placing on the local memory and fits in the 64KB of the GPU L3 cache. Thus,

since the Desktop has a higher effective bandwidth when accessing the data in the local

memory, the local memory optimization reduces execution time. However, in the Ultrabook

the bandwidth is similar and the use of local memory introduces some copying overheads.

Using local memory for the code running on the CPU introduces some extra copying

overhead. While this overhead is not visible for filter because of the small size of the filter

coefficients data structure, it adds a significant overhead to the classifier kernel, due to the

larger size of the data structure allocated in local memory.

42

Loop Unrolling and Branch Overhead

Unrolling results in a significant performance improvement in both kernels, classifier and fil-

ter, for both the CPU and GPU. In the CPU unrolling decreases loop overhead and increases

Instruction Level Parallelism. In the GPU, unrolling reduces the number of branches.

Branches on the GPU can have a significant impact on performance, specially in the case

of divergent branches where work-items (threads) of a CU take different paths, and each

branch path has to be serialized. On the other side, non-divergent branches, where all the

work-items follow the same path, are usually fast.

To assess the impact of non-divergent branches on the Ivy Bridge integrated GPU, we

modified the filter kernel, and replaced the “if” condition that finds the maximum filter

response with additions that sum the filter responses (notice that this branch, although data

dependent, is mostly non-divergent, as work-items execute on neighboring pixels that tend

to be similar and hence the maximum response filter is mostly the same for all the work-

items). This change made this code run 13% faster on the integrated GPU. We also ran

both codes (with and without the “if” statements) on the Fermi Nvidia GPU and found that

the code without the branches had only 3% improvement. In addition, we used the “branch

overhead” benchmark of uCLbench package [51] to assess the difference in performance

between divergent and non-divergent branches. In this benchmark, different cases of branch

divergence are compared. For example, a branch might be taken by all the work-items, a

subset of them or only one. The experimental results show that the Ivy Bridge’s integrated

GPU is performing much better for non-divergent branches, as benchmarks can be up to 10

times slower on the Ivy Bridge’s integrated GPU when branches are divergent.

Overall, our experiments show that non-divergent branches have a higher effect on the

Ivy Bridge GPU than on a Fermi GPU. Thus, loop unrolling (that removes non-divergent

branches) is an important optimization for this platform. Other non-divergent branches,

such as the “if” associated with the max operator cannot be removed with loop unrolling,

and would benefit from a better hardware support for non-divergent branches.

Vectorization

Vectorization speeds up both the codes for the CPU, as it makes it easier for the compiler

to generate code using the AVX vector extensions in the Ivy Bridge. When running on the

GPU, classifier is about 2.8 times faster with vectorization, despite the fact that vector units

need to be emulated on the GPU, which might have some overheads. One reason is that the

vector code has more unrolling on the GPU implicitly. Thus, to assess the effect of further

43

unrolling, we unrolled the non-vectorized code’s outer loop as much as it is beneficial (and

“jam” it into the inner loop, which is already unrolled). This code runs faster, but still 1.8

times slower than the SIMD version. The other reason for the difference in performance is

found by looking at the code generated by the compiler for both versions (with and without

SIMD). For the code with SIMD, the compiler generates different memory load instructions

with better alignment, which is important for performance.

As mentioned, filter kernel runs only slightly (13%) faster on the GPU when vectorization

is applied.

3.3 Comparison with Other Programming Paradigms

In this section, we assess if OpenCL is a suitable paradigm for the CPU, since it is desirable

to have a single programming paradigm for both types of devices.

For that, we compare the programming effort and execution times of the OpenCL filter

code versus implementations of the same code written with other programming models for

the CPU. Filter code is chosen for the comparison because it is a compute intensive kernel,

based on a convolution operation used by many computer vision applications.

We run the experiments of this section on the Desktop’s CPU, since it is more powerful

and will reflect the effects better. In addition, the Ultrabook’s CPU does not support SSE

vector instructions. Note that for all the experiments we use 4 byte “float” precision numbers

(which are enough for the filter kernel).

3.3.1 OpenMP with Compiler Vectorization

Since OpenMP is well suited to exploit data parallel computation in multicores, we compare

the OpenCL code with an OpenMP implementation. Although one could expect perfect

speedups, our results show an overhead of 8% with respect to perfect scaling. This is due to

the overhead of spawning and joining threads for every loop invocation on a different image.

To exploit the machine’s potential, we need to exploit the CPU’s vector units. The simplest

way is to have the compiler do this task. The Intel compiler that we use (Section 3.1.5) can

vectorize this code, but needs the “/fp:fast” flag, to enable optimizations that can cause

minor precision loss in vectorization of reductions. In addition, by looking at the assembly

code, we realized that it did not generate aligned loads, which was fixed by using Intel

compiler intrinsic function (assume aligned()).

44

Furthermore, with the hope that the compiler would generate better code, we generate

another code version where we applied, at the source level, the transformation we applied

to vectorize the OpenCL filter kernel (Section 3.2.1).

3.3.2 OpenMP with Manual Vectorization

We vectorized the code manually using vector intrinsics that map directly to assembly in-

structions. A disadvantage of this approach is that the code is not portable as it is tied to

a specific machine’s instruction set and a compiler. Furthermore, it is close to the assembly

level and hence, the programming effort including code readability and debugging will suf-

fer. Nonetheless, if the performance difference can be very high, one might prefer paying the

cost. We wrote three versions: using AVX and SSE, using only SSE and using only AVX.

AVX+SSE

The Ivy Bridge architecture supports the AVX and SSE instruction sets. AVX instructions

can work on eight floating point elements, while SSE ones can only handle four elements.

We use SSE, since AVX does not have an instruction equivalent to SSE’s “ mm comigt ss”

(that compares two values and returns a 1 or a 0 depending on which one is larger), which

simplifies the coding. Thus, we use AVX for multiply and add operations and SSE for

conditional comparisons. Note that mixing AVX and SSE instructions can have significant

translation penalties on Ivy Bridge [52]. However, we use “/Qxavx” flag to ask the compiler

to generate AVX counterparts whenever possible. In addition, we use Intel vTune Amplifier

to make sure these penalties are avoided. Since this kernel needs to find which filter resulted

in the maximum response value, we compare the max response against each response value.

A sample comparison is shown below, where we permute the result vector and compare the

lowest index element using the “ mm comigt ss” intrinsic.

1 __m128 p_tmp = _mm_extract_ps(response1, 0x1);

2 if(_mm_comigt_ss(p_tmp, max_response)) {

3 max_response = ptmp;

4 best_filter = filter_ind+1;

5 }

Note that we provide code snippets to be able to compare the complexity of different

methods. We refer the interested reader to Intel’s documentations to fully understand the

details.

45

SSE

We implemented an SSE version to evaluate AVX versus SSE and measure the effect on

performance of SIMD width.

AVX

We also implemented a version that only uses AVX instructions. The implementation com-

pares all the responses in parallel, gathers the sign bits in an integer mask and examines each

bit separately. If the maximum response needs to be updated, we use a permutation instruc-

tion to broadcast the new maximum to the register, repeat the comparison and update the

integer mask. There is a small complication because of “ mm256 permute ps” instruction’s

semantics. Since it can only choose from each four element half of the register separately, we

need to consider each half of the responses separately and copy it to the other one. Thus,

the initialization code for comparing four elements of responses is shown below:

1 // low 128 half

2 // copy low to high

3 __m256 response1 = _mm256_insertf128_ps(

4 response, _mm256_extractf128_ps(response, 0), 1);

5 __m256 cpm = _mm256_cmp_ps(

6 response, max_response, _CMP_GT_OS);

7 int r = _mm256_movemask_ps(cpm);

After that, we will have four tests of the mask with possible updates similar to the one

below:

1 if(r&(1<<1)) {

2 best_filter = filter_ind+6;

3 int control = 1|(1<<2)|(1<<4)|(1<<6);

4 max_response = _mm256_permute_ps(response1, control);

5 r=_mm256_movemask_ps(_mm256_cmp_ps(

6 max_response, max_response, _CMP_GT_OS));

7 }

3.3.3 OpenCV Library Calls

OpenCV [53] is an open source library consisting of many low level image processing algo-

rithms, as well as many high level algorithms frequently used in computer vision. It is by far

the most utilized common code base for vision research and applications. We constructed

46

the object detection algorithm using standard library data structures and function calls to

OpenCV in order to compare what is achievable in terms of performance using the standard

C++ interface. We link against the standard distribution of the OpenCV binaries, which is

not multithreaded4.

The filter kernel can be constructed simply by 100 calls to the OpenCV 2 dimensional

filtering function. Between each OpenCV filtering function call, we do a pass over the

output array to determine if the current filter response value is higher than the maximum

value observed and replace the assignments in the output array accordingly. The classifier

kernel can be simply constructed by taking the norm of the differences for every pair of

rows in the two input matrices. Row isolation, vector differencing and vector norms are all

standard library calls in OpenCV. The histogram kernel is not achievable through standard

library calls, but the ViVid call can be used on standard OpenCV data types with minimal

changes.

Our experimental results show that the OpenCV implementation of the filter kernel runs 15

times slower than the OpenCL version of ViVid running on the CPU of the Ultrabook. Notice

that our OpenCL code runs in parallel (two cores of the Ultrabook), while the OpenCV

code runs sequential. Also, the OpenCV code that we use has hard-coded SSE2 intrinsics

(we verified by looking at the library code), while our OpenCL code uses the AVX vector

instructions (when running on the CPU). However, these two points still do not justify the

big difference in performance. This substantial difference in performance appears because

the OpenCV code does not take advantage of locality, as we need to re-load the image 100

times. In our OpenCL code, each image pixel is loaded only once, as the 100 filters are

applied to each pixel before moving to the next one. Notice that experimental results for

classifier show that the OpenCV code is also significantly slower than our OpenCL code. The

reason is that while the OpenCV library has an efficient matrix multiplication call, what

we need is a customized operator (the square of the two value’s differences or Euclidean

distance), which needs to be realized in an inefficient manner (as mentioned above).

While the code using the library calls is very concise and straightforward, the non-perfect

adoption of OpenCV library primitives for our algorithm results in performance degrada-

tion. This is because each library call has some overhead, and no optimization is possible

across library primitives. Vision applications can benefit significantly from specific low level

optimizations based on the expected input and output structures, as well as computational

patterns of individual kernels. Thus, current vision libraries are unable to solve the entire

parallel programming problem for vision applications, as the resulting code is not fast enough

4Some OpenCV functions can be made multithreaded by linking against Intel Thread Building Blocks [54]

47

for production use. However, ease of use has made these libraries, such as OpenCV, very

good candidates for application prototyping and development.

3.3.4 Performance and Effort Comparison

Performance Comparison

Figure 3.3 shows the execution time and the percentage of peak performance obtained by

different schemes running on the Desktop platform (results in the Ultrabook are similar as

these experiments are mainly concerned with vectorization). In the schemes evaluated, orig-

novec corresponds to the baseline OpenMP code where compiler vectorization is disabled;

orig-auto corresponds to the OpenMP code auto-vectorized by the compiler; trans-auto is

the OpenMP code transformed for vectorization at the source level (like in the OpenCL code

in Section 3.2.1) and automatically vectorized by the compiler; the three code versions using

intrinsics are labeled SSE, AVX+SSE and AVX; OpenCL corresponds to the OpenCL code

optimized as discussed in Section 3.2.1.

 0

 20

 40

orig-novec orig-auto trans-auto SSE AVX-SSE AVX OpenCL

E
xe

cu
tio

n
T

im
e

(m
s)

9%

15%

10%

34%

45%

74%

41%

*

Figure 3.3: Performance comparison of filter kernel in different paradigms (on
Desktop); *- percentage of peak performance.

As the figure shows, the auto-vectorized codes (orig-auto and trans-auto) run significantly

slower than the OpenCL code (26.06 ms and 40.93 ms versus the 9.74 ms time of the OpenCL

48

code). Checking the generated assembly code of orig-auto, we see that the compiler has gen-

erated vector code but it is not as efficient as our manual code since it could not perform

our transformation automatically (which is expected). The figure also shows that the per-

formance of trans-auto improves only slightly with respect to orig-novec, because, although

simple, the compiler cannot analyze the transformed code. Thus, auto-vectorization, al-

though easy to use, is not a good solution in terms of performance, even for the simple loops

of our filter kernel.

With respect to the vector codes using intrinsics, AVX is the fastest code, and is 46%

faster than the OpenCL code. As expected, SSE is the slowest of the codes using intrinsics,

due to the shorter vector units. However, the SSE code is the shortest, as the number of

filters (100) is now an exact multiple of the SIMD width (4 elements). Thus, wider SIMD

units increase the overheads of handling boundaries. Finally, the AVX+SSE is only 8%

faster than the OpenCL counterpart.

For comparison purposes, we implemented, using AVX, a filtering kernel without branches

and comparisons (that does not find the index of the best filter). It uses a small “reduction

tree” method to perform fewer SIMD max operation to find the maximum from the eight

responses. Our AVX version is just 5% slower than this one, showing that we have alleviated

most of the comparison overheads by comparing in parallel and pushing other instructions

inside the “if” statements.

Programming Effort Comparison

To quantify the programming effort of each paradigm, we use the Halstead’s productivity

metrics [55–57]. In Halstead’s Elements Software Science [55], a program is considered as a

string of tokens, which can either be operands or operators. The operands are either constants

or variables, while the operators are symbols or their combination that can affect the value

or ordering of operands. Let η1 be the number of unique operators, η2 the number of unique

operands, N1 the number of occurrences of operators, and N2 the number of occurrences of

operands. Derived metrics that can be used to quantify programming complexity are defined

as follows:

Program Volume: V = (N1 +N2) log2(η1 + η2)

Program Difficulty: D = 1
2
η1N2

η2

Programming Effort: E = DV

Table 3.4 shows these metrics for different implementations of the filter kernel. The last

column of Table 3.4 shows the number of Source Lines of Code (SLOC). The Table shows

that performance is correlated with effort; higher performance requires more programming

49

effort, which is to be expected. AVX has the highest performance and effort, while compiler

auto-vectorization has the least of both. From these numbers, OpenCL Programming Effort

and Program Volume metrics are similar to those of AVX-SSE; both deliver also similar

performance. The table shows that η1 is almost the same for all the code versions, while

η2 is 61 for orig-auto and around 100 for all the others. These additional variables appear

as a consequence of unrolling, that has been applied to all code versions but orig-auto. N1

and N2 are also larger in AVX because it needs some code to handle the leftovers after

loop unrolling. In addition, the code to compute the index of the filter with the maximum

response is more complex, as described in Section 3.3.2.

Notice that all these metrics do not fully capture the complexity of each code. They are

based on the number of operators and operands, but do not take into account the complexity

of each operator. For example, addition is much simpler than a vector intrinsic function of

AVX. Thus, these metrics may be highly optimistic for the vector implementations.

Table 3.4: Software metrics for different implementations of the filter kernel.

Paradigm η1 η2 N1 N2 V E SLOC
orig-auto 23 61 230 214 2838 114504 68
SSE 23 102 494 467 6694 352458 133
AVX-SSE 23 101 682 645 9228 677725 187
AVX 24 106 903 836 12211 1155752 212
OpenCL 22 99 691 625 9105 632307 162
OpenCV 12 25 59 63 635 9609 15

Overall, OpenCL provides a good balance in programming effort and performance. It

is much faster than the auto-vectorized versions and it is close to the low level intrinsics

versions. It is 1.8 times slower than the AVX code with “ninja optimizations” but the effort

is significantly less (1.8 times less Halstead Effort). Therefore, programming in OpenCL

is effective for the CPU as well as the GPU, and bringing the GPU on the die did not

impose significant programming effort (since the same code runs on the CPU as well). Thus,

OpenCL has the advantage that a single programming model can be used to run in both

CPU and GPU. It is possible that the code versions that run the fastest will be different

among platforms, but the programming effort does not increase significantly, because the

different versions need to be tried in both platforms in the optimization and tuning process

anyways.

Note that we do not claim OpenCL is performance portable across platforms in general.

We believe that given the data parallel nature of vision algorithms, in many cases, the

50

same baseline algorithm can be written for CPU and GPU in OpenCL. However, tuning

transformations need to be evaluated separately for each device. For this study, our target of

the OpenCL tuning was the GPU, but the experimental results show that the transformations

also worked for the CPU, resulting in the same kernel codes.

3.3.5 Possible Hardware and Software Improvements

Vision and video analytics (and their filtering kernels) are important applications for hetero-

geneous on-chip architectures. Thus, we list a set of possible improvements to the hardware

and system software that vendors might consider for this class of applications.

The first one is related to the algorithms that the compiler can recognize and vectorize

automatically. We observed that neither the Intel compiler nor the OpenCL compiler can

generate efficient vector code for the max reduction (and finding the index corresponding to

max) used in the filter kernel. When we examined the assembly code, we found out that the

OpenCL compiler generates permutations and comparisons similar to our AVX+SSE version.

However, the compiler should be able to automatically generate more efficient code [58,59],

following a similar approach to the one in the AVX code evaluated in Figure 3.3.

The second one deals with a common operation in this type of kernels. We have observed

that multiply and add operations are used together extensively. Thus, Fused-Multiply-

Add can improve the performance significantly. The “FMA” vector extension addresses

this point, which is available in some new processors (such as the ones using Intel Haswell

micro-architecture).

Our transformation optimizes filter kernels significantly but they could become even faster

with more hardware support. Finding the maximum and corresponding index in a vector

is a reduction across the elements of a single SIMD vector, or a horizontal max operation

(in Intel’s terminology). In current SSE and AVX standards, there are a few horizontal

operations, such as an addition that just reduces two adjacent elements. This could be

further extended to perform a full reduction, which will improve multimedia applications

in general [60–62]. In fact, to estimate how much improvement we can achieve with a

reduction instruction, we replaced the instructions to find the maximum response in our

AVX kernel with just a horizontal add instruction. This improved the performance by more

than 34%. Thus, more targeted hardware support can lead to significant improvements in

future machines.

51

3.4 Application Performance and Energy

This section evaluates and analyzes the execution time and energy consumption of the kernels

described in Section 3.1.1 and optimized in OpenCL in Section 3.2. We also evaluate and

analyze different mappings for our application on CPU and GPU for better performance and

energy efficiency.

Figure 3.4(a) shows the execution time of each kernel on the CPU and GPU. full-app shows

the results for all the three kernels running on either the CPU or the GPU. The GPU is

about 3 times faster for the filter kernel and 2.3 times faster for the histogram one. However,

it is more than 1.3 times slower for the classifier kernel. Note that classifier performs less

floating point operations per data element (see related work for analysis of data-parallel

kernels on CPU and GPU [50]). For the full application, the GPU is slightly faster (less

than 8%) than the CPU.

Figure 3.4(b) shows the power consumption of the processor for each individual kernel

and for the full application running on either the CPU or the GPU. Each setting is labeled

after the running code and the architecture it is using. For instance, “class-G” means that

classifier kernel is running on the GPU. Each setting has three power consumption bars. We

also show power numbers in idle state. The red (left) bar is the power consumption of the

whole processor chip (CPU, GPU, memory controller, etc.), while the green (middle) bar is

just the CPU’s consumption and the blue (right) one is just the GPU’s. Note that we report

the average power consumption over a period of execution (see Section 3.1.6).

We mostly consider the power consumption of the whole package (the red bar), as it

corresponds to the cost one would pay. However, the power breakdown can give insights

about some important aspects of the system. For instance, when the code is running just on

the GPU, the CPU is still consuming considerable power. The reason is that the CPU and

the ring interconnect are in the same voltage and frequency domain [49] and the interconnect

cannot be idled, since the GPU needs to connect to the last level cache (LLC). Addressing

this issue may lead to significant savings in power consumption when the application is

only using the GPU. The reason is that, for instance, the CPU domain consumes 3W (with

probably a notable part contributed by the cores) from the 11.5W total package power when

the classifier is running on the GPU. On the other side, it consumes only 0.7W in idle state.

As shown in Figure 3.4(b), the GPU consumes more power than the CPU in all cases

(e.g. comparing left bars of filter-G and filter-C) except classifier, which is not unexpected

since GPU has higher peak performance as well (See Table 3.1). However, GPU’s power

consumption varies depending on the workload. For instance, classifier consumes around

11.6W, while the filter consumes about 18.2W (around 36% difference). This is because the

52

 0

 10

 20

 30

 40

 50

filter histogram classifier full-app

E
xe

cu
tio

n
tim

e
(m

s)

CPU

45%

2%

49%

45%

42%

1%

9%

15%

GPU

*

(a) Execution time

 0

 5

 10

 15

 20

filter-C filter-G hist-C hist-G class-C class-G full-C full-G idle

Po
w

er
 (W

)

Package CPU GPU

(b) Power consumption

Figure 3.4: Execution time and power consumption of kernels (on Ultrabook);
*- percentage of peak performance.

filter keeps the GPU almost fully occupied while the classifier does not have full utilization.

On the other hand, the CPU’s consumption has less than 0.5W variation across the board,

even with its complex architecture and power management schemes. The reason is that

53

 0

 100

 200

 300

 400

 500

 600

 700

filter-C filter-G hist-C hist-G class-C class-G full-C full-G

E
ne

rg
y

(m
J)

Package CPU GPU

Figure 3.5: Energy consumption (on Ultrabook).

all the kernels can keep it occupied, partly because of its adapting architecture and partly

because it is not very powerful.

So far, we have seen that the GPU is faster but it consumes more power. Since one

factor is in favor of energy but the other is against it, we need to look at the energy metric.

Figure 3.5 compares the energy consumption of the different kernels and full application on

the CPU and the GPU. For the full application, the package consumes slightly more energy

when running on the GPU (less than 7%), while it varies across different kernels. If we look

at the package consumption, the GPU consumes 36% less energy for histogram kernel and

46% less for the filter kernel. However, it consumes 20% more energy than the CPU for the

classifier kernel. This, as pointed by others, contradicts the general belief that the GPU

architecture is more energy efficient for every highly parallel kernel [50]. The net energy is

in favor of the CPU, since the classifier kernel is time consuming on the GPU.

In a nutshell, running the three kernels in ViVid on the integrated GPU of the Ivy Bridge

Ultrabook is faster but consumes more power and energy. On our Desktop system, with

the same input size, the GPU is about 5 times slower and 3 times less energy efficient than

the CPU for full-app, because it is small (so not very powerful in computation) but keeps

the resources of the system busy. Thus, the balance of the system needs to be considered

for portable devices that run vision applications. Comparing across platforms (but same

processor type), the CPU of the desktop machine is about 2.5 times faster than the Ultrabook

one for the full-app, but 19% less energy efficient.

54

3.4.1 Mapping Strategies

After understanding the different trade-offs between GPU and CPU for each kernel, the

natural question is how to utilize the heterogeneous system for an application to achieve

better performance and energy efficiency. Other than just running the code only on the

CPU or the GPU, one could also try to map different kernels to the device where they

run more efficiently. Figures 3.6(a), 3.6(b), and 3.6(c) show the execution time, power and

energy of different approaches, respectively. CPU and GPU correspond to running all the

kernels in the CPU or in the GPU. Specialized corresponds to an execution where the filter

and histogram are mapped to the GPU (where they run faster and more energy efficient)

whereas the classifier is mapped to the CPU (where it is faster and more energy efficient).

In specialized, when the GPU is executing filter or histogram, the CPU is idle and vice versa

(when the CPU runs the classifier, the GPU is idle). Overlap corresponds to an execution

similar to software pipelining. It can be applied to streaming applications where parallelism

can be exploited across multiple input images or frames, like multiple frames of a video.

When using overlap, filter and histogram form the first stage of the pipeline operating on

a frame in the GPU, while classifier is the second stage of the pipeline running on the

CPU and operating on the GPU’s results. Note that with overlap, since the CPU’s work

takes around 3 times more than the GPU, the GPU will be idle for about two-thirds of the

execution time. Note that the strategies so far will under-utilize either the CPU or the GPU

because of data dependencies. Therefore, one could split the image between the CPU and

the GPU for maximum utilization, shown as split in the figures. Since the execution time of

the application is almost the same for the CPU or the GPU, we split the image in half for

our experiments.

When analyzing these strategies, one needs to keep in mind that this architecture has a

dynamic power management scheme (Intel Turbo Boost 2.0 technology). It determines a

fixed power budget at each time based on the temperature and assigns frequencies to the

CPU and the GPU accordingly [49]. Thus, for example, the CPU and the GPU are slower

when they are running together as opposed to when the other is idle.

Figure 3.6(a) shows the execution time of different strategies for the full application.

Specialized is more than 25% faster than just running on the CPU (20% faster than the

GPU), as one would expect. Split is about 39% faster than CPU, but it could be up to

twice faster if the system did not have dynamic power management. Overlap obtains the

best performance by running the kernels on the best type of processor, but trying to keep

them more busy by software pipelining. It should be noted that, for our Desktop system,

split did not result in any performance improvement comparing to CPU. This is because the

55

 0

 10

 20

 30

 40

 50

CPU GPU specialized split overlap

E
xe

cu
tio

n
tim

e
(m

s)

11%

12%

14%

17%

22%

*

(a) Execution time

 0

 5

 10

 15

 20

CPU GPU specialized split overlap

Po
w

er
 (W

)

(b) Power consumption

 0

 100

 200

 300

 400

 500

 600

 700

CPU GPU specialized split overlap

E
ne

rg
y

(J
)

(c) Energy consumption

Figure 3.6: Running full application on CPU or GPU or utilizing both using
different approaches; *- percentage of peak performance.

GPU is much slower (5 times than the CPU) and the overheads of using it dominate. Thus,

the balance of the heterogeneous systems seems important for these applications.

Figure 3.6(b) illustrates the power consumption of different strategies. Specialized has the

least consumption, while split consumes the most. As one expects, overlap consumes more

than specialized, but less than split, because its resource utilization is in between the two.

Note that power consumption does not necessarily correspond to execution speed here.

Figure 3.6(c) shows the energy consumption of each strategy for an input image. specialized

and overlap consume the least energy because they run each kernel where it runs the best.

On the other hand, using only the CPU or the GPU is not energy efficient. Note that split

56

is a very fast method but it consumes much more power also, so it is not the most energy

efficient in the end. specialized and overlap are 35% and 42% more energy efficient than

GPU only method respectively. They are also 19% and 28% more energy efficient than split

respectively.

Summary Overall, our results show that to minimize energy consumption in these hetero-

geneous devices, one should try to exploit parallelism across devices and each kernel should

be mapped to the device where it is more energy-efficient. Execution time should not be

the only factor used to determine how to map an application, because the different devices

have different power consumptions, resulting in different overall energy (e.g. specialized is

slower than split, but more energy-efficient). Thus, our overlap approach where parallelism

is achieved through software pipelining seems the best strategy for these type of on-chip het-

erogeneous architectures. However, a couple of points need to be considered when choosing

this strategy. First, it is desirable to have pipeline stages with similar execution times, as

the execution time of this scheme is determined by the execution time of the longest kernel.

Note that our application’s stages do not have similar execution times but this strategy is

still the best. Second, this approach requires to have more on-the-fly data. In our case,

since the pipeline only has two stages we have two frames on-the-fly (as opposed to one).

In addition, since kernels execute in different devices, the frames need to move from device

to device (in contrast with the split mechanism, where the data always stay in the same

device). Since most of the vision applications (including ours) are very compute-intensive,

data movement usually is amortized easily by the numerous computations required per data

element.

Our performance is superior or similar to recent works using much more capable discrete

GPUs [35,36,63]. However, notice that real time vision applications need to run at a certain

number of frames per second. For instance, we can run at around 40 frames per second (fps)

with overlap and 31 fps with split, while 10 fps might be enough for many object detection

purposes. Applications requiring real-time object detection (33 fps) can use the OpenCL

code on this architecture. The extra available computation power can be used for more

analysis or for other applications (e.g. if vision is only the interface for some other purpose).

Note that when maximum performance is required (e.g. needed fps cannot be reached), one

might need to trade energy efficiency for performance (e.g. specialized versus split, when

overlap cannot be used).

One might need more compute-power for future applications. Our experiments show that

scaling the number of GPU’s CUs is effective. As noted in Section 3.1.5, the Ultrabook’s GPU

has 16 CUs, while the Desktop’s GPU has 6 CUs, with similar architecture and frequencies.

57

For all the kernels (as well as the full application), we see more than twice speedup on the

Ultrabook one, which supports the scalability of the architecture for these applications.

3.4.2 Saving Energy with DVFS

We saw that we can reach a detection rate that is more than enough for many applications.

Thus, one might consider Dynamic Voltage Frequency Scaling (DVFS) for saving energy.

However, Ivy Bridge processor’s DVFS does not seem to be effective for these compute-

intensive codes. We applied DVFS to our application and we could only save at most 5%

of the energy, while sacrificing 9% performance. The reason is that it makes the runtime so

much longer (for compute-intensive codes) that it offsets the power savings. Thus, running

the application for a while and then idling the processor seems to be the best solution for

saving energy. In this case, savings will depend on sleep and wakeup latencies of the processor

in the specific usage.

However, we expect DVFS support to improve significantly in future devices, as vendors

consider it in earlier steps of the processor design. For instance, when Near Threshold

Voltage (NTV) processors become available, DVFS will save much more energy [64]. This

will be very important for energy efficiency of many vision applications similar to ours.

3.4.3 Trading Accuracy for Energy

The visual descriptor we use is based on a model where the appearance of each 3× 3 patch

is characterized by finding its closest neighbors in a pre-determined dictionary of 3×3 patch

templates (filters). Naturally, larger dictionaries can capture wider varieties in appearances

of patches. In the case of detection problems, this results in an increased modeling power for

discriminating the appearance of the objects of interest, versus the appearance of all other

structures in natural images. However, as the size of the dictionary grows, more training

samples are necessary to fully utilize the dictionary’s modeling potential. Thus for a given

dataset, one can expect the detection performance to saturate at a large enough dictionary

size, which we observe at around 150-200 item dictionaries in our example application.

Figure 3.7(a) shows the miss rate of our object detection algorithm as a function of dictionary

size (from previous work [33]). We chose 100 filters (dictionary size of 100) in this chapter

since it provides enough accuracy for most applications [33].

However, since energy is a major constraint in portable devices, one might want to trade

some accuracy for energy savings when the battery charge is low. In our application, accuracy

58

 0

 5

 10

 15

 20

 25

 30

 10 20 50 100 200 300

M
is

s
ra

te
 (%

)

Dictionary size (number of filters)

(a) Object detection miss rate

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300

E
ne

rg
y

co
ns

um
pt

io
n

re
la

tiv
e

to
 m

ax
 (%

)

Dictionary size (number of filters)

(b) Relative energy consumption

Figure 3.7: Accuracy vs. energy consumption.

is determined by the dictionary size (number of filters) as mentioned. Furthermore, the work

of the algorithm also depends on the dictionary size. Thus, the number of filters might be a

“knob” for the system to save energy according to the energy status of the device (battery

charge) at runtime.

Figure 3.7(b) shows the relative energy consumption when using different dictionary sizes.

From this figure and Figure 3.7(a), one can conclude that we can save approximately 20%

energy by going from 100 filters to 70 filters, which increases miss rate only by around 1%.

This is a good tradeoff of energy and accuracy for many situations.

In a nutshell, we have considered four different techniques for better energy efficiency: 1)

item Program optimization, 2) Heterogeneity, 3) DVFS, and 4) Decreasing accuracy.

3.5 Related Work

Previous works have shown that the use of heterogeneous architectures can improve perfor-

mance and decrease energy consumption [29]. In addition, mapping algorithms have been

studied for heterogeneous systems [65–68]. Other forms of heterogeneity, such as off-loading

virtual machine services (e.g. garbage collection) to smaller cores [69], has also been stud-

ied. However, the focus is mostly on mapping across different applications. In addition,

integrated GPUs have not been considered.

A few programming paradigms such as OmpSs [70] or starPU [71] provide a unified pro-

gramming paradigm for the CPU and the GPU and automatically perform load balancing

59

and move the data as needed between the different nodes and GPUs. We restricted our-

selves to OpenCL, since it is the only one supported by the integrated GPU in the Ivy

Bridge machines. In addition, these works focus on programmability and performance, but

not energy efficiency. Also, they focus on large systems, rather than on-chip heterogeneous

systems. Moreover, they do not focus on pipeline applications. Furthermore, as we have

shown, automatic vectorization does not achieve high performance in our case.

The new architectures with on-chip GPUs are becoming increasingly more popular in

industry. These platforms include Intel’s Ivy Bridge [30], AMD APU [31], and NVIDIA

Tegra 250 [32]. Evaluation studies also show their advantages in performance and energy

efficiency [72–75].

With regards to computer vision, it is known that GPU is very effective [63,76–79], because

of the data parallel nature of most vision computations. However, as shown, integrated

GPU’s have different trade-offs and a GPU-only solution is not efficient here [50]. Our code

has very high performance comparatively, and we gain much better or similar fps detection

rate compared to recent works on object detection, which use much more capable discrete

GPUs [35,36]. For example, 41 fps had been reported using a desktop machine with an Nvidia

GTX 260 GPU card [35], while we achieve 40 fps on a portable device with an integrated

on-chip GPU (although comparison is complicated, since the algorithms and machines are

different).

Furthermore, trading accuracy for energy or performance has been considered, but in

different contexts [80,81]. For example, Bergman [81] shows how to limit the processing times

for rendering graphics by an OpenGL API library. This method sacrifices frame rate or image

quality for less energy consumption. In addition, Sharrab and Sarhan [80] adapt the video

rate for computer vision applications considering both accuracy and power consumption. To

gain insight about the accuracy of object detection algorithms, we encourage the reader to

go through surveys on similar topics [82–84].

3.6 Conclusions

Driven by user demand, the computer industry is focused on battery operated portable

devices, which are energy constrained. In addition, better user experience requires natural

interfaces using vision and video analytics applications. However, energy efficient execution

of these compute-intensive workloads is challenging.

We showed that heterogeneous on-chip architectures can be very effective, using a visual

object detection application. We optimized each kernel for CPU and integrated GPU of

60

the Ivy Bridge architecture using different techniques. For example, we vectorized the filter

kernel using a data layout transformation.

Furthermore, we showed that a unified programming paradigm such as OpenCL provides

a good balance between performance and programmer productivity. This is because the

same code runs efficiently on both the CPU and the GPU.

In addition to productivity and performance, energy efficiency is a main concern. By

comprehensive evaluation, we showed that it is best to map each kernel where it runs the best.

Thus, existing methods, which only use the GPU or try to gain maximum utilization of both

the CPU and the GPU naively, are inefficient (even for highly parallel vision workloads). In a

nutshell, running each kernel on the best processor type, and using software pipelining is both

faster and more energy efficient. This is because these heterogeneous on-chip architectures

have a fixed chip power budget, which is allocated by a dynamic power management scheme

to each processor. If parallelism through software pipelining is not possible, splitting the

input among CPU and GPU might be faster, but specializing each processor for suitable

tasks can be more energy efficient.

61

CHAPTER 4
Adaptive Cache Hierarchy Reconfiguration in

Adaptive HPC Runtime Systems

Power- and energy-related issues are of growing concern in computer systems. The number

of transistors on a single chip has already surpassed one billion and continues to increase.

Although semiconductor processes can give us ever more transistors, thermal dissipation and

broader power and energy constraints will limit their use.

The cache hierarchy has potential for many power and energy efficiency innovations. A

significant fraction of the power used by a processor chip is consumed by the cache hierarchy.

For example, caches in IBM’s POWER7 consume around 40% of the processor’s power [85].

Yet, the caches may not be utilized equally in various Computational Science and Engineering

(CSE) applications and even across different phases of a single application.

To exploit this fact, we have developed a scheme that saves energy by using the runtime

system (RTS) to selectively turn off parts of the caches. Our approach takes advantage of

common characteristics of workloads found in CSE. We also leverage adaptive RTSs that

include an introspective component that is aware of both the current hardware status and

the application.

In this chapter, we characterize HPC platforms and applications and find common patterns

of cache utilization. We then use these patterns to develop a novel, adaptive RTS-based

scheme that automatically turns parts of the caches on or off to save energy. Our scheme

also switches the cache to a streaming organization depending on the application’s behavior.

In this case, the runtime reconfigures the streaming parameters for best performance and

energy efficiency.

Our scheme addresses major limitations associated with other methods that reconfigure

the caches. It uses persistence and formal language theory to express the application’s

62

pattern, and the Single Program Multiple Data (SPMD) model to find the best configuration

concurrently. This approach is practical since it only requires minor hardware support.

We evaluate our scheme using cycle-level simulations of a chip multiprocessor running the

Mantevo mini-apps suite [86] and real applications such as NAMD [19] and MILC [87]. Our

results indicate that 67% of cache energy can be saved on average, with only a slight perfor-

mance penalty. We also demonstrate that adaptively switching to a reconfigurable streaming

organization for the L3 cache (prefetching cache lines for detected memory-access streams)

can improve both performance and energy efficiency with various tradeoffs. For example,

performance can be improved by 30% while saving 75% of cache energy consumption.

The contributions of our work can be summarized as follows. We analyze the memory

access characteristics of common HPC applications using the inherent properties of scientific

domains and algorithms. In contrast to previous HPC characterization works [88–91], we

consider all the relevant aspects from algorithms to hardware. We also examine the capabili-

ties of HPC runtime systems, and the related energy reduction possibilities in caches. Taking

into consideration all the involved system components, we propose a novel cross-layer solu-

tion for adaptive cache reconfiguration. We also propose a software-controlled reconfigurable

streaming scheme that can improve performance and energy efficiency for many common

applications. Our proposals are highly practical since the RTS is easy to change, and the

hardware complexity does not increase significantly. To the best of our knowledge, this is

the first work to use HPC runtime systems to reconfigure the cache hierarchy for energy

efficiency.

This chapter is organized as follows: Section 4.2 and Section 4.3 discuss the necessary

background and common patterns in HPC applications and architectures. Next, Section 4.4

introduces our RTS-based scheme. Section 4.5 explains our evaluation methodology and

presents the results of our scheme for cache reconfiguration. Section 4.6 explains our recon-

figurable streaming scheme and presents the results and their analysis. Section 4.7 discusses

the related work and we conclude the chapter in Section 4.8.

4.1 Background and Motivation

Cache reconfiguration (cache tuning) has been extensively studied, because of the high energy

consumption of caches [92–97]. Dynamic hardware-based methods need to 1) monitor the

application to predict the future, and 2) find the best cache configuration effectively. Both

of these stages have considerable performance and energy overhead [98], eliminating the

benefits of reconfiguration. For example, the hardware could monitor some system metrics

63

such as Instructions Per Cycle (IPC) and cache miss rate in a short interval and choose

a new configuration. However, there is no guarantee that the interval is representative

of the application execution, especially for HPC applications, which typically have long

iteration times. In general, phase change detection is known to be challenging. Furthermore,

the chosen configuration may not be the best possible, and good design space exploration

heuristics are difficult to design for complex modern processors. In Section 4.6, we analyze

a typical case where the miss rate is decreased but the performance is degraded due to

different, complex factors of a modern speculative processor. A survey by Zang and Gordon-

Ross [98] explores the challenges. Because of these issues, these hardware methods have not

found their way to modern processors, and some recent processors, such as Angstrom [99],

rely on software to reconfigure their caches.

Cache reconfiguration by the compiler has also been proposed [100, 101]. Many assump-

tions are made for the required footprint analysis, such as having only simple nested-loops

and affine functions for array indices (only constants and loop index variables are allowed).

However, large-scale HPC codes are usually more complicated. Moreover, the hardware com-

plexities mentioned previously can prevent the compiler from choosing good configurations.

We argue that the RTS can perform this task much more easily and effectively.

As an example of current practice on modern HPC machines, let us consider the simula-

tions that were used for a recent scientific discovery at Illinois. Researchers used NAMD to

simulate an HIV molecular system with 64 million atoms. Considering the maximum possi-

ble cache utilization with all the read only data (e.g. structures of atoms) and transient data

(multicasts of force calculation results), only about 400 bytes per atom are needed. There-

fore, the application uses only 25.6 GB of data in the working set. Note that in NAMD,

the main data being updated in each iteration are the position and velocity of the atoms,

which need only 48 bytes per atom combined. A typical simulation uses about 4000 Cray-XE

nodes of Blue Waters (each containing two AMD Interlagos processors) with a total of 256

GB in L2 and L3 caches. Thus, more than 90% of the cache capacity was not used for the

simulation. Each simulation took more than 16 days of wall clock time, which translates to a

huge waste of power in the caches. Section 4.2 explains why the algorithms of this particular

class of HPC applications do not need large caches.

64

4.2 HPC Systems

4.2.1 Provisioning Practices

Machines in HPC data centers are used very differently than non-HPC ones. Usually, there is

no multi-programming or time-sharing of different jobs. In addition, there is no co-location

of different jobs on the same nodes. Therefore, each node is dedicated to a single job at a

time.

Furthermore, there is no migration of jobs across nodes. A set of nodes is dedicated to a

single job for its entire execution time, which is usually much longer than the execution times

of non-HPC jobs. Note that capability supercomputers usually try to run long jobs with

large allocations (especially on the full machine) to facilitate new and significant scientific

discoveries. On the other hand, non-HPC data centers run short and small jobs (e.g. search

queries) that can be migrated using virtual machines. Thus, HPC machines are simpler to

analyze and there is much more predictability and persistence in HPC data centers that can

be exploited.

The processors in current supercomputers are often commodity chips. The reason is that

designing and manufacturing a processor is a large investment that needs larger markets.

Thus, most processors used in HPC are designed for commercial workloads in various envi-

ronments, which can be very different than HPC workloads. This can result in inefficiencies

of both power and performance in HPC environments. However, as we demonstrate in this

chapter, these can be overcome with minor support for HPC.

4.2.2 Applications

Common HPC applications are usually iterative and persistent, meaning that their compu-

tation and communication patterns tend to persist over time. They perform roughly the

same (or very similar, at least from a memory access pattern perspective) computations and

communications in each iteration. Each simulation consists of thousands to millions of these

iterations (each iteration might be structured and have phases in itself, which is discussed

later). For example, to simulate a bio-molecular system (e.g. in NAMD [19]), forces need

to be integrated for every one (or few) femtosecond(s) of simulated time. Therefore, a one

microsecond simulation of a bio-molecular system takes one million iterations. Even though

the simulation is dynamic and the molecules and atoms might move across regions, the com-

putations are roughly the same. Thus, many scientific and engineering applications follow

the principle of persistence. This means that the computation and communication tends to

65

persist or change slowly over time. This principle allows the RTS to predict the future of

the application and has led to many successful features, such as measurement-based load

balancers [10]. All the mini-apps in the suite we consider are iterative and highly persistent.

Some HPC applications (e.g. stencils and matrix-vector multiplies) are memory-bound

and have lower temporal locality but higher spatial locality than other workloads. This

property is studied extensively in the literature [88, 90, 91, 102]. For example, a sparse

matrix vector multiply (SpMV) kernel sweeps the matrix and vector linearly and there is a

high chance of accessing neighboring values. However, if the matrix and vector inputs are

larger than the largest cache, the data will not be present in the cache for the next iteration.

For example, a physical domain with 1003 grid cells per processor1 and 240B of data per cell

(for different attributes such as velocity, energy, mass, their derivatives, etc.) will occupy

230MB of memory, which should be updated in every iteration.

On the other hand, some applications have high temporal locality as well as spatial locality,

but their working set (in typical execution runs) is usually much smaller than the cache

hierarchy. Many Molecular Dynamics (MD) applications, such as NAMD, usually fall into

this category. For example, 1000 atoms per processor with 80B of data per atom takes only

78KB of memory, which is only a small fraction of a typical Last Level Cache (LLC).

Most HPC applications follow similar memory access patterns. To study these patterns,

we use the Mantevo suite’s mini-apps as representative of common HPC applications. Mini-

apps are simplified versions of applications that are of interest to the CSE community. They

are designed to be similar to real applications from a computational perspective, and more

representative than micro-benchmarks. The mini-apps of the Mantevo suite can be divided

into three classes:

1. Stencil computations (CloverLeaf and MiniGhost)

2. Sparse Linear Algebra (HPCCG, MiniFE and MiniXyce)

3. Particle simulations, such as molecular dynamics (MiniMD and CoMD)

Stencil computations, which are key kernels of many structured grid applications and their

PDE solvers, have limited data reuse. These kernels sweep through domain data structures

that are typically much larger than caches and fill a sizable fraction of the main memory.

Thus, they do not benefit from caches to the full extent. For example, Figure 4.1 illustrates a

5-point 2D stencil computation. In this example, the update of Point 3 uses Points 1, 2, 3, 4,

and 5, which can potentially result in four cache misses. The next update, which is for Point

1by “processor” we mean a processor chip in this chapter (not a single core).

66

1

3

5

42

6

7

8

0x03…1 0x03…2 0x03…3 0x03…4

0x05…3 0x04…4 0x05…5 0x05…6

0x07…5 0x07…6 0x07…7 0x07…8

Figure 4.1: 5-point 2D stencil example: boxes represent memory locations, ovals
represent stencil data points, and arrows indicate data dependencies.

4 (displayed with dotted lines), can reuse some of the data of the previous update. Therefore,

a memory location is reused only a few times after its first use. Similarly, consecutive updates

go through the top, middle and bottom rows of the data domain in the figure. From the

memory hierarchy point of view, three different address ranges are being read (“streamed”)

with few reuses.

In essence, these classes of applications have much more spatial locality than temporal

locality. Thus, streaming buffers (or other forms of block transfers) can be more effective

than typical caches for stencil computations. Streaming strategies can capture more of the

available spatial locality in stencil codes to hide memory latencies. Also, spatial locality is

partially captured through the cache line in caches, and a smaller cache could be just as

effective.

Note that cache tiling (blocking) optimizations reduce the dimension sizes, increasing the

number of reuses. However, the block size needs to be tuned and does not need to fit the

whole LLC, as previous work demonstrates [103]. Furthermore, many legacy HPC codes do

not incorporate these optimizations, and the required programming effort is a burden. The

applications and mini-apps we evaluate do not use tiling for stencils for the same reason.

Programming paradigms such as Hierarchically Tiled Arrays (HTA) [104] can alleviate this

issue.

Sparse Linear Algebra computations in HPC applications also have limited cache utiliza-

tion if the domain is large enough. The HPCCG, MiniFE, and MiniXyce mini-apps use

sparse linear algebra methods, such as Conjugate Gradient (CG) and Generalized Minimal

Residual (GMRES). Most of the execution time of these methods is spent in matrix-vector

and vector-vector operations. These kernels stream data from main memory without much

reuse. For example, matrix-vector multiply kernels read the matrix only once in every itera-

67

tion. The vector accesses might also not have much data reuse depending on the structure of

the matrix (e.g. a matrix from a regular 2D grid). In addition, if the matrix is large enough,

the vector is evicted from the cache. Thus, consecutive addresses from a few address ranges

are read regularly (from the memory hierarchy) for these kernels. Therefore, they have high

spatial locality, similar to stencils, and the same arguments apply.

Many Molecular Dynamics (MD) and other particle interaction kernels are different than

the previous categories and can have high temporal locality (as well as spatial locality). The

reason is that the previous categories usually represent discretized points in the physical

domain, while particle kernels represent entities. Each entity can have many interactions

with other entities, while a point is fine-grained and usually interacts only with its neighbors.

For example, in many particle kernels each particle (an atom in MD or a star in astrophysics)

interacts with all other particles within a cut off distance. Hence, while each memory location

is accessed O(1) times in the other two classes of applications, it is accessed O(n) times in

particle applications (n is the number of particles in a cut-off), resulting in high data reuse.

On the other hand, the data size for practical runs is typically smaller than caches of modern

machines, especially the LLC. One reason is that the order of the computation time is roughly

the square of the data size in the cut-off, making large input sizes impractical. Thus, large

caches are not exploited to their full potential in many members of this class of applications

either.

As we discussed earlier, cache effectiveness of common HPC applications is highly related

to their per-processor working set size. Therefore, even a single application can have different

cache utilization profiles depending on the input size and the number of processors used.

Thus, there is no single cache hierarchy configuration that could fit all cases, providing the

highest performance and energy efficiency.

4.2.3 Runtime Systems

In HPC environments, the RTS mainly mediates the communication and provides parallel

services, such as message passing in MPI. This parallel management, in addition to ap-

plications’ persistence, empowers the runtime system to provide other important features

such as load balancing [10], fault tolerance [11], efficient parallel I/O [9, 105], and power

management [12,13]. Therefore, an adaptive RTS orchestrates a control system [106].

Our approach is based on the management of Sequential Execution Blocks (SEBs), which

we define as sequential computations between two communication calls (e.g. MPI calls). The

RTS has control before and after each SEB, but it cannot usually interrupt it. These SEBs

68

are repeated every iteration and they perform roughly the same computation (especially from

a cache access perspective). For example, in most stencil codes the processors iteratively

exchange the boundaries and update their values in an SEB. Thus, we try to adapt the

caches to the SEB that is about to execute.

4.3 Cache Hierarchy

4.3.1 Cache Structure

Modern processors have multiple levels of very large caches to hide memory latency as

much as possible. For example, the Intel Xeon E7-8870 [107] has 30MB of L3 cache in

SRAM technology and IBM POWER8 [108] has 96MB of L3 cache in eDRAM technology.

Architects try to incorporate larger caches to accelerate different workloads, while meeting

the area, power, and latency budgets (e.g., it is critical in many designs to have only one

cycle latency for L1 caches). Therefore, a large fraction of the silicon area is used by caches.

The cache hierarchies are designed for a diverse set of applications and hence, a fixed design

might not be best for every workload. Furthermore, most supercomputers use commodity

processors, which are designed for other (non-HPC) markets with different workloads. These

factors result in immense waste of power and energy in supercomputers. For example,

“big data” applications such as graph analysis might not have any locality because they

are unstructured in their memory accesses (e.g. pointer chasing pattern). Thus, a level of

adaptivity is needed to match the running application without too much hardware overhead.

4.3.2 Cache Power

Caches consume a large fraction of processor chips’ power budget. For example, even with

many advanced hardware power reduction techniques in place, caches in POWER7 consume

around 40% of the total power [85]. The power consumption of caches depends on the

technology, but our approach can help in most cases. SRAM technology has high leakage

but is faster. On the other hand, eDRAM has much less leakage and higher capacity but

needs to be refreshed [109]. Our approach can help with either technology.

Turning off ways of caches, used in our approach, can save the power consumption of

various caches differently. In conventional caches, tag lookup and data access are performed

in parallel for faster access. Therefore, considering that a large fraction of dynamic energy

is consumed in data arrays, turning off ways of the cache saves significant dynamic energy

69

in addition to leakage (static) energy. On the other hand, the caches that are not on the

critical path of the processor can be made so that tag and data accesses are done sequentially,

accessing only one way after tag lookup [110]. Thus, turning off ways can only save leakage

energy in this case. This usually applies to Last Level Caches (LLC), which consume a lot

of leakage energy.

4.3.3 Architectural Opportunities

Modern set-associative caches are partitioned into multiple sub-arrays for performance rea-

sons, and only minor hardware modifications are required to turn them off. Previous work

proposes to do so, through simple changes to the cache controller and the addition of a

register to let software turn ways off [110].

Most recent processors (and proposals) incorporate advanced features which let the soft-

ware control various aspects of the processor similar to what we need, so our proposal is

practical. The Angstrom architecture [99], which has been proposed for extreme-scale com-

puting, allows the cache size to be changed by turning off ways and banks of the caches in

software. The RAPL (Running Average Power Limit) [111] interface of recent Intel proces-

sor lets the software limit the power consumption of the chip among other features. The

architectural support we need for our approach seems to be much simpler than RAPL.

4.3.4 Streaming

Some related proposals focus on streaming strategies as a cache efficiency technique for scien-

tific applications [112]. In short, streaming relies on the spatial locality of HPC applications

to load more data to reduce memory access latency. This can improve both performance

and energy efficiency. In this work, we propose a unique software-controlled reconfigurable

streaming scheme.

Streaming schemes strive to recognize the memory accesses with simple patterns (streams)

and prefetch them using prefetch buffers. When a memory access misses in the cache, a

stream is allocated and the cache blocks are prefetched starting from the missed target.

Thus, subsequent memory accesses of the stream will have the data available in the cache.

This method is simple, but it is usually effective for HPC applications because of the common

patterns discussed in Section 4.2.

Since most HPC applications usually access multiple arrays in each loop (e.g. pressure

and temperature at each grid point), using more than one stream is useful (i.e., multi-way

70

streams). When a memory access misses in the cache (i.e. it is not prefetched by the other

streams), an old stream is flushed and a new stream is allocated starting at the miss address.

We assume a Least Recently Used (LRU) policy to select the stream to be deallocated.

The depth of the stream is an important parameter. Streams should be deep enough

to hide the memory latency for the subsequent accesses, but not too deep. If a stream is

too deep, it competes with other useful accesses, potentially delaying them. Also, it can

evict useful blocks from the cache. Thus, it can waste memory bandwidth and energy. We

evaluate the reconfiguration of the depth of streams in Section 4.6.

It is important to filter isolated references, as allocating streams for them can waste

memory bandwidth and energy. This is done with a small history buffer that stores the

addresses of recent misses. A stream is allocated only when a miss to a block occurs next to

a previously missed block (e.g. a and a + l). This also facilitates the detection of non-unit

strides that are prevalent in some HPC applications (e.g. accesses to addresses of a, a + d,

and a+ 2d, for d > 1). A stream can have unit strides or non-unit strides depending on the

application’s memory access pattern.

In this chapter, we reconfigure the cache’s (used as the streaming buffer) size and prefetch

depth automatically to improve performance and energy efficiency significantly. This needs

some hardware support (e.g., a small stream detection table), but it is relatively low cost.

For the streaming implementation in this work, we use a previous work [112] that identifies a

few streams of constant stride. However, we do not use a separate stream buffer and prefetch

to the LLC instead (more details in Section 4.6).

4.4 Reconfiguration in Adaptive Runtime Systems

In this section, we introduce our approach for automatic way reconfiguration of the cache

hierarchy. First, we present our baseline approach, which is enough for many common

applications. Then, we formulate the general problem of application pattern recognition to

incorporate more applications.

4.4.1 Overview of Our Approach

The RTS can easily identify common iterative patterns. This can be done by monitoring

communication calls (e.g., MPI Recv, MPI Barrier etc.) to see if they are repeated regularly

with similar arguments. The time between the matching calls is the iteration time and should

be reasonably consistent. Even complex HPC patterns can also be expressed using Formal

71

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000

Ti
m

e
 b

e
tw

e
e
n
 M

P
I
A

llr
e
d

u
ce

 c
a
lls

 (
m

s)

Iteration number

Figure 4.2: Time between calls to Allreduce in MILC.

Language Theory, as discussed later. Alternatively, some applications have calls to the RTS

marking the end of each iteration, which are used for other purposes such as load balancing

and fault tolerance. For example, calls that mark the best place for checkpointing are usually

made between iterations.

Figure 4.2 presents the time between successive calls to MPI Allreduce in MILC [87],

which is a prominent code for Quantum Chromodynamics (QCD), running on a BlueGene/Q

system. The Allreduce collective is called in the Multi-CG solve phases of MILC, which desig-

nates the CG steps. As can be seen, there is a clear regular pattern even for this sophisticated

application. After removing the outliers, the average is 6.893 ms with a standard deviation

of only 0.045 ms. In addition, the patterns for other phases of MILC are also regular (but

with nearest-neighbor communication instead of collectives). Thus, even a sophisticated

application such as MILC has a repetitive and regular pattern that is recognizable by the

runtime system using the the time between communication calls.

Note that, just like other runtime adaptation mechanisms such as load balancing, we

ignore the initialization and some iterations in the beginning of the execution. However, since

initialization is usually a small fraction of the execution time, using the best configuration

is not essential.

After identifying the iterative pattern and reconfiguration units (i.e., Sequential Execution

Blocks (SEBs)), the RTS should ensure the iterations and their SEBs are the same across

different processors. For this purpose, the runtime gathers some characteristic information

about the execution of each SEB on different nodes, including execution time, instruction-

based samples [113], and key performance counters. Then, reconfiguration is applied if the

attributes are within a threshold on all nodes. This can be accomplished by collective calls

72

(e.g. Allreduce) that determine if the collected attributes are statistically similar (e.g. the

minimum and maximum of the attributes are not too far from the average).

After finding the persistence pattern, the best cache sizes need to be found for each

reconfiguration unit (SEBs or whole iteration). For example, the (2,1,2,4) configuration

specifies that 2 ways need to remain active for L1D cache, 1 way for L1I cache, 2 ways for

L2 cache and 4 ways for L3 cache. This is accomplished by applying and benchmarking

different configurations on different processor in parallel to find the best one. We can map

the configurations to sequential numbers and each processor can use its number (e.g. derived

from MPI ranks) to know which configuration it needs to try. Different processors measure

the execution time and energy consumption for some number of iterations and the minimum

is reported by collective calls (e.g. Allreduce). The best configuration is then used on all

the processors.

When the best configuration is applied, the RTS observes the execution of future iterations

until the attributes become significantly different. Then, our method is invoked again to

adapt to the change. Note that if the variation of the application is so high that our method

could degrade performance, we switch to the default configuration (full size caches and

normal policy), which is the “safest.” In our experiments, we found that the runtime would

not need to switch to the default configuration very often, but this is possible in the general

case.

Our approach in the RTS can be summarized as follows:

1. Determine iterations (and relevant SEBs)

2. Ensure the SEBs are the same across processors

3. Run different configurations on different processors and find the best in performance

and power/energy efficiency

4. Apply the best configuration to all processors

5. Observe the execution and repeat if behavior changes

Note that we depend on the fact that SEB characteristics are the same or similar on

different processors. This follows from the Single Program Multiple Data (SPMD) paradigm

assumed in most distributed memory parallel languages, such as MPI.

73

4.4.2 Generalization

Most scientific applications are structured: they can have multiple phases in each overall

iteration, but these phases are also often iterative, forming a “hierarchical” iteration struc-

ture. For example, Figure 4.3 depicts different phases of MILC on four processors. This

is a timeline diagram, where different phases (e.g domain updates with nearest neighbor

communication, and CG solve) are color-coded differently. Note that the executions of four

processors are stacked, but they appear very similar.

Using Formal Language Theory, the hierarchical iterative structure of an HPC application

can be expressed as a Regular Language. We define each unique SEB as a symbol a of an

alphabet Σ. Each application execution might have a different number of iterations and

hence, is a word of the language.

Theorem 4.1. A hierarchical iterative pattern is a regular language.

Proof by construction. Each execution is a number of repeated iterations. Therefore, the

pattern can be written as a regular expression of this form: (a0, a1, ..., ad)
∗, where each

ai is a regular expression for each (possibly iterative) component of each iteration. The

regular expressions ai can also be constructed in the same way, since each component is

iterative as well. Following this procedure, in a finite number of steps, the whole regular

expression can be constructed recursively. Hence, the language is regular, since it has a

regular expression.

The general problem of finding the application’s pattern (to use for phase change detection)

is a pattern recognition problem. Using our formulation, it can be modeled as a classical

Formal Language Theory problem: learning a regular language from text [114, 115]. During

the application profiling, we collect a stream of symbols that are from a regular language,

and we need to infer the language.

In the profiling phase, we gather a string of symbols (Sample S) of the language by

monitoring the SEBs. We need to infer the grammar to build a deterministic finite automaton

(DFA). Recall that a DFA is a tuple (Σ, Q, qλ, F, σ) where Σ is a finite alphabet, Q is a finite

set of states, qλ is an initial state (qλ ∈ Q), F is a set of final states (F ⊆ Q), and σ is a

transition function (σ : Q × Σ → Q). For example, Figure 4.3 can be rewritten as a list of

symbols: a0a1a2a3...

A simple solution is to use a prefix tree acceptor (PTA) [115, 116]. A PTA is a tree-like

DFA that has all the prefixes of the sample as states, and is strongly consistent with the

74

Figure 4.3: Timeline view of phases of MILC: time is on x axis and four proces-
sors are stacked on y axis. Colors represent different computations. This figure
illustrates the regular iterative pattern of MILC.

qλstart qa qab qabc
a b c

Figure 4.4: PTA for sample abc.

sample, which means that it only accepts the sample2. Algorithm 2 demonstrates how a

PTA can be built from a sample. In essence, the PTA has one state for each prefix of the

sample. For example, if the sample is abc, the PTA has a state for a, ab, and abc. The

transition function has only one transition per state, which goes to the state representing

the next longer prefix. For example, the state for a only goes to the state for ab. Figure 4.4

illustrates the PTA that is built by this algorithm for sample abc.

Algorithm: Build-PTA

Input: Sample S
Output: DFA A=(Σ, Q, qλ, F, σ)
F ← ∅;
Q← {qu : u ∈ PREF (S)};
for qu·a ∈ Q do

σ(qu, a)← qu·a;
end
F ← F ∪ {qS};

Algorithm 2: Build PTA from sample.

Learning from text by a PTA can be challenging since the number of states can grow

large. However, in practice, the number of SEBs that execute in the profiling stage is small.

2We have simplified the definitions and the algorithm for our purpose but in general, there can be multiple
positive and negative samples of the language to learn from.

75

Furthermore, the number of DFA states can be reduced easily. For example, the application

might have 1000 relaxation steps followed by 1000 CG steps in each overall iteration. This

translates to 2001 DFA states since there these many prefixes in the string of the iteration

pattern in our formulation. To reduce this number, we combine all of the CG steps together

to form only one symbol since the same SEB is repeated. This fits our purpose since similar

SEBs will have the same cache configuration. In this way, our example will have only three

states in its DFA. Note that there are state merging techniques that can be used to merge

compatible states (please refer to the references [114,115]). However, for practical cases, the

number of states is already very small after applying our technique.

The inferred DFA (equivalent to a regular expression) will be used for the rest of the

application execution by the RTS to predict the future of the application. In this formulation,

predicting the future of the application is similar to simple pattern matching of regular

expressions. For instance, when the RTS is in state a and the next state is ab, the RTS

predicts that the SEB that b represents will be executed next, so it changes the configuration

to the best one for b before its execution.

Using our approach, the patterns of sophisticated HPC applications can be expressed by

simple regular expressions. For example, NAMD performs three force calculation steps (a),

before an FFT for long range force calculations (b). Therefore, the regular expression (a3b)∗.

MILC’s pattern illustrated in Figure 4.3 seems more complicated, but it can be expressed

as the regular expression ((a0a1a2a3)
5b0b1b2b3)

∗ using our method.

Some HPC applications consist of multiple potentially very different regular modules, but

they can be handled similarly. Although the application might seem more complicated, the

resulting pattern is still a regular language due to the following lemma:

Lemma 4.2. The concatenation of multiple regular languages is a regular language.

Therefore, the RTS will construct a single DFA, encompassing the execution of all the

modules, and our approach is applied without any change.

In some applications, the processors are divided into logical groups that perform different

computations, and this application heterogeneity needs to be taken into account to be able

to apply our scheme in these cases. For example, in a climate simulation application, some

processors might simulate parts of the physical domain that is inside a storm. Therefore,

they might be performing different computations than the processors that do not simulate

a storm. Hence, the cache hierarchy requirements might not be the same for all of the

processors. In general, programmers (mostly in the SPMD programming model) can divide

the processors into logical groups to perform different computations. To incorporate these

cases, when the SEBs are not the same across different processors, the RTS can run a parallel

76

clustering algorithm that identifies similar processors based on their SEBs. For example, the

processors simulating the storm might be running SEB a2, while the others are running SEB

a1. In addition, the runtime can monitor the calls that are usually used by programmers for

this purpose (such as MPI Comm split) as a hint. Then, the test of configurations phase

of our approach is applied to each group separately. Also, each group can have a different

DFA for pattern matching. Note that we do not require all the processors to have the same

behavior. We simply need the pattern of each group to be regular.

In some applications, the phases can be slightly different across different overall iterations.

As a hypothetical example, suppose the application has a CG phase in each overall iteration,

and the number of CG iterations required for convergence can be between 995 and 1005.

This is non-deterministic from the RTS point of view and can be modeled using a Proba-

bilistic Finite Automaton (PFA) or similarly as a Hidden Markov Model (HMM) (please see

references [117, 118]). However, this general formulation will increase the complexity of the

problem and is not needed in our setting. To handle these cases, the runtime only needs

to choose a “conservative” cache configuration when the next DFA state is not known. In

our example, assume that the next phase needs a larger L3 than the CG phase. Therefore,

the runtime chooses a cache configuration with a larger L3 for the last few iterations of CG

(from iteration 995) because it does not know exactly when the next phase starts. This

technique avoids performance degradation of the next phase.

The conservative cache configuration is constructed by examining the possible future states

and setting the size of each cache level to the largest of the configurations. In our experi-

ments, we found that this has negligible impact since only a small fraction of the execution

time would need conservative configurations. Note that in some rare scenarios, the structure

can slightly change (such as two SEBs running in switched orders in Charm++ [119, 120]),

but these variations can be handled conservatively as well. Moreover, the runtime goes to

a conservative cache configuration when there were too many mistakes in the DFA’s pre-

dictions. This avoids overheads for the uncommon applications that are not persistent. In

depth study of these cases is beyond the scope of this chapter.

4.4.3 Practical Details

The overheads of our scheme are very small compared to the overall application runtime

and also can be measured and controlled easily by the RTS. The overhead of checking

the configurations is negligible since it only impacts a few iterations. For many common

applications, reconfiguration is done only once. For most others, the runtime reconfigurations

77

MPI_Irecv()

MPI_Isend()

MPI_Wait()

MPI_Wait()
!~1ms

...

Figure 4.5: Different communication calls are combined if too close in time.

are rare due to persistence. Note that scientific applications usually run for a long time and

for many iterations. For example, according to the available data (for several months) of

the BlueGene/P installation at Argonne National Lab (Intrepid), the average runtime of a

job was 5176 seconds (6817s for jobs larger than 8k core jobs, which are less likely to be

test runs). Slowing down a few iterations (usually in the hundreds of milliseconds range) is

therefore negligible.

The dominant hardware overhead for reconfiguration is invalidation traffic (“flushing”)

in the caches, which is added to the software overheads (system calls, calculations, table

lookups, etc.) caused by the RTS. Only the modified cache lines of inactive ways need to

be flushed before turning them off, which typically takes less than a microsecond (a few

thousand CPU cycles). In addition, using an experimental module in the Charm++/AMPI

system, we found the software overheads to be negligible. Therefore, the total overhead

is usually on the order of microseconds, while SEBs are usually hundreds of microseconds.

The programmer usually ensures that SEBs are long enough to amortize communication

overheads, so SEBs are usually coarse enough for reconfiguration. Therefore even frequent

reconfiguration can be practical.

Some communication calls need to be “combined” (considered as one call with no SEB in

between) if they are too close together in time, since they are logically one communication

step and they do not represent different SEBs.

For example, in a particular phase MILC repeats the pattern illustrated in Figure 4.5 for

each neighboring processor before doing the actual local computation: These calls need to

be considered as one call, since all of them happen in a short one millisecond interval, and

there is negligible computation in between.

In general, the unit of reconfiguration should be selected judiciously. At one extreme,

it can be as coarse-grained as the whole iteration (and hence reconfiguration is done only

once). On the other hand, it can be as fine-grained as each SEB (or even finer than that if

possible).

In practical settings, there might be minor timing variations of the SEBs on some proces-

78

sors (e.g. due to correctable ECC errors sometimes occurring). Therefore, the RTS needs

to average SEB attributes of multiple iterations to smooth out these minor temporal effects.

Moreover, the SEB timings and attributes do not need to match exactly. They only need to

be within a threshold.

4.5 Evaluation of Runtime Cache Reconfiguration

4.5.1 Methodology

In this chapter, we use a diverse set of common scientific applications for evaluation of our

scheme. This is important as previous work has demonstrated the importance of benchmark

selection for cache access analysis [91]. Instead of micro-benchmarks, we use the Mantevo

mini-app suite [86] and real applications, including NAMD [19] and MILC3 [87]4. We have

confirmed that all of these applications follow the patterns we described in Section 4.2.

Furthermore, all the processors execute the same or very similar SEBs (from the cache

access point of view).

We also add an FFT benchmark to complement the molecular dynamics mini-apps, since

their computation is usually simplified and includes only the time consuming short range

force calculations. However, the long range force calculations can become significant depend-

ing on various parameter values. In NAMD, those forces are integrated every four timesteps

using an FFT kernel. We use the NPB-FT benchmark to represent that FFT kernel.

For simplicity, we assume the MPI+OpenMP programming paradigm, which means that

OpenMP is used for parallelization across each processor’s cores. However, runtime systems

of pure MPI programs and other paradigms can easily apply our method at the processor

chip level as well.

For all the experiments of this section, we use SESC [121], which is a cycle accurate

simulator. We simulate each unique SEB with different configurations, and find the wall

clock time of each iteration for the whole application. The simulated system’s parameters are

chosen to be similar to real processors, and are presented in Table 4.1. We use CACTI [122]

for modeling the power and energy consumption of the caches. We assume that the ways of

the L1 and L2 caches are activated in parallel for each access (for less latency), while only

one way of the L3 cache is activated for each access, since L3 is not in the critical path of

3We use su3 rmd in the MILC collection, which is usually used for benchmarking.
4These two applications are used by thousands of scientists on large-scale supercomputers, and were

among the three applications used for the acceptance test of Blue Waters at Illinois.

79

the processor. Thus, turning off the ways of the L1 and L2 will save dynamic energy, while

it will only save leakage energy in the L3 cache.

Table 4.1: Simulated processor’s parameters.

Chip 8 Core CMP
Core MIPS32, 4 issue out-of-order processor
Instruction L1 (L1I) 32 KB, 2 way
Data L1 (L1D) 32 KB, 4 way, WT, private.
L2 256 KB, 8 way, WB, private.
L3 16 MB, 16 banks, 16 way, WB, shared
Technology node 32 nm
Frequency 3.4 GHz

In this work, we consider the properties of the application domains for our selection of the

input sizes. For example, in stencil codes each element represents a point in the physical

domain and the iteration’s computation is linear in the input size. Consequently, large sizes

are more common and practical. On the other hand, large input sizes are less common in

molecular dynamics since the force computation in each iteration is not linear in the number

of atoms and molecules. Table 4.2 presents the input size per processor of each application

in our experiments. These sizes are small compared to weak scaling runs that fill the node’s

main memory, but they are used for typical strong scaling runs. In addition, input sizes larger

than the LLC usually behave similarly because of common streaming patterns discussed in

Subsection 4.2.2. We study the effect of input size more extensively in different experiments.

Table 4.2: Application domain sizes.

Mini-App Input Domain Size per Processor

CloverLeaf 960× 960 grid
CoMD 2744 boxes (including halo)
NPB-FT 128× 128× 32 grid
HPCCG 60× 60× 60 grid
miniFE 50× 50× 50 grid
miniGhost 100× 100× 100 grid
miniMD 6083 atoms (including halo)
miniXyce 602 variables

4.5.2 Results

Table 4.3 presents the cache configurations that result in the best energy efficiency, with

only slight execution time penalty (0.5% penalty threshold). As can be seen, in most cases,

half of the first level instruction cache and three quarters of the first level data caches were

80

 0

 20

 40

 60

 80

 100

CloverLeaf-cell

CloverLeaf-m
om

CoM
D

NPB-FT

HPCCG

m
iniFE-cg

m
iniFE-diffuse

m
iniGhost

m
iniM

D

m
iniXyce

D
iff

e
re

n
ce

 f
ro

m
 d

e
fa

u
lt

 (
%

)

Time penalty Cache energy saving

(a) 0.5% Threshold

 0

 20

 40

 60

 80

 100

CloverLeaf-cell

CloverLeaf-m
om

CoM
D

NPB-FT

HPCCG

m
iniFE-cg

m
iniFE-diffuse

m
iniGhost

m
iniM

D

m
iniXyce

D
iff

e
re

n
ce

 f
ro

m
 d

e
fa

u
lt

 (
%

)

Time penalty Cache energy saving

(b) 5% Threshold

 0

 20

 40

 60

 80

 100

CloverLeaf-cell

CloverLeaf-m
om

CoM
D

NPB-FT

HPCCG

m
iniFE-cg

m
iniFE-diffuse

m
iniGhost

m
iniM

D

m
iniXyce

D
iff

e
re

n
ce

 f
ro

m
 d

e
fa

u
lt

 (
%

)

Time penalty Cache energy saving

..
640%

(c) No Threshold

Figure 4.6: Time penalty and cache energy saving of reconfiguration with dif-
ferent time penalty thresholds.

81

turned off for the best energy efficiency. The reason is that turning off ways of L1 caches can

save a lot of energy, since they are the closest to the processor and have many more accesses.

However, naive shutdown of ways of L1 caches can be detrimental, since they are critical

for performance and increasing their miss rates can hurt performance significantly. In our

simulation results (not presented here), some configurations with small L1 caches and not

enough capacity in other caches resulted in more than one order of magnitude slow-down.

Thus, the other levels need to have enough capacity to back up lower level caches, and

configurations should be selected carefully.

The only configuration with multiple L1D ways enabled is for miniMD. The reason is

that the working set (data structures of atoms) fits in the L1 cache. Because of the high

computation per data element in molecular dynamics programs (discussed in Section 4.2),

the benefit of having them in L1 exceeds the power saving of turning off its ways.

Filtering Configurations We try all the configurations exhaustively since there are only

a few SEBs but many processors in a supercomputer. For small scale (down to one processor)

runs, one could try only the configurations that are more likely to achieve better performance

and energy efficiency. Table 4.3 shows that the set of high performing configurations is

not diverse and only a few configurations can be the best for different applications. More

investigation at the small scale is left for future work.

Table 4.3: Best configuration found with lowest energy but without performance
penalty. Format: (number of cache ways on)/(total number of ways).

Mini-App L1D L1I L2 L3

CloverLeaf-cell 1/4 1/2 2/8 16/16
CloverLeaf-mom 1/4 1/2 2/8 16/16
CoMD 1/4 1/2 2/8 8/16
NPB-FT 1/4 2/2 4/8 16/16
HPCCG 1/4 1/2 2/8 16/16
miniFE-cg 1/4 1/2 2/8 16/16
miniFE-diffuse 1/4 1/2 1/8 1/16
miniGhost 1/4 1/2 2/8 16/16
miniMD 2/4 1/2 2/8 1/16
miniXyce 1/4 1/2 4/8 1/16

Figures 4.6(a) to 4.6(c) present the execution time penalty and energy savings of different

mini-apps due to reconfiguration, with different performance penalty thresholds. Note that

some mini-apps have more than one significant kernel (presented separately, such as miniFE-

cg), while others are simple enough to take the whole iteration as reconfiguration units.

From this figure, it is evident that with negligible change in execution time (less than 0.5%

performance penalty threshold, 0.2% average actual penalty), very significant cache energy

82

 1

 2

 4

 8

 16

10^3 20^3 30^3 50^3 100^3

N
u
m

b
e
r

o
f

E
n
a
b
le

d
 C

a
ch

e
 W

a
y
s

HPCCG Problem Size

L3 Size L2 Size L1D Size

(a) Number of Active Ways

 0

 20

 40

 60

 80

 100

10^
3

20^
3

30^
3

50^
3

100^
3

D
iff

e
re

n
ce

 f
ro

m
 d

e
fa

u
lt

 (
%

)

HPCCG Problem Size

Time penalty Cache energy saving

(b) 5% Threshold Energy Saving

 0

 20

 40

 60

 80

 100

10^
3

20^
3

30^
3

50^
3

100^
3D

iff
e
re

n
ce

 f
ro

m
 d

e
fa

u
lt

 (
%

)

HPCCG Problem Size

L3 Streaming Performance Improvement
L3 Streaming Cache Energy Saving

L3 Turn-off Cache energy Saving

(c) L3 Streaming v.s. Simple Turn-off (0.5%
Threshold)

Figure 4.7: Reconfiguration with different input sizes.

83

savings (up to 88%) are possible. On average, about 40% of cache energy consumption can

be saved by just turning off ways of caches, without a significant performance penalty.

Furthermore, a small sacrifice in performance (less than 5% threshold, 2.4% average actual

penalty) can result in more cache energy savings (about 67% on average). These small

performance differences in the computation may not result in any performance degradation

for many HPC applications because of inter-node communication. Moreover, minimizing

cache energy without considering performance degradation results in more savings (about

78% average savings), but it can result in a very high penalty in some cases (6.4 times

slowdown for miniGhost). This happens for miniGhost because its data fits in the L3 cache,

but this method is trying to turn L3 ways off to save leakage energy. This is clearly a

suboptimal decision from the energy standpoint as well, because other energy consumption

sources, such as extra memory transfers, have not been considered. One should consider other

energy sources if available for measurement consequently or cap the performance penalty.

Figures 4.7(a) to 4.7(c) illustrate the behavior and effectiveness of our approach for dif-

ferent problem sizes. Figure 4.7(a) illustrates that our approach initially increases the cache

size (mostly L3) to incorporate the working set, which is the most energy efficient decision.

However, a larger cache is not very useful for very large working set sizes and decreasing

the size adaptively is the best strategy. Figure 4.7(b) is consistent with the previous one,

demonstrating that when the working set fits in the cache, less energy savings are possible

(since that energy is consumed in a useful manner, following our discussion in Section 4.2).

Figure 4.7(a) also demonstrates that our algorithm sometimes prefers to have more than

one way of the L2 cache active, which is consistent with the results of Table 4.3 but seems

counter-intuitive in some cases. Our insight is that, especially when there are fewer L3

ways on, at least two L2 ways are needed to reduce the conflict misses in both L2 and L3.

These complicated scenarios are difficult to handle by methods that do not test different

configurations and only rely on system metrics.

4.6 Reconfigurable Streaming

Based on the memory patterns of HPC applications, it is beneficial to use a streaming

strategy for two of the three application classes we identified (Section 4.2). Following the

discussion of Section 4.3.4, we propose an RTS-controlled reconfigurable streaming strategy.

However, in our proposal, the cache organization is not changed and the system prefetches to

the L3 cache instead of a specialized streaming buffer. When RTS switches to the streaming

strategy, a streamer starts prefetching to the L3 cache. The streamer is a small structure

84

which issues extra memory requests (similar to the CPU requests). Therefore, switching only

involves turning the streamer on and off, which takes only a few cycles. The implementation

details of the streamer hardware is similar to previous work [112]. Note that the streamer

accesses are treated in the same fashion as the processor accesses (same cache line size,

etc.). In this section, we use the SESC cycle-accurate simulator to evaluate our streaming

approach.

There are two important parameters of the streaming strategy that need to be tuned based

on the application and its input size. First, the size (number of ways) of the L3 to be used

for streaming (as the streaming buffer) needs to be decided. A small streaming buffer can

potentially harm performance because useful data might be evicted prematurely, increasing

the cache miss rate. On the other hand, a larger than necessary streaming buffer will waste

energy. Second, the best streaming depth needs to be determined carefully. Prefetching

should bring enough data to the cache to hide memory latency, but too much extra data

can evict useful data and waste memory bandwidth and energy. The RTS can tune these

parameters dynamically. In general, choosing the streamer configuration is done in the same

manner as choosing the cache configuration, and most of our previous discussions are directly

applicable here as well.

The hardware implementation of software-controlled reconfigurable streaming is simple.

The hardware for prefetching usually includes an adder that generates the next address to be

prefetched from the previous address. The input of that adder can be exposed to software as

a system register. Our approach does not add repetitive prefetch instructions (as in compiler

prefetching approaches), so it avoids significant overhead.

Continuing with our HPCCG example, Figure 4.7(c) presents the results when the runtime

only tunes the LLC cache size for streaming. The prefetch depth is fixed at four cache lines.

The results demonstrate that streaming can improve performance significantly for larger

input sizes of HPCCG, while saving more energy than basic reconfiguration of the L3 cache.

For the 1003 grid size, performance is improved by 30%, while saving 75% of cache energy

consumption (relative to the default configuration).

Tuning the prefetch depth seems is more challenging, and the RTS is the best agent for this

task. Figure 4.8 presents the runtime of HPCCG with different prefetch depths and cache

sizes. In addition, various statistics of the system for these configurations are presented in

Figure 4.9. As can be seen, the performance is better with more cache ways enabled, but

the extra energy consumption might not be worth the slight performance increase in some

cases. For example, having all 16 ways on improves performance only slightly compared to

using 8 ways, but the energy cost is considerably higher as revealed in Figure 4.9(a). Using

eight ways of the LLC with prefetch depth of 32 seems to be a good performance-oriented

85

 0.1

 0.12

 0.14

 0.16

 0.18

0 2 4 8 16 32 64 128

H
P

C
C

G
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Prefetch Depth

1 L3 way

2 L3 ways

4 L3 ways

8 L3 ways

16 L3 ways

Figure 4.8: Performance of different streaming configurations for HPCCG (input
size 503).

tradeoff, which improves performance by 32%, while saving 50% of the cache energy. If

energy is the main factor, using only one way with prefetch depth of two can save 71% of

cache energy, while improving performance by 28%.

Analyzing the performance behavior of streaming strategies is complex in modern proces-

sors because of intricate cache hierarchy interactions and out-of-order/speculative execution.

Figure 4.9(b) illustrates that in many cases, LLC miss rate decreases with very deep prefetch-

ing, but Figure 4.8 indicates that the performance becomes worse. More analysis reveals

the reason: deeper prefetching reduces the memory delay for the mispredicted speculative

paths, causing it to interfere more with the correct execution path. Figure 4.9(c) presents

evidence for this conclusion: the number of instructions issued for the exact same computa-

tion increases with deeper prefetching. This means that the mispredicted speculative paths

are making more progress and issuing more instructions, while the useful instructions com-

mitted are the same. Their excessive memory accesses evict useful data from various cache

levels, harming application performance. This example demonstrates that tuning these pa-

rameters based on simple system metrics such as cache miss rate will not necessarily improve

performance, and higher level software control in the RTS is needed.

4.7 Related Work

The Exascale Computing Study report [2] presents energy consumption as the main chal-

lenge for future systems, with data transfer within the memory hierarchy being a large

component. Other previous studies have also characterized scientific applications [89–91],

mostly establishing that scientific applications can be incompatible with common memory

hierarchies. Cicotti et al. [123] evaluate the potential of cache reconfiguration for HPC ap-

86

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 4 8 16 32 64 128

R
e

la
ti
v
e

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Prefetch Depth

1 L3 way

2 L3 ways

4 L3 ways

8 L3 ways

16 L3 ways

(a) Energy

 0.001

 0.01

 0.1

 1

2 4 8 16 32 64 128

M
is

s
 r

a
te

 o
f

L
3

 c
a

c
h

e

Prefetch Depth

1 L3 way

2 L3 ways

4 L3 ways

8 L3 ways

16 L3 ways

(b) L3 Miss Rate

 1

 1.02

 1.04

2 4 8 16 32 64 128

In
s
tr

u
c
ti
o

n
s
 I

s
s
u

e
d

Prefetch Depth

1 L3 way

2 L3 ways

4 L3 ways

8 L3 ways

16 L3 ways

(c) Instructions Issued

Figure 4.9: Statistics of different streaming configurations for HPCCG (input
size 503).

87

plications (without proposing a practical solution), and suggest that significant savings are

possible. Our results get close to their predictions. Thus, cache hierarchy reconfiguration is

promising.

Automatic cache hierarchy reconfiguration in hardware has been explored extensively [92–

97]. A survey by Zang and Gordon-Ross [98] summarizes the literature on cache adaptation.

However, it is hard to predict application’s phase changes and behavior in hardware and the

hardware’s “window” might be too small to capture the whole iteration. Also, predicting

the best configuration in hardware is difficult, and incorrect hardware reconfiguration might

result in extreme application performance slow-down. Moreover, automatic cache reconfigu-

ration in hardware makes the hardware even more complicated and might also increase the

energy consumption (due to additional structures, tables, etc.).

Compiler directed cache reconfiguration has also been explored [100, 101]. However, the

compiler’s analysis is usually limited because of the lack of runtime information. For example,

array indices can be complicated in HPC application, inhibiting the required analysis. Thus,

the RTS is the best agent to drive the cache reconfiguration. To the best of our knowledge,

our work is the first to introduce a RTS-based adaptive cache reconfiguration in the of

context HPC systems.

4.8 Conclusion

Caches consume a large fraction of a processor’s power, but a fixed cache configuration does

not fit every application. We exploit the regular structure of HPC applications and the

partitioned structure of caches to reconfigure the caches (turn on/off ways of the cache) in

the RTS, and save a large fraction of cache energy. The RTS is the best agent to direct

the reconfiguration, since it can recognize the application’s pattern easily (as we showed

using formal language theory), without programming effort or hardware implementation

overheads. Using the SESC cycle-level simulator, we demonstrated that 67% of the cache

energy is saved on average, while incurring only a 2.4% penalty in sequential computation.

Assuming that 70% of the total power of an HPC system is consumed by its processors,

and that 40% of each processor’s power goes to its caches, 19% of the total power is saved

using our approach. This power can be used to turn on more compute nodes and further

improve performance for over-provisioned systems. Moreover, we established that the change

of cache strategy to reconfigurable streaming can save up to 75% of the cache energy and

also improve performance by 30% in some cases.

88

CHAPTER 5
Power Management of Extreme-scale Networks

with On/Off Links in HPC Runtime Systems

Large-scale parallel computers are becoming much larger in terms of the number of proces-

sors, and larger interconnection networks are being designed and deployed for those machines.

The reason is that the demand for performance of supercomputers is escalating, while single-

thread performance improvement has been very limited in the past several years. Moreover,

the many-core era with on-chip networks is rapidly approaching, which will add another

level to the interconnection network of the system [124]. These immense networks are a key

factor in the performance and power consumption of the system.

Modern networks are over-provisioned in resources (e.g. links), in order to provide good

performance for a range of applications. Since networks with lower latency and higher band-

width, in comparison to existing popular networks (such as 3D Torus networks), are necessary

for some applications executing on multi-petaflop/s systems, higher radix network topologies

such as multi-level directly connected ones [125–127] and high-dimensional tori [128] are

being proposed and used. Although these networks are designed to provide enough bisection

bandwidth for the worst case (e.g. all-to-all communication in FFT), not all applications

make use of the abundant bandwidth. Furthermore, the intention is to provide low latency

for all applications, hence the network provides small hop count and low diameter for any

given pair of nodes. However, the set of communicating node pairs of different applications

vary, which may leave some part of the network unused in each application. As evidenced

in this chapter (Section 5.2), the net result is that many applications do not use a large

fraction of links, especially for high radix networks.

Saving network power is crucial for keeping HPC systems within a reasonable power

budget. Power and energy consumption are major constraints for HPC systems and facili-

89

ties [129], especially at the high end. Interconnection networks are often among the major

power consumers for different systems, and many researchers have reported on their power

consumption. For example, routers and links are expected to consume about 40% of some

server blades’ power, which is the same as their processors’ power budget [130, 131]. For

current HPC systems, using an accurate measurement framework, Laros et.al. [132] report

more than 25% total energy savings by shutting off some of the network resources of a Cray

XT system. In future systems, especially because of the increasing number of cores per chip,

and aggressive network designs, the network is expected to consume 30% of the system’s

total power [133]. From this power consumption, up to 65% is allocated to the links and

the resources associated with them [131] (and the remaining 35% is mostly consumed by

routers). In addition, up to 40% of the many-core processor’s power budget is expected to

go to its on-chip network [131].

In contrast to processors, the network’s power consumption does not currently depend on

its utilization [131], and it is near the peak whenever the system is “on”. For this reason,

while about 15% of the power and energy is allocated to the network in many current

systems [134], it can go as high as 50% [135] when the processors are not highly utilized in

data centers. While, for HPC data centers the processors are not usually as underutilized,

they are not fully utilized all the time either and energy proportionality of the network is

still a problem. Therefore, it is essential to save the network’s power and make it energy

proportional [135], i.e. the power and energy consumed should be proportionate to the usage

of the network.

An effective approach to address this problem and improve energy proportionality is to

turn off unused links. Thus, we propose addition of hardware support for on/off control of

links (links that can be turned on and off), which can be used by the runtime system to save

the wasted power and energy consumption. We show how the runtime can accomplish that

by observing the applications’ behavior. Note that adaptive runtimes have also been shown

to be effective for load balancing and power management (using DVFS) [12]; our approach

makes use of the same infrastructure. We also discuss why the hardware and compiler cannot

perform this task effectively, and why network power management should be done by the

runtime system.

Our contributions can be summarized as follows:

• We have evaluated the communication patterns of different HPC applications’ and

benchmarks’ with respect to extreme-scale high-radix networks. The applications and

benchmarks we evaluated include NAMD [136], MILC [137], ISAM [138], Stencil bench-

marks (representing nearest neighbor communication patterns) and some of NAS Par-

90

allel Benchmarks [20].

• We have proposed a runtime system based approach to adaptively turn off unused links,

which has various advantages over the previously proposed hardware and compiler

based approaches.

• We have developed a theoretical model of link utilization of HPC applications, which

provides insights about the applications and networks.

• We present a case study demonstrating that system design alternatives (e.g. mappings)

with similar performance can have very different power consumption profiles.

Using our basic approach, for commonly used nearest neighbor applications such as

MILC [137], 81.5% of the links can be turned off for a multilevel directly-connected net-

work (around 16% of total machine power, assuming 30% network power budget), and 20%

for 6D Torus (Sections 5.2 and 5.3). Moreover, we demonstrate that approximately 20% of

the machine power can potentially be saved for most applications on these networks (Sec-

tion 5.5) using a smarter scheduling approach. All these can be realized if the system allows

the runtime system to turn off some of the links.

Sections of this chapter are organized as follows. Section 5.1 establish the background

by discussing the related work, extreme-scale networks and applications’ communication

patterns. Section 5.2 demonstrates, via empirical evidence, that many links are never used on

different high-radix networks and proposes a basic approach to turn them off in the runtime

system. Section 5.2.2 of this section presents a case study, which shows how much our basic

approach can save for two different design alternatives (which have the same performance).

Section 5.3 discusses the implementation of our approach in a runtime system, and methods

to handle practical issues that arise. Section 5.4 develops a theoretical model to estimate

the power and energy that can be saved for an application, running on a high-radix network.

The insight from this model helps us generalize the idea into a more practical scheduling

approach in Section 5.5, which also considers the on/off transition delay. We conclude the

chapter in Section 5.6.

91

5.1 Background and Motivation

5.1.1 Related Work

Power consumption of interconnection networks in supercomputers, distributed systems and

data centers has received special attention in recent times. Several techniques have been

proposed for reduction of network power in non-HPC data centers [134,135,139]. Intelligent

power-aware job allocation and traffic management schemes form the basis of many of these

approaches. Laros et.al. [132] present results on potential power saving using CPU and

network scaling, by post processing the data collected from the monitoring system of Cray

XT machines. Their work, using real systems (instead of simulations and projections) and

real applications, shows the importance and potential of network power management for

supercomputers.

Among hardware based approaches, power management of interconnection networks using

on/off links has been studied [131, 140, 141]. On/off links, which refers to shutting down

communication links that are not being used, has shown to be a useful method to save

power. However, dependence on hardware for power management may cause considerable

delay for some applications. Additionally, hardware does not have enough global information

about the application to manage network power effectively.

Soteriou et.al. [142] show severe possible performance penalty of hardware approaches,

and propose the use of parallelizing compilers for power management of the links. However,

parallelizing compilers are not widely used because of their limited effectiveness, and most

parallel applications are created using explicit parallel programming models [143]. Fur-

thermore, compilers do not have information about input dependent message flow of an

application, and cannot manage the power effectively for such applications.

New programming paradigms to perform power management inside the application (by

giving more information about the communication) has also been proposed [144]. Although

the programmer has more information about the application, involvement of the programmer

compromises productivity. In addition, such approaches cannot be applied to legacy code

easily. Thus, automatic approaches seem more practical.

As an alternative to hardware, compiler and application driven power management, we

advocate network power management by the runtime system. Limited network power man-

agement by the runtime system, such as for collective algorithms, has been proposed in

the past. Power management using on/off links in the runtime system has also been stud-

ied [145]. However, that approach is limited to management of network links only during

collective operations in MPI. In this chapter, we propose the use of an adaptive runtime

92

system to manage the power of network links using on/off control, taking into account all of

the communications performed by an application.

5.1.2 Network Power Management Support on Current Machines

Unfortunately, network power management support on current HPC machines is very lim-

ited. For example, it is possible to reduce link and node injection bandwidth on a Cray

XT system (effectively turning off some portion of the links), but it requires a reboot of

the whole machine [132]. Thus, using this feature is impractical. Other recent machines

such as IBM Blue Gene/Q, Cray XE6, and Cray XC30 do not seem to have any feature

for dynamic network power management either. However, techniques such as on/off links

have been implemented before, and it seems feasible to include them for HPC machines as

well. For instance, some commercial systems 1 can disable some of the board-to-board and

box-to-box links to save power. Currently it takes 10,000 cycles to turn the links on/off,

although even this can be improved much further [131].

5.1.3 Extreme-scale Networks

In this section, we briefly describe n-dimensional tori and multilevel directly-connected net-

works, which have been used in recently developed supercomputers that are predominant in

the Top-500 list [146].

n-dimensional tori have been used in many supercomputers such as IBM Blue Gene

series, Cray XT/XE, and the K computer. Given an n-dimensional mesh, a torus is obtained

by adding wrap around links in every dimension, i.e., by adding links that connect nodes

at one end of a dimension to the nodes at the other end. Tori are symmetric in the sense

that the number of links out of every node is the same, with each node being connected to

two other nodes in every dimension. An n-dimensional torus strikes a good balance in terms

of bisection bandwidth, latency, and the link cost, and have been shown to be scalable. In

the past few years, most vendors have increased the torus dimensionality from three (as it

is in IBM BlueGene/P and Cray XT/XE) to five (IBM BG/Q) and six (the K computer).

This shift is necessary in order to keep latency low, with possible increase in the bisection

bandwidth. We present analysis and results for link utilization of an n-dimensional torus,

with n varying from 3 to 10.

1Motorola MC92610 WarpLink 2.5 Gb/s Quad SERDES Transceiver, Motorola Inc., www.motorola.com

93

Multilevel directly-connected networks have been proposed by IBM (PERCS net-

work [125]), the DARPA sponsored Exascale study report [129] (Dragonfly topology [147]),

and Cray (Aries network [127]). In all of these proposals, similar multi-level directly con-

nected networks have been described. In these networks, nodes are logically grouped together

at multiple (currently two or three) levels. In each level, nodes (or the grouped entities from

previous level) are connected in an all-to-all manner. Hence, in the first level a clique of

nodes is formed, and in the second level, a clique of cliques (from the first level) is con-

structed and so on. The resultant network, with its large number of links, boasts of a large

bisection width. At the same time, the latency of the entire system is low (few-hop connec-

tivity between any pair of nodes). Currently, these networks are used in some large-scale

IBM Power 775 machines 2 and in the Cray XC30 machines. In this study, we use the pa-

rameters of PERCS as an instance of multilevel directly-connected networks, since they are

readily available. However, the conclusions will apply to other multilevel directly-connected

networks as well.

In Figure 5.1, we present a prototype of the PERCS network (two-level directly connected),

in which the nodes are grouped, and connected in an all-to-all manner to form supernodes.

These supernodes are further connected in an all-to-all fashion to obtain the entire system.

We present link utilization results for these networks as well.

We observe that the two topologies we present results on, multilevel directly-connected

networks and tori with high dimensionality, have a large number of links. The presence of

these links provides an opportunity for high performance, as well as a challenge for power

and energy proportionality.

5.1.4 Application Communication Patterns

Interconnection networks are designed to serve a range of communication patterns, in terms

of bandwidth and latency. High radix networks, such as multilevel directly connected ones,

provide a large number of links to support demanding communication patterns such as

all-to-all and varying demands of different applications. In addition, in order to maintain

low latency and fewer hops between every node pair, a large number of links are required.

However, each application has its own communication pattern, so many node pairs of a

system may not communicate during execution of a common application, leaving a large

fraction of the network unused.

Figure 5.2 shows the communication pattern of some of the applications we use in this

2www.top500.org

94

Node

Node

Node

Node

Node. . .

Supernode

Supernode

Supernode

Supernode

Node. . .

Figure 5.1: IBM PERCS - a two-level directly-connected network.

chapter. NAMD [136], implemented in Charm++ [16], is a prevalent parallel molecular

dynamics code designed for high-performance simulation of large bio-molecular systems. Its

localized communication pattern represents the pattern of many common particle interac-

tion HPC applications. MIMD Lattice Computation (MILC) [137] is widely used to study

quantum chromodynamics (QCD). Similar to many HPC applications, it has a near-neighbor

communication pattern. We use CG from NAS Parallel Benchmarks (NPB) [20] to represent

expensive many-to-many communication pattern found in some applications and MG from

NPB to represent the communication pattern of common numerical solvers.

Both the vertical and horizontal axes of Figure 5.2 represent the nodes in a system. A

point (x, y) is marked if the node y on the vertical axis sends a message to the node x on the

horizontal axis, during the execution of an application. Each marked point has been enlarged

for better illustration. It can be seen that many of the node pairs never communicate during

execution of various applications. Moreover, the number of pairs that communicate varies

significantly with the application. For instance, in NAMD PME and CG, the number of

node pairs that communicate is much larger than in MILC and MG.

Most of the communicating pairs in NAMD PME are due to the FFT performed in the

PME phase, which is done once every four iterations. Without the PME option, NAMD

95

(a) NAMD PME 256K cores (b) MILC 4K cores

(c) CG 64K cores (d) MG 64K cores

Figure 5.2: Communication patterns of different applications.

has a near neighbor communication pattern, which can be seen in the dense region around

the diagonal of Figure 5.2(a). CG, on the other hand, has a more uniform and dense

communication pattern. Applications like NAMD PME and CG, that have large number of

communicating pairs are more likely to use most of the network.

On the other hand, the number of communicating pairs in MILC (Figure 5.2(b)) and MG

(Figure 5.2(d)) are few, and concentrated near the diagonal. As such, these applications are

expected to make use of a small fraction of the available network links. These applications

represent a large class of applications in science and engineering, such as the ones following

the nearest neighbor pattern [20].

All illustrated cases have a dense region close to the diagonal of their communication

96

graph, suggesting that nearest neighbor communication constitutes a major part of many

applications’ communication. This can be used as a clue in understanding a network link’s

usage. We use Stencil, decomposed in two, three and four dimensions, to study network’s

link usage for near neighbor communication patterns. From this discussion, there are reasons

to expect that there is an extensive opportunity to save the power of the network links in

higher-radix topologies in many common cases, since they are designed for the worst cases

with many communicating pairs (such as random access benchmark or FFTs).

In summary, there are applications that have intense communication patterns such as

all-to-all, but many applications have only nearest neighbor pattern. Additionally, em-

barrassingly parallel applications that essentially do not rely on the network during their

computation (e.g. ISAM [138]) represent an extreme set. Since they do not use any of the

links, the link power can be saved easily.

5.2 Potentials of Basic Network Power Management

In the previous section, we observed that the number of communicating pairs for many

applications is not large, which indicates that a sizeable fraction of links may be unused. In

this section, we discuss and evaluate a basic power-saving approach for links, implemented

in an adaptive runtime system. In this approach, the runtime monitors a few iterations and

turns off the links that are never used during execution.

Our methodology of evaluation is to emulate an application at scale using BigSim (which

has been validated for these networks before [148, 149]) and capture the communication

traces. These traces are then used to simulate the target network and mark the links that

are used.

We assume default mapping for placing processes (ranks) onto processors for all the net-

works. For a 32 cores per node case, it means that the first 32 ranks are mapped to the

first node, next 32 ranks are mapped to the second node and so on. Only direct routing is

considered for multilevel directly-connected networks in this section (before Section 5.2.2),

which means that the messages are sent directly to the receiver, instead of going through

an intermediate supernode (i.e. indirect routing). Effect of different mappings and indirect

routing are discussed and evaluated in Section 5.2.2. For tori, we assume minimal dimension

order routing, which is used in many of the current supercomputers. The results are easily

extensible for adaptive routing as we discuss later.

97

 0

 20

 40

 60

 80

 100

NAMD_PME NAMD MILC CG MG BT

Li
n
k

U
sa

g
e
 (

%
)

Full Network
PERCS

3D Torus
6D Torus

Figure 5.3: Fraction of links used during execution of various applications.

5.2.1 Link Usage of Modern HPC Networks

Figure 5.3 and Figure 5.4 show link usage of different applications and benchmarks for a fully

connected network (a link between every pair of nodes), 3D Torus, 6D Torus and PERCS

(two-level fully-connected). In the context of this section, we consider a link as “used” if it

is used at any time during execution of an application. With this assumption, the specifics

(e.g. link bandwidth) of each network other than its topology do not make any difference.

These used links may be utilized for only a small fraction of the application execution; we

will exploit this property in Sections 5.4 and 5.5. Note that the full network is an asymptotic

case that is not usually reached by the large-scale networks. However, for example, small

jobs (less than 1k cores for PERCS) running on a two-tier system will have a fully connected

network. In this case, most of the links can be shut down according to our results, which

saves a significant fraction of the system’s power.

As shown in Figure 5.3, link usage of each application is different, and depends on the

topology of the system. For example, MILC only uses 3.93% of the links of a fully connected

network, while it uses 80% of the 6D Torus links. For most applications, a larger fraction of

6D Torus links will be used in comparison to links on PERCS network; an exception is CG

that uses a higher fraction of PERCS links. This shows that analysis of the link utilization

of different networks is not trivial and depends on various aspects of the topology and the

application.

For the applications of Figure 5.3, from 4.4% to 82.94% of the links are never used during

the program’s execution on PERCS. In the stencil benchmarks of Figure 5.4, 2D-Stencil uses

only 11.91% of the PERCS links, with similar numbers for other stencil dimensions. This

demonstrates a great opportunity for the runtime system to save link power of two-level

98

 0

 20

 40

 60

 80

 100

2D-Stencil 3D-Stencil 4D-Stencil

Li
n
k

U
sa

g
e
 (

%
)

Full Network
PERCS

3D Torus
6D Torus

Figure 5.4: Fraction of links used during execution of stencil codes.

directly connected networks.

There is an opportunity on 6D Torus to save energy as well. Even though NAMD uses

all of the links, MG leaves 47.92% of the links unused. However, many applications can

use most of the links of a 3D torus, which has been one of the dominant topologies in the

past and in the current supercomputers. There is potential for saving power in some cases

(e.g. 30.67% for 2D-Stencil), but the savings are neither high nor common. This happens

even with deterministic routing, which uses fewer links than adaptive routing. This shows

that implementing on/off links for those networks is not significantly useful, and probably is

the reason that they have not been implemented so far. However, for high dimensional tori

and multi-level directly connected networks, the benefits justify the implementation cost of

software controlled on/off links. If we take MILC to represent a significant set of common

HPC applications (which usually have near neighbor communication), 81.51% of PERCS

links and 20% of 6D Torus links can be turned off to save power. Assuming that 65% of

network power goes to links and the network consumes 30% of the total machine’s power,

around 16% of total machines power can be saved for PERCS systems and around 4% can

be saved for 6D Torus systems.

In NAMD PME, the communication intensive PME calculation is usually performed every

four iterations (which takes around 16 ms assuming about 4 ms per iteration for ApoA1

benchmark on 2K cores of BGQ [150]). In this case, many links can be turned off after PME

communication is complete, and turned back on right before the next PME communication

phase begins (scheduling on/offs is further discussed in Sections 5.4 and 5.5).

We observe that even though 3D-Stencil has a 3D communication pattern, when it is

mapped to a system with 32 cores per node, the communication between nodes is not an

exact 3D pattern anymore. Thus, some fraction of the links (12%) are not used.

99

 0

 20

 40

 60

 80

 100

NAMD_PME NAMD MILC CG MG BT

Li
n
k

U
sa

g
e
 (

%
)

LL links
LR links

D links
all links

Figure 5.5: Fraction of different links used during execution on PERCS.

 0

 20

 40

 60

 80

 100

2D-Stencil 3D-Stencil 4D-Stencil

Li
n
k

U
sa

g
e
 (

%
)

LL links
LR links

D links
all links

Figure 5.6: Fraction of different links used during execution of stencils on
PERCS.

So far, for simplicity, we assumed that all the links of the network are the same and have

the same power cost. However, networks are usually made of different links for practical

purposes. These links even have different technologies (optical vs. electrical). For example,

in PERCS network, global links are called D-links and connect clusters of nodes at second

level and they use optical technology [125]. These long links are probably more power hungry

than the local ones. On the other hand, LLocal (LL) and LRemote (LR) links connect nodes

placed close to each other (LL for nodes in the same drawer, LR for other local links) and

use electrical technology. These local links probably consume much less power compared to

the global ones.

To find out which type of links are used more often, Figure 5.5 and Figure 5.6 show the

usage of different types of PERCS links. Overall, D-links are usually less utilized than the

100

 0

 20

 40

 60

 80

 100

NAMD MILC CG MG BT

Li
n
k

U
sa

g
e
 (

%
)

3D Torus
4D Torus
5D Torus

6D Torus
7D Torus
8D Torus

9D Torus
10D Torus

Figure 5.7: Fraction of links used during execution on tori.

local ones. This happens because most of the communication of the applications is either

local or near neighbor exchange. Even NAMD PME, which exhibits limited opportunity for

power saving in previous results, does not use 23.09% of D-links; this may improve absolute

power saving. MILC shows high usage of D-links because the results are for 4K processors

only (4 supernodes), hence there are just 12 D-links. For larger configurations, it should

show link usage similar to 4D-Stencil and have a very low D-link utilization. CG is again an

exception and uses more of the D-links. This is because its communication is not local but

distributed as mentioned earlier. The stencil benchmarks use only around 1% of D-links and

most of those links can thus be turned off safely. Thus, using a simple model of same power

cost for all links is pessimistic, and the actual savings can be much higher in many cases as

the power hungry D-links have less utilization. Note again that these results are with the

default (rank-ordered) mapping (we will discuss a case of other mappings in Section 5.2.2).

Figure 5.7 and Figure 5.8 show the link usage of the applications on tori with different

dimensions, from 3 to 10. As dimensionality of tori is increased, a smaller fraction of the

links are used, which is intuitively expected. For example, 4D-Stencil uses only 53% of the

links of a 10D torus network, but more than 80% links are used on a 3D torus. Even NAMD

that does not have any savings on low dimensional torus, shows potential for saving power

on a torus with sufficiently high dimensionality, starting from 7D. It uses only 65% of the

links of a 10D torus, which shows that even such applications have potential of link power

savings on high dimensional tori.

Other than these applications, there are cases where the network is virtually unused. Data

parallel applications do not have much communication (except during startup, I/O in the

beginning and at the end) and do not use the network during execution. For example,

101

 0

 20

 40

 60

 80

 100

2D-Stencil 3D-Stencil 4D-Stencil

Li
n
k

U
sa

g
e
 (

%
)

3D Torus
4D Torus
5D Torus

6D Torus
7D Torus
8D Torus

9D Torus
10D Torus

Figure 5.8: Fraction of links used during execution of stencils on tori.

ISAM [138], which is a climate modeling application, only uses stored climate data to do the

computation (in its standalone mode). Thus, almost all of the network power can be saved

for these applications during the main computation phases (I/O uses the main network in

some machines, but it happens usually infrequently).

To summarize, in the common near neighbor applications like MILC, up to 16% of total

machines power can be saved (assuming 30% network power budget and 65% of network

power associated with links) using a basic power management approach. Since our assump-

tions are very conservative and only links that are never used (and are not likely to be used)

are turned off, the application will not experience a significant performance penalty.

5.2.2 Different Mappings

In the results so far, we assumed default mapping with direct routing for PERCS network,

which implies sending each message directly to the destination supernode. However, it had

been shown that this configuration might result in contention in few links of the network

for some applications [126]. In this case, one might use intelligent application specific map-

pings, or use other more general alternatives that had been proposed before. A previous

study on PERCS network [126] suggests using random mapping or indirect routing to avoid

contention on few links and improve performance. Indirect routing uses a random inter-

mediary supernode for each message transfer (dynamically), while random mapping places

the processes (e.g. MPI ranks) on random processors (statically). The purpose is to use

more links to avoid contention, at the cost of some possible overheads (e.g. due to more hop

count).

102

Figure 5.9 shows the link usage of these schemes (proposed in [126]) compared to the

default mapping. Random mapping has higher link usage than default mapping, which is

intuitive. It can use 33.18% of the links, which is twice the 16.51% link utilization of the

default mapping. However, the overall usage is still low and the possible savings are as high

as 67%. Note that this scheme uses many more D-links, which may increase the power con-

sumption significantly. Thus, when choosing among different mappings for future machines,

power consumption should also be taken into account, since in addition to performance,

mapping can affect power consumption as well.

Indirect routing uses all of the links of the network, since every packet is routed through

a random supernode. Therefore, it is very expensive in terms of network power and no

energy reduction is possible. On the other hand, random mapping is shown to have similar

performance as indirect routing on PERCS networks [126]. Thus, indirect routing should

be avoided and random mapping should be used to have much less power consumption but

the same performance. The routes in random mapping are statically determined during the

mapping phase, while indirect routing dynamically changes the routes for every packet. This

suggests that different aspects of hardware and software design can affect power consumption

of the network significantly, and power should be considered at every stage of the design.

 0

 20

 40

 60

 80

 100

Default Random Indirect

Li
n
k

U
sa

g
e
 (

%
)

Link Usage of 3D-Stencil 300K (%)

LL links
LR links

D links
all links

Figure 5.9: Fraction of links used with different mappings.

5.3 Implementation in Runtime System and Hardware

The large amount of unused links, discussed in the previous section, presents opportunities

for power optimization and savings. Although past studies suggest hardware and compiler

techniques, we believe that this should be done by the runtime system. Hardware and

103

compiler do not have enough information about the characteristics of the application, hence

they may make conservative assumptions or cause unnecessary delays. For example, NAMD’s

communication depends on the input and previous iterations, and hence the compiler cannot

assume any unused links. It is also difficult at the application level since it would hurt

portability and programmer productivity.

On the other hand, runtime systems, such as MPI and Charm++, have enough information

about both the application and the hardware to make wise decisions. The runtime system

obtains this information about the application by monitoring the communication performed

as the application executes (with negligible overhead [10]).

5.3.1 Runtime System Support

The runtime system mediates all the communications and computation, so it can instrument

the application easily. Runtime systems, such as Charm++, use this information for many

purposes such as load balancing [10] and power management [12]. They also obtain char-

acteristics of the network, such as its topology [151]. Our approach requires only a small

subset of this data to save network power: the communication graph of the application and

the topology of the network. Using this information, our approach can turn off unnecessary

links as follows. We assume that each node keeps track of the destinations of its messages.

At the network power management stage, each node calculates the route for each of its des-

tinations. It sends a notification message to each of the intermediate nodes to have them

mark their used links. At the end, when a node has received all notification messages and

marked its own links, it turns off all of its unused links. Note that collectives are mostly

implemented as point-to-point messages in runtime, so they can be handled similarly. This

algorithm, which is executed by every node, can be summarized as follows:

1. Obtain the destination list of local messages.

2. For each destination, calculate its route.

3. Mark the local links used by local messages.

4. For each intermediate node, instruct it to mark the required links.

5. Wait for all notifications to be received (possibly using a termination detection algo-

rithm).

6. Turn off the local links that are never used either by local or non-local messages.

104

This algorithm needs to be invoked at appropriate times, which is feasible in most cases

since scientific and many other parallel applications are usually iterative in nature. For the

common case of static communication pattern, which encompasses all of our benchmarks

except NAMD, every iteration follows a constant communication pattern. Thus, one invoca-

tion of the power management scheme (e.g. after the first iteration) is sufficient. Note that

even in this simple case, the hardware cannot make wise decisions on its own, because it is

not aware of the iteration time of the application and its window might be too small. In

addition, hardware does not see the global picture of the application’s message flow, since it

usually works at the packet and flit levels.

For NAMD, the communication pattern between objects is static, but the objects may

migrate between processors periodically, under the control of a load balancer. Therefore,

the actual communication pattern varies. In this case, the new communication pattern can

be determined by the runtime system at (or just after) the load balancing steps. Thus,

the network power management algorithm needs to be called at every load balancing step.

Even in this case, the switching delay of links is of negligible concern, since the runtime will

not make any mistake in switching the links’ states. In addition, since load balancing is not

performed very frequently (usually once in thousands of iterations), our method will not add

significant overhead. Many other dynamic (and phase based) applications, such as Adaptive

Mesh Refinement (AMR) [152], can be handled in the same way.

5.3.2 Hardware Support

For our approach, we only require the network hardware to implement links that can be

turned off and on (or any other power saving means such as DVS), along with a software

interface to control them. Note that the “off” state should usually be implemented as a very

low power (but slow) state. Turning the links completely off may increase the switching

delay significantly because the links would need “re-training”. Not turning the links fully

off also ensures connectivity of the network.

In a simple but robust implementation, the runtime provides hints to the hardware to

turn a link off, but the hardware turns it back on if a message (packet) needs the link. That

message will pay the penalty of switching delay because of the incorrect prediction by the

runtime. In this way, we do not strictly require any change in routing and switching tables.

Note that the runtime can measure the iteration times and turn off the power management

algorithm, or adjust it, if the performance is degraded. This feedback loop ensures “safety”

of our approach for performance if anything about the application or system changes. This

105

safety cannot be provided easily by hardware or compiler approaches.

On some current machines (e.g. from Cray), network interference from other running jobs

can decrease the predictability for the runtime and make the power management task more

difficult. However, the other jobs running on the machine are most probably also iterative

with predictive behavior, so the runtime can take them into account similarly. Note that

job interference also has performance penalty [153, 154], and many machines (e.g. Cray

systems) are exploring new job schedulers for isolated partitions. Some other machines,

such as Blue Genes, already allocate isolated partitions (prisms) for every job running on

the supercomputer. I/O interference can cause similar issues if I/O is performed on some

I/O nodes that are out of the job’s allocation, using the same network as the application.

Thus, I/O needs to be considered as well.

Impact of Adaptive Routing (for Tori) For many networks (especially tori), dynamic

adjustments, such as adaptive routing for performance and fault tolerance, have been pro-

posed before. The dynamic behavior may hinder our approach because it reduces predictabil-

ity, resulting in performance penalties. However, the support for adaptive routing is still

limited in current machines due to practical restrictions. For example, the K computer has

a fixed, minimal dimension order routing [128]. Some machines may support a limited form

of adaptive routing, such as routing in “zones” on Blue Gene/Q [155]. For this case, the

runtime needs to know the details of the routing protocol (what links are actually used for

communication for messages of an iteration). This information is usually already available

to the runtime system for communication performance optimization. Note that even for

Blue Gene/Q, minimal dimension ordered routing is used for most messages depending on

the system’s configuration [156]. Adaptive routing is usually used for demanding cases such

as all-to-all, in which case, we do not turn links off. Fault tolerance can also be considered

easily, since most faults bring down a whole node, calling the runtime system’s fault toler-

ance protocol. Thus, we call the network power management method after every resiliency

action of the runtime. It is notable that such dynamic behaviors will not result in disastrous

performance penalties, since the runtime can measure the performance and correct itself.

5.4 Power Model for Network Links

Our power management in runtime system approach is very simple but offers substantial link

power savings. However, it is useful to know how much saving is possible for each application

on a network. Theoretical models that suggest upper bounds of link power savings need to be

106

developed for this purpose. Furthermore, a simple theoretical model can give insight about

the application’s utilization of a network and compare different networks. In this section,

with these goals in mind, we develop a theoretical model for link utilization of a network

while running an application. Our model provides an upper bound on power requirement of

an application using a particular network. We make some assumptions that keep the model

tractable at the expense of some loss in accuracy. We also suggest some additions to the

model to make it more accurate and provide tighter bounds.

Suppose it is possible to switch a link on and off without any delay, and a link has a

bandwidth of B. Assume also that there is no zero-size message latency. In this ideal case,

each link can be turned on whenever there is some message traffic and can be off otherwise.

Thus, a link only consumes power when it has to transfer data. If Bi = 100MB/s for link i,

and a program transfers 100MB of data through this link during its 10 seconds of execution,

then link i is used only for 1 second. Thus, only 0.1 of its capacity was utilized according to

this simple calculation:

100MB

(100MB/s) ∗ 10s
= 0.1

Let us generalize this formula, assuming that each link i transfers zi bytes of data during

t seconds of program execution:

Ui =
zi

(Bit)

In this formula, Ui represents the utilization of link i. We can derive the whole network’s

utilization by a sum over all the n links:

U =
1

n

n∑
i=1

Ui =
1

n

n∑
i=1

zi
(Bit)

=
1

nt

n∑
i=1

zi
Bi

We also assume that Bi = B are the same for all the links and derive the upper bound of

power savings:

M = 1− 1

(nBt)

n∑
i=1

zi

M is the fraction of network link’s power that can be saved, given the hypothetical assump-

tions, e.g. no on/off delays. In this formula, n, B and t can be determined easily, but zi

depends on the application, mapping, network topology and routing algorithm. Note that

we assumed on/off links without Dynamic Voltage Scaling (DVS) support. Using DVS for

107

the links carrying messages that are not on the critical path may result in even greater power

savings.

Let us calculate this formula for a simple case of 3D Stencil, running on a 3D torus. Assume

that the processes are mapped to processors perfectly, i.e. in a way that communicating

processes are neighbors in the network. If each iteration takes 10ms, each message is 2MB

and the bandwidth of each link is 1GB/s, we have:

M = 1− 1

(n ∗ (1000MB/s) ∗ (10ms)

n∑
i=1

(2MB)

Resolving the summation we have:

M = 1− n ∗ (2MB)

n ∗ (1000MB/s) ∗ (10ms)
= 80%

Thus, 80% of the links’ power can be saved since only 20% of the time the links are being

used. By using a perfect schedule for toggling the links, this power can be saved.

Calculating this formula is not usually as simple as this case, since zi values are not easy

to determine in many cases. Therefore, execution or emulation is required for finding the

communication volume of each link, while running the application. However, this task is

straightforward because the exact time that each link is used is not important for these

values. First, communication traces can be obtained, even on a much smaller machine using

an emulation approach, such as BigSim [148, 149]. Then, a simple counting program can

determine the path for each message and keep track of each link’s communication volume.

Using this method, we have determined the maximum possible link power saving for each

application.

Figure 5.10 shows the network utilization of different applications on 6D Torus and PERCS

networks. Except CG on 6D Torus network, the applications utilize less than 10% of the

network. Thus, according to our model, more than 90% of the link power can be saved. Our

basic approach can realize a significant portion of these savings with low effort for many

applications. For example, more than 81.5% of the power can be saved for MILC by the

runtime system. Next, we incorporate transition delay in our model and extend our basic

approach accordingly for more savings.

108

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

NAMD MILC CG MG BT

N
e
tw

o
rk

 C
a
p
a
ci

ty
 U

ti
liz

a
ti

o
n
 (

U
 %

)

PERCS 6D Torus

Figure 5.10: Network capacity utilization of different applications.

5.5 Effect of on/off Transition Delay

Our basic model assumes zero on/off transition delay for simplicity. We also do not consider

the conservative delay of scheduling in the runtime system to account for system noise and

other overheads. We can incorporate this delay if we add one more assumption: each itera-

tion of an iterative application is divided into long distinct computation and communication

phases. Here, long means that a computation stage is considerably longer than the link

transition delay, so we can turn the link off in that duration. This assumption is usually

valid for common HPC applications, such as the ones with nearest neighbor communication

pattern and/or bulk-synchronous parallel (BSP) model.

In addition to this assumption, we also assume that the links consume their full power

during their transition and extend our model. If each link i transfers zi bytes for each

iteration that takes t seconds and the transition delay is d, the link consumes full power U

fraction of the time:

Ui =
zi

(Bit)
+

2pid

t

Here, pi is a boolean variable that is one if the link is ever used, i.e. zi > 0, and zero

otherwise. This variable is needed because if the link is not used at all, it does not need

to make any transition. Furthermore, since the runtime system turns the link off after each

communication step and turns it back on before the next one, we pay the delay cost twice

per iteration. Note that transition delay d should be smaller than half of the iteration time

of the application, since utilization cannot be more than one. We define p as the fraction of

the network links used for the application and z as total communication volume over links.

109

Thus, we can derive the full network utilization:

U =
1

n

n∑
i=1

Ui =
1

nBt

n∑
i=1

zi +
2d

nt

n∑
i=1

pi =
z

nBt
+

2pd

t

This formula specifies the network utilization as a linear function of transition delay over

the iteration time, so we can quantify the effect of the transition delay for each network. For

practical cases, the transition delay is not a problem since the iteration time is much longer

and the last term of the equation becomes small. For example, a typical short iteration

time is around 10ms, while some current implementations have a transition delay of around

10, 000 cycles (10µs at 1GHz). In this case, the transition overhead is just 1%.

Our approach may lead to overheads due to the software and hardware. In software, in

order to capture the communication pattern and link utilization, the runtime system has

to monitor the application. However, this should not have significant overheads since the

monitoring is usually performed only once (because the applications are iterative) and its

results are stored. Other overheads include the system call overheads (context switching

overheads, argument verification overheads, etc.) because currently the runtime system is

executed in the user space (which is likely to change in the future). Our experiments suggest

that these overheads are limited to 20µs per call. In the hardware, as mentioned earlier, some

current implementations have a transition delay of around 10, 000 cycles (10µs at 1GHz)

for turning links on/off, and it is projected that it will improve much further (down to just

100 cycles) [131]. Hence, the overall overheads should be less than 30µs per call that turns

a link on/off.

Figures 5.11 and 5.12 show the link power savings as a function of transition delay (other

overheads are also included) for PERCS and 6D Torus networks (using simulation). For many

of our applications, we have short iteration times of around 30ms and we show the results

with up to 15ms delay for illustration. Thus, as can be seen from the figures, transition

delays and other overheads are not significant problems for our approach.

Note that this approach assumes accurate scheduling of links’ on/off transitions by the

runtime system, which is achievable since each iteration’s message send and receive times

are usually very deterministic. To verify this, we ran some of the NPB benchmarks on Blue

Gene/P and inspected a sample of processors. We found that the message sends and receives

occur with regular intervals and are predictable. The prediction error was usually less than

200µs, while the iteration time is in hundreds of milliseconds. Thus, in our results, we

consider 1ms conservative delay for the runtime system to incorporate noise and variations

in the system. Figure 5.13 summarizes machine power saving potentials of our approaches

for different applications on PERCS and 6D Torus networks. As before, this figure assumes

110

 0

 10

 20

 30

 40

 50

 60

 70

 0.01 0.1 1 10N
e
tw

o
rk

 C
a
p

a
ci

ty
 U

ti
liz

a
ti

o
n
 (

U
 %

)

Link Transition Delay (ms)

NAMD
MILC

CG

MG
BT

Figure 5.11: Potential link power saving on PERCS network.

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10N
e
tw

o
rk

 C
a
p

a
ci

ty
 U

ti
liz

a
ti

o
n
 (

U
 %

)

Link Transition Delay (ms)

NAMD
MILC

CG

MG
BT

Figure 5.12: Potential link power saving on 6D Torus network.

that 30% of the machine power is consumed in the network and 65% of network power is

consumed by the links. As can be seen, for most applications, our scheduling approach can

save around 20% of the machine power. Our basic approach can also save significant power,

usually more than 15% for PERCS and around 10% for 6D Torus. Note that in the case of

NAMD PME, the basic approach cannot save much and the scheduling approach is required.

5.6 Conclusions and Future Work

With ever increasing communication demands of large-scale parallel systems, multilevel di-

rectly connected networks (Dragonfly, PERCS) and high dimensional tori are becoming more

appealing. Optimizing the power and performance of these innovative networks presents a

new challenge for parallel systems. We showed that many parallel applications do not fully

111

 0
 5

 10
 15
 20
 25
 30

NAMD_PME MILC CG MG BTM
a
ch

in
e
 P

o
w

e
r

S
a
v
in

g
 P

o
te

n
ti

a
l
(%

)

Basic PERCS
Basic 6D Torus

Schedule 1ms delay PERCS
Schedule 1ms delay 6D Torus

Figure 5.13: Potential total machine power saving for different approaches.

exploit a significant fraction of the network links, which present opportunities for power

optimization. Thus, a runtime system can optimize the power consumption of the links by

turning off the unused ones, with minimal hardware support. This approach results in up

to 20% saving of total system’s power for common place applications with near neighbor

communication.

For future work, less conservative approaches that turn off more links can be used, which

may have some performance penalties. Furthermore, dynamic voltage scaling (or reducing

the bandwidth) of the network links can be exploited for the links that do not transfer

messages on the critical path. Overall, we suggest that more adaptive power management

techniques by the runtime system for the network should be explored further.

112

CHAPTER 6
Runtime Scheduling in Presence of Process

Variation Heterogeneity

Process variation is the deviation of transistor parameters from their design (nominal) values,

which is caused by systematic effects (e.g., lithographic inconsistencies) and random effects

(e.g., varying dopant concentrations) [157]. Affected parameters include effective channel

length, channel width, and threshold voltage. Therefore, transistor characteristics such as

switching speed and current leakage can vary widely across the chip. Incorporating very small

feature sizes in succeeding CMOS technology generations and lowering the supply voltage,

which is necessary for power efficiency [5], exacerbate the process variation problem.

At the architectural level, process variation results in cores and on-chip memories having

different frequencies and static power consumption profiles. The reason is that a core’s fre-

quency is determined by the switching speed of the transistors on its critical path, which

depends on the characteristics of those transistors. In addition, static power has an expo-

nential relationship with the threshold voltage of transistors. Many designers tackle this

issue by leaving design margins, but this solution is deemed too wasteful, especially for

future generation technologies and many-core architectures. A recent study estimated the

within-die frequency variation of many-core chips in 11nm technology generation to be 2.3x

for conventional high voltage operation (known as Super-Threshold Voltage Computing) and

3.7x for very low voltage operation (known as Near-Threshold Voltage Computing) [6].

Process variation leads to high heterogeneity in processor chips, which has direct con-

sequences to High Performance Computing (HPC) environments. For example, frequency

heterogeneity can slow down most multithreaded applications written in various parallel

programming paradigms such as MPI [158] and Pthreads [159]. This is because parallel

programmers usually assume different cores/processors have the same speed and assign the

113

computational load uniformly. In addition, the execution of different processes/threads is

synchronized in most HPC applications. Therefore, the slowest core determines the execu-

tion time, unless variation-aware load balancing is performed (as we evaluate in Section 6.3).

Furthermore, heterogeneity makes power and energy management harder, since different

parts of the chip can have widely different performance and power characteristics. The chal-

lenge is to utilize future HPC machines efficiently while staying within the performance,

power, and energy constraints. Previous studies have developed scheduling heuristics for

multiprogrammed environments [6, 160, 161], but HPC environments are different because

usually only one parallel application runs on the whole chip. We strive to solve the perfor-

mance, energy, and power problem for heterogeneous chips by developing a novel scheduling

framework, which can be implemented in intelligent HPC runtime systems. The only require-

ment is being able to migrate work units and balance the load according to the configuration

chosen by our framework. Our solution does not change the programming paradigms and

existing codes and has negligible execution time overheads.

For an application running on a processor chip, the runtime has to choose a configuration

among potentially billions of options. Each configuration instructs how many and which

cores will execute the parallel program, and leaves other cores off. For a chip with n fre-

quency domains, there are 2n−1 configurations1. This translates to 67 billion configurations

for a chip proposed by previous work with n = 36 [6]. The number of frequency domains

is expected to be even larger for future Exascale many-core chips, resulting in an enormous

number of possible configurations. Testing all of these configurations is infeasible for the run-

time system. Since Exascale architectures are also very likely to be over-provisioned [3, 4],

variation-aware power management is essential for them to stay within their power budget.

We develop a scheduling framework with accurate performance and power models that ex-

plores the combinatorial search space efficiently and finds a close to optimum configuration

quickly. It only needs a few samples of application execution to build the required models.

Performance modeling efforts for parallel applications have usually assumed that different

processor cores have the same speed [162,163], or the system is heterogeneous but there are a

few processor types (e.g. GPU and other accelerators) [164,165]. However, process variation

causes a new form of heterogeneity that potentially makes all of the cores/processors of the

system different. We develop and study the accuracy of four different performance models

and apply the most accurate one for making scheduling decisions. Studying performance

models also gives us insight into the impacts of heterogeneity on performance and power

consumption.

1‘all cores off’ is not useful

114

For a large chip with many frequency domains, evaluating even simple models for all

the configurations is infeasible. Therefore, we use integer linear programming (ILP) to

explore the search space efficiently. Our results show that our ILP-based scheduling provides

configurations that perform 25% better on average for a compute-bound application and

16% better for a memory-bound application as compared to scheduling algorithms based

on heuristics. In some cases, our framework finds configurations that are up to 2.5 times

faster than the baseline heuristic. Furthermore, we demonstrate how different performance

and power scheduling constraints can be expressed as linear models to be used by our ILP

scheduling framework. Since ILP provides optimality guarantees (assuming that the models

are accurate), our framework can be used to evaluate simpler scheduling heuristics as well.

The rest of the chapter is organized as follows. Section 6.1 presents background on process

variation. Section 6.2 describes our evaluation setup. Section 6.3 discusses the requirements

of programming systems, and evaluates the load imbalance caused by process variation

heterogeneity. In Section 6.4, we design and evaluate different performance models. We use

these models in Section 6.5 to define an ILP-based scheduling framework. We evaluate this

framework versus simple heuristics in Section 6.6. We discuss the related work in Section 6.7,

and conclude in Section 6.8.

6.1 Background on Process Variation

Ideally, all transistors of a die should be identical and have the same parameters as designed,

but this is hard to achieve in manufacturing. Therefore, there are static, spatial fluctuations

of parameters around the nominal values. The variation of transistors across different dies

is called die-to-die variation, while the difference of transistors on the same die is called

within-die variation.

Variation affects two critical parameters of transistors: threshold voltage (Vth) and effective

channel length (Leff). These parameters determine switching speed and leakage of the

transistors. At the architectural level, process variation causes some processor cores to

run faster or slower than the intended design. This is determined by the speed of the

transistors on the critical path of each core. Figure 6.1 illustrates the frequency variability

of a hypothetical chip. In addition, the static power consumption of different cores and

on-chip memory units is determined by the leakage of their transistor, which varies.

To display a uniform view of the system to the user, the designers usually include margins

to cover variations. However, due to growing variations in successive processor generations,

researchers believe that this will become too costly [166]. For example, by using all the cores

115

Figure 6.1: An example of core frequency variation on the same chip.

at a very low frequency, one pays the static power cost of all the cores but achieves limited

performance. On the other hand, to alleviate power limitations, low voltage operation seems

to be required [5], but it will exacerbate the variation issues. Hence, process variation needs

to considered for future processor chips.

6.2 Evaluation Setup

For evaluation of our approach, we model heterogeneous chips using the Sniper simula-

tor [167]. We use Sniper’s default core model, which is similar to the Intel’s Gainestown

microarchitecture and has been validated [167].

To model process variation at the micro-architecture level, we use VariusNTV [168]. It

models systematic variation by dividing the die into a grid, and assigning Vth and Leff to

each point by sampling from a multivariate Gaussian distribution. It models both spatially

correlated variation and random variation, and its results have been validated against chip

measurements [168].

We simulate 12-core or 36-core chips with each core in a different frequency domain, but

one voltage for the whole chip. In the following sections, we refer to frequency domains simply

as cores for convenience. Some previous works propose multiple small cores (a cluster) in

each frequency domain. However, we use a simpler architecture to be able to evaluate our

models more accurately and to simulate the possible configurations exhaustively for some

cases. We believe that our results extend to other architectures as well. We have verified

our simulation setting by comparing the simulation results of a corresponding homogeneous

architecture against a 12-core Ivy Bridge machine. Table 6.1 presents the parameters of the

modeled system in this chapter.

We use MiniMD and Jacobi3D to represent typical HPC workloads. MiniMD represents

116

Table 6.1: Simulated processor’s parameters.

Sniper parameters

Chip 12 or 36 Core CMP
Core x86, 4-wide issue out-of-order
Instruction L1 (L1I) 32 KB, 4 way
Data L1 (L1D) 32 KB, 8 way, private.
L2 256 KB, 8 way, private.
Memory latency (no contention) 75ns

VariusNTV parameters

Technology 11 nm
Average frequency 2.6 GHz
Vdd 0.765
Correlation range Φ 0.1
Total (σ/µ) for Vth 15%

molecular dynamics workloads, which are compute-intensive. Jacobi3D represents stencil

computations, which are typically memory-bound. Other HPC applications are typically

between these two in terms of being compute-intensive or memory-bound. We use instruc-

tions per cycle (IPC) as a proxy for application’s performance. In each simulation, after

initialization, and warm up for two seconds, we run the application for about six seconds of

simulated time, and take the average of the several IPC samples collected at the intervals

of milliseconds over the period of six seconds. Since the configuration is heterogeneous and

frequencies are not the same, we normalize the IPC statistics of different cores by multiply-

ing them with the frequencies of the corresponding cores and dividing by the frequency of

the slowest core on the chip. We use McPAT [169] to evaluate dynamic power consumption

and VariusNTV to evaluate static power consumption.

6.3 Programming Systems

Some parallel programming systems provide adaptive features such as automatic load balanc-

ing. Essentially, a scheduler decides how much work is assigned to each core. For example,

an OpenMP runtime system can assign loop iterations to idle cores dynamically. Further-

more, the Charm++/AMPI [119] runtime system measures the load of different processors

and balances the load accordingly.

In the context of process variation, runtime scheduling is even more important. For

example, the runtime system should assign more work to faster cores and less work to

slower ones. Otherwise, a multithreaded application will run at the pace of the slowest core.

Figure 6.2 illustrates how load balancing is performed by migrating units of work among

117

Figure 6.2: An example of load balancing across cores with different frequencies.

different cores. In this study, we assume that the runtime system has a way of assigning

units of work to different cores, but our results do not depend on how it is done.

6.3.1 Impact on Load Balance

In this chapter, we assume that the runtime can achieve perfect load balance, but this is not

always the case. Since the speeds of cores can be widely different, dividing a fixed number

of similar tasks according to their speeds is not always possible. For instance, if there are

three cores with frequencies of 1 GHz, 2 GHz, and 3 GHz, 7 equal tasks cannot be scheduled

perfectly. In this case, at least one core has more work than the average load, and some

other cores will be waiting for it to finish.

The work units cannot always be fine-grained enough to achieve perfect load balance.

This is because scheduling and managing very fine-grained work units has high overhead.

For example, in Charm++ and AMPI, usually a fixed number of tasks (e.g. chares or MPI

ranks) are scheduled on different cores. In addition, in shared-memory approaches such as

OpenMP and Intel TBB, chunks of iterations are scheduled by the runtime system. In this

section, we strive to quantify the load imbalance due to work units not being fine-grained

enough to be balanced perfectly on the chips with high variation.

We characterize the impact of the granularity of tasks (for a fixed computation) on load

imbalance caused by variation in different configurations of a chip. A configuration is a

subset of the cores on the chip, on which the parallel application will be run. We define the

overdecomposition ratio as the ratio of the number of tasks to the number of cores. We also

define our load imbalance metric using the ratio of maximum load to average load [170]:

I = (
Lmax
Lavg

− 1)× 100 (6.1)

118

where, Lmax is the maximum load of any core in the configuration, and Lavg is the average

load of all the cores in the configuration. These load values are obtained by appropriately

scaling the assigned load with the frequencies of the corresponding cores. We use a greedy

algorithm for load balancing, which is outlined in Algorithm 3. The algorithm assigns a

capacity for work to each core, which is equal to its frequency (lines 2-4). In this way, more

work will be assigned to faster cores. It then makes a heap (line 5), which has the core with

the maximum available capacity at the top. The main loop (lines 6-14) removes the core

with the maximum capacity from the heap, assigns a work unit to it, and adds it back to the

heap. If there was not enough capacity on that core, the algorithm increases the capacity of

all the cores by their frequencies (lines 8-10). This load balancing problem can be modeled

as a variable size bin packing problem [171]. Theoretical analysis of this algorithm is left for

future work.

Algorithm: VariationAwareGreedyLoadBalancing

Input: N work units, C cores
for each core c ∈ C do

c.capacity ← c.frequency;
end
H ← MakeMaxHeap(C);
for each work unit n ∈ N do

c← RemoveMaxHeap(H);
while c.capacity < n.load do

IncreaseAllCapacities(C);
end
c.workUnits ← c.workUnits ∪ n;
c.capacity ← c.capacity − n.load;
AddMaxHeap(H,c);

end
Algorithm 3: Greedy variation-aware load balancing algorithm.

Figure 6.3 summarizes the load imbalance on various configurations of a 12-core chip. We

simulated Algorithm 3 with different over-decomposition ratios for all the 212− 1 configura-

tions of enabled and disabled cores exhaustively, assuming that the work units are of equal

size. The two bars correspond to the average load imbalance across all the configurations

and the maximum load imbalance for any configuration, respectively. As illustrated, more

over-decomposition reduces the load imbalance rapidly. With an over-decomposition ratio

of 16, the average load imbalance across all the configurations is 2%, while the maximum is

6%. Since an over-decomposition ratio of 16 is already in use for some current Charm++

applications [172] and seems extensible to most applications, we conclude that load imbal-

119

 1

 10

 100

2 4 8 16 32 64

L
o
a
d
 I
m

b
a
la

n
c
e
 (

%
)

Overdecomposition Ratio

Average Maximum

Figure 6.3: The average and maximum load imbalance across all configurations
with different over-decomposition ratios.

ance is not a fundamental problem for our approach. Therefore, in later sections, we assume

that the runtime system can balance the load almost perfectly on any configuration chosen

by the scheduler.

6.4 Performance and Power Modeling

To be able to find acceptable configurations, we need power and performance models that can

evaluate each configuration accurately. Most models in the literature assume homogeneous

chips [162, 163] or heterogeneous ones with only a few different processor types (such as

GPUs and other accelerators) [164, 165]. Therefore, new models need to be developed for

chips with high variation and heterogeneity. Building the models should require only a few

(e.g. O(n)) samples, to be feasible for the runtime system to collect that many samples. In

this section, we assume that the runtime system can balance the load perfectly.

Figures 6.4 and 6.5 compare the performance of miniMD and Jacobi3D with different

number of cores and frequencies of a 12-core homogeneous systems. We use the insights

from these plots to develop our models. For example, compute-bound applications, such

as MiniMD, scale well with more cores and/or higher frequency. However, memory-bound

applications do not scale beyond a certain point, since memory bandwidth becomes the

bottleneck.

120

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10 11 12

Σ
 I

P
C

i

Number of Cores

MiniMD

Jacobi3d

Figure 6.4: Performance scaling with cores.

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 1.1 1.4 1.7 2 2.3 2.6

Σ
 I

P
C

i

Frequency (GHz)

MiniMD

Jacobi3d

Figure 6.5: Performance scaling with frequency.

121

6.4.1 Model 1

Our first model assumes that adding each core to the configuration improves the application’s

performance proportionate to the core’s frequency. However, this improvement is different

for various applications, and therefore performance samples are needed.

We assign a performance value to each core (si). The performance of a configuration is

modeled as:

Sc =
∑
i∈c

si (6.2)

For each core i, si is the performance (normalized IPC) of the application when running

on that core alone. Therefore, n samples can be used to obtain the si values. Note that since

si values are proportionate to the frequencies of the corresponding cores (see Figure 6.5),

one can sample the slowest and fastest cores and build a linear model to predict the other

values. Hence, just two samples would suffice for this model as well.

Figures 6.6(a) and 6.7(a) show the error of Model 1 for Jacobi3D and miniMD. Each point

corresponds to a configuration. All of the configurations of our 12-core chip (total number of

configurations = 4095) are simulated and evaluated exhaustively. Positive values mean that

the model overestimated the performance, while negative values illustrate that the model

underestimated the performance. As can be seen in the figure, this model is accurate for

miniMD but not for Jacobi3D. The reason is that, with more cores running at the same

time, memory bandwidth becomes the bottleneck for Jacobi3D and the performance does

not improve proportionately with the number of cores. The si measurements do not capture

this effect since the performance of each core is sampled executing alone. This does not

capture resource contention, such as memory bandwidth, that occur in the presence of other

active cores. However, for a compute intensive code such as miniMD, this problem is not

significant and sampling individual cores separately gives accurate performance predictions.

In general, the disadvantage of Model 1 is that it does not consider the bottlenecks that

limit the performance when there are multiple cores running at the same time.

6.4.2 Model 2

The second model tries to avoid the drawbacks of the first model by using a random set

of samples that potentially have multiple cores running at the same time. Furthermore, it

assumes that the application execution time has a memory component (Tmem) that does not

become faster with more cores.

122

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(a) Error of Model 1 for Jacobi3D

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(b) Error of Model 2 for Jacobi3D

 1

 10

 100

 1000

 0 100 500 1000 1500

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(c) Error of Model 3 for Jacobi3D

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(d) Error of Model 4 for Jacobi3D

Figure 6.6: Distribution of errors of different models for performance of Ja-
cobi3D. The number of configurations on y-axis is shown in log scale. Model
4 performs very well, with average prediction error of only 0.7% across all the
configurations for Jacobi3D.

Model 2 uses the sum of the frequencies as the variable that determines the application’s

performance for each configuration. It uses n random samples to fit a linear function of the

following form:

Fc =
∑

i∈c
fi (6.3)

tc =
Tcomp
Fc

+ Tmem (6.4)

In this equation, tc is the predicted execution time of configuration c. Tcomp and Tmem are

constants that represent the computation and memory time of the application (which are

found by function fitting). Fc is the sum of the frequencies of the cores of the configuration.

123

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(a) Error of Model 1 for miniMD

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(b) Error of Model 2 for miniMD

 1

 10

 100

 1000

 0 100 500 1000 1500

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(c) Error of Model 3 for miniMD

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(d) Error of Model 4 for miniMD

Figure 6.7: Distribution of errors of different models for performance of miniMD.
The number of configurations on y-axis is shown in log scale. Model 4 performs
very well, with average prediction error of only 1.6% across all the configurations
for miniMD.

Figures 6.6(b) and 6.7(b) show the error of Model 2 for Jacobi3D and miniMD. The results

illustrate that this model is not very accurate in predicting the performance. Similarly, one

might fit a linear function of the sum of the frequencies with the following form:

Sc = a1Fc + a2 (6.5)

However, we verified that this model does not predict well and has similar accuracy to

Model 2. These models do not work because they fail to take into account the number of

cores that are executing the parallel application.

124

6.4.3 Model 3

To have more accurate predictions than Model 2, one might consider second degree curve

fitting. In this model, the runtime samples n random configurations as before, but fits a

second degree curve to predict the performance:

Sc = a1(Fc)
2 + a2Fc + a3 (6.6)

Figures 6.6(c) and 6.7(c) show the prediction error of Model 3. There are extremely large

error values for some configurations, which make the use of this model impractical. This

model suffers from overfitting; although the curve is very close to the few sample values, it

cannot capture the trend and can be very inaccurate for other configurations.

6.4.4 Model 4

Previous models could not capture various aspects of the configurations simultaneously (such

as memory bandwidth limitations and frequency sensitivity). Considering Figures 6.4 and

6.5, we observe that both the frequencies and the number of cores influence the performance.

Moreover, just adding the frequencies does not capture the effect of additional cores. For

example, two 1 GHz cores are not the same as one 2 GHz core. Therefore, an accurate model

needs to consider the frequencies as well as the number of cores in each configuration.

To consider both the frequencies and number of cores, Model 4 fits a linear function for

each possible number of cores, i.e. one line for configurations with only one core, one line

for configurations with two cores, and so on. Therefore, a 12-core chip will have 12 linear

functions. A line for k-core configurations is a linear function of the sum of frequencies of

the k cores of each configuration.

In general, each line needs at least two samples but more samples can make it more

accurate by using regression tools to fit the best possible line for all the samples. To keep

the number of samples needed low, we use only two samples. Hence, 2n samples are needed,

which is more than other models but still low enough for the runtime system to collect with

negligible overhead. As a heuristic, we choose the configuration with the minimum sum

of frequencies and the configuration with the maximum sum of frequencies for sampling.

Finding the configuration with minimum (or maximum) sum of frequencies is easily done by

choosing the needed number of cores from the list of cores sorted by frequencies.

The runtime system builds the model as follows.

∀k ∈ (1..n):

K = {c|c has k cores}, where c is a configuration

125

ckmin =c ∈ K|
∑
i∈c

fi is minimum (6.7)

ckmax =c ∈ K|
∑
i∈c

fi is maximum (6.8)

F k
min =

∑
i∈ckmin

fi (6.9)

F k
max =

∑
i∈ckmax

fi (6.10)

Y k
min = performance of ckmin (6.11)

Y k
max = performance of ckmax (6.12)

ak1 =
(Y k

max − Y k
min)

(F k
max − F k

min)
(6.13)

ak2 =Y k
min − a1F k

min (6.14)

The performance of any configuration with k cores is then predicted by a simple linear

formula:

Skc = ak1Fc + ak2 (6.15)

Figures 6.6(d) and 6.7(d) show the accuracy of Model 4 for Jacobi3D and miniMD. Com-

pared to other models, the points are closer to the zero error line, meaning that this model

is much more accurate.

For each application, Figure 6.8 illustrates the performance predictions of Model 4 for the

chip configurations as a function of their actual performance obtained by simulation. There

are some jitters but both of the functions are mostly monotonic. This means that, given two

configurations, the model predicts higher performance for the configuration that is actually

faster. Therefore, Model 4 is accurate at comparing configurations.

126

M
o

d
e

l
4

 p
re

d
ic

ti
o

n

Performance (IPC)

(a) Jacobi3D

M
o

d
e

l
4

 p
re

d
ic

ti
o

n

Performance (IPC)

(b) miniMD

Figure 6.8: Model 4 predictions as a function of actual (simulated) performance.

 0

 5

 10

 15

 20

 25

 30

M
odel1

M
odel2

M
odel3

M
odel4

M
o
d
e
l
E
rr

o
r

(%
)

Average
Most Overestimated

Most Underestimated

.

.
37

.

.
1420

Figure 6.9: Prediction accuracy of different models for Jacobi3D. Numbers on
top of the Model 3 bars represent the values that are beyond the plotted range.

6.4.5 Summary of Performance Models

Figures 6.9 and 6.10 compare the accuracy of the discussed models. Model 4 is superior to

others in all of the metrics. The average error of Model 4 for miniMD is 1.6%, and it is 0.7%

for Jacobi3D. In the worst case, the maximum error of Model 4 is 9.2% for miniMD and

4.3% for Jacobi3D. Thus, we conclude that Model 4 is sufficiently accurate for predicting

the performance of various configurations of a heterogeneous chip.

127

 0

 5

 10

 15

 20

 25

 30

M
odel1

M
odel2

M
odel3

M
odel4

M
o
d
e
l
E
rr

o
r

(%
)

Average
Most Overestimated

Most Underestimated

.

.
46

.

.
1779

Figure 6.10: Prediction accuracy of different models for MiniMD. Numbers on
top of some bars represent the values that are beyond the plotted range.

6.4.6 Modeling Dynamic Power

Model 4 predicts performance accurately but dynamic power also varies with configuration

and needs to be predicted. The dynamic power of a processor core can be formulated as

follows:

Di = αiCV
2fi (6.16)

In this formula, fi is the frequency of the core, V is its voltage, C is its capacitance, and αi

is the activity of the core. Except the activity level of the core αi, which varies in different

configurations, other parameters are constants. Therefore, αi needs to be taken into account

for accurate dynamic power predictions.

The dynamic power of a configuration is the sum of the dynamic powers of the cores:

Dc =
∑
i∈c

αciCV
2fi = CV 2

∑
i∈c

αcifi (6.17)

We strive to adopt our performance model (Model 4) to predict dynamic power due to

the following observations. First, dynamic power has similar properties to performance in

general. Dynamic power is higher when there are more cores and when the cores have higher

frequencies. Second, the activity level of each core is correlated with performance, and hence,

correlated with the sum of frequencies. We therefore formulate our dynamic power model

as follows:

128

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(a) Jacobi3D

 1

 10

 100

 1000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

#
 o

f
c
o
n
fi
g
u
ra

ti
o
n
s

Error (%)

(b) miniMD

Figure 6.11: Distribution of errors of Model 4 for power consumption prediction.

Zk
min = dynamic power of ckmin (6.18)

Zk
max = dynamic power of ckmax (6.19)

bk1 =
(Zk

max − Zk
min)

(F k
max − F k

min)
(6.20)

bk2 = Zk
min − a1F k

min (6.21)

The dynamic power of a configuration with k cores is then predicted by a simple linear

formula:

Dk
c = bk1Fc + bk2 (6.22)

Figure 6.11 illustrates the accuracy of our model for predicting the dynamic power of all

of the configurations of a 12-core chip. The errors of the model are all less than 2%, which

means the accuracy is very high. Furthermore, since the accuracy of the model is higher for

dynamic power than performance, one can conclude that predicting dynamic power is easier

than performance.

129

6.5 Model Driven Scheduling

The runtime system should choose the frequency domains of the chip that execute the

application intelligently in order to meet the performance, power, and energy constraints.

There are various tradeoffs that need to be considered. For example, choosing a configuration

with too many cores for a memory-bound application might not improve the performance

much, but it can consume excessive power and energy. In addition, a configuration might

be fast but have high power consumption.

The number of configurations can be prohibitively large for the runtime system to try

exhaustively. For a chip with n frequency domains, there are 2n − 1 configurations since

each domain can be turned on or off (with at least one domain on). This exponential

growth is due to the heterogeneity of the chips. Otherwise, analogous homogeneous chips

with n cores have only n distinct configurations. In the previous section, we developed a

model to predict the running application’s performance on any configuration of the cores of

a heterogeneous chip. In this section, we use the model to solve the scheduling problem in

the presence of variation, given the performance and power constraints.

6.5.1 Efficient Configuration Space Exploration

Using our performance and power models, the runtime system can evaluate many configura-

tions quickly (with only a few samples), but exhaustive exploration is not always practical.

For our example processor chip with 12 frequency domains, the runtime only needs to eval-

uate the models for (212 − 1 = 4095) configurations. However, future processors will have

more frequency domains and the number of configurations increases exponentially with the

number of frequency domains. Therefore, exploring all of the configurations in the runtime

can be impractical.

We propose the use of integer linear programming (ILP) by the runtime system for find-

ing the best (or very close to the best) configuration given the performance and power

constraints. Using ILP (in many cases) needs linear objective functions and constraints.

Our performance and power models are linear for configurations with the same number of

cores, but the overall functions are not linear. To solve this issue, we setup separate ILP

problems for configurations with different number of cores (36 ILP problems for a 36-core

chip). Therefore, to maximize performance given a power budget, an ILP problem for a

given number of cores (k) is formulated as follows :

Parameters

xi : binary variable indicating whether core i is used

130

F =
∑

i∈all cores

xifi

P : power budget of the chip

psi : static power of core i

Objective function

Maximize performance:

Skc = ak1F + ak2 (6.23)

Constraints

Only configurations with k cores: ∑
i∈all cores

xi = k (6.24)

Cap total power according to budget:∑
i∈all cores

xip
s
i + bk1F + bk2 ≤ P (6.25)

After solving these ILPs, the runtime system needs to compare the results and choose the

best one. Note that in our formulation, we considered performance as the main objective

metric that needs to be maximized given a power budget. One can similarly minimize power

given performance constraints. In this case, the roles of Equations 6.23 and 6.25 are switched,

and performance becomes a constraint, while power becomes the objective function.

Note that if one wants to minimize energy without any performance constraints, our ILP

framework in this form cannot be used since the objective function will not be linear anymore.

Energy minimization without performance constraints is left for future work.

6.5.2 Incorporating DVFS

Previous studies suggest Dynamic Voltage and Frequency Scaling (DVFS) for energy-efficient

computing for some cases, such as for memory bound applications. Our framework can in-

corporate DVFS as well. We only need more binary variables and constraints that indicate

at which DVFS level each core should operate. The constraints make sure that the solver

does not choose illegitimate conditions, such as a core operating at two DVFS levels simul-

taneously.

131

Parameters

xij : binary variable indicating core i at DVFS level j is used or not

F =
∑

i∈ all cores

∑
j∈ all DVFS levels

xijfij

P : power budget of the chip

psi : static power of core i

Objective function

Maximize performance:

Skc = ak1F + ak2 (6.26)

Constraints

Only configurations with k cores:∑
i∈all cores

∑
j∈ all DVFS levels

xij = k (6.27)

Only one DVFS level is selected per core:∑
j∈ all DVFS levels

xij ≤ 1,∀i ∈ [1..n] (6.28)

Cap total power according to budget:∑
i∈all cores

∑
j∈ all DVFS levels

xijp
s
i + bk1F + bk2 ≤ P (6.29)

Further study and evaluation of DVFS in our framework is left for future work. For the

chips we evaluate, the static power is high and therefore, operating more cores at lower

frequencies is not very well justified, even for memory-bound applications. It is most often

more beneficial to turn as many cores off as possible and operate the rest at full speed.

However, DVFS might be beneficial in other cases.

6.5.3 Incorporating Communication Performance

So far we have assumed that on-chip communication performance of different configurations

does not differ significantly, but this can be incorporated in our framework as well. Depend-

ing on several factors, such as the application’s communication pattern, network design, and

132

Figure 6.12: Assigning communication scores to different cores on a chip.

the routing algorithm, a communication model needs to be included in the ILP framework.

As an example, we consider a case where the application has a heavy all-to-all communica-

tion pattern, the network topology is a 2D mesh, and a minimal adaptive routing algorithm

is used. In this case, one heuristic is to use the cores that are farther apart on the chip. This

lets the application use more of the network links and have less congestion.

To handle this case in our framework, communication performance needs to be incorpo-

rated in the objective function as a linear expression. We assign a communication score (ei)

to each core on the chip. Figure 6.12 shows an example of possible core assignments. The

cores closer to the corners and sides are assigned higher scores because they can potentially

use more of network’s links to send and receive messages. Using this model, we extend the

object function of the ILP as follows:

Skc = E1(ak1F + ak2) + E2(
∑

i∈all cores

xiei) (6.30)

In this equation, E1 and E2 are constants that give weights to computation and commu-

nication performance depending on the application. They can be tuned offline, or online by

the runtime system using measurements.

Further study and evaluation of communication models is beyond the scope of this study

and is left for future work.

133

6.5.4 Adapting to Application Phases

Some HPC applications have multiple phases with different characteristics. Our previous

study demonstrates how application phases can be recognized and exploited effectively in the

runtime system (Chapter 4). One could use our scheduling framework for different phases

separately as well. In this case, the runtime needs to migrate the tasks and turn cores on

and off when changing the configurations. The overheads of this reconfiguration and task

migration should also be considered. Extensive study of of this feature is left for future work.

6.6 Evaluation

In this section, we evaluate our ILP-based scheduling framework by comparing it against

two heuristic based scheduling algorithms. The goal of these algorithms is to maximize the

performance of a parallel application under a given power budget for the chip. Evaluation and

analysis of cases that consider other aspects such as DVFS and communication constraints

is left for future work.

The first heuristic, called the Min heuristic, chooses as many cores as possible with the

lowest frequencies as possible such that the selected configuration remains within the given

power budget and the performance is maximized. Although this heuristic does not consider

static power for core selection, most often the slower cores also have lower static power.

A previous study confirms this correlation using silicon measurements [166]. Hence, this

heuristic strives to choose as many low power cores as possible. The second heuristic, called

the Max heuristic, chooses as many of the highest frequency cores as possible, while staying

within the power budget. In contrast to the first one, this heuristic therefore most often

chooses the highest power consuming cores and probably fewer cores.

Figures 6.13 and 6.14 compare our ILP framework to the heuristics for miniMD and

Jacobi3D applications. The bars represent the average benefits of the different schemes

across 100 chips, and are normalized to the Min heuristic. The vertical lines on the ILP

and the Max heuristic bars illustrate the maximum and minimum benefit obtained with the

corresponding approach across all the chips for the given power budget. MiniMD’s power

caps are lower since it consumes less power in general compared to Jacobi3D. One can

conclude that Min and Max heuristics have similar results, while intelligent ILP scheduling

can be considerably better. ILP finds configurations that are up to 1.85 times faster for

Jacobi3D and up to 2.5 times faster for miniMD. On average, for all the cases we examined

(various power caps for 100 chips), ILP scheduling is 25% faster for miniMD and 16% faster

for Jacobi3D as compared to the Min heuristic.

134

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

Power Threshold (Watts)

0.0

0.5

1.0

1.5

2.0

2.5
N

o
rm

a
liz

e
d
 ∑ I

P
C

Min Heuristic
Max Heuristic
ILP

Figure 6.13: Comparison of our ILP-based scheduling approach to simple heuris-
tics for miniMD.

The results indicate that the benefit of intelligent ILP scheduling is more with lower power

budgets. This is because with lower power caps (that still allow multiple cores to be selected),

there are more choices. On the other hand, if the power budget allows many of the cores to

be selected, the different configurations chosen by different schemes have many overlapping

cores and are similar. If there is enough power, all cores will be chosen by all of them and

there is no other choice for the ILP. One can also see that the benefit of intelligent ILP

scheduling can be much higher for compute-bound applications such as miniMD, since they

are more sensitive to the frequencies of the chosen cores (as illustrated in Figure 6.5).

Table 6.2 presents an example scheduling case, demonstrating that the ILP is choosing

cores intelligently and its choices are different from the heuristics. In this case, the power

cap is 40 W and the schemes strive to find the highest performing configuration for a 36-core

chip running miniMD. The cores are numbered by their frequencies in increasing order. One

can conclude that ILP is choosing the cores intelligently resulting in higher performance

within the power budget.

Integer program optimization is an NP-hard problem and can be computationally very

expensive in the worst case, but it is very fast for our scheduling framework. Our ILP

135

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

Power Threshold (Watts)

0.0

0.5

1.0

1.5

2.0

2.5
N

o
rm

a
liz

e
d
 ∑ I

P
C

Min Heuristic
Max Heuristic
ILP

Figure 6.14: Comparison of our ILP-based scheduling approach to simple heuris-
tics for Jacobi3D.

Table 6.2: Example scheduling case comparing various schemes.

Scheme Selected Cores Relative Performance
Min Heuristic 0, 1, 2, 3, 4, 5, 6 1
Max Heuristic 31, 32, 33, 34, 35 0.97

ILP 7, 13, 14, 17, 21, 24, 31 1.19

solver took only 37 ms on average across all the chips and power budgets we examined. The

underlying simplex algorithm performed only 217 iterations on average across all the nodes

of the branch-and-bound tree for the corresponding ILP. This is negligible compared to the

typical execution time of HPC applications, which can run for up to several days in many

cases. We used the state-of-the-art Gurobi [173] optimizer for solving the ILPs.

6.7 Related Work

Process variation has been explored from the manufacturing and circuit perspective [7,157,

174,175]. Dighe et al. [166] measured the process variation of Intel TeraFLOPS experimental

chips and studied the optimal operating point of different applications. We use the valuable

136

insights of these studies for our assumptions about the properties of the processor chips.

The proposed Exascale architectures such as Runnemede [3] and Echelon [4] consider

hundreds of cores on a chip, which are arranged in many frequency domains (with power

gating). Furthermore, those architectures are over-provisioned, and need extensive power

management to stay within the power budget [3]. However, previous studies do not provide

scheduling algorithms that meet these constraints. A framework like ours seems essential for

such architectures, as it provides the necessary runtime component to perform scheduling

and power management depending on the application characteristics.

Previous studies have explored scheduling in the presence of process variation for multi-

programmed environments [6, 160, 161]. For example, Winter et al. [161] use a Hungarian

optimization algorithm to assign different sequential programs to the best matching cores.

Karpuzcu et al. [6] use heuristics to map different multithread applications to the many-core

chip’s cores. However, in HPC environments, almost always a single parallel application

runs on the whole chip, and the previous algorithms cannot be used. Since all the threads

of the application usually have similar behavior, switching threads among cores is not very

useful. In addition, previous studies either ignored the interference of different cores [161]

(e.g. memory bandwidth contention), or assumed that load balancing is not possible and

the parallel application’s speed is determined by the slowest core [6]. To the best of our

knowledge, this is the first study to propose a variation-aware scheduling approach for HPC

systems.

In their studies on overprovisioned HPC data centers, Sarood et al. [176] and Patki et

al. [177], have proposed frameworks that distribute power to nodes such that the performance

is maximized under a given power budget for the data center. However, they do not propose

how the chosen power budget for each node will be used for achieving maximum performance

from the node, which is the focus of this work. The proposed framework in this chapter can

be combined with their frameworks for maximizing the performance of future HPC data

centers with a fixed power budget.

6.8 Conclusion and Future Work

Process variation causes performance and power heterogeneity among various cores of a

many-core chip. We studied various performance and power models for such chips. Based

on the models, we developed a novel scheduling framework that uses integer linear pro-

gramming (ILP) to explore the configuration space efficiently. This enables intelligent HPC

runtime systems to enforce different performance and power constraints and schedule work

137

units effectively. We also illustrated how different constraints, such as communication per-

formance, can be enforced in our framework.

There are many future research directions based on our study. More in depth evaluation

and analysis of different HPC applications on heterogeneous chips needs to be performed.

Furthermore, the use of our framework to find different configurations for different applica-

tion phases needs to be studied. In addition, we assumed that tasks of the application have

the same amount of work but this is not always the case. Variation-aware load balancing

of complex applications that have different workloads in different tasks needs further explo-

ration. Moreover, the development and evaluation of new scheduling constraints dependent

on the application and system characteristics requires much research.

138

CHAPTER 7
Concluding Remarks

In this dissertation, we used extensive analysis of common HPC applications and modern

architectures to develop novel adaptive runtime system (RTS) methods that improve power

and energy efficiency without significant performance overheads. The required hardware sup-

port is also very limited. Only the RTS layer has to change, which is inexpensive compared

to changing the applications and the hardware.

Our conclusions and contributions can be summarize as follows:

• Many-cores like Intel SCC offer an opportunity to build future machines that consume

low power and can run existing codes (e.g. written in Charm++ and MPI) fast.

• Accelerators, such as GPGPUs, are exceptionally powerful for some applications in

terms of speed, power and energy efficiency but they require high programming effort.

• Heterogeneous on-chip architectures can be very effective, and a unified programming

paradigm such as OpenCL provides a good balance between performance and pro-

grammer productivity.

• Mapping of the application kernels to heterogeneous architecture’s different devices

are important. Using only the GPU or trying to gain maximum utilization of both

the CPU and the GPU naively, are not energy efficient (even for highly parallel vision

workloads).

• Depending on the application, some other techniques such as software pipelining of

kernels and trading accuracy for energy can be exploited for better energy efficiency.

• Common HPC applications usually have a regular structure, which can be exploited

for various power and energy efficiency improvements.

139

• The RTS is able to recognize the applications pattern using formal language theory

and predict its future. Therefore, it can adapt the hardware to achieve better power

and energy efficiency.

• A fixed cache configuration is not energy efficiency for every application and some

adaptation is required. Changing the number of active ways of set-associative caches

is an easy way to adapt the cache hierarchy and save significant energy.

• Since some common HPC applications have streaming memory access patterns, switch-

ing to a reconfigurable prefetching scheme by the RTS can improve performance and

energy efficiency significantly. To avoid the possible drawbacks of prefetching, the RTS

can reconfigure prefetching depth and the cache size to use.

• Cache reconfiguration cannot be performed by the hardware using the system metrics

easily. The reason is that modern processors are complicated and simple system metrics

such as cache misses do not represent performance.

• Many common HPC applications do not fully exploit a significant fraction of the

network links, especially on high-radix networks such as Dragonfly. This presents

opportunities for power and energy optimization.

• We developed a theoretical model of network usage of applications that can estimate

the possible energy savings by turning unused links off.

• We demonstrated that an intelligent RTS can optimize the power consumption of the

network by turning off the unused links, with minimal hardware support.

• Process variation causes performance and power heterogeneity among various cores of

a many-core chip. The runtime system needs to choose a configuration among many

that meets the power and performance constraints. Therefore, variation is a major

challenge for power efficiency.

• We studied various performance and power models for many-core chips with process

variation. We demonstrated that an accurate model should consider both the number

of active cores and the frequency of the active cores.

• Based on the variation-aware performance and power models, we developed a novel

scheduling framework that uses integer linear programming (ILP) to explore the search

space efficiently.

140

• Our variation-aware scheduling framework enables intelligent HPC runtime systems to

enforce different performance and power constraints and schedule work units effectively.

We also illustrated how different constraints such communication performance can be

enforced in our framework.

7.1 Future Research Directions

There are many directions for future work based on the insights of this dissertation. Below

is a list of example future directions.

• Analysis of various modern HPC architectures with regards to performance, pro-

grammability, power efficiency, and energy efficiency tradeoffs is always insightful.

The set of HPC applications and benchmarks used should be chosen carefully to draw

valid conclusions.

• Heterogeneous architectures have various challenges that need to explored further.

Productive programming and resource management are the main issues discussed in

this dissertation and need more research. Novel programming languages features are

needed to make it possible to have the same or similar code for different devices. The

resulting program should have high performance on different devices as well. On the

other hand, automatic RTS techniques are needed to map the program on different

devices effectively.

• Our results show that the memory hierarchy can be very wasteful for HPC applications.

Thus, more research on memory hierarchy design for HPC applications is needed. For

example, scratch-pads can alleviate some of the power efficiency challenges but make

programming more difficult.

• We demonstrated that networks are over-provisioned and not energy proportional for

HPC machines. Therefore, more research is needed to make them more efficient. For

example, in addition to links, our techniques can be used to adapt the resources of the

routers to consume less power as well.

• We applied our RTS-based adaptive framework to caches and network links, but it

can be applied to other system components as well. For example, more opportunities

for adaptation in processors that reduce instruction scheduling overheads need to be

explored.

141

• Process variation causes various heterogeneity challenges. More in depth evaluation

and analysis of different HPC applications on heterogeneous chips needs to be per-

formed. Furthermore, the use of our scheduling framework in Chapter 6 to find dif-

ferent configurations for different application phases needs to be studied. In addition,

we assumed that tasks of the application have the same amount of work but this is

not always the case. Variation-aware load balancing of complex applications that have

different workloads in different tasks needs further exploration. Moreover, the develop-

ment and evaluation of new scheduling constraints dependent on the application and

system characteristics requires much research.

• Our scheduling framework can find the optimal configuration given a power budget.

However, the power budget has to be chosen carefully, in order to utilize the system

efficiently. Future research is needed for addressing this problem, especially for over-

provisioned HPC data centers.

142

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in Computer Architecture (ISCA), 2011 38th
Annual International Symposium on, June 2011, pp. 365–376.

[2] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon,
W. Harrod, K. Hill, J. Hiller et al., “Exascale computing study: Technology challenges
in achieving exascale systems,” Defense Advanced Research Projects Agency Informa-
tion Processing Techniques Office (DARPA IPTO), Tech. Rep, 2008.

[3] N. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dunning, J. Fryman,
I. Ganev, R. Golliver, R. Knauerhase, R. Lethin, B. Meister, A. Mishra, W. Pinfold,
J. Teller, J. Torrellas, N. Vasilache, G. Venkatesh, and J. Xu, “Runnemede: An archi-
tecture for ubiquitous high-performance computing,” in High Performance Computer
Architecture (HPCA 2013), IEEE 19th International Symposium on, Feb 2013, pp.
198–209.

[4] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “Gpus and the
future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011.

[5] J. Torrellas, “Extreme-scale computer architecture: Energy efficiency from the ground
up,” in Design, Automation and Test in Europe Conference and Exhibition (DATE),
2014.

[6] U. R. Karpuzcu, A. Sinkar, N. S. Kim, and J. Torrellas, “EnergySmart: Toward energy-
efficient manycores for near-threshold computing,” in High Performance Computer
Architecture (HPCA), 2013.

[7] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar, “Near-
threshold voltage (ntv) design: Opportunities and challenges,” in Proceedings of the
49th Annual Design Automation Conference, ser. DAC ’12, 2012.

[8] A. Faraj, S. Kumar, B. Smith, A. Mamidala, J. Gunnels, and P. Heidelberger, “Mpi
collective communications on the blue gene/p supercomputer: algorithms and opti-
mizations,” in Proceedings of the 23rd international conference on Supercomputing,
ser. ICS ’09, 2009, pp. 489–490.

143

[9] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P. Prost, M. Snirt,
B. Traversat, and P. Wong, “Overview of the MPI-IO Parallel I/O interface,” in In-
put/Output in Parallel and Distributed Computer Systems. Springer US, 1996, vol.
362, pp. 127–146.

[10] G. Zheng, A. Bhatele, E. Meneses, and L. V. Kale, “Periodic Hierarchical Load Balanc-
ing for Large Supercomputers,” International Journal of High Performance Computing
Applications (IJHPCA), 2011, March 2011.

[11] E. Meneses, “Scalable message-logging techniques for effective fault tolerance in HPC
applications,” Ph.D. dissertation, Dept. of Computer Science, University of Illinois,
2013.

[12] O. Sarood, P. Miller, E. Totoni, and L. V. Kale, “‘Cool’ Load Balancing for High Per-
formance Computing Data Centers,” in IEEE Transactions on Computer - SI (Energy
Efficient Computing), September 2012.

[13] O. Sarood, A. Langer, A. Gupta, and L. V. Kale, “Maximizing throughput of overpro-
visioned hpc data centers under a strict power budget,” in Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis,
ser. SC ’14. New York, NY, USA: ACM, 2014.

[14] P. Hammarlund, A. Martinez, A. Bajwa, D. Hill, E. Hallnor, H. Jiang, M. Dixon,
M. Derr, M. Hunsaker, R. Kumar, R. Osborne, R. Rajwar, R. Singhal, R. D’Sa,
R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther, T. Piazza, and
T. Burton, “Haswell: The fourth-generation intel core processor,” Micro, IEEE,
vol. 34, no. 2, pp. 6–20, Mar 2014.

[15] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard,
S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core SCC processor: The
programmer’s view,” in International Conference for High Performance Computing,
Networking, Storage and Analysis, 2010, pp. 1–11.

[16] L. V. Kale and G. Zheng, “Charm++ and AMPI: Adaptive Runtime Strategies via
Migratable Objects,” in Advanced Computational Infrastructures for Parallel and Dis-
tributed Applications, M. Parashar, Ed. Wiley-Interscience, 2009, pp. 265–282.

[17] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,
N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam,
V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel,
K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and
T. Mattson, “A 48-core IA-32 message-passing processor with DVFS in 45nm CMOS,”
in Solid-State Circuits Conference Digest of Technical Papers, 2010, pp. 108–109.

[18] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight communications
on Intel’s single-chip cloud computer processor,” SIGOPS Oper. Syst. Rev., vol. 45,
pp. 73–83, February 2011.

144

[19] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,
R. D. Skeel, L. Kalé, and K. Schulten, “Scalable molecular dynamics with NAMD,”
Journal of Computational Chemistry, vol. 26, no. 16, pp. 1781–1802, 2005.

[20] D. Bailey, E. Barszcz, L. Dagum, and H. Simon, “NAS parallel benchmark results,”
in Proc. Supercomputing, Nov. 1992.

[21] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar, “Scaling applications to massively
parallel machines using projections performance analysis tool,” in Future Generation
Computer Systems Special Issue on: Large-Scale System Performance Modeling and
Analysis, vol. 22, no. 3, February 2006, pp. 347–358.

[22] B. Marker, E. Chan, J. Poulson, R. van de Geijn, R. F. Van der Wijngaart, T. G.
Mattson, and T. E. Kubaska, “Programming many-core architectures - a case study:
Dense matrix computations on the Intel Single-chip Cloud Computer processor,” Con-
currency and Computation: Practice and Experience, 2011.

[23] R. David, P. Bogdan, R. Marculescu, and U. Ogras, “Dynamic power management
of voltage-frequency island partitioned networks-on-chip using Intel Single-chip Cloud
Computer,” in International Symposium on Networks-on-Chip, 2011, pp. 257–258.

[24] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote, S. Vangal,
G. Ruhl, and N. Borkar, “A 2 Tb/s 6×4 mesh network for a single-chip cloud computer
with DVFS in 45 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp.
757 –766, April 2011.

[25] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and improvements of pro-
gramming models for the Intel SCC many-core processor,” in International Conference
on High Performance Computing and Simulation (HPCS), 2011, pp. 525–532.

[26] I. Ureña, M. Riepen, and M. Konow, “RCKMPI–Lightweight MPI implementation
for Intels Single-chip Cloud Computer (SCC),” in Recent Advances in the Message
Passing Interface: 18th European MPI Users Group Meeting. Springer-Verlag New
York Inc, 2011, p. 208.

[27] C. Clauss, S. Lankes, and T. Bemmerl, “Performance tuning of SCC-MPICH by means
of the proposed MPI-3.0 tool interface,” Recent Advances in the Message Passing
Interface, pp. 318–320, 2011.

[28] H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and K. S. McKinley, “Looking back
on the language and hardware revolutions: Measured power, performance, and scal-
ing,” in International Conference on Architectural Support for Programming Languages
and Operating Systems, 2011, pp. 319–332.

[29] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Heterogeneous chip
multiprocessors,” Computer, vol. 38, no. 11, Nov. 2005.

145

[30] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey, S. Sarkar, S. Siers,
I. Stolero, and A. Subbiah, “A 22nm ia multi-cpu and gpu system-on-chip,” vol. 55,
2012, pp. 56–57.

[31] D. Foley, P. Bansal, D. Cherepacha, R. Wasmuth, A. Gunasekar, S. Gutta, and
A. Naini, “A low-power integrated x86-64 and graphics processor for mobile com-
puting devices,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 220–231,
2012.

[32] NVIDIA, “Bringing High-End Graphics to Handheld Devices,” 2011. [Online].
Available: http://www.nvidia.com

[33] M. Dikmen, D. Hoiem, and T. S. Huang, “A data driven method for feature trans-
formation,” in Computer Vision and Pattern Recognition (CVPR). IEEE, 2012, pp.
3314–3321.

[34] T. Mudge, “Power: A first-class architectural design constraint,” Computer, vol. 34,
no. 4, pp. 52–58, Apr. 2001.

[35] C. Beleznai, D. Schreiber, and M. Rauter, “Pedestrian detection using gpu-accelerated
multiple cue computation,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011, pp. 58–65.

[36] L. Zhang and R. Nevatia, “Efficient scan-window based object detection using gpgpu,”
in Computer Vision and Pattern Recognition Workshops. CVPRW ’08, 2008, pp. 1–7.

[37] M. Jones and P. Viola, “Fast multi-view face detection,” Mitsubishi Electric Research
Lab TR-20003-96, vol. 3, 2003.

[38] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detec-
tion with discriminatively trained part based models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[39] S. Maji and J. Malik, “Object detection using a max-margin hough transform,” in
Computer Vision and Pattern Recognition. IEEE, 2009, pp. 1038–1045.

[40] T. Ma and L. J. Latecki, “From partial shape matching through local deformation to
robust global shape similarity for object detection,” in Computer Vision and Pattern
Recognition (CVPR). IEEE, 2011, pp. 1441–1448.

[41] C. J. Burges, “A tutorial on support vector machines for pattern recognition,” Data
mining and knowledge discovery, vol. 2, no. 2, pp. 121–167, 1998.

[42] M. Dikmen, H. Ning, D. J. Lin, L. Cao, V. Le, S.-F. Tsai, K.-H. Lin, Z. Li, J. Yang,
T. S. Huang et al., “Surveillance event detection,” in TrecVID Video Evaluation Work-
shop, 2008.

146

http://www.nvidia.com

[43] M. Yang, S. Ji, W. Xu, J. Wang, F. Lv, K. Yu, Y. Gong, M. Dikmen, D. J. Lin,
and T. S. Huang, “Detecting human actions in surveillance videos,” in TrecVID Video
Evaluation Workshop, 2009.

[44] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A unified
graphics and computing architecture,” Micro, IEEE, vol. 28, no. 2, pp. 39–55, March-
April 2008.

[45] Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and power analysis of ati gpu: A
statistical approach,” in Networking, Architecture and Storage (NAS), July 2011, pp.
149–158.

[46] “Intel SK for OpenCL Applications 2013,” http://software.intel.com/en-us/vcsource/
tools/opencl-sdk, 2013.

[47] “OpenCL Optimization Guide,” http://software.intel.com/sites/products/
documentation/ioclsdk/2013/OG/index.htm, 2013.

[48] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl: Memory
power estimation and capping,” in Proc. of ISPLED, 2010.

[49] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann, “Power-
management architecture of the intel microarchitecture code-named sandy bridge,”
Micro, IEEE, vol. 32, no. 2, pp. 20–27, March-April 2012.

[50] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey, “De-
bunking the 100x gpu vs. cpu myth: an evaluation of throughput computing on cpu
and gpu,” in Proc. of ISCA, 2010, pp. 451–460.

[51] P. Thoman, K. Kofler, H. Studt, J. Thomson, and T. Fahringer, “Automatic opencl
device characterization: guiding optimized kernel design,” in Euro-Par 2011, 2011, pp.
438–452.

[52] “Avoiding AVX-SSE Transition Penalties,” http://software.intel.com/en-us/articles/
intel-avx-state-transitions-migrating-sse-code-to-avx, 2011.

[53] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[54] J. Reinders, Intel threading building blocks, 1st ed., 2007.

[55] M. H. Halstead, Elements of Software Science (Operating and programming systems
series). Elsevier Science Inc., 1977.

[56] E. J. Weyuker, “Evaluating software complexity measures,” Software Engineering,
IEEE Transactions on, vol. 14, no. 9, pp. 1357–1365, 1988.

147

http://software.intel.com/en-us/vcsource/tools/opencl-sdk
http://software.intel.com/en-us/vcsource/tools/opencl-sdk
http://software.intel.com/sites/products/documentation/ioclsdk/2013/OG/index.htm
http://software.intel.com/sites/products/documentation/ioclsdk/2013/OG/index.htm
http://software.intel.com/en-us/articles/intel-avx-state-transitions-migrating-sse-code-to-avx
http://software.intel.com/en-us/articles/intel-avx-state-transitions-migrating-sse-code-to-avx

[57] C. H. González and B. B. Fraguela, “A generic algorithm template for divide-and-
conquer in multicore systems,” in High Performance Computing and Communications
(HPCC). IEEE, 2010, pp. 79–88.

[58] G. Ren, P. Wu, and D. Padua, “Optimizing data permutations for simd devices,” in
Proc. of PLDI, 2006, pp. 118–131.

[59] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A. Padua, “An evaluation of
vectorizing compilers,” in Proc. of PACT, 2011, pp. 372–382.

[60] J. Corbal, R. Espasa, and M. Valero, “On the efficiency of reductions in µ-simd media
extensions,” in Proc. of PACT, pp. 83–94.

[61] D. Talla, L. John, and D. Burger, “Bottlenecks in multimedia processing with simd
style extensions and architectural enhancements,” Computers, IEEE Transactions on,
vol. 52, no. 8, pp. 1015–1031, Aug. 2003.

[62] A. J. C. Bik, X. Tian, and M. B. Girkar, “Multimedia vectorization of floating-
point min/max reductions,” Concurrency and Computation: Practice and Experience,
vol. 18, no. 9, pp. 997–1007, 2006.

[63] V. Prisacariu and I. Reid, “fasthog-a real-time gpu implementation of hog,” University
of Oxford Technical Report, vol. 2310, no. 09, 2009.

[64] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, “Near-threshold
computing: Reclaiming moore’s law through energy efficient integrated circuits,” Pro-
ceedings of the IEEE, vol. 98, no. 2, pp. 253–266, 2010.

[65] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping,” in Proc. of MICRO, 2009.

[66] C. Liu, J. Li, W. Huang, J. Rubio, E. Speight, and X. Lin, “Power-efficient time-
sensitive mapping in heterogeneous systems,” in Proc. of PACT, 2012.

[67] V. J. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and N. Navarro, “Predictive
runtime code scheduling for heterogeneous architectures,” in Proc. of HiPEAC, 2009.

[68] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang, “Greengpu: A holistic approach to
energy efficiency in gpu-cpu heterogeneous architectures,” in Proc. of ICPP, 2012.

[69] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley, “The yin and yang of power
and performance for asymmetric hardware and managed software,” in Proc. of ISCA,
2012.

[70] J. Planas, R. M. Badia, E. Ayguade, and J. Labarta, “Self-adaptive ompss tasks in
heterogeneous environments,” in Proc. of IPDPS, 2013.

148

[71] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, “Starpu: a unified platform
for task scheduling on heterogeneous multicore architectures,” Concurr. Comput. :
Pract. Exper., vol. 23, no. 2, pp. 187–198, Feb. 2011.

[72] M. Doerksen, P. Thulasiraman, and R. Thulasiram, “Optimizing option pricing algo-
rithms and profiling power consumption on vliw apu architecture,” 2012, pp. 71–78.

[73] A. Rattanatranurak, S. Kittitornkun, and S. Tongsima, “Optimizing and multithread-
ing snphap on a multi-core apu with opencl,” 2012, pp. 174–179.

[74] K. Spafford, J. Meredith, S. Lee, D. Li, P. Roth, and J. Vetter, “The tradeoffs of fused
memory hierarchies in heterogeneous computing architectures,” 2012, pp. 103–112.

[75] M. Daga, A. Aji, and W.-C. Feng, “On the efficacy of a fused cpu+gpu processor (or
apu) for parallel computing,” 2011, pp. 141–149.

[76] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, “Gpucv: A gpu-accelerated
framework for image processing and computer vision,” in Advances in Visual Comput-
ing, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008, vol.
5359, pp. 430–439.

[77] P. Babenko and M. Shah, “Mingpu: A minimum gpu library for computer vision,”
Journal of Real-Time Image Processing, vol. 3, no. 4, pp. 255–268, 2008.

[78] J. Fung and S. Mann, “Using graphics devices in reverse: Gpu-based image processing
and computer vision,” 2008, pp. 9–12.

[79] P. Mistry, C. Gregg, N. Rubin, D. Kaeli, and K. Hazelwood, “Analyzing program flow
within a many-kernel opencl application,” in Proc. of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, ser. GPGPU-4, 2011.

[80] Y. Sharrab and N. Sarhan, “Accuracy and power consumption tradeoffs in video rate
adaptation for computer vision applications,” in Proc of Multimedia and Expo (ICME),
2012, pp. 410–415.

[81] J. Bergman, “Energy efficient graphics: Making the rendring process power aware,”
Ph.D. dissertation, Uppsala University, 2010.

[82] C. Zhang and Z. Zhang, “A survey of recent advances in face detection,” Tech. Rep.
MSR-TR-2010-66, 2010.

[83] S. G. Kong, J. Heo, B. R. Abidi, J. Paik, and M. A. Abidi, “Recent advances in visual
and infrared face recognition a review,” Computer Vision and Image Understanding,
vol. 97, no. 1, pp. 103–135, 2005.

[84] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evaluation
of the state of the art,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 34, no. 4, pp. 743–761, 2012.

149

[85] V. Zyuban, J. Friedrich, C. J. Gonzalez, R. Rao, M. D. Brown, M. Ziegler, H. Jacobson,
S. Islam, S. Chu, P. Kartschoke, G. Fiorenza, M. Boersma, and J. Culp, “Power
optimization methodology for the IBM POWER7 microprocessor,” IBM Journal of
Research and Development, vol. 55, no. 3, 2011.

[86] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards,
A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich, “Im-
proving performance via mini-applications,” Sandia National Laboratories, Tech. Rep.
SAND2009-5574, 2009.

[87] M. Collaboration, “MIMD Lattice Computation (MILC) Collaboration Home Page,”
http://www.physics.indiana.edu/∼sg/milc.html.

[88] M. M. Tikir, L. Carrington, E. Strohmaier, and A. Snavely, “A genetic algorithms ap-
proach to modeling the performance of memory-bound computations,” in Proceedings
of the 2007 ACM/IEEE Conference on Supercomputing (SC’07), 2007.

[89] R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov, “Characteristics of workloads
used in high performance and technical computing,” in Proceedings of the 21st Annual
International Conference on Supercomputing (ICS’07), 2007.

[90] J. Weinberg, M. O. McCracken, E. Strohmaier, and A. Snavely, “Quantifying local-
ity in the memory access patterns of HPC applications,” in Proceedings of the 2005
ACM/IEEE Conference on Supercomputing (SC’05), 2005.

[91] R. Murphy and P. Kogge, “On the memory access patterns of supercomputer applica-
tions: Benchmark selection and its implications,” Computers, IEEE Transactions on,
vol. 56, no. 7, pp. 937–945, 2007.

[92] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas, “Memory
hierarchy reconfiguration for energy and performance in general-purpose processor
architectures,” in ACM/IEEE International Symposium on Microarchitecture (MICRO
33), 2000.

[93] A. Dhodapkar and J. Smith, “Managing multi-configuration hardware via dynamic
working set analysis,” in International Symposium on Computer Architecture (ISCA),
2002.

[94] A. Gordon-Ross, J. Lau, and B. Calder, “Phase-based cache reconfiguration for a
highly-configurable two-level cache hierarchy,” in Proceedings of the 18th ACM Great
Lakes Symposium on VLSI (GLSVLSI ’08), 2008.

[95] P. Ranganathan, S. Adve, and N. Jouppi, “Reconfigurable caches and their application
to media processing,” in International Symposium on Computer Architecture (ISCA),
2000.

[96] S. Mittal, Y. Cao, and Z. Zhang, “Master: A multicore cache energy-saving technique
using dynamic cache reconfiguration,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. PP, no. 99, 2013.

150

http://www.physics.indiana.edu/~sg/milc.html

[97] S. Srikantaiah, E. Kultursay, T. Zhang, M. Kandemir, M. Irwin, and Y. Xie, “Mor-
phcache: A reconfigurable adaptive multi-level cache hierarchy,” in High Performance
Computer Architecture (HPCA), 2011.

[98] W. Zang and A. Gordon-Ross, “A survey on cache tuning from a power/energy per-
spective,” ACM Comput. Surv., vol. 45, no. 3, pp. 32:1–32:49, July 2013.

[99] H. Hoffmann, J. Holt, G. Kurian, E. Lau, M. Maggio, J. Miller, S. Neuman,
M. Sinangil, Y. Sinangil, A. Agarwal, A. Chandrakasan, and S. Devadas, “Self-aware
computing in the Angstrom processor,” in Design Automation Conference (DAC),
2012.

[100] J. Hu, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Analyzing data reuse for
cache reconfiguration,” ACM Trans. Embed. Comput. Syst., vol. 4, no. 4, pp. 851–876,
Nov. 2005.

[101] S. Tavarageri and P. Sadayappan, “A compiler analysis to determine useful cache size
for energy efficiency,” in Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), 2013.

[102] R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov, “Characteristics of workloads
used in high performance and technical computing,” in Proceedings of the 21st Annual
International Conference on Supercomputing (ICS’07), 2007.

[103] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick, “Stencil computation optimization and auto-tuning on state-
of-the-art multicore architectures,” in Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing (SC’08), 2008.

[104] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela, M. J. Garzarán,
D. Padua, and C. Von Praun, “Programming for parallelism and locality with hier-
archically tiled arrays,” in Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming. ACM, 2006, pp. 48–57.

[105] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt, Q. Koziol, and
M. Snir, “Taming parallel I/O complexity with auto-tuning,” in Proceedings of In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis (SC’13), 2013.

[106] I. Dooley, “Intelligent runtime tuning of parallel applications with control points,”
Ph.D. dissertation, Dept. of Computer Science, University of Illinois, 2010,
http://charm.cs.uiuc.edu/papers/DooleyPhDThesis10.shtml.

[107] “Intel Product Information,” 2014. [Online]. Available: http://ark.intel.com/

[108] “IBM Product Information,” 2014. [Online]. Available: http://www.ibm.com/

151

http://ark.intel.com/
http://www.ibm.com/

[109] M.-T. Chang, P. Rosenfeld, S.-L. Lu, and B. Jacob, “Technology comparison for large
last-level caches (L3Cs): Low-leakage SRAM, low write-energy STT-RAM, and refresh-
optimized eDRAM,” in High Performance Computer Architecture (HPCA), 2013.

[110] D. H. Albonesi, “Selective cache ways: On-demand cache resource allocation,” in
Proceedings of the 32Nd Annual ACM/IEEE International Symposium on Microarchi-
tecture (MICRO 32), 1999.

[111] I. Corp., “Intel 64 and IA-32 architectures software developer manual,” 2013.

[112] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a secondary cache
replacement,” in ACM SIGARCH Computer Architecture News, vol. 22, no. 2. IEEE
Computer Society Press, 1994, pp. 24–33.

[113] X. Liu and J. Mellor-Crummey, “A data-centric profiler for parallel programs,” in Pro-
ceedings of International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’13), 2013.

[114] E. M. Gold, “Language identification in the limit,” Information and control, vol. 10,
no. 5, pp. 447–474, 1967.

[115] C. De la Higuera, Grammatical inference: learning automata and grammars. Cam-
bridge University Press, 2010.

[116] H. Fernau, “Learning tree languages from text,” in Computational Learning Theory.
Springer, 2002, pp. 153–168.

[117] E. Vidal, F. Thollard, C. De La Higuera, F. Casacuberta, and R. C. Carrasco, “Proba-
bilistic finite-state machines,” Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, vol. 27, no. 7, pp. 1013–1025, 2005.

[118] S. R. Eddy, “Hidden markov models,” Current opinion in structural biology, vol. 6,
no. 3, pp. 361–365, 1996.

[119] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M. Robson,
Y. Sun, E. Totoni, L. Wesolowski, and L. Kale, “Parallel Programming with Migratable
Objects: Charm++ in Practice,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, ser. SC ’14. New
York, NY, USA: ACM, 2014.

[120] L. Kale, A. Arya, N. Jain, A. Langer, J. Lifflander, H. Menon, X. Ni, Y. Sun, E. Totoni,
R. Venkataraman, and L. Wesolowski, “Migratable Objects + Active Messages +
Adaptive Runtime = Productivity + Performance A Submission to 2012 HPC Class
II Challenge,” Parallel Programming Laboratory, Tech. Rep. 12-47, November 2012.

[121] J. Renau et al., “SESC: SuperESCalar simulator,” 2005.

152

[122] “CACTI: an integrated cache and memory access time, cycle time, area,
leakage, and dynamic power model,” 2013. [Online]. Available: http://http:
//www.hpl.hp.com/research/cacti/

[123] P. Cicotti, L. Carrington, and A. Chien, “Toward application-specific memory re-
configuration for energy efficiency,” in Workshop on Energy Efficient Supercomputing
(E2SC’13), 2013.

[124] E. Totoni, B. Behzad, S. Ghike, and J. Torrellas, “Comparing the power and perfor-
mance of intel’s scc to state-of-the-art cpus and gpus,” in Performance Analysis of
Systems and Software (ISPASS), 2012 IEEE International Symposium on, 2012, pp.
78–87.

[125] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup, T. Hoefler,
J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The PERCS High-Performance
Interconnect,” in 2010 IEEE 18th Annual Symposium on High Performance Intercon-
nects (HOTI), August 2010, pp. 75–82.

[126] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale, “Avoiding hot-spots on two-level
direct networks,” in Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, ser. SC ’11. New York, NY,
USA: ACM, 2011, pp. 76:1–76:11.

[127] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. Johnson,
J. Kopnick, M. Higgins, and J. Reinhard, “Cray cascade: a scalable HPC system
based on a Dragonfly network,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, ser. SC ’12.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389136 pp. 103:1–103:9.

[128] Y. Ajima, Y. Takagi, T. Inoue, S. Hiramoto, and T. Shimizu, “The Tofu interconnect,”
in High Performance Interconnects (HOTI), 2011 IEEE 19th Annual Symposium on,
aug. 2011, pp. 87–94.

[129] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards,
A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale
computing study: Technology challenges in achieving exascale systems,” 2008.

[130] L. Shang, L.-S. Peh, and N. Jha, “Dynamic voltage scaling with links for power opti-
mization of interconnection networks,” in High-Performance Computer Architecture,
2003. HPCA-9 2003. Proceedings. The Ninth International Symposium on, feb. 2003,
pp. 91–102.

[131] V. Soteriou and L.-S. Peh, “Exploring the design space of self-regulating power-aware
on/off interconnection networks,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 18, no. 3, pp. 393–408, march 2007.

153

http://http://www.hpl.hp.com/research/cacti/
http://http://www.hpl.hp.com/research/cacti/
http://dl.acm.org/citation.cfm?id=2388996.2389136

[132] J. Laros, K. Pedretti, S. Kelly, W. Shu, and C. Vaughan, “Energy based performance
tuning for large scale high performance computing systems,” in Proceedings of 20th
High Performance Computing Symposium, ser. HPC, 2012.

[133] P. Kogge, “Architectural challenges at the exascale frontier (invited talk),” Simulating
the Future: Using One Million Cores and Beyond, 2008.

[134] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “Energy aware network
operations,” in INFOCOM Workshops 2009, IEEE, april 2009, pp. 1–6.

[135] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy proportional
datacenter networks,” in Proceedings of the 37th annual international symposium on
computer architecture, ser. ISCA ’10. New York, NY, USA: ACM, 2010. [Online].
Available: http://doi.acm.org/10.1145/1815961.1816004 pp. 338–347.

[136] L. V. Kale, A. Bhatele, E. J. Bohm, and J. C. Phillips, “NAnoscale Molecular Dynamics
(NAMD),” in Encyclopedia of Parallel Computing, D. Padua, Ed. Springer Verlag,
2011.

[137] C. Bernard, T. Burch, T. A. DeGrand, C. DeTar, S. Gottlieb, U. M. Heller, J. E.
Hetrick, K. Orginos, B. Sugar, and D. Toussaint, “Scaling tests of the improved Kogut-
Susskind quark action,” Physical Review D, no. 61, 2000.

[138] A. Jain and X. Yang, “Modeling the effects of two different land cover change data
sets on the carbon stocks of plants and soils in concert with CO2 and climate change,”
Global Biogeochem. Cycles, vol. 19, no. 2, pp. 1–20, 2005.

[139] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown, “ElasticTree: saving energy in data center networks,” in Proceedings of
the 7th USENIX conference on Networked systems design and implementation, 2010.

[140] M. Alonso, S. Coll, J.-M. Mart́ınez, V. Santonja, P. López, and J. Duato,
“Dynamic power saving in fat-tree interconnection networks using on/off links,” in
Proceedings of the 20th international conference on Parallel and distributed processing,
ser. IPDPS’06. Washington, DC, USA: IEEE Computer Society, 2006. [Online].
Available: http://dl.acm.org/citation.cfm?id=1898699.1898826 pp. 299–299.

[141] J. Li, W. Huang, C. Lefurgy, L. Zhang, W. Denzel, R. Treumann, and K. Wang,
“Power shifting in thrifty interconnection network,” in High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International Symposium on, feb. 2011, pp.
156 –167.

[142] V. Soteriou, N. Eisley, and L.-S. Peh, “Software-directed power-aware interconnection
networks,” ACM Trans. Archit. Code Optim., vol. 4, no. 1, Mar. 2007.

[143] A. Becker, “Compiler support for productive message-driven parallel program-
ming,” Ph.D. dissertation, Dept. of Computer Science, University of Illinois, 2012,
http://charm.cs.uiuc.edu/media/12-44/.

154

http://doi.acm.org/10.1145/1815961.1816004
http://dl.acm.org/citation.cfm?id=1898699.1898826

[144] G. Hendry, “Decreasing network power with on-off links informed by scientific appli-
cations.” in HPPAC’13, 2013.

[145] S. Conner, S. Akioka, M. Irwin, and P. Raghavan, “Link shutdown opportunities during
collective communications in 3-D torus nets,” in Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, march 2007, pp. 1 –8.

[146] “Top500 supercomputing sites,” http://top500.org, 2013.

[147] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable drag-
onfly topology,” SIGARCH Comput. Archit. News, vol. 36, pp. 77–88, June 2008.

[148] E. Totoni, A. Bhatele, E. Bohm, N. Jain, C. Mendes, R. Mokos, G. Zheng, and L. Kale,
“Simulation-based performance analysis and tuning for a two-level directly connected
system,” in Proceedings of the 17th IEEE International Conference on Parallel and
Distributed Systems, December 2011.

[149] G. Zheng, G. Kakulapati, and L. V. Kalé, “Bigsim: A parallel simulator for perfor-
mance prediction of extremely large parallel machines,” in 18th International Parallel
and Distributed Processing Symposium (IPDPS), Santa Fe, New Mexico, April 2004,
p. 78.

[150] S. Kumar, Y. Sun, and L. V. Kale, “Acceleration of an Asynchronous Message Driven
Programming Paradigm on IBM Blue Gene/Q,” in Proceedings of 26th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), Boston, USA, May
2013.

[151] A. Bhatele, E. Bohm, and L. V. Kale, “Optimizing communication for charm++ ap-
plications by reducing network contention,” Concurrency and Computation: Practice
and Experience, vol. 23, no. 2, pp. 211–222, 2011.

[152] A. Langer, J. Lifflander, P. Miller, K.-C. Pan, L. V. Kale, and P. Ricker, “A Scalable
Mesh Restructuring Algorithm for Distributed-Memory Adaptive Mesh Refinement,”
in Proceedings of 24th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), 2012.

[153] A. Bhatelé and L. V. Kalé, “Quantifying Network Contention on Large Parallel Ma-
chines,” Parallel Processing Letters (Special Issue on Large-Scale Parallel Processing),
vol. 19, no. 4, pp. 553–572, 2009.

[154] D. Kerbyson, K. Barker, A. Vishnu, and A. Hoisie, “Comparing the performance of
blue gene/q with leading cray xe6 and infiniband systems,” in Parallel and Distributed
Systems (ICPADS), IEEE 18th International Conference on, 2012, pp. 556–563.

[155] D. Chen, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara, S. Kumar, V. Salapura,
D. Satterfield, B. Steinmacher-Burow, and J. Parker, “The ibm blue gene/q inter-
connection network and message unit,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2011 International Conference for, 2011, pp. 1–10.

155

http://top500.org

[156] Megan Gilge, “Blue Gene/Q Application Development,” http://www.redbooks.ibm.
com/abstracts/sg247948.html, 2013.

[157] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter
variations and impact on circuits and microarchitecture,” in Proceedings of the 40th
Annual Design Automation Conference (DAC ’03), 2003.

[158] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with
the Message-Passing Interface. MIT press, 1999, vol. 1.

[159] B. Lewis and D. J. Berg, Multithreaded Programming with Pthreads. Prentice-Hall,
Inc., 1998.

[160] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling and power
management for chip multiprocessors,” in Computer Architecture, 2008. ISCA ’08.
35th International Symposium on, 2008.

[161] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable thread scheduling and
global power management for heterogeneous many-core architectures,” in Proceedings
of the 19th International Conference on Parallel Architectures and Compilation Tech-
niques, ser. PACT ’10, 2010.

[162] J. L. Gustafson, “Reevaluating amdahl’s law,” Commun. ACM, vol. 31, no. 5, pp.
532–533, May 1988. [Online]. Available: http://doi.acm.org/10.1145/42411.42415

[163] A. B. Downey, “A parallel workload model and its implications for processor alloca-
tion,” Cluster Computing, vol. 1, no. 1, pp. 133–145, 1998.

[164] A. Lastovetsky and R. Reddy, “On performance analysis of heterogeneous parallel
algorithms,” Parallel Computing, vol. 30, no. 11, pp. 1195 – 1216, 2004.

[165] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer, “Scheduling het-
erogeneous multi-cores through performance impact estimation (pie),” in Proceedings
of the 39th Annual International Symposium on Computer Architecture, ser. ISCA ’12,
2012, pp. 213–224.

[166] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K. Bowman, J. Howard,
J. Tschanz, V. Erraguntla, N. Borkar, V. De, and S. Borkar, “Within-die variation-
aware dynamic-voltage-frequency-scaling with optimal core allocation and thread hop-
ping for the 80-core teraflops processor,” Solid-State Circuits, IEEE Journal of, vol. 46,
no. 1, pp. 184–193, Jan 2011.

[167] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level of abstrac-
tion for scalable and accurate parallel multi-core simulation,” in Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’11, 2011.

156

http://www.redbooks.ibm.com/abstracts/sg247948.html
http://www.redbooks.ibm.com/abstracts/sg247948.html
http://doi.acm.org/10.1145/42411.42415

[168] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas, “VARIUS-NTV: A Mi-
croarchitectural Model to Capture the Increased Sensitivity of Manycores to Process
Variations at Near-Threshold Voltages,” in International Conference on Dependable
Systems and Networks, June 2012.

[169] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, “Mcpat: An
integrated power, area, and timing modeling framework for multicore and manycore ar-
chitectures,” in IEEE/ACM International Symposium on Microarchitecture (MICRO),
2009.

[170] H. Menon and L. Kalé, “A distributed dynamic load balancer for iterative applica-
tions,” in Proceedings of SC13: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. ACM, 2013, p. 15.

[171] J. Kang and S. Park, “Algorithms for the variable sized bin packing problem,” Euro-
pean Journal of Operational Research, vol. 147, no. 2, pp. 365 – 372, 2003.

[172] Y. Sun, G. Zheng, C. M. E. J. Bohm, T. Jones, L. V. Kalé, and J. C. Phillips,
“Optimizing fine-grained communication in a biomolecular simulation application on
Cray XK6,” in Proceedings of the 2012 ACM/IEEE conference on Supercomputing,
Salt Lake City, Utah, November 2012.

[173] “Gurobi Optimization Inc. Software, 2012,” http://www.gurobi.com/.

[174] K. Kuhn, M. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. Ma, A. Ma-
heshwari, and S. Mudanai, “Process technology variation,” Electron Devices, IEEE
Transactions on, vol. 58, no. 8, pp. 2197–2208, Aug 2011.

[175] S. Borkar, “Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation,” Micro, IEEE, vol. 25, no. 6, pp. 10–16, Nov
2005.

[176] O. Sarood, A. Langer, A. Gupta, and L. V. Kale, “Maximizing Throughput of a Data
Center Under a Strict Power Budget,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, ser. SC ’14. New
York, NY, USA: ACM, 2014.

[177] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. de Supinski, “Explor-
ing hardware overprovisioning in power-constrained, high performance computing,” in
Proceedings of the 27th International ACM Conference on International Conference
on Supercomputing, ser. ICS ’13, 2013.

157

http://www.gurobi.com/

	List of Figures
	List of Tables
	List of Algorithms
	CHAPTER 1 Introduction
	Dissertation Overview

	CHAPTER 2 Performance, Power, and Energy Evaluation of Modern Architectures .
	Platforms
	Intel Single-chip Cloud Computer
	Other Platforms

	Applications
	Evaluation Results
	Intel SCC
	Intel Core i7 Processor
	Intel Atom D525
	Nvidia ION2 Platform
	Load Balancing

	Comparison of Different Architectures
	Related Work
	Conclusion

	CHAPTER 3 Heterogeneous On-Chip Architectures: Case Study With Object Detection
	Environmental Setup
	ViVid
	Blockwise Distance
	Cell Histogram Kernel
	Pairwise Distance
	Ivy Bridge Architecture
	Evaluation Methodology

	Optimization of Kernels in OpenCL
	Filter Kernel
	Cell Histogram Kernel
	Classifier Kernel
	Performance Evaluation

	Comparison with Other Programming Paradigms
	OpenMP with Compiler Vectorization
	OpenMP with Manual Vectorization
	OpenCV Library Calls
	Performance and Effort Comparison
	Possible Hardware and Software Improvements

	Application Performance and Energy
	Mapping Strategies
	Saving Energy with DVFS
	Trading Accuracy for Energy

	Related Work
	Conclusions

	CHAPTER 4 Adaptive Cache Hierarchy Reconfiguration in Adaptive HPC Runtime Systems
	Background and Motivation
	HPC Systems
	Provisioning Practices
	Applications
	Runtime Systems

	Cache Hierarchy
	Cache Structure
	Cache Power
	Architectural Opportunities
	Streaming

	Reconfiguration in Adaptive Runtime Systems
	Overview of Our Approach
	Generalization
	Practical Details

	Evaluation of Runtime Cache Reconfiguration
	Methodology
	Results

	Reconfigurable Streaming
	Related Work
	Conclusion

	CHAPTER 5 Power Management of Extreme-scale Networks with On/Off Links in HPC Runtime Systems
	Background and Motivation
	Related Work
	Network Power Management Support on Current Machines
	Extreme-scale Networks
	Application Communication Patterns

	Potentials of Basic Network Power Management
	Link Usage of Modern HPC Networks
	Different Mappings

	Implementation in Runtime System and Hardware
	Runtime System Support
	Hardware Support

	Power Model for Network Links
	Effect of on/off Transition Delay
	Conclusions and Future Work

	CHAPTER 6 Runtime Scheduling in Presence of Process Variation Heterogeneity
	Background on Process Variation
	Evaluation Setup
	Programming Systems
	Impact on Load Balance

	Performance and Power Modeling
	Model 1
	Model 2
	Model 3
	Model 4
	Summary of Performance Models
	Modeling Dynamic Power

	Model Driven Scheduling
	Efficient Configuration Space Exploration
	Incorporating DVFS
	Incorporating Communication Performance
	Adapting to Application Phases

	Evaluation
	Related Work
	Conclusion and Future Work

	CHAPTER 7 Concluding Remarks
	Future Research Directions

	REFERENCES

