
c© 2014 Siva Theja Maguluri

OPTIMAL RESOURCE ALLOCATION ALGORITHMS FOR CLOUD
COMPUTING

BY

SIVA THEJA MAGULURI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Doctoral Committee:

Professor R. Srikant, Chair
Professor Bruce Hajek
Professor Pramod Viswanath
Assistant Professor Yi Lu
Associate Professor Lei Ying, Arizona State University

ABSTRACT

Cloud computing is emerging as an important platform for business, personal

and mobile computing applications. We consider a stochastic model of a

cloud computing cluster, where jobs arrive according to a random process

and request virtual machines (VMs), which are specified in terms of resources

such as CPU, memory and storage space. The jobs are first routed to one of

the servers when they arrive and are queued at the servers. Each server then

chooses a set of jobs from its queues so that it has enough resources to serve

all of them simultaneously.

There are many design issues associated with such systems. One important

issue is the resource allocation problem, i.e., the design of algorithms for load

balancing among servers, and algorithms for scheduling VM configurations.

Given our model of a cloud, we define its capacity, i.e., the maximum rates

at which jobs can be processed in such a system. An algorithm is said

to be throughput-optimal if it can stabilize the system whenever the load is

within the capacity region. We show that the widely-used Best-Fit scheduling

algorithm is not throughput-optimal.

We first consider the problem where the jobs need to be scheduled nonpre-

emptively on servers. Under the assumptions that the job sizes are known

and bounded, we present algorithms that achieve any arbitrary fraction of the

capacity region of the cloud. We then relax these assumptions and present

a load balancing and scheduling algorithm that is throughput optimal when

job sizes are unknown. In this case, job sizes (durations) are modeled as

random variables with possibly unbounded support.

Delay is a more important metric then throughput optimality in practice.

However, analysis of delay of resource allocation algorithms is difficult, so we

study the system in the asymptotic limit as the load approaches the boundary

of the capacity region. This limit is called the heavy traffic regime. Assuming

that the jobs can be preempted once after several time slots, we present delay

ii

optimal resource allocation algorithms in the heavy traffic regime. We study

delay performance of our algorithms through simulations.

iii

To Bhagavan Sri Ramakrishna

Oh Lord! You are my mother, father, relative and friend. You are my

knowledge and my wealth. You are my all in all.

iv

‘What is that which, being known, everything else is known?’

- Mundaka Upanishad

v

ACKNOWLEDGMENTS

When I look back at my past self at the time when I arrived here at UIUC as

a fresh college graduate, I see how much my experience at UIUC has helped

in my growth and how much I have learned here. I have been very fortunate

to have had an opportunity to work in CSL. The one person who played the

most important role in my experience here is obviously my advisor, Prof.

Srikant. He is not only an amazing teacher but also a great mentor. I thank

him for his constant guidance and support all through my grad school. He

taught me the basics of how research is done, how it is communicated and

above all how to think about research problems. He has always been there

to support me. My heart-felt thanks for his support, care, and concern for

my well-being.

I thank Prof. Lei Ying from Arizona State University, who has been my

coauthor for much of the work that went into this dissertation. His sugges-

tions and insights have been very important in this work. I thank Prof Bruce

Hajek who was co-advisor during my master’s. I also thank Prof Bruce Ha-

jek, Prof. Lei Ying, Prof. Yi Lu and Prof. Pramod Viswanath for serving

on my committee. I thank the anonymous reviewers who have taken time

to review my papers and have given their valuable feedback to improve the

results that went into this dissertation. Thanks are also due to Weina Wang

for her important comments on one of the results.

I thank UIUC for providing me with one of the best possible learning

environments. In addition to an excellent research environment in CSL,

the university has provided me an opportunity to learn through the various

courses that I took from ECE, CS and Maths. These courses had some of

the best teachers and I have thoroughly enjoyed taking them.

I thank my group members Rui, Chong, Javad and postdocs Chandramani

and Joohwan who have always been ready for discussions. Thanks are due

to Sreeram who has been a great partner in course projects and for the

vi

discussions we had on a variety of topics. I acknowledge the advice given by

Vineet, Sreeram and Siva Kumar on research, career and life. Conversations

with Sachin on research problems, life, academia and everything else have

been a highlight of my life at CSL.

Administrative staff in ECE and CSL have made life a lot smoother. Spe-

cial thanks to Peggy Wells, who has been our best office manager. She ra-

diates cheerfulness and positive attitude in CSL. I thank Jamie Hutchinson

for carefully editing my thesis.

I spent a very fruitful semester as an intern at Qualcomm, Bridgewater.

I am very grateful to my mentors Xinzhou Wu and Sundar Subramanian.

They provided me with a great experience which was crucial in my decision

to take up industry research as my career. Special thanks to Nilesh for his

warmth and friendship and most importantly for teaching me driving and

thus empowering me.

I thank my alma-mater IIT Madras, where I spent my formative years.

My interactions with the professors there motivated me to pursue the PhD.

At IITM, I made lifelong friends, Vamsi, Ramnath, Aditya, Gaurav and Balu

to name a few. Our regular phone calls and annual reunions have been great

fun and were very refreshing.

I consider myself extremely fortunate to have known Swami Baneshananda,

head of Vedanta-Gesellschaft, Frankfurt and Swami Atmashraddhananda,

editor of Vedanta Kesari. Swami Atmashraddhananda has played a key role

in defining my outlook towards life through his weekly lectures, personal

conversations, regular pilgrimages, and above all, the example set by his life.

I always look forward to the annual visits of Swami Baneshananda to the US,

every moment of which are filled with great fun and laughter. I can always

go to them with any questions or dilemmas I face and can be assured of an

answer. They have been my constant guiding force and I am grateful for

their time in spite of their extremely busy schedule. I feel blessed to have

their unconditional love.

The Vivekananda Vedanta Society of Chicago and the community there

has been my home away from home. I thank Swami Chidananda, Swami

Ishatmananda and Swami Varadananda, who have always welcomed me at

the society. Anjali, Pooja, Maya, Mithilesh, Jyoti Uncle, Manju Aunty,

Manjusha Aunty, Rajini Aunty, Manish, Sachin and others have been like

a family to me. The town/city where I lived the longest so far has been

vii

Champaign-Urbana. If not for this family, my life here, with the harsh

winter, would have been very challenging. They have also provided me a

smooth transition from life in India to the US.

Over the last year of my stay in Chambana, Vedanta Study Circle and

my friends there have become the defining aspect of my life. I thank Chai-

tanya, Ramsai, Srikanthan, Raghavendra, Suraj, Sasidhar and Kalyan for

their company, our weekly meetings, philosophical discussions, outings and

relaxing dinners.

In the last year of my grad school, I had to undergo a major surgery. It

was one of the biggest challenges in my life and I could face it only with the

support of so many of my friends and well-wishers. I express my heartfelt

gratitude to Pooja, Chaitanya, Manju Aunty, Pushpa Aunty and Manish.

Since my parents could not be around, my advisor, Prof Srikant assumed

that role. He drove in harsh winter weather to visit me and he constantly

inquired about my well-being and progress. My sister, Hima Bindu, took

a week off in the very first month of her new job to attend to my needs.

I should specially mention my friend Ramsai in this context. He has been

my constant companion, caretaker and has attended to my every need. He

has shown in practice, the philosophy of ‘Karma Yoga’ (Unselfish Action).

I do not have words to express my gratitude to him and so I quote Swami

Vivekananda, the famous Indian monk. ‘In happiness, in misery, in famine,

in pain, in the grave, in heaven, or in hell who never gives me up is my

friend. Is such friendship a joke? A man may have salvation through such

friendship. That brings salvation if we can love like that.’ I am fortunate to

have found such a friend in Ramsai.

I thank my parents for their unconditional love, constant support and en-

couragement in all my endeavors. They have made several sacrifices to give

me the best in everything. Since my childhood, my mother has motivated

me to excel and has taken pride in my success. She has supported my de-

cision to pursue the PhD in a far off country instead of a lucrative career

in management closer to home, despite not completely appreciating why. I

thank my sister for her love and support.

Most importantly, I thank the Lord who, out of His grace, has more than

provided for my every need. I thank him for all the experiences he has put

me through and for giving me the strength to go through them. He has given

me the grad school experience which was a wonderful learning opportunity

viii

not only academically and professionally, but also personally and spiritually.

He put me in touch with great friends, teachers and well-wishers. I humbly

dedicate this dissertation to Him.

ix

TABLE OF CONTENTS

1 INTRODUCTION . 1
1.1 Best Fit Is Not Throughput Optimal 3
1.2 A Stochastic Model for Cloud Computing 4

2 THROUGHPUT OPTIMALITY: KNOWN JOB SIZES 9
2.1 A Centralized Queueing Approach 10
2.2 Resource Allocation with Load Balancing 15
2.3 Simpler Load Balancing Algorithms 21
2.4 Discussion and Simulations . 28
2.5 Conclusions . 30

3 UNKNOWN JOB SIZES . 32
3.1 Algorithm . 34
3.2 Throughput Optimality - Geometric Job Sizes 38
3.3 Throughput Optimality - General Job Size Distribution 43
3.4 Local Refresh Times . 57
3.5 Simulations . 59
3.6 Conclusion . 64

4 LIMITED PREEMPTION . 65
4.1 Unknown Job Sizes . 66
4.2 Conclusion . 76

5 DELAY OPTIMALITY . 77
5.1 Algorithm with Limited Preemption - Known Job Sizes 79
5.2 Throughput Optimality . 83
5.3 Heavy Traffic Optimality . 84
5.4 Power-of-Two-Choices Routing and MaxWeight Scheduling . . 111
5.5 Conclusions . 115

6 CONCLUSION . 116
6.1 Open Problems and Future Directions 116

A PROOF OF LEMMA 3.6 . 118

B PROOF OF LEMMA 3.7 . 119

x

C PROOF OF CLAIM 5.1 . 121

REFERENCES . 123

xi

CHAPTER 1

INTRODUCTION

Cloud computing services are becoming the primary source of computing

power for both enterprises and personal computing applications. A cloud

computing platform can provide a variety of resources, including infrastruc-

ture, software, and services, to users in an on-demand fashion. To access

these resources a cloud user submits a request for resources. The cloud

provider then provides the requested resources from a common resource pool

(e.g., a cluster of servers) and allows the user to use these resources for a

required time period. Compared to traditional “own-and-use” approaches,

cloud computing services eliminate the costs of purchasing and maintain-

ing the infrastructures for cloud users and allow the users to dynamically

scale up and down computing resources in real time based on their needs.

Several cloud computing systems are now commercially available, including

Amazon EC2 system [1], Google’s AppEngine [2], and Microsoft’s Azure [3].

Comprehensive surveys on cloud computing can be found in [4, 5, 6].

While cloud computing services in practice provide many different services,

we consider cloud computing platforms that provide infrastructure as a ser-

vice (IaaS), in the form of virtual machines (VMs), to users. We assume

cloud users request VMs, which are specified in terms of resources such as

CPU, memory and storage space. Each request is called a “job.” The type

of a job refers to the type of VM the user wants. The amount of time each

VM or job is to be hosted is called its size. After receiving these requests, the

cloud provider will schedule the VMs on physical machines, called “servers.”

As an example, Table 1.1 lists three types of VMs (called instances) avail-

able in Amazon EC2.

A cloud system consists of a number of networked servers. Each server in

the data center has certain amount of resources. This imposes a constraint on

the number of VMs of different types that can be served simultaneously de-

pending on the amount of resources requested by each VM. This is illustrated

1

Table 1.1: Three representative instances in Amazon EC2

Instance Type Memory CPU Storage
Standard Extra Large 15 GB 8 EC2 units 1,690 GB

High-Memory Extra Large 17.1 GB 6.5 EC2 units 420 GB
High-CPU Extra Large 7 GB 20 EC2 units 1,690 GB

in the following example.

Example 1.1. Consider a server with 30 GB memory, 30 EC2 computing

units and 4, 000 GB storage space. Then N = (2, 0, 0) and N = (0, 1, 1)

are two feasible VM-configurations on the server, where N1 is the number

of standard extra-large VMs, N2 is the number of high-memory extra-large

VMs, and N3 is the number of high-CPU extra-large VMs. N = (0, 2, 1)

is not a feasible VM configuration on this server because it does not have

enough memory and computing units.

Jobs with variable sizes arrive according to a stochastic process. These jobs

need to be hosted on the servers for a requested amount of time, after which

they depart. We assume jobs are queued in the system when the servers are

busy.

There are many design issues associated with such systems [7, 8, 9, 10,

11, 12]. One important issue is the resource allocation problem: When a

job of a given type arrives, which server should it be sent to? We will call

this the routing or load balancing problem. At each server, among the jobs

that are waiting for service, which subset of the jobs should be scheduled?

Typically jobs have to be scheduled in a nonpreemptive manner. However,

preemption once in a while is sometimes allowable. We will call this the

scheduling problem.

We are interested in resource allocation algorithms with certain optimal-

ity properties. The simplest notion of optimality is throughput optimality.

We say that an algorithm is throughput optimal if it can stabilize the system

when any other algorithm can. Loosely speaking, a throughput optimal algo-

rithm can sustain the maximum possible rate at which jobs can be processed.

Another notion of optimality of interest is delay optimality. delay optimality

means that the mean delay experienced by the jobs is minimized. We will

study Delay optimality in the asymptotic limit when the load is close to the

boundary of the capacity region. This is called the heavy traffic limit.

2

1.1 Best Fit Is Not Throughput Optimal

The resource allocation problem in cloud data centers has been well studied

[7, 8]. Best Fit policy [13, 14] is a popular policy that is used in practice.

According to this policy, whenever resources become available, the job which

uses the largest amount of resources, among all jobs that can be served, is

selected for service. Such a definition has to be made more precise when a

VM requests multiple types of multiple resources. In the case of multiple

types of resources, we can select one type of resource as “reference resource,”

and define best fit with respect to this resource. If there is a tie, then best fit

with respect to another resource is considered, and so on. Alternatively, one

can consider a particular linear or nonlinear combination of the resources as

a meta-resource and define best fit with respect to the meta-resource.

We now show that best fit is not throughput optimal. Consider a simple

example where we have two servers, one type of resource and two types of

jobs. A type-1 job requests half of the resource and four time slots of service,

and a type-2 job requests the whole resource and one time slot of service.

Now assume that initially, the server 1 hosts one type-1 job and server 2

is empty; two type-1 jobs arrive once every three time slots starting from

time slot 3, and type-2 jobs arrive according to some arrival process with

arrival rate ε starting at time slot 5. Under the best-fit policy, type-1 jobs

are scheduled forever since type-2 jobs cannot be scheduled when a type-1

job is in a server. So the backlogged workload due to type-2 jobs will blow

up to infinity for any ε > 0. The system, however, is clearly stabilizable for

ε < 2/3. Suppose we schedule type-1 jobs only in time slots 1, 7, 13, 19, . . . ,

i.e., once every six time slots. Then time slots 5, 6, 11, 12, 17, 18, ... are

available for type-2 jobs. So if ε < 2/3, both queues can be stabilized under

this periodic scheduler.

The specific arrival process we constructed is not key to the instability

of best-fit. Assume type-1 and type-2 jobs arrive according to independent

Poisson processes with rates λ1 and λ2, respectively. Figure 1.1 is a simulation

result which shows that the number of backlogged jobs blows up under best-

fit with λ1 = 0.7 and λ2 = 0.1, but is stable under a MaxWeight-based policy

with λ1 = 0.7 and λ2 = 0.5.

This example raises the question as to whether there are any throughput-

optimal policies. To answer this question, we will first propose a stochastic

3

Figure 1.1: The number of backlogged jobs under the best-fit policy and a
MaxWeight policy

model to study resource allocation problems in cloud computing and then

pose this question in a precise manner.

1.2 A Stochastic Model for Cloud Computing

The cloud data center consists of L servers or machines. There are K different

resources. Server i has Cik amount of resources of type k. There are M

different types of VMs that the users can request from the cloud service

provider. Each type of VM is specified by the amount of different resources

(such as CPU, disk space, memory, etc.) that it requests. Type m VM

requests Rmk amount of resources of type k.

For server i, an M -dimensional vector N is said to be a feasible VM-

configuration if the given server can simultaneously host N1 type-1 VMs, N2

type-2 VMs, . . . , and NM type-M VMs. In other words, N is feasible at

server i if and only if
M∑
m=1

NmRmk ≤ Cik

for all k. We let Nmax denote the maximum number of VMs of any type that

can be served on any server.

4

We consider a cloud system which hosts VMs for clients. A VM request

from a client specifies the type of VM the client needs. We call a VM request

a “job.” A job is said to be a type-m job if a type-m VM is requested. We

assume that time is slotted. We say that the size of the job is S if the VM

needs to be hosted for S time slots. We next define the concept of capacity

for a cloud.

First, as an example, consider the three servers defined in Example 1.1.

Clearly this system has an aggregate capacity of 90 GB of memory, 90 EC2

compute units and 12, 000 GB of storage space. However, such a crude

definition of capacity fails to reflect the system’s ability to host VMs. For

example, while

4× 17.1 + 3× 7 = 89.4 ≤ 90,

4× 6.5 + 3× 20 = 86 ≤ 90,

4× 420 + 3× 1690 = 6750 ≤ 12000,

it is easy to verify that the system cannot host 4 high-memory extra-large

VMs and 3 high-CPU extra-large VMs at the same time. Therefore, we have

to introduce a VM-centric definition of capacity.

Let Am(t) denote the set of type-m jobs that arrive at the beginning of

time slot t, and let Am(t) = |Am(t)|, i.e., the number of type-m jobs that

arrive at the beginning of time slot t. Am(t) is assumed to be a stochastic

process which is i.i.d. across time and independent across different types. Let

λm = E[Am(t)] denote the arrival rate of type-m jobs. Assume P (Am(t) =

0) > εA for some εA > 0 for all m and t.

For each job j, let Sj denote its size, i.e., the number of time slots required

to serve the job. For each j, Sj is assumed to be a (positive) integer valued

random variable independent of the arrival process and the sizes of all other

jobs in the system. The distribution of Sj is assumed to be identical for all

jobs of same type. In other words, for each type m, the job sizes are i.i.d.

We assume that each server maintains M different queues for different

types of jobs. It then uses this queue length information in making scheduling

decisions. Let Q denote the vector of these queue lengths where Qmi is the

number of type m jobs at server i.

Jobs are routed to the servers according to a load balancing algorithm. Let

Ami(t) denote the number of type m jobs that are routed to server i. Since

5

Am(t) denotes the total number of type m job arrivals at time t, routing is

done so that
∑

i Ami(t) = Am(t).

In each time slot, jobs are served at each server according to a scheduling

algorithm. Let Dmi(t) denote the number of type-m jobs that finish service

at server i in time slot t. Then the queue lengths evolve as follows:

Qmi(t+ 1) = Qmi(t) + Ami(t)−Dmi(t).

The cloud system is said to be stable if the expected total queue length is

bounded, i.e.,

lim sup
t→∞

E

[∑
i

∑
m

Qmi(t)

]
<∞.

A vector of arrival rates λ and mean job sizes S is said to be supportable

if there exists a resource allocation mechanism under which the cloud system

is stable. Let Smax = maxm{Sm} and Smin = minm{Sm}.
We first identify the set of supportable (λ, S) pairs. Let Ni be the set of

feasible VM-configurations on a server i. We define sets C and Ĉ as follows:

C =

{
N ∈ RM

+ : N =
L∑
i=1

N (i) and N (i) ∈ Conv(Ni)

}
,

where Conv denotes the convex hull. Now define

Ĉ =
{

(λ, S) ∈ RM
+ × RM

+ : (λ ◦ S) ∈ C
}
,

where (λ ◦ S) denotes the Hadamard product or entrywise product of the

vectors λ and S and is defined as (λ ◦ S)m = λmSm. We use λ̌m to denote

λmSm so λ̌ ∈ C is same as (λ ◦ S) ∈ Ĉ We use int(.) to denote interior of a

set.

We next use a simple example to illustrate the definition of C.

Example 1.2. Consider a simple cloud system consisting of three servers.

Servers 1 and 2 are of the same type (i.e., they have the same amount of

resources), and server 3 is of a different type. Assume there are two types of

VMs. The set of feasible VM configurations on servers 1 and 2 is assumed to

beN1 = N2 = {(0, 0), (1, 0), (0, 1)}, i.e., each of these servers can at most host

either one type-1 VM or one type-2 VM. The set of feasible configurations on

6

1

10

2

10
N

(1)
1

N
(1)
2 N

(3)
2

N
(3)
1

Conv(N1) Conv(N3)

Figure 1.2: Regions Conv(N1) and Conv(N3)

4

30

(2, 2)

N1

N2

C

Figure 1.3: The region C

server 3 is assumed to be N3 = {(0, 0), (1, 0), (2, 0), (0, 1)}, i.e., the server can

at most host either two type-1 VMs or one type-2 VM. The regions Conv(N1)

and Conv(N3) are plotted in Figure 1.2. Note that vector (0.75, 0.25) is in

the region Conv(N1). While a type-1 server cannot host “0.75” type-1 VMs

and “0.25” type-2 VM, we can host a type-1 VM on server 1 for 3/4 of

the time, and a type-2 VM on the server for 1/4 of the time to support load

(0.75, 0.25). Figure 1.3 shows the region calC. Capacity region for this simple

cloud system is then the set of all λ and S such that the total load (λ ◦S) is

in the region C.

This definition of the capacity of a cloud is motivated by similar definitions

in [15]. As in [15], it is easy to show the following result.

Proposition 1.1. For any pair (λ, S) such that (λ, S) /∈ Ĉ, limt→∞E [
∑

mQmi(t)] =

∞, i.e., the pair (λ, S) is not supportable.

In the next two chapters we will present algorithms that stabilize the sys-

tems as long as the arrival loads are within the region Ĉ. This shows that

Ĉ is the capacity of the cloud. Such algorithms that stabilize the system for

any arrival load in the capacity region are said to be throughput optimal.

7

Moreover, these algorithms do not require knowledge of the actual arrival

rates.

In the next chapter, we will consider the case when the job sizes are

bounded and are known at arrival. We will also assume that preemption

is not allowed. We will make a connection to the scheduling problem in an

ad hoc wireless network and propose an algorithm inspired by the MaxWeight

algorithm for wireless networks. In Chapter 3, we will consider the case when

the job sizes are not bounded and are known neither at arrival nor at the be-

ginning of service and again present throughput optimal resource allocation.

algorithm for this case. In Chapter 4, we will consider the case when jobs

allowed to be preempted once in a while, and in Chapter 5 we will consider

delay optimality in the heavy traffic limit.

8

CHAPTER 2

THROUGHPUT OPTIMALITY: KNOWN
JOB SIZES

In this chapter, we consider the resource allocation problem when preemption

is not allowed. We assume that the job sizes are known at arrival and are

bounded. We will first draw an analogy with scheduling in an ad hoc wireless

network. We will show that the algorithms for ad hoc wireless, such as

MaxWeight scheduling can be directly used here for a simplified system.

Nonpreemptive algorithms are more challenging to study because the state

of the system in different time slots is coupled. For example, a MaxWeight

schedule cannot be chosen in each time slot nonpreemptively. Suppose that

there are certain unfinished jobs that are being served at the beginning of a

time slot. These jobs cannot be paused in the new time slot. So, the new

schedule should be chosen to include these jobs. A Maxweight schedule may

not include these jobs.

Nonpreemptive algorithms were studied in literature in the context of input

queued switches with variable packet sizes. One such algorithm was studied

in [16]. This algorithm, however, uses the special structure of a switch and

so it is not clear how it can be generalized for the case of a cloud system.

Reference [17] presents another algorithm that is inspired by CSMA type

algorithm in wireless networks. One needs to prove a time scale separation

result to prove optimality of this algorithm. This was done in [17] by appeal-

ing to prior work [18]. However, the result in [18] is applicable only when

the Markov chain has finite number of states. However, since the Markov

chain in [17] depends on the job sizes, it could have infinite states even in the

special case when the job sizes are geometrically distributed, so the results

in [17] do not seem to be immediately applicable to our problem.

A similar problem was studied in [19] for scheduling in an input queued

switch. An algorithm claimed to be throughput optimal was presented. How-

ever, the proof of optimality is incorrect. We present more details about the

algorithm and the errors in the proof in the next chapter.

9

Since the job sizes are known at arrival, when the jobs are queued, one

knows the total backlogged workload in the queue, i.e., the total amount of

time required to serve all the jobs in the queue. One can use this information

in the resource allocation problem. Let qmi(t) denote the total backlogged

workload of type m jobs at server i.

In this chapter, we will first draw an analogy with scheduling in an ad hoc

wireless network. We will show that the algorithms for ad hoc wireless can

be directly used here for a simplified system. Then, we present an almost

throughput optimal resource allocation algorithm for the cloud computing

system. The results in this chapter have been presented in [20] and [21].

2.1 A Centralized Queueing Approach

We now make certain simplifying assumptions to gain intuition. Though

some of these are not practical, we first use them to present a very simple

solution, which can then be generalized to the original cloud problem.

We assume that jobs are queued in a centralized manner. So, for each

type of job, there is a single queue at a centralized location as opposed to a

separate queue at each server. So, there are M queues in all, one for each

type of job.

Recall that Am(t) is the set of type-m jobs that arrive at the beginning of

time slot t, and Am(t) = |Am(t)|, is the number of such jobs.

We let am(t) =
∑

j∈Am(t) Sj be the total number of time slots of service

requested by the jobs that arrive at time t, i.e., the total arrival of workload of

type-m jobs in time slot t. Then, E[am(t)] = λmSm = λ̌m. Let var(a2
m(t)) =

σ2
m for each m. Let Nm(t) denote the number of type-m jobs that are served

by the cloud at time slot t. Note that the job size of each of these Nm(t) jobs

reduces by one at the end of time slot t. We assume that a server can serve

at most Nmax jobs at the same time. The total backlogged workload due to

type-m jobs is defined to be the sum of the remaining job sizes of all jobs

of type-m in the system. We let qm(t) denote the backlogged workload of

type-m jobs in the network at the beginning of time slot t, before any other

job arrivals. Then the dynamics of qm(t) can be described as

qm(t+ 1) = (qm(t) + am(t)−Nm(t)) . (2.1)

10

B
Link1

Interference

A

E F

Interference

C D
Link2

Link3

1

3

2

Figure 2.1: Interference constraints for six users and three links and the
corresponding interference graph

The resource allocation problem then reduces to the problem of choosing

a vector N(t) = (N1(t), N2(t), . . . , NM(t)) that is a feasible configuration

vector for the cloud. Here, we say that a vector N is a feasible vector for the

cloud if can be written as N =
∑

iN(i) where N(i) is a feasible configuration

for the server i.

2.1.1 Preemptive Algorithm

We first assume that all servers can be reconfigured at the beginning of each

time slot. This means that a job can be interrupted at the beginning of each

time and put back in the centralized queue for that job type. In other words,

we assume that complete preemption is allowed.

This problem is then identical to the problem of scheduling in an ad hoc

wireless network. An ad hoc network consists of a collection of wireless

nodes. A link in such a network refers to a transmitter-receiver pair of

nodes. Not all the links can be simultaneously active because of interference.

These constraints are represented by an interference graph. Vertices in the

interference graph correspond to the links. If there is an edge between two

vertices, then the corresponding links interfere and so cannot transmit at the

same time. An example is shown in Figure 2.1.

Packets arrive to be transmitted over the links and are queued. Given

the queue lengths at each link, a scheduling algorithm has to choose a set

of links that can transmit at each given time, without violating interference

constraints. In other words, at any given time, the scheduler should choose

11

an independent set from the interference graph.

In their seminal paper, Tassiulas and Ephrimedes [15] presented the MaxWeight

scheduling algorithm for this problem and showed that it is throughput op-

timal. Each link is associated with a weight which is a function of the queue

length, usually the queue length itself, and a schedule with the maximum

weight is chosen in each time slot from all possible schedules.

Since the centralized and preemptive scheduling problem is identical to the

wireless network scheduling problem, MaxWeight algorithm is also through-

put optimal. However, the Server-by-server MaxWeight algorithm (Algo-

rithm 1) is equivalent to finding the maximum weight feasible vector for the

cloud.

Algorithm 1 Server-by-server MaxWeight allocation for a centralized queue-
ing system with complete preemption

At the beginning of time slot t, consider the ith server. If the set of jobs on
the server are not finished, move them back to the central queue. Find a
VM-configuration N∗(t) such that

N (i)∗(t) ∈ arg max
N∈Ni

∑
m

qm(t)Nm.

At server i, we create up to N
(i)∗
m (t) type-m VMs depending on the number

of jobs that are backlogged. Let N
(i)
m (t) be the actual number of VMs that

were created. Then, we set

qm(t+ 1) =

(
qm(t) + am(t)−

∑
i

N (i)
m

)
.

Then, as in [15], we have the following proposition.

Proposition 2.1. Consider the cloud system with centralized queues and

assume that complete preemption of jobs is allowed. The server-by-server

MaxWeight allocation presented in Algorithm 1 is throughput optimal, i.e.,

lim
t→∞

E

[∑
m

qm(t)

]
<∞

whenever λ̌ ∈ intC.

The proof is based on bounding the drift of a quadratic Lyapunov function.

12

The drift is shown to be negative outside a finite set and the Foster-Lyapunov

theorem is invoked to prove positive recurrence of the Markov chain corre-

sponding to the system as long as the arrivals are within the capacity region.

We skip the proof of this proposition since it is much simpler and is in the

same lines as that of Theorem 2.1.

One drawback of MaxWeight scheduling in wireless networks is that its

complexity increases exponentially with the number of wireless nodes. More-

over, it needs to be implemented in a centralized policy. However, for the

cloud system the server by server implementation in Algorithm 1 is has much

lower complexity and can be implemented in a distributed manner. Consider

the following example. If there are L servers and each server has S allowed

configurations, then when each server computes a separate MaxWeight allo-

cation, it has to find a schedule from S allowed configurations. Since there

are L servers, this is equivalent to finding a schedule from LS possibilities.

However, for a centralized MaxWeight schedule, one has to find a schedule

from SL schedules. Moreover, the complexity of each server’s scheduling

problem depends only on its own set of allowed configurations, which is in-

dependent of the total number of servers. Typically the data center is scaled

by adding more servers rather than adding more allowable configurations.

2.1.2 Nonpreemptive Algorithms

One of the simplifying assumptions made in the previous subsection is that

jobs can be interrupted and reallocated later, possibly on different servers.

In practice, a job may not be interruptible or interrupting a job can be very

costly (the system needs to store a snapshot of the VM to be able to restart

the VM later). In the rest of this chapter and the next, we assume that jobs

are not allowed to be interrupted.

Nonpreemptive algorithms are more challenging to study because the state

of the system in different time slots is coupled. For example, a MaxWeight

schedule cannot be chosen in each time slot nonpreemptively. Suppose that

there are certain unfinished jobs that are being served at the beginning of

a time slot. These jobs cannot be paused in the new time slot, so the new

schedule should be chosen to include these jobs. A Maxweight schedule may

not include these jobs.

13

Therefore, since one cannot choose MaxWeight schedule in every time slot,

a natural alternative is to somehow choose MaxWeight schedule every few

time slots and then perform some ‘reasonable’ scheduling between these time

slots. It turns out that using MaxWeight schedule once in a while is good

enough.

Before we present the algorithm, we outline the basic ideas first. We group

T time slots into a super time slot, where T > Smax. At the beginning of a

super time slot, a configuration is chosen according to the MaxWeight al-

gorithm. When jobs depart a server, the remaining resources in the server

are filled again using the MaxWeight algorithm; however, we impose the

constraint that only jobs that can be completed within the super slot can

be served. So the algorithm myopically (without consideration of the fu-

ture) uses resources, but is queue-length aware since it uses the MaxWeight

algorithm. This is described more precisely in Algorithm 2

Algorithm 2 Myopic MaxWeight allocation:

We group T time slots into a super time slot. At time slot t, consider the
ith server. Let N (i)(t−) be the set of VMs that are hosted on server i at the
beginning of time slot t, i.e., these correspond to the jobs that were scheduled
in the previous time slot but are still in the system. These VMs cannot be
reconfigured due to our nonpreemption requirement. The central controller
finds a new vector of configurations Ñ (i)(t) to fill up the resources not used
by N (i)(t−), i.e.,

Ñ (i)(t) ∈ arg max
N :N+N(i)(t−)∈Ni

∑
m

qm(t)Nm,

The central controller selects as many jobs as available in the queue, up to
a maximum of Ñ

(i)
m (t) type-m jobs at server i, and subject to the constraint

that a type-m job can only be served if its size Sj ≤ T − (t mod T). Let

N̄
(i)
m (t) denote the actual number of type-m jobs selected. Server i then serves

the N̄m(t)(i) new jobs of type m, and the set of jobs N (i)(t−) left over from
the previous time slot. The queue length is updated as follows:

qm(t+ 1) = qm(t) + am(t)−
∑
i

(
N (i)
m (t−) + N̄ (i)

m (t)
)
.

Note that this myopic MaxWeight allocation algorithm differs from the

server-by-server MaxWeight allocation in two aspects: (i) jobs are not in-

terrupted when served and (ii) when a job departs from a server, new jobs

14

are accepted without reconfiguring the server. The following proposition

characterizes the throughput achieved by the myopic MaxWeight.

Proposition 2.2. Consider the myopic MaxWeight algorithm in Algorithm

2. Any job load that satisfies T
T−Smax

λ̌ ∈ C is stabilizable under the myopic

MaxWeight allocation.

The proof of this proposition again uses the Foster-Lyapunov theorem

based on a quadratic Lyapunov function.However, instead of the one step

drift, the drift over every super time slot is shown to be negative (outside a

finite set). This then gives that a system sampled at the beginning of every

super time slot is stable. Since the mean arriving workload in each time slot

is bounded, we then have stability of the original system is also stable. We

again skip the proof as most of the same ideas are presented in the proof of

Theorem 2.1.

It is important to note that, unlike best fit, the myopic MaxWeight algo-

rithm can be made to achieve any arbitrary fraction of the capacity region

by choosing T sufficiently large.

2.2 Resource Allocation with Load Balancing

In the previous section, we considered the case where there was a single queue

for jobs of the same type, being served at different servers. This requires a

central authority to maintain a single queue for all servers in the system. A

more distributed solution is to maintain queues at each server and route jobs

as soon as they arrive. To the best of our knowledge, this problem does not

fit into the scheduling/routing model in [15]. However, we show that one can

still use MaxWeight-type scheduling if the servers are load-balanced using a

join-the-shortest-queue (JSQ) routing rule.

So, we now assume that each server maintains M different queues for dif-

ferent types of jobs. It then uses the information about backlogged workload

in each of these queues in making scheduling decisions. Let q denote the vec-

tor of these backlogged workloads where qmi is the backlogged workload of

type m jobs at server i. Routing and scheduling are performed as described

in Algorithm 3.

15

Algorithm 3 JSQ Routing and myopic Maxweight Scheduling

1. Routing Algorithm (JSQ Routing): All the type m jobs that arrive in
time slot t are routed to the server with the shortest backlogged work-
load for type m jobs i.e., the server i∗m(t) = arg min

i∈{1,2,,,L}
qmi(t). Therefore,

the arrivals to qmi in time slot t are given by

ami(t) =

{
Âm(t) if i = i∗m(t)

0 otherwise.
(2.2)

2. Scheduling Algorithm (Myopic MaxWeight Scheduling) for each server
i: T time slots are grouped into a super time slot. A MaxWeight
configuration is chosen at the beginning of a super time slot. So, for
t = nT , configuration Ñ (i)(t) is chosen according to

Ñ (i)(t) ∈ arg max
N∈Ni

∑
m

qmi(t)Nm.

For all other t, at the beginning of the time slot, a new configuration
is chosen as follows:

Ñ (i)(t) ∈ arg max
N :N+N(i)(t−)∈Ni

∑
m

qmi(t)Nm,

where N (i)(t−) is the configuration of jobs at server i that are still in
service at the end of the previous time slot. As many jobs as available
are selected for service from the queue, up to a maximum of Ñ

(i)
m (t)

jobs of type m, and subject to the constraint that a new type m job is
served only if it can finish its service by the end of the super time slot,

i.e., only if Sj ≤ T−(t mod T). Let N
(i)

m (t) denote the actual number of

type m jobs selected at server i and define N (i)(t) = N (i)(t−) +N
(i)

(t).
The queue lengths are updated as follows:

qmi(t+ 1) = qmi(t) + ami(t)−N (i)
m (t). (2.3)

16

The following theorem characterizes the throughput performance of the

algorithm.

Theorem 2.1. Any job load vector that satisfies T
T−Smax

λ̌ ∈ C is stabilizable

under the JSQ routing and myopic MaxWeight allocation as described in

Algorithm 3.

Proof. The idea behind the proof is again to bound the drift of a quadratic

Lyapunov function over a super time slot. However, now the load balancing

algorithm also plays a role in the drift.

Let Ymi(t) denote the state of the queue for type-m jobs at server i. If

there are I such jobs, Ymi(t) is a vector of size I and Y j
mi(t) is the (back-

logged) size of the jth type-m job at server i. First, it is easy to see that

Y(t) = {Ymi(t)}m,i is a Markov chain under the myopic MaxWeight schedul-

ing. Further define S = {y : Pr(Y(t) = y|Y(0) = 0) for some t}, then Y(t)

is an irreducible Markov chain on state space S assuming Y(0) = 0. This

claim holds because (i) any state in S is reachable from 0 and (ii) since

Pr(am(t) = 0) ≥ εA for all m and t, the Markov chain can move from Y(t)

to 0 in finite time with a positive probability. Further qmi(t) =
∑

j Y
j
m,i(t),

i.e., qmi(t) is a function of Ymi(t).

We will first show that the increase of
∑
m

qmi(t)N
(i)
m (t) is bounded within

a super time slot. For any t such that 1 ≤ (t mod T) ≤ T − Smax, for each

server i, ∑
m

qmi(t)N
(i)
m (t− 1)

=
∑
m

qmi(t)N
(i)
m (t−) +

∑
m

qmi(t)
(
N (i)
m (t− 1)−N (i)

m (t−)
)

(a)

≤
∑
m

qmi(t)N
(i)
m (t−) +

∑
m

qmi(t)Ñ
(i)
m (t)

=
∑
m

(
qmi(t)N

(i)
m (t−) + qmi(t)Ñ

(i)
m (t)

)
Iqmi(t)≥SmaxNmax

+
∑
m

(
qmi(t)N

(i)
m (t−) + qmi(t)Ñ

(i)
m (t)

)
Iqmi(t)<SmaxNmax

(b)

≤
∑
m

qmi(t)N
(i)
m (t) +MSmaxN

2
max,

where the inequality (a) follows from the definition Ñ
(i)
m (t); and inequality (b)

17

holds because when qmi(t) ≥ SmaxNmax, there are enough number of type-m

jobs to be allocated to the servers, and when 1 ≤ (t mod T) ≤ T − Smax,

all backlogged jobs are eligible to be served in terms of job sizes. Now since

|qmi(t)− qmi(t− 1)| =
∣∣∣ami(t− 1)−N (i)

m (t)
∣∣∣ ≤ ami(t− 1) +Nmax, we have

∑
m

qmi(t− 1)N (i)
m (t− 1) ≤ β′ +

∑
m

qmi(t)N
(i)
m (t) +

∑
m

ami(t− 1)Nmax, (2.4)

where β′ = MN2
max(Smax + 1).

Let V (t) = |q(t)|2 be the Lyapunov function. Let t = nT+τ for 0 ≤ τ < T .

Then,

E[V (nT + τ + 1)− V (nT + τ)|q(nT) = q]

=E

[∑
i

∑
m

(
qmi(t) + ami(t)−N (i)

m (t)
)2 −q2

mi(t)
∣∣∣q(nT) = q

]
(2.5)

=E

[
2
∑
i

∑
m

qmi(t)
(
ami(t)−N (i)

m (t)
)

+
∑
i

∑
m

(
ami(t)−N (i)

m (t)
)2

∣∣∣∣∣q(nT) = q

]
(2.6)

≤K1 + 2E

[∑
m

∑
i

qmi(t)ami(t) −
∑
i

∑
m

qmi(t)N
(i)
m (t)

∣∣∣∣∣q(nT) = q

]
(2.7)

=K1 + 2
∑
m

E[qmi∗m(t)(t)am(t)|q(nT) = q]

− 2E

[∑
i

∑
m

qmi(t)N
(i)
m (t)

∣∣∣∣∣q(nT) = q

]
(2.8)

=K1 + 2
∑
m

λ̌mE[qmi∗m(t)(t)|q(nT) = q]

− 2E

[∑
i

∑
m

qmi(t)N
(i)
m (t)

∣∣∣∣∣q(nT) = q

]
(2.9)

≤K1 + 2
∑
m

λ̌2
mτ + 2

∑
m

λ̌mE[qmi∗m(nT)(nT)|q(nT) = q]

− 2E

[∑
i

∑
m

qmi(t)N
(i)
m (t)

∣∣∣∣∣q(nT) = q

]
(2.10)

=K1 + 2
∑
m

λ̌2
mτ + 2

∑
m

λ̌mqmi∗m

18

− 2E

[∑
i

∑
m

qmi(t)N
(i)
m (t)

∣∣∣∣∣q(nT) = q

]
, (2.11)

where K1 = MLN2
max +

∑
m(λ̌2

m + σ2
m + 2λ̌mNmax) and i∗m = i∗m(nT) =

arg min
i∈{1,2,,,L}

qmi. Equation (2.8) follows from the definition of ami in the routing

algorithm in (5.2). Equation (2.9) follows from the independence of the ar-

rival process from the queue length process. Inequality (2.10) follows from the

fact that E[qmi∗m(t)(t)] ≤ E[qmi∗m(nT)(t)] ≤ E[qmi∗m(nT)(nT) +
∑t−1

t′=nT am(t)] =

E[qmi∗m(nT)] + τ λ̌.

Now, applying (2.4) repeatedly for t ∈ [nT, (n+1)T −Smax], and summing

over i and using the fact that
∑

i ami(t) = am(t), we get

−
∑
i

∑
m

qmi(t)N
(i)
m (t)

≤ L(t− nT)β′ −
∑
i

∑
m

qmi(nT)N (i)
m (nT) +

(n+1)T−Smax−1∑
t′=nT

∑
m

am(t′)Nmax.

(2.12)

Since (1+ε)T
T−Smax

λ̌ ∈ int(C), there exists ε > 0 s.t. (1+ε)T
T−Smax

λ̌ ∈ C, and so there

exists
{
λ̌i
}
i
such that (1+ε)T

T−Smax
λ̌i ∈ Conv(Ni) for all i and λ̌ =

∑
i

λ̌i. According

to the scheduling algorithm, for each i, we have that

(1 + ε)
T

T − Smax

∑
m

qmi(nT)λ̌im ≤
∑
m

qmi(nT)N (i)
m (nT). (2.13)

Thus, we get,

−
∑
i

∑
m

qmi(t)N
(i)
m (t)

≤ L(t− nT)β′ −
∑
i

∑
m

qmi(nT)N (i)
m (nT) +

(n+1)T−Smax−1∑
t′=nT

∑
m

am(t′)Nmax

(2.14)

≤ L(t− nT)β′ − (1 + ε)T

T − Smax

∑
i

∑
m

qmi(nT)λ̌im +

(n+1)T−Smax−1∑
t′=nT

∑
m

am(t′)Nmax.

(2.15)

19

Substituting this in (2.11), for t ∈ [nT, (n+ 1)T − Smax], we get

E[V (nT + τ + 1)− V (nT + τ)|q(nT) = q]

≤K + 2τ
∑
m

(λ̌2
m + λ̌mNmax) + 2L(t− nT)β′

+ 2
∑
m

λ̌mqmi∗m − 2(1 + ε)
T

T − Smax

∑
i

∑
m

qmiλ̌
i
m.

(2.16)

Note that λ̌mqmi∗m =
∑

i λ̌
i
mqmi∗m ≤

∑
i λ̌

i
mqmi. We will now use this relation

and sum the drift for τ from 0 to T − 1. Using (2.16) for τ ∈ [0, T − Smax],

and (2.11) for the remaining τ , we get

E[V ((n+ 1)T)− V (nT)|q(nT) = q]

≤TK1 + 2
∑
m

(λ̌2
m + λ̌mNmax)

T−1∑
τ=0

τ + 2Lβ′
T−Smax−1∑

τ=0

τ

+ 2T
∑
i,m

qmiλ̌
i
m − 2

(1 + ε)T

T − Smax

∑
i,m

qmiλ̌
i
m(T − Smax)

≤K2 − 2εT
∑
i

∑
m

qmiλ̌
i
m,

where K2 = TK1 + 2
∑

m(λ̌2
m + λ̌mNmax)

∑T−1
τ=0 τ + 2Lβ′

∑T−Smax−1
τ=0 τ . Let

B = {Y :
∑

i

∑
m qmi(Y)λ̌im ≤ K2/εT}. The set B is finite. This is because

there are only a finite number of q ∈ ZM+ L vectors satisfying
∑

i

∑
m qmiλ̌

i
m

and for each q, there are a finite number of states Y such that q = q(Y).

Clearly the drift E[V ((n + 1)T) − V (nT)|q(nT) = q] is negative outside

the finite set B. Then from the Foster-Lyapunov theorem [22, 23], we have

that the sampled Markov chain Ỹ(n) , Y(nT) is positive recurrent and so

limn→∞E[
∑

i

∑
m qmi(nT)] <∞. For any time t between nT and (n+ 1)T ,

we have

E

[∑
i

∑
m

qmi(t)

]
≤E

[∑
i

∑
m

qmi(nT) +
∑
i

∑
m

t−1∑
t′=nT

ami(t
′)

]

=E

[∑
i

∑
m

qmi(nT)

]
+ T

∑
m

λ̌m.

20

Therefore, we have

lim
n→∞

E

[∑
i

∑
m

qmi(t)

]
≤ lim

n→∞
E

[∑
i

∑
m

qmi(nT)

]
+ T

∑
m

λ̌m

<∞.

This proves the theorem.

Since the work load qmi(t) is always at least as much as the number of

jobs, Qmi(t) , from Proposition 1.1, we have that any arrival rate λ̌ /∈ C
is not supportable. Thus, we have that Algorithm 3 is almost throughput

optimal. By this, we mean that given any arrival rate λ̌ ∈ C, we can choose

the parameter T so that the system is stable.

2.3 Simpler Load Balancing Algorithms

Though JSQ routing algorithm is (almost) throughput optimal, the job

scheduler needs the workload information from all the servers. This im-

poses a considerable communication overhead as the arrival rates of jobs and

number of servers increase. In this section, we present two alternatives which

have much lower routing complexity.

2.3.1 Power-of-two-choices Routing and Myopic MaxWeight
Scheduling

An alternative to JSQ routing is the power-of-two-choices algorithm [24, 25,

26], which is much simpler to implement. When a job arrives, two servers

are sampled at random, and the job is routed to the server with the smaller

queue for that job type. In our algorithm, in each time slot t, for each type

of job m, two servers im1 (t) and im2 (t) are chosen uniformly at random. The

job scheduler then routes all the type m job arrivals in this time slot to

the server with shorter backlogged workload among these two, i.e., i∗m(t) =

21

arg min
i∈{im1 (t),im2 (t)}

qmi(t) and so

ami(t) =

am(t) if i = i∗m(t)

0 otherwise.

Otherwise, the algorithm is identical to the JSQ-Myopic MaxWeight algo-

rithm considered earlier. The following theorem shows that the throughput

performance using the power-of-two-choices algorithm is similar to that of

JSQ routing algorithm when all the servers are identical.

Theorem 2.2. When all the severs are identical, any load vector that sat-

isfies T
T−Smax

λ̌ ∈ int(C) is stabilizable under the power-of-two-choices routing

and myopic MaxWeight allocation algorithm.

Proof. Again, we use V (t) = |q(t)|2 as the Lyapunov function. Then, from

(2.7), we have

E[V (t+ 1)− V (t)|q(nT) = q] ≤K1 + 2E

[∑
m

∑
i

qmi(t)ami(t)

∣∣∣∣∣q(nT) = q

]

− 2E

[∑
i

∑
m

qmi(t)N
(i)
m (t)

∣∣∣∣∣q(nT) = q

] .

(2.17)

For fixed m, let Xm(t) be the random variable which denotes the two

servers that were chosen by the routing algorithm at time t for jobs of type

m. Xm(t) is then uniformly distributed over all sets of two servers. Now,

using the tower property of conditional expectation, we have

E

[∑
i

qmi(t)ami(t)

∣∣∣∣∣q(nT) = q

]

=E

[
E

[∑
i

qmi(t)ami(t)

∣∣∣∣∣q(nT) = q, Xm(t) = {i′, j′}

]∣∣∣∣∣q(nT) = q

]
=E [E [min (qmi′(t), qmj′(t)) am(t)|q(nT) = q, X(t) = {i′, j′}]|q(nT) = q]

(2.18)

≤E
[
E

[
qmi′(t) + qmj′(t)

2
am(t)

∣∣∣∣q(nT) = q, X(t) = {i′, j′}
]∣∣∣∣q(nT) = q

]
=E

[
L− 1(

L
2

) 1

2

∑
i

qmi(t)λ̌m

∣∣∣∣∣q(nT) = q

]
(2.19)

22

=
λ̌m
L
E

[∑
i

qmi(t)

∣∣∣∣∣q(nT) = q

]

≤ λ̌m
L
E

[∑
i

qmi(nT) +
t−1∑
t′=nT

∑
i

ami(t
′)

∣∣∣∣∣q(nT) = q

]

≤ λ̌m
L

(∑
i

qmi + τ λ̌m

)
, (2.20)

where τ = t − nT . Equation (2.18) follows from the routing algorithm and

(2.19) follows from the fact that Xm(t) is uniformly distributed. Inequality

2.20 follows from the fact that E[
∑

i ami(t
′)] = E[am(t′)] = λ̌.

Since the scheduling algorithm is identical to Algorithm 3, the bound in

(2.12) still holds

−
∑
i

∑
m

qmi(t)N
(i)
m (t)

≤ L(t− nT)β′ −
∑
i

∑
m

qmi(nT)N (i)
m (nT) +

(n+1)T−Smax−1∑
t′=nT

∑
m

am(t′)Nmax.

(2.21)

Since (1+ε)T
T−Smax

λ̌ ∈ int(C), there exists ε > 0 s.t. (1+ε)T
T−Smax

λ̌ ∈ C. We have

assumed that all the servers are identical, so C is obtained by summing L

copies of Conv(N). Thus, (1+ε)T
T−Smax

λ̌ ∈ C, means (1+ε)T
T−Smax

λ̌
L
∈ Conv(N) =

Conv(Ni) for all i. According to the scheduling algorithm, for each i, we

have that

(1 + ε)
T

T − Smax

∑
m

qmi(nT)
λ̌m
L
≤
∑
m

qmi(nT)N (i)
m (nT).

Thus, we get

−
∑
i

∑
m

qmi(t)N
(i)
m (t)

≤ L(t− nT)β′ − (1 + ε)T

T − Smax

∑
i

∑
m

qmi(nT)
λ̌m
L

+

(n+1)T−Smax−1∑
t′=nT

∑
m

am(t′)Nmax.

23

Now, substituting this and (2.20) in (2.17) and summing over t ∈ [nT, (n +

1)T − 1], as in the proof of Theorem 2.1, we get

E[V ((n+ 1)T)− V (nT)|q(nT) = q]

≤TK1 + 2
∑
m

(λ̌2
m + λ̌mNmax)

T−1∑
τ=0

τ + 2Lβ′
T−Smax−1∑

τ=0

τ

+ 2T
∑
i,m

qmi
λ̌m
L
− 2

(1 + ε)T

T − Smax

∑
i,m

qmiλ̌
i
m(T − Smax)

≤K2 − 2εT
∑
i

∑
m

qmi
λ̌m
L
.

This proof can be completed by applying the Foster-Lyapunov theorem [22,

23] and then observing that the workload does not change by much within a

supertime slot, as in the proof of Theorem 2.1.

2.3.2 Pick-and-Compare Routing and Myopic MaxWeight
Scheduling

One drawback of the power-of-two-choices scheduling is that it is throughput

optimal only when all servers are identical. In the case of nonidentical servers,

one can use pick-and-compare routing algorithm instead of power-of-two-

choices. The algorithm is motivated by the pick-and-compare algorithm for

wireless scheduling and switch scheduling [27], and is as simple to implement

as power-of-two-choices, and can be shown to be optimal even if the servers

are not identical. We describe this next. The scheduling algorithm is identical

to the previous case.

Pick-and-compare routing works as follows. In each time slot t, for each

type of job m, a server im(t) is chosen uniformly at random and compared

with the server to which jobs were routed in the previous time slot. The

server with the shorter backlogged workload among the two is chosen and

all the type m job arrivals in this time slot are routed to that server. Let

i∗m(t) be the server to which jobs will be routed in time slot t. Then, i∗m(t) =

24

arg min
i∈{im(t),i∗m(t−1)}

qmi(t) and so

ami(t) =

am(t) if i = i∗m(t)

0 otherwise.

Theorem 2.3. Assume am(t) ≤ amax for all t and m. Any job load vector

that satisfies T
T−Smax

λ̌ ∈ int(C) is stabilizable under the pick-and-compare

routing and myopic MaxWeight allocation algorithm.

Proof. Consider the irreducible Markov chain Y(t) = (Y(t), {i∗m(t)}m) and

the Lyapunov function V (t) = |q(t)|2 . Then, as in the proof of Theorem 2.2,

similar to (2.17) for t ≥ nT, we have

E[V (t+ 1)− V (t)|q(nT) = q, i∗m(nT) = i′]

≤K1 + 2E

[∑
m

∑
i

qmi(t)ami(t)

∣∣∣∣∣q(nT) = q, i∗m(nT) = i′

]

− 2E

[∑
i

∑
m

qmi(t)N
(i)
m (t)

∣∣∣∣∣q(nT) = q, i∗m(nT) = i′

]
.

(2.22)

Since T
T−Smax

λ̌ ∈ int(C), there exists and ε > 0 such that, (1+ε) T
T−Smax

λ̌ ∈ C
and so there exists

{
λ̌i
}
i

such that (1 + ε) T
T−Smax

λ̌i ∈ Conv(Ni) for all i and

λ̌ =
∑
i

λ̌i. This
{
λ̌i
}
i

can be chosen so that there is a κ so that λ̌m ≤ κλ̌im.

This is possible because if λ̌m > 0 and λ̌m is not on the boundary of C, one

can always find
{
λ̌im
}
i

so that λ̌im > 0.

Since the scheduling part of the algorithm is identical to Algorithm 3,

(2.15) still holds for t ∈ [nT, (n+ 1)T − Smax]. Thus, we have

−
∑
i

∑
m

qmi(t)N
(i)
m (t)

≤ L(t− nT)β′′ − (1 + ε)T

T − Smax

∑
i

∑
m

qmi(nT)λ̌im, (2.23)

where β′′ = MNmax(amax +Nmax) +MSmaxN
2
max.

We also need a bound on the increase in −
∑

i

∑
m qmi(t)N

(i)
m (t) over mul-

25

tiple super time slots. So, for any n′, we have∑
i

∑
m

qmi(nT)N (i)
m (nT)

≤
∑
i

∑
m

qmi((n+ n′)T)N (i)
m (nT) + n′TLMN2

max

≤
∑
i

∑
m

qmi((n+ n′)T)N (i)
m ((n+ n′)T) + n′TLβ′′,

where the second inequality follows from the fact that we use maxweight

scheduling every T slots and from the definition of β′′. Now, again, using

(2.13), and (2.23), for any t such that 1 ≤ (t mod T) ≤ T − Smax, we have

−
∑
i

∑
m

qmi(t)N
(i)
m (t)

≤ L(t− nT)β′′ − (1 + ε)T

T − Smax

∑
i

∑
m

qmi(nT)λ̌im. (2.24)

Fix m. Let immin = arg min
i∈{1,2,,,L}

qmi(nT). Note that |qmi(t)− qmi(t− 1)| =∣∣∣ami(t)−N (i)
m (t)

∣∣∣ ≤ amax + Nmax. Therefore, once there is a t0 ≥ nT such

that i∗m(t0) satisfies

qmi∗m(t0)(t0) ≤ qmimmin(t0), (2.25)

then, for all t ≥ t0, we have qmi∗m(t)(t) ≤ qmimmin(nT)+(t−nT) (amax +Nmax).

Probability that (2.25) does not happen is at most
(
1− 1

L

)(t0−nT)
. Choose t0

so that this probability is less than p = ε/4κ. Then, (1+κp) = 1+ε/4. Choose

k so that kT > (t0 − nT) and ((n+ k)T − t0) + κ(t0 − nT) ≤ kT (1 + ε/4).

Then

(n+k)T−1∑
t=nT

E

[∑
i

qmi(t)ami(t)

∣∣∣∣∣q(nT) = q, i∗m(nT) = i′

]

=

t0∑
t=nT

E

[∑
i

qmi(t)ami(t)

∣∣∣∣∣q(nT) = q, i∗m(nT) = i′

]

+

(n+k)T−1∑
t=t0

E

[∑
i

qmi(t)ami(t)

∣∣∣∣∣q(nT) = q, i∗m(nT) = i′

]
(2.26)

≤λ̌m(t0 − nT)
∑
i

qmi +

t0∑
t=nT

(t− nT) (amax +Nmax)Lamax

26

+

(n+k)T−1∑
t=t0

(1− p)λ̌m
(
qmimmin +(t− nT) (amax +Nmax))

+ pλ̌m ((n+ k)T − t0)
∑
i

qmi

+ p

(n+k)T−1∑
t=t0

(t− nT) (amax +Nmax)Lamax (2.27)

≤(1− p) ((n+ k)T − t0)
∑
i

qmimminλ̌
i
m +

kT∑
τ=0

τ (amax +Nmax)Lamax

+ (1− p)λ̌m(t0 − nT)
∑
i

qmi + pλ̌mkT
∑
i

qmi (2.28)

≤K3 + (1− p) ((n+ k)T − t0)
∑
i

qmiλ̌
i
m

+ (1− p)κ(t0 − nT)
∑
i

qmiλ̌
i
m + κpkT

∑
i

qmiλ̌
i
m (2.29)

≤K3 + (1− p)kT (1 + ε/4)
∑
i

qmiλ̌
i
m + (1 + ε/4)κpkT

∑
i

qmiλ̌
i
m (2.30)

≤K3 + kT (1 + ε/4)2
∑
i

qmiλ̌
i
m (2.31)

≤K3 + kT (1 + 3ε/4)
∑
i

qmiλ̌
i
m (2.32)

where K3 =
kT∑
τ=0

τ (amax +Nmax)Lamax. Equations (2.30) and (2.31) follow

from our choice of k and p respectively.

Now, substituting (2.32) and (2.24) in (2.22) and summing over t ∈ [nT, (n+

1)T − 1], we get

E[V ((n+ k)T)− V (nT)|q(nT) = q, i∗m(nT) = i′]

≤K4 + 2kT (1 + 3ε/4)
∑
m

∑
i

qmiλ̌
i
m

−
(n+k)T−1∑
t=nT

2E

[∑
i

∑
m

qmi(t)N
(i)
m (t)

∣∣∣∣∣q(nT) = q, i∗m(t) = i′

]
≤K4 + 2kT (1 + 3ε/4)

∑
m

∑
i

qmiλ̌
i
m

− 2(1 + ε)
T

T − Smax

∑
m

∑
i

qmiλ̌
i
mk(T − Smax)

27

≤K4 +−1

2
kTε

∑
m

∑
i

qmiλ̌
i
m

where K4 = kTK1 +MK3 + 2Lβ′′
∑kT−Smax−1

τ=0 τ . The result follows from the

Foster-Lyapunov theorem [22, 23].

Note that the assumption that the arrivals in each time slot are bounded

by amax can easily be relaxed, similar to the proof of theorems 2.1 and 2.2.

2.4 Discussion and Simulations

The parameter T in our algorithms can be arbitrarily large, but needs to be

finite for the proofs to be valid. A natural question is: What happens if we let

T go to infinity? When T =∞, our scheduling algorithm reduces to a myopic

MaxWeight scheduling in each time slot. Under no additional assumptions,

such an algorithm is not throughput optimal. For instance, the same exam-

ple given to show that Best-Fit policy is not throughput optimal in Chapter

1 would also show that such an algorithm is also not throughput optimal. To

completely characterize the optimality of such a myopic MaxWeight schedul-

ing algorithm is an open question. However, we will address a slightly related

question in the next chapter.

In this section, we use simulations to compare the performance for differ-

ent values of T . We will also compare the centralized myopic MaxWeight

scheduling algorithm, and the joint routing and scheduling algorithm, based

on the power-of-two-choices and MaxWeight scheduling. We consider a cloud

computing cluster with 100 identical servers, and each server has the hard-

ware configuration specified in Example 1.1. We assume jobs being served in

this cloud belong to one of the three types specified in Table 1.1. So VM con-

figurations (2, 0, 0), (1, 0, 1), and (0, 1, 1) are the three maximal VM configu-

rations for each server. It is easy to verify that the load vector λ(1) = (1, 1
3
, 2

3
)

is on the boundary of the capacity region of a server.

To model the large variability in jobs sizes, we assume job sizes are dis-

tributed as follows: when a new job is generated, with probability 0.7, the

size is an integer that is uniformly distributed in the interval [1, 50], with

probability 0.15, it is an integer that is uniformly distributed between 251

and 300, and with probability 0.15, it is uniformly distributed between 451

28

Figure 2.2: Comparison of the mean delays in the cloud computing cluster
in the case with a common queue and in the case with power-of-two-choices
routing when frame size is 4000

and 500. Therefore, the average job size is 130.5 and the maximum job size

is 500. We call this distribution A.

We further assume the number of type-i jobs arriving at each time slot

follows a binomial distribution with parameter (ρ
λ
(1)
i

130.5
, 100). We varied the

traffic intensity parameter ρ from 0.5 to 1 in our simulations. Here traffic

intensity is the factor by which the load vector has to be divided so that it lies

on the boundary of the capacity region. Each simulation was run for 500, 000

time slots. First we study the difference between power-of-two-choice routing

and JSQ routing by comparing the mean delays of the two algorithms at

various traffic intensities for different choices of frame sizes. Our simulation

results indicate that the delay performance of the two algorithms was not

very different. For concision, we only provide a representative sample of our

simulations here for the case where the frame size is 4000 in Figure 2.2.

Next, we show the performance of our algorithms for various values of the

frame size T in Figure 2.3. Again, we have only shown a representative sample

for the power-of-two-choices routing (with myopic MaxWeight scheduling).

From Theorems 2.1 and 2.2, we know that any load less than T−Smax

T
is

29

Figure 2.3: Comparison of power-of-two-choices routing algorithm for
various frame lengths T

supportable. The simulations indicate that the system is stable even for the

loads greater than this value. This is to be expected since our proofs of

Theorems 2.1 and 2.2 essentially ignore the jobs that are scheduled in the

last Smax time slots of a frame. However, the fact that the stability region is

larger for larger values of T is confirmed by the simulations.

It is even more interesting to observe the delay performance of our algo-

rithms as T increases. Figure 2.3 indicates that the delay performance does

not degrade as T increases and the throughput increases with T. So the use

of queue-length information seems to be the key ingredient of the algorithm

while the optimal implementation of the MaxWeight algorithm seems to be

secondary.

2.5 Conclusions

In this chapter, we have studied a few different resource allocation algorithms

for the stochastic model of IaaS cloud computing that was presented in the

Introduction. We assume that job sizes are known and are bounded and that

30

preemption is not allowed. We made a connection with scheduling in ad hoc

wireless networks and proposed a frame based myopic MaxWeight algorithm.

We presented three different routing algorithms, viz., join the shortest queue,

power-of-two-choices and pick-and-compare. We have shown that all these

algorithms can be made nearly throughput-optimal by choosing sufficiently

long frame durations. Simulations indicate that long frame durations are

not only good from a throughput perspective but also seem to provide good

delay performance.

31

CHAPTER 3

UNKNOWN JOB SIZES

The algorithms presented in Chapter 2 assume that the job sizes are bounded

and are known when the job arrives into the system. This assumption is not

realistic in some settings. Many times, the duration of a job is not known

until the job finishes. Moreover the bounded job sizes assumption excludes

simple job size distributions like geometric distribution because it is not

bounded. In this chapter, we will present algorithms when job sizes are not

known.

The scheduling algorithm presented in this chapter is inspired by the one

studied in [19] for input-queued switched. Since a MaxWeight schedule can-

not be chosen in every time slot without disturbing the jobs in service, a

MaxWeight schedule is chosen only at every refresh time. A time slot is

called a refresh time if no jobs are in service at the beginning of the time

slot. Between the refresh times, either the schedule can be left unchanged

or a ‘greedy’ MaxWeight schedule can be chosen. It was argued that such a

scheduling algorithm is throughput optimal in a switch.

The proof of throughput optimality in [19] is based on first showing that the

duration between consecutive refresh times is bounded so that a MaxWeight

schedule is chosen often enough. Blackwell’s renewal theorem was used to

show this result. Since Blackwell’s renewal theorem is applicable only in

steady state, we were unable to verify the correctness of the proof.

Furthermore, to bound the refresh times of the system, it was claimed

in [19] that the refresh time for a system with infinitely backlogged queues

provides an upper bound over the system with arrivals. This is not true for

every sample path. For a set of jobs with given sizes, the arrivals could be

timed in such a way that the system with arrivals has a longer refresh time

than an infinitely backlogged system.

For example consider the following scenario. Let the original system be

called system 1 and the system with infinitely backlogged queues, system 2.

32

System 1 could have empty queues while system 2 never has empty queues.

Say T0 is a time when all jobs finish service for system 2. This does not

guarantee that all jobs finish service for system 1. This is because system 1

could be serving just one job at time T0−1, when there could be an arrival of a

job of two time slots long. Let us say that it can be scheduled simultaneously

with the job in service. This job then will not finish its service at time T0,

and so T0 is not a refresh time for system 1.

The result in [19] does not impose any conditions on job size distribution.

However, this insensitivity to job size distribution seems to be a consequence

of the relationship between the infinitely backlogged system and the finite

queue system which is assumed there, but which we do not believe is true in

general.

In particular, the examples presented in [28] as well as an example sim-

ilar to the counter example to Best-Fit policy in Chapter 1 show that the

policy presented in [19] is not throughput optimal when the job sizes are

deterministic.

Here, we develop a coupling technique to bound the expected time between

two refresh times. With this technique, we do not need to use Blackwell’s

renewal theorem. The coupling argument is also used to precisely state how

the system with infinitely backlogged queue provides an upper bound on the

mean duration between refresh times.

In this chapter we present a throughput optimal scheduling and load bal-

ancing algorithm for a cloud data center, when the job sizes are unknown.

Job sizes are assumed to be unknown not only at arrival but also at the be-

ginning of service. This algorithm is based on using queue lengths (number

of jobs in the queue) for weights in MaxWeight schedule instead of the work-

load as in the algorithm in Chapter 2. The scheduling part of our algorithm

is based on [19], but includes an additional routing component. Further, our

proof of throughput-optimality is different from the one in [19] due to the

earlier mentioned reasons.

If the job sizes are known, one can then use backlogged workload as the

weight in the algorithm presented here. In that case, this algorithm does not

waste any resources unlike the algorithms in Chapter 2 which forces a refresh

time every T time slots potentially wasting resources during the process. In

particular, when the job sizes have high variability, the amount of wastage

can be high. However, the algorithm in this chapter works even when the

33

job sizes are not bounded, for instance, when the job sizes are geometrically

distributed.

In terms of proof technique, in this chapter, we make the following contri-

butions:

1. We use a coupling technique to show that the mean duration between

refresh times is bounded. We then use Wald’s identity to bound the

drift of a Lyapunov function between the refresh times.

2. Our algorithm can be used with a large class of weight functions to

compute the MaxWeight schedule (for example, the ones considered in

[29]) in the case of geometric job sizes. For general job sizes, we use

a log-weight functions. Log-weight functions are known to have good

performance properties [30] and are also amenable to low-complexity

implementations using randomized algorithms [31, 32].

3. Since we allow general job-size distributions, it is difficult to find a Lya-

punov function whose drift is negative outside a finite set, as required by

the Foster-Lyapunov theorem which is typically used to prove stability

results. Instead, we use a theorem in [33] to prove our stability result,

but this theorem requires that the drift of the Lyapunov function be

(stochastically) bounded. We present a novel modification of the typ-

ical Lyapunov function used to establish the stability of MaxWeight

algorithms to verify the conditions of the theorem in [33].

We will first present the refresh times based scheduling algorithm and argue

that the refresh times are bounded. We illustrate the use of this result by

first proving throughput optimality in the simple case when the job sizes are

geometrically distributed. In the following section, we present the proof for

the case of general job size distributions. The results in this chapter have

been presented in [34] and [35].

3.1 Algorithm

There are two main challenges in this setting. The first is that, since the job

sizes are unknown, the total backlogged workload cannot be used to calculate

the weight of different schedules. We address this by using number of jobs

34

as a proxy for the backlogged workload. However, it is not clear if such an

algorithm is still optimal. It turns out that one can use a modified MaxWeight

algorithm with a different weight function. It was shown in [29] that a wide

class of weight functions can be used in MaxWeight scheduling for wireless

channels. When the total backlogged workload is not known, a logarithmic

function of the queue length can be used for throughput optimality.

The second challenge is that since the job sizes are not bounded, one

cannot use the idea of super time slots, because one cannot make sure that a

MaxWeight schedule can be chosen at the beginning of every super time slot.

To address this challenge, recall that the key intuition from the results in

the previous section is that, a MaxWeight schedule should be chosen ‘often

enough.’ However, we since we cannot choose a MaxWeight schedules at

some fixed time slots, we choose them whenever we can. To precisely state

such an algorithm, we need the notion of refresh times.

Recall that a time slot is called a refresh time if none of the servers are

serving any jobs at the beginning of the time slot. Note that a time slot is

refresh time if, in the previous time slot, either all jobs in service departed

the system or the system was completely empty.

Refresh times are important due to the fact that a new MaxWeight sched-

ule can be chosen for all servers only at such time instants. At all other

time instants, an entirely new schedule cannot be chosen for all servers si-

multaneously since this would require job preemption which we assume is

not allowed. Based on these ideas, we present Algorithm 4.

To state the optimality result for this algorithm in general, we need the

following assumption on the job sizes. Let S be the support of the random

variable S, the job size, i.e., S = {n ∈ N : P (S = n) > 0}. The job size

distribution is assumed to satisfy the following assumption.

Assumption 3.1. If l1 ∈ S is in the support of the distribution, then any

l2 ∈ N such that 1 ≤ l2 < l1 is also in the support of the distribution, i.e.,

l2 ∈ S. For each job type m, let Cm , inf l∈S P (Sm = l|Sm > l − 1). Then,

there exists a C > 0 such that for each server m, Cm ≥ C > 0. In the case

when the support is finite, this just means that the conditional probabilities

P (Sk = l|Sk > l − 1) are non-zero for any l in the support.

Assumption (3.1) means that when the job sizes are not bounded, they

have geometric tails. For example, truncated heavy-tailed distributions with

35

Algorithm 4 JSQ Routing and MaxWeight Scheduling

1. Routing Algorithm (JSQ Routing): All the type m jobs that arrive in
time slot t are routed to the server with the shortest queue for type m
jobs i.e., the server i∗m(t) = arg min

i∈{1,2,,,L}
Qmi(t). Therefore, the arrivals to

Qmi in time slot t are given by

Ami(t) =

{
Am(t) if i = i∗m(t)

0 otherwise.
(3.1)

2. Scheduling Algorithm (MaxWeight Scheduling) for each server i:

Let Ñ
(i)
m (t) denote a configuration chosen in each time slot. If the time

slot is a refresh time (i.e., if none of the servers are serving any jobs

at the beginning of the time slot), Ñ
(i)
m (t) is chosen according to the

MaxWeight policy, i.e.,

Ñ (i)(t) ∈ arg max
N∈Ni

∑
m

g(Qmi(t))Nm. (3.2)

If it is not a refresh time, Ñ
(i)
m (t) = Ñ

(i)
m (t − 1). However, Ñ

(i)
m (t)

jobs of type m may not be present at server i, in which case all the
jobs in the queue that are not yet being served will be included in the

new configuration. If N
(i)

m (t) denotes the actual number of type m jobs

selected at server i, then the configuration at time t is N (i)(t) = N
(i)

(t).
Otherwise, i.e., if there are enough number of jobs at server i, N (i)(t) =

Ñ
(i)
m (t).

36

arbitrarily high variance would be allowed but purely heavy-tailed distribu-

tions would not be allowed under our model.

3.1.1 Refresh Times

One of the key ideas in the proof is to show that the refresh times occur often

enough. We will now present a lemma to this effect. Let us denote the nth

refresh time by tn. Let zn = tn+1 − tn be the duration (in slots) between the

nth and (n+1)th refresh times. Then, the duration between the refresh times

is bounded as follows.

Lemma 3.1. There exists constants K1 > 0 and K2 > 0 such that E[zn] < K1

and E[z2
n] < K2.

This lemma is proved by first obtaining a lower bound on the probability

that the next time slot is a refresh time. This bound is then used to construct

a coupled Bernoulli process that gives the required bound. We present the

complete proof now.

Proof. Let R(t) be a binary valued random process that takes a value 1 if

and only if time t is a refresh time. Consider a job of type m that is being

served at a server. Say it was scheduled l time slots ago. The conditional

probability that it finishes its service in the next time slot is

P (Sm = l + 1|Sm > l) ≥ Cm ≥ C

from the assumption on the job size distribution. Thus, the probability that

a job of type m that is being served finishes its service at any time slot

is at least C. Therefore, the probability that all the jobs scheduled at a

server finish their service at any time slot is no less than CMNmax and the

probability that all the jobs scheduled in the system finish their service is at

least C , CLMNmax > 0. If all the jobs that are being served at all the servers

finish their service during a time slot, it is a refresh time. Thus probability

that a given time slot is a refresh time is at least C. In other words, for any

time t, if p(t) is the probability that R(t) = 1 conditioned on the history

of the system (i.e., arrivals, departures, scheduling decisions made and the

finished service of the jobs that are in service), then p(t) ≥ C > 0.

37

Define Rn(z) = R(tn + z) for z ≥ 0. Then zn is the first time Rn(z)

takes a value of 1. Now consider a Bernoulli process Rn(z) with probability

of success C that is coupled to the refresh time process Rn(z) as follows.

Whenever Rn(z) = 1, we also have Rn(z) = 1. One can construct such a pair

(Rn(t), Rn(z)) as follows. Consider an i.i.d. random process R̂n(z) uniformly

distributed between 0 and 1. Then the pair (Rn(z), Rn(z)) can be modeled

as Rn(z) = 1 if and only if R̂n(z) < p(tn + z) and R(t)) = 1 if and only if

R̂n(z) < C.

Let zn be the first time Rn(z) takes a value of 1. Then, by the construc-

tion of Rn(z), zn ≤ zn and since Rn(z) is a Bernoulli process, there exists

constants K1 > 0 and K2 > 0 such that E[zn] < K1 and E[z2
n] < K2 proving

the lemma.

3.2 Throughput Optimality - Geometric Job Sizes

Before presenting the general result, in this section, we will characterize the

throughput performance of Algorithm 4 in the special case when the job

sizes are geometrically distributed. The proof of this result is simpler than

the general proof and illustrates some of the ideas. We will consider a more

general case in the next section. Note that when the job sizes are geometric,

Assumption 3.1 is clearly satisfied and so Lemma 3.1 is applicable.

In the case of geometric job sizes, a wide class of functions g(y) can

be used to obtain a stable MaxWeight policy [29]. Typically, V ((Q)) =∑
i,m

∫
g((Q)mi)dy is used as a Lyapunov function to prove stability of a

MaxWeight policy using g(y). To avoid excessive notation, we will illustrate

the proof of throughput optimality using g(y) = y in this section.

Proposition 3.1. Assume that the job arrivals satisfy Am(t) ≤ Amax for

all m and t. When the job sizes are geometrically distributed with mean job

size vector S, any job load vector that satisfies (λ, S) ∈ int(Ĉ) is supportable

under the JSQ routing and MaxWeight allocation as described in Algorithm

4 with g(y) = y.

Proof. Since the job sizes are geometrically distributed, it is easy to see that

X(t) = (Q(t), N(t)) is a Markov chain under Algorithm 4.

38

Obtain a new process, X̃(n) by sampling the Markov chain X(t) at the

refresh times, i.e., X̃(n) = X(tn). Note that X̃(n) is also a Markov chain

because, conditioned on Q̃(n) = Q(tn) = q0 (and so N(tn)), the future of

evolution of X(t) and so X̃(n) is independent of the past.

Using V (X) = V (Q) =
∑

m

∑
i SmQ2

mi as the Lyapunov function, we will

first show that the drift of the Markov chain is negative outside a bounded set.

This gives positive recurrence of the sampled Markov chain from the Foster-

Lyapunov theorem. We will then use this to prove the positive recurrence of

the original Markov chain.

First consider the following one step drift of V (t). Let t = tn + τ for

0 ≤ τ < zn.

(V (t+ 1)− V (t))

=
∑
i

∑
m

Sm (Qmi(t) + Ami(t)−Dmi(t))
2 − SmQ2

mi(t)

=2
∑
i

∑
m

SmQmi(t) (Ami(t)−Dmi(t))

+
∑
i

∑
m

Sm (Ami(t)−Dmi(t))
2

≤2
∑
m

∑
i

SmQmi(t) (Ami(t)−Dmi(t)) +K5,

where K5 = L(Amax +Nmax)2(
∑

m Sm).

Now using this relation in the drift of the sampled system, we get the

following. With a slight abuse of notation, we denote E [(.)|Q(tn) = q] by

Eq [(.)].

E[V (Q̃(n+ 1))− V (Q̃(n))|Q̃(n) = q]

=E[V (tn+1)− V (tn)|Q(tn) = q]

=Eq

[
zn−1∑
τ=0

V (tn + τ + 1)− V (tn + τ)

]

≤Eq

[
zn−1∑
τ=0

2
∑
m,i

(
SmQmi(tn + τ)Ami(tn + τ)

− SmQmi(tn + τ)Dmi(tn + τ)

)
+K5

]
. (3.3)

39

The last term above is bounded by K5K1 from Lemma 3.1. We will now

bound the first term in (3.3). From the definition of Ami in the routing

algorithm in (3.1), we have

2Eq

[
zn−1∑
τ=0

∑
m

∑
i

SmQmi(tn + τ)Ami(tn + τ)

]

=2Eq

[
zn−1∑
τ=0

∑
m

SmQmi∗m(tn+τ)(tn + τ)Am(tn + τ)

]

≤2Eq

[
zn−1∑
τ=0

∑
m

Sm
(
Qmi∗m(tn)(tn)Am(tn + τ)+τA2

max

)]

≤2
∑
m

Smqmi∗mEq

[
zn−1∑
τ=0

Am(tn + τ)

]
+
∑
m

A2
maxSmEq

[
z2
n

]
≤A2

maxK2

∑
m

Sm + 2Eq [zn]
∑
m

Smqmi∗mλm, (3.4)

where i∗m(t) = arg min
i∈{1,2,,,L}

Qmi(t) and i∗m = i∗m(tn). Since Qmi∗m(tn+τ)(tn + τ) ≤

Qmi∗m(tn)(tn + τ) ≤ Qmi∗m(tn) +Amaxτ because the load at each queue cannot

increase by more than Amax in each time slot, we get the first inequality.

Let Y(t) = {Ymi(t)}m,i denote the state of jobs of type-m at server i.

When Qmi(t) 6= 0, Ymi(t) is a vector of size N
(i)
m (t) and Yj

mi(t) is the amount

of time the jth type-m job that is in service at server i has been scheduled.

Note that the departures D(t) can be inferred from Y(t). Let F (n)
τ be the

filtration generated by the process Y(tn + τ). Then, A(tn+τ+1) is indepen-

dent of F (n)
τ and zn is a stopping time for F (n)

τ . Then, from Wald’s identity1

[36, Chap 6, Cor 3.1 and Sec 4(a)] and Lemma 3.1, we have (3.4).

Now we will bound the second term in (3.3). To do this, consider the

following system. For every job of type m that is in the configuration Ñ
(i)
m (tn),

consider an independent geometric random variable of mean Sm to simulate

potential departures or job completions. Let I ij,m(t) be an indicator function

denoting if the jth job of type m at server i in configuration Ñ
(i)
m (tn) has

a potential departure at time t. Because of the memoryless property of

1Wald’s identity: Let {Xn : n ∈ N} be a sequence of real-valued, random variables
such that all {Xn : n ∈ N} have same expectation and there exists a constant C such that
E[|Xn|] ≤ C for all n ∈ N. Assume that there exists a filtration {Fn}n∈N such that Xn

and Fn−1 are independent for every n ∈ N. Then, if N is a finite mean stopping time with

respect to the filtration {Fn}n∈N, E[
∑N

n=1 Xn] = E[Xn]E[N].

40

geometric distribution, I ij,m(t) are i.i.d. Bernoulli with mean 1/Sm.

If the jth job was scheduled, I ij,m(t) corresponds to an actual departure. If

not (i.e., if there was unused service), there is no actual departure correspond-

ing to this. Let D̂mi(t) =
∑Ñ

(i)
m (tn)

j=1 I ij,m(t) denote the number of potential de-

partures of type m at server i. Note that if Qmi(t) ≥ Nmax, D̂mi(t) = Dmi(t)

since there is no unused service in this case. Also, D̂mi(t) − Dmi(t) ≤
D̂mi(t) ≤ Nmax. Thus, we have

Qmi(t)Dmi(t) = (Qmi(t)Dmi(t)) IQmi(t)≥Nmax

+ (Qmi(t)Dmi(t)) IQmi(t)<Nmax

≥
(
Qmi(t)D̂mi(t)

)
IQmi(t)≥Nmax

+
(
Qmi(t)

(
D̂mi(t)−Nmax

))
IQmi(t)<Nmax

≥Qmi(t)D̂mi(t)−N2
max. (3.5)

Note that Qmi(t) ≥ Qmi(t−1)−Nmax, since Nmax is the maximum possible

departures in each time slot. So, we have

Qmi(tn+ τ)D̂mi(tn+ τ) ≥(Qmi(tn)−τNmax) D̂mi(tn + τ)

≥ Qmi(tn)D̂mi(tn + τ)− τN2
max.

Using this with (3.5), we can bound the second term in (3.3) as follows:

2Eq

[
zn−1∑
τ=0

∑
i,m

SmQmi(tn + τ)Dmi(tn + τ)

]

≥2Eq

[
zn−1∑
τ=0

∑
i,m

SmQmi(tn + τ)D̂mi(tn + τ)

]
− LN2

max

∑
m

Sm2Eq [zn]

≥2Eq

[∑
i,m

SmQmi(tn)
zn−1∑
τ=0

D̂mi(tn + τ)

]
−K6

=2Eq [zn]
∑
i,m

qmiÑ
(i)
m −K6 (3.6)

where K6 = LN2
max

∑
m Sm(2K1 +K2). Let F̂ (n)

τ denote the filtration gener-

ated by {Y(tn + τ), D̂(tn + τ)}. Then, F (n)
τ ⊆ F̂ (n)

τ . Since zn is a stopping

41

time with respect to the filtration F (n)
τ , it is also a stopping time with re-

spect to the filtration F̂ (n)
τ . Since D̂(tn + τ + 1) is independent of F̂ (n)

τ ,

Wald’s identity can be applied here. D̂(tn + τ) is sum of Ñ
(i)
m (tn) inde-

pendent Bernoulli random variables each with mean 1/Sm. Thus, we have

E[D̂mi(t)] = Ñ
(i)
m (tn)/Sm. Using this in Wald’s identity we get (3.6).

Since (λ, S) ∈ int(Ĉ), there exists ε > 0 such that ((1 + ε)λ, S) ∈ Ĉ,
there exists {(1 + ε)λi}i such that λi ◦ S ∈ Conv(Ni) for all i and λ =

∑
i

λi.

According to the scheduling algorithm (3.2), for each server i, we have that∑
m

Qmi(tn)(1 + ε)λimSm ≤
∑
m

Qmi(tn)Ñ (i)
m (tn). (3.7)

Then, from (3.4), (3.3) and (3.6), we get

E[V (X̃(n+ 1))− V (X̃(n))|Q̃(n) = q, Ỹ(n)]

≤K7 + 2Eq [zn]
∑
m

Smqmi∗mλm − 2Eq [zn]
∑
i,m

qmiÑ
(i)
m

(a)

≤K7 − 2εEq [zn]
∑
i

∑
m

qmiλ
i
mSm

(ba)

≤K7 − 2ε
∑
i

∑
m

qmiλ
i
mSm,

where K7 = A2
maxK2

∑
m Sm +K6. Inequality (a) follows from λ =

∑
i

λi and

(3.7). Inequality (b) follows from zn ≥ 1.

Then, from the Foster-Lyapunov theorem [22, 23], we have that the sam-

pled Markov Chain X̃(n) is positive recurrent. So, there exists a constant

K3 > 0 such that limn→∞
∑

m

∑
iE[Qmi(t)] ≤ K3.

For any t > 0, let tn be the last refresh time before t. Then,∑
m,i

E[Qmi(t)] ≤
∑
m,i

E[(Qmi(tn) + zn(Amax +Nmax))].

As t→∞, we get

lim sup
t→∞

∑
m

∑
i

E[Qmi(t)]

≤ lim sup
n→∞

∑
m

∑
i

E[(Qmi(tn) + zn(Amax +Nmax))]

42

≤K3 +K1LM(Amax +Nmax).

3.3 Throughput Optimality - General Job Size

Distribution

In this section, we will consider a general job size distribution that satisfies

Assumption 3.1. We will show that Algorithm 4 is throughput optimal in

this case with appropriately chosen g(.). Unlike the geometric job size case,

for a job that is scheduled, the expected number of departures in each time

slot is not constant here. We first present some preliminaries.

The process X(t) = (Q(t),Y(t)) is a Markov chain, where Y(t) is defined

in the section 3.2. Let Wm(l) be the expected remaining service time of a

job of type m given that it has already been served for l time slots. In other

words, Wm(l) = E[Sm− l|Sm > l]. Note that Wm(0) = Sm. Then, we denote

the expected backlogged workload at each queue by Qmi(t). Thus,

Qmi(t) =

Qmi∑
j=1

Wm(lj),

where lj is the duration of completed service for the jth job in the queue.

Note that lj = 0 if the job was never served.

The expected backlog evolves as follows:

Qmi(t+ 1) = Qmi(t) + Ami(t)−Dmi(t),

where Ami(t) = Ami(t)Sm since each arrival of type m brings in an expected

load of Sm. Dmi(t) is the departure of the load.

Let p̂ml = P (Sm = l + 1|Sm > l). A job of type m that is scheduled for l

amount of time, has a backlogged workload of Wm(l). It departs in the next

time slot with a probability p̂ml. With a probability 1 − p̂ml, the job does

not depart, and the expected remaining load changes to Wm(l + 1). So, the

43

departure in this case is Wm(l)−Wm(l + 1). In effect, we have

Dmi(t) =

Wm(l) with prob p̂ml

Wm(l)−Wm(l + 1) with prob 1− p̂ml.
(3.8)

This means that the Dmi(t) could be negative sometimes, which means the

expected backlog could increase even if there are no arrivals. Since the job

size distribution is lower bounded by a geometric distribution by Assumption

3.1, the expected remaining workload is upper bounded by that of a geometric

distribution. We will now show this formally.

From Assumption 3.1 on the job size distribution, we have

P (Sm = l + 1|Sm > l) ≥ C

P (Sm > l + 1|Sm > l) ≤ (1− C).

Then, using the relation P (Sm > l+ k+ 1|Sm > l) = P (Sm > l+ k+ 1|Sm >

l+k)P (Sm > l+k|Sm > l), one can inductively show that P (Sm > l+k|Sm >

l) ≤ (1− C)k for k ≥ 1. Then,

Wm(l) = E[Sm − l|Sm > l] =
∞∑
k=0

P (Sm > l + k|Sm > l)

≤
∞∑
k=0

(1− C)k ≤ 1/C. (3.9)

Then from (3.8), the increase in backlog of workload due to ‘departure’ for

each scheduled job can increase by at most Wm(l+1), which is bounded 1/C.

There are at most Nmax jobs of each type that are scheduled. The arrival in

backlog queue is at most AmaxSmax. Thus, we have

Qmi(t+ 1)−Qmi(t) ≤ AmaxSmax +
Nmax

C
. (3.10)

Similarly, since the maximum departure in work load for each scheduled job

is 1/C, we have

Qmi(t+ 1)−Qmi(t) ≥ −
Nmax

C
. (3.11)

Since every job in the queue has at least one more time slot of service left,

44

Qmi(t) ≤ Qmi(t). Since Wm(l) ≤ 1/C, we have the following lemma.

Lemma 3.2. There exists a constant C̃ ≥ 1 such that Qmi(t) ≤ Qmi(t) ≤
C̃Qmi(t) for all i,m and t.

Unlike the case of geometric job sizes, the actual departures in each time

slot depend on the amount of finished service. However, the expected de-

parture of workload in each time slot is constant even for a general job size

distribution. This is the reason we use a Lyapunov function that depends

on the workload. We prove this result in the following lemma. This is a key

result that we need for the proof.

Lemma 3.3. If a job of type m has been scheduled for l time slots, then the

expected departure in the backlogged workload is E[Dm|l] = 1. Therefore, we

have E[Dm] = 1

Proof. Recall p̂ml = P (Sm = l + 1|Sm > l). We have

Wm(l) =E[Sm − l|Sm > l]

=p̂ml·1 + (1− p̂ml) (1+E[Sm−(l + 1)|Sm > l + 1])

=1 +Wm(l + 1) (1− p̂ml) .

Thus, we have

Wm(l)−Wm(l + 1) = 1−Wm(l + 1) (p̂ml) . (3.12)

Then, from (3.8),

E[Dm|l] = Wm(l)− (1− p̂ml)Wm(l + 1)

= Wm(l)−Wm(l + 1) + (p̂ml)Wm(l + 1) = 1

from (3.12).

Since E[Dm|l] = 1 for all l, we have E[Dm] =
∑

lE[Dm|l]P (l) = 1.

As in the case of geometric job sizes, we will show stability by first showing

that the system obtained by sampling at refresh times has negative drift. For

reasons mentioned in the introduction, here we will use g(y) = log(1+y) and

45

the corresponding Lyapunov function

V (Q) =
∑
i,m

G(Qmi),

where G(.) : [0,∞)→ [0,∞) is defined as

G(q) =

∫ q

0

g(y)dy =

∫ q

0

log(1 + y)dy = (1+q) log(1+q)− q.

We will show that the drift of V (Q) between two refresh times is negative.

To do this, we will need the following generalized form the well-known Wald’s

identity.

Lemma 3.4 (Generalized Wald’s identity). Let {Xn : n ∈ N} be a sequence

of real-valued random variables and let N be a nonnegative integer-valued

random variable. Assume that

D1 {Xn}n∈N are all integrable (finite-mean) random variables

D2 E[XnI{N≥n}] = E[Xn]P (N ≥ n) for every natural number n, and

D3
∑∞

n=1 E[|Xn|I{N≥n}] <∞.

Then the random sums SN ,
∑N

n=1Xn and TN ,
∑N

n=1E[Xn] are integrable

and E[SN] = E[TN].

Then, to use the Foster-Lyapunov theorem to prove stability, one needs

to show that the drift of the Lyapunov function is negative outside a finite

set. However in the general case when the job sizes are not bounded, this

set may not be finite and so the Foster-Lyapunov theorem is not applicable.

We will instead use the following result by Hajek [33, Thm 2.3, Lemma 2.1],

which can be thought of as a generalization of the Foster-Lyapunov theorem

for non-Markovian random processes.

Lemma 3.5. Let {Zn}n≥=0 be a sequence of random variables adapted to a

filtration {Fn}n≥=0, which satisfies the following conditions:

C1 For some M and ε0, E[Zn+1 − Zn|Fn] ≤ −ε0 whenever Zn > M

C2 (|Zn+1 − Zn||Fn) < Z̃ for all n ≥ 0 and E[eθZ̃] is finite for some θ > 0.

Then, there exists θ∗ > 0 and C∗ such that lim supn→∞E[eθ
∗Zn] ≤ C∗.

46

We will use this lemma with the filtration generated by the process X(t)

and consider the drift of a Lyapunov function. However, the Lyapunov func-

tion corresponding to the logarithmic g(.) does not satisfy the Lipschitz-like

bounded drift condition C1 even though the queue lengths have bounded

increments.

Typically, if α-MaxWeight algorithm is used (i.e., one where the weight for

the queue of type m jobs at server i is Q
α

mi with α > 1) corresponding to the

Lyapunov function Vα(Q) =
∑

i,m(Qmi)
(1+α), one can modify this and use

the corresponding (1 + α) norm by considering the new Lyapunov function

Uα(Q) = (
∑

i,m(Qmi)
(1+α))

1
1+α [37]. Since this is a norm on RLM , this has

the bounded drift property. One can then obtain the drift of Uα(.) in terms

of the drift of Vα(.).

Here, we don’t have a norm corresponding to the logarithmic Lyapunov

function, so we define a new Lyapunov function U(.) as follows. Note that

G(.) is a strictly increasing function on the domain [0,∞), G(0) = 0 and

G(q) → ∞ as q → ∞. So, G(.) is a bijection and its inverse, G−1(.) :

[0,∞)→ [0,∞) is well-defined.

U(Q) = G−1(V (Q)) = G−1(
∑
i,m

G(Qmi)). (3.13)

This is related to the Lambert W function which is defined as the inverse of

xex that is studied in literature.

We will need the following Lemma relating the drift of the Lyapunov func-

tions U(.) and V (.).

Lemma 3.6. For any two nonnegative and nonzero vectors Q
(1)

and Q
(2)

,

U(Q
(2)

)− U(Q
(1)

) ≤ V (Q
(2)

)− V (Q
(1)

)

log(1 + U(Q
(1)

))
.

The proof of this Lemma is based on concavity of U(.) and is similar to

the one in [37]. The proof is presented in Appendix A.

We will need the following Lemma to verify the conditions C1 and C2 in

Lemma 3.5.

47

Lemma 3.7. For any nonnegative queue length vector Q,

1

LM

∑
i,m

log(1 + Qmi) ≤ log(1 +G−1(V (Q)))

≤ 1 +
∑
i,m

log(1 + Qmi).

The proof of this Lemma is presented in the Appendix B. We will now

present the main theorem, which establishes the throughput optimality of

Algorithm 4 when g(q) = log(1 + q).

Theorem 3.1. Assume that the job arrivals satisfy Am(t) ≤ Amax for all m

and t and that the job size distribution satisfies Assumption 3.1. Then, any

job load vector that satisfies (λ, S) ∈ int(Ĉ) is supportable under JSQ routing

and MaxWeight allocation as described in Algorithm 4 with g(q) = log(1+q).

Proof. When the queue length vector is Qmi(t), let Y(t) = {Ymi(t)}m,i de-

note the state of jobs of type-m at server i. When Qmi(t) 6= 0, Ymi(t) is a

vector of size N
(i)
m (t) and Yj

mi(t) is the amount of time the jth type-m job

that is in service at server i has been scheduled.

It is easy to see that X(t) = (Q(t),Y(t)) is a Markov chain under Algo-

rithm 4.

We will show stability of X(t) by first showing that the Markov chain X̃(n)

corresponding to the sampled system is stable, as in the proof of geometric

case.

With slight abuse of notation, we will use V (t) for V (Q(t)). Similarly,

V (n), U(t), U(n) and U(X̃(n)). We will establish this result by showing that

the Lyapunov function U(n) satisfies both the conditions of Lemma 3.5. We

will study the drift of U(n) in terms of drift of V (n) using Lemma 3.6. First

consider the following one step drift of V (t).

(V (t+ 1)− V (t))

=
∑
m,i

(
G
(
Qmi(t+ 1)

)
−G

(
Qmi(t)

))
≤
∑
m,i

(
Qmi(t+ 1)−Qmi(t)

)
g(Qmi(t+ 1)) (3.14)

=
∑
m,i

(
Qmi(t+ 1)−Qmi(t)

) (
g(Qmi(t+ 1))− g(Qmi(t))

)

48

+
∑
m,i

(
Ami(t)−Dmi(t)

)
g(Qmi(t)), (3.15)

where (3.14) follows from the convexity of G(.). To bound the first term in

(3.15), first consider the case when Qmi(t+1) ≥ Qmi(t). Since g(.) is strictly

increasing and concave, we have

∣∣g(Qmi(t+ 1))− g(Qmi(t))
∣∣

= g(Qmi(t+ 1))− g(Qmi(t))

≤ g′(Qmi(t))(Qmi(t+ 1)−Qmi(t))

≤ (Qmi(t+ 1)−Qmi(t)) =
∣∣Qmi(t+ 1)−Qmi(t)

∣∣ ,
where the second inequality follows from g′(.) ≤ 1. Similarly, we get the

same relation even when Qmi(t) > Qmi(t+ 1).

So the first term in (3.15) can be bounded as∑
m,i

(
Qmi(t+ 1)−Qmi(t)

) (
g(Qmi(t+ 1))− g(Qmi(t))

)
≤
∑
m,i

∣∣Qmi(t+ 1)−Qmi(t)
∣∣ ∣∣g(Qmi(t+ 1))− g(Qmi(t))

∣∣
≤
∑
m,i

∣∣(Qmi(t+ 1)−Qmi(t)
)∣∣2 ≤ K8,

where K8 = LM(AmaxSmax + Nmax

C
)2. The last inequality follows from (3.10)

and (3.11). Thus, we have

V (t+1)−V (t) ≤ K8+
∑
m,i

(Ami(t)−Dmi(t))g(Qmi(t)). (3.16)

Similarly, it can be shown that

V (t)− V (t+ 1) ≤ K8 +
∑
m,i

(
Dmi(t)−Ami(t)

)
g(Qmi(t+ 1)). (3.17)

Let tn denote the last refresh time up to t. Let t = tn + τ for 0 ≤ τ < zn.

Again, we use Eq [(.)] to denote E [(.)|Q(tn) = q,Y(tn)]. Now using (3.16)

in the drift of the sampled system, we get

E[V (X̃(n+ 1))− V (X̃(n))|Q̃(n) = q, Ỹ(n)]

49

=E[V (tn+1)− V (tn)|Q(tn) = q,Y(tn)]

=Eq

[
zn−1∑
τ=0

V (tn + τ + 1)− V (tn + τ)

]

≤Eq

[
zn−1∑
τ=0

(∑
m,i

(
g(Qmi(tn + τ))Ami(tn + τ)

−g(Qmi(tn + τ))Dmi(tn + τ)
))

+K8

]
. (3.18)

The last term above is bounded by K8K1 from Lemma 3.1. We will now

bound the first term in (3.18).

Eq

[
zn−1∑
τ=0

∑
m

∑
i

g(Qmi(tn + τ))Ami(tn + τ)

]

=Eq[
zn−1∑
τ=0

∑
m

g(Qmi∗m(tn+τ)(tn + τ))Am(tn + τ)Sm]

(a)

≤Eq[
zn−1∑
τ=0

∑
m

g(Qmi∗m
(tn) + τAmaxSm + τNmax/C)Am(tn + τ)Sm]

(b)

≤Eq[
zn−1∑
τ=0

∑
m

g(Qmi∗m
(tn))Am(tn + τ)Sm + τA2

maxS
2

m + τAmaxSmNmax/C]

≤
∑
m

Smg(qmi∗m)E[
zn−1∑
τ=0

Am(tn + τ)] + E[z2
n]
∑
m

A2
maxS

2

m + AmaxSmNmax/C

(c)

≤E[zn]
∑
m

Smg(qmi∗m)λm + A2
maxK2

∑
m

S
2

m +
AmaxNmax

C
K2

∑
m

Sm

≤K9 + E[zn]
∑
m

Smg(qmîm)λm, (3.19)

where i∗m(t) = arg min
i∈{1,2,,,L}

Qmi(t), i
∗
m = i∗m(tn), îm(t) = arg min

i∈{1,2,,,L}
Qmi(t), îm =

îm(tn) andK9 = A2
maxK2

∑
m S

2

m+AmaxNmax

C
K2

∑
m Sm+K1

∑
m Sm log(C̃)λm.

The first equality follows from the definition of Ami in the routing algo-

rithm in (3.1). Since Qmi∗m(tn+τ)(tn + τ) ≤ Qmi∗m(tn)(tn + τ) ≤ Qmi∗m
(tn) +

τSmAmax +τNmax/C because the load at each queue cannot increase by more

than AmaxSm +Nmax/C in each time slot, we get (a). Inequality (b) follows

from concavity of g(.) and g′(.) ≤ 1.

Inequality (c) follows from Wald’s identity and Lemma 3.1. For Wald’s

50

identity, we let Ft be the filtration generated by the process Y(t). Then,

A(t + 1) is independent of Ft and zn is a stopping time for Ft. Note that

Lemma 3.2 gives qmi∗m ≤ qmi∗mC̃ ≤ qmîmC̃ ≤ qmîmC̃. This gives (3.19).

Now we will bound the second term in (3.18). Though we use a fixed

configuration between two refresh times, there may be some unused service

when the corresponding queue length is small. We will first bound the unused

service. Let D(j)

mi(t) be the departure in workload at queue Qmi(t) due to the

jth job of type m in the configuration Ñ
(i)
m (tn) so that

Dmi(t) =

Ñ
(i)
m (tn)∑
j=1

D(j)

mi(t).

Define a fictitious departure process to account for the unused service as

follows:

D̂(j)
mi(t) =

D
(j)

mi(t) if jth job in Ñ
(i)
m (tn) was scheduled

1 if the jth job was unused.
(3.20)

D̂mi(t) =

Ñ
(i)
m (tn)∑
j=1

D̂(j)
mi(t). (3.21)

Using D̂mi(t)−Dmi(t) ≤ Nmax, we get

g(Qmi(tn + τ))Dmi(tn + τ)

=
(
g(Qmi(tn + τ))Dmi(tn + τ)

)
IQmi(tn+τ)<Nmax

+
(
g(Qmi(tn + τ))Dmi(tn + τ)

)
IQmi(tn+τ)≥Nmax

(a)

≥
(
g(Qmi(tn + τ))

(
D̂mi(tn + τ)−Nmax

))
IQmi(tn+τ)<Nmax

+
(
g(Qmi(tn + τ))D̂mi(tn + τ)

)
IQmi(tn+τ)≥Nmax

(b)

≥g(Qmi(tn + τ))D̂mi(tn + τ)−Nmaxg(C̃Nmax). (3.22)

Since that there is no unused service if Qmi(t) ≥ Nmax, we have (a). Inequal-

ity (b) follows from the fact that Qmi(t) ≤ Qmi(t)C̃ from Lemma 3.2 and

N
(i)
m (t) ≤ Nmax.

51

Since g is concave and 0 ≤ g′(.) ≤ 1, we have

g(Qmi(tn)) ≤g(Qmi(tn + τ))

+ g′(Qmi(tn + τ))(Qmi(tn)−Qmi(tn + τ))

≤g(Qmi(tn + τ)) + |Qmi(tn)−Qmi(tn + τ)|

≤g(Qmi(tn + τ)) + τ(AmaxSmax +Nmax/C),

where the last in follows from (3.10) and (3.11). Then, using D̂mi(tn + τ) ≤
Nmax/C from (3.11) in (3.22), we get

g(Qmi(tn + τ))Dmi(tn + τ)

≥g(Qmi(tn))D̂mi(tn + τ)−K10τ −Nmaxg(C̃Nmax),

where K10 = (Nmax/C)((AmaxSmax +Nmax/C). Then, using Lemma 3.1, the

second term in (3.18) can be bounded as follows:

Eq

[
zn−1∑
τ=0

∑
i,m

g(Qmi(tn + τ))Dmi(tn + τ)

]

≥Eq

[
zn−1∑
τ=0

∑
i,m

g(Qmi(tn))D̂mi(tn + τ)

]
−K11

=
∑
i,m

g(qmi)Eq

[
zn−1∑
τ=0

D̂mi(tn + τ)

]
−K11, (3.23)

where K11 = LM(K10K2 + Nmaxg(Nmax)K1). We will now use the general-

ized Wald’s Identity (Lemma 3.4), verifying conditions (D1), (D2) and (D3).

Clearly, (D1) is true because D̂mi(tn + τ) have finite mean by definition, and

from Lemma 3.3.

From definition of D̂mi(tn + τ), from (3.8) and (3.9), |D̂mi(tn + τ)| ≤
Nmax/C. So,

∞∑
τ=1

Eq

[
|D̂mi(tn + τ)|I{zn≥τ}

]
≤ Nmax

C

∞∑
τ=1

Eq

[
I{zn≥τ}

]
=
Nmax

C

∞∑
τ=1

Pq(zn ≥ τ)

=
Nmax

C
Eq[zn] ≤ NmaxK1

C
.

52

This verifies (D3). We verify (D2) by first proving the following claim.

Claim 3.1.

Eq

[
D̂mi(tn + τ)|zn ≥ τ

]
= Eq

[
D̂mi(tn + τ)

]
.

Proof. Consider the departures due to each job, D̂(j)
mi(t) as defined in (3.20).

Intuitively, conditioned on {zn ≥ τ}, we have a conditional distribution on

the amount of finished service for each of the jobs. However, from Lemma

3.3, the expected departure is 1 independent of finished service. Thus, the

conditional workload departure due to each job is 1. This is the same as

the unconditional departure, again from Lemma 3.3. We will now prove this

more formally.

The event {zn ≥ τ} is a union of many (but finite) disjoint events {Eα : α =

1 . . .A}. Each of these events Eα is of the form {(q(tn),A(tn),D(tn)), (q(tn+

1),A(tn + 1),D(tn + 1)), . . . (q(tn + τ − 1),A(tn + τ − 1),D(tn + τ − 1))}. In

other words, each event is a sample path of the system up to time tn + τ and

contains complete information about the evolution of the system from time

tn up to time tn + τ . Let l
(j)
mi be the amount of finished service for the jth

job of type m at server i. l
(j)
mi is completely determined by Eα. Conditioned

on Eα, D̂(j)
mi(t) depends only on l

(j)
mi. It is independent of the other jobs in the

system, and is also independent of the past departures. Thus, we have

Eq

[
D̂(j)
mi(tn + τ)|Eα

]
= Eq

[
D̂(j)
mi(tn + τ)|l(j)mi

]
= 1.

The last inequality follows from Lemma 3.3 and definition of D̂(j)
mi(t) in terms

of D(j)

mi(t) (3.20). Since Eα are disjoint, we have

Eq

[
D̂(j)
mi(tn + τ)|zn ≥ τ

]
=
∑
α

P (Eα|zn ≥ τ)Eq

[
D̂(j)
mi(tn + τ)|Eα

]
=
∑
α

P (Eα|zn ≥ τ) = 1.

Similarly, from Lemma 3.3 and (3.20), we have Eq

[
D̂(j)
mi(tn + τ)

]
= 1. Sum-

ming over j, from (3.21), we have the claim.

53

Since

Eq

[
D̂mi(tn + τ)Izn≥τ

]
=Eq

[
D̂mi(tn + τ)|zn ≥ τ

]
P (zn≥τ)

=Eq

[
D̂mi(tn + τ)

]
P (zn ≥ τ),

we have (D2). Therefore, using the generalized Wald’s identity (Lemma 3.4)

in (3.23), we have

Eq

[
zn−1∑
τ=0

∑
i,m

g(Qmi(tn + τ))Dmi(tn + τ)

]
≥
∑
i,m

g(qmi)Eq [zn] Ñ (i)
m (tn)−K11. (3.24)

The key idea is to note that the expected departures of workload for each

scheduled job is 1 from Lemma (3.3). We use this, along with the generalized

Wald’s theorem, to bound the departures similar to the case of geometric job

sizes.

Since (λ, S) ∈ Ĉ, there exists {λi}i such that λ =
∑

i λ
i and λi ◦ S ∈

int(Conv(Ni)) for all i . Then, there exists an ε > 0 such that (λi + ε) ◦ S ∈
Conv(Ni) for all i. From Lemma 3.2, we have g(qmi) ≤ g(C̃qmi) ≤ log(C̃(1+

qmi)) ≤ g(qmi) + log(C̃). The last inequality which is an immediate conse-

quence of the log function has also been exploited in [38] [39]for a different

problem. For each server i, we have∑
m

(g(qmi)− log(C̃))(λim + ε)Sm ≤
∑
m

g(qmi)(λ
i
m + ε)Sm

(a)

≤
∑
m

g(qmi)Ñ
(i)
m (tn)

≤
∑
m

g(qmi)Ñ
(i)
m (tn),

where (a) follows from the Algorithm 4 since Ñ
(i)
m (tn) is chosen according

to MaxWeight policy. The last inequality again follows from Lemma 3.2.

Substituting this in (3.24) and from (3.19) and (3.18), we get

E[V (X̃(n+ 1))− V (X̃(n))|Q̃(n) = q, Ỹ(n)]

54

≤K12+Eq[zn]
∑
m

(
g(qmîm)λmSm−

∑
i

g(qmi)(λ
i
m + ε)Sm

)
(a)

≤K12 − εSminEq[zn]
∑
i

∑
m

g(qmi)

≤K13 − εSmin log(1 +G−1(V (q))),

where K12 = K8K1 +K9 +K11 + log(C̃)
∑

m(λm + Lε)Sm and K13 = K12 +

εSminK1. Inequality (a) follows from λ =
∑

i λ
i and qmîm ≤ qmi. The last

inequality follows from Lemma 3.7 and since zn ≥ 1.

If the job sizes were bounded, we can find a finite set of states B = {x :∑
m

∑
i g(qmi) <M} so that the drift is negative whenever x ∈ Bc. Then,

similar to the proof in section 3.2, Foster-Lyapunov theorem can be used to

show that the sampled Markov chain X̃(n) is positive recurrent. We need the

bounded job size assumption here because, if not, the set B could then be

infinite since for each q there are infinite possible values of state x = (q,y)

with different values of y.

Since the job sizes are not bounded in general, we will use Lemma 3.5 to

show stability of Algorithm 4 for the random process U(n). From Lemma

3.6, we have

E[U(X̃(n+ 1))− U(X̃(n))|X̃(n) = x = (q,y)]

≤E

[
V (X̃(n+ 1))− V (X̃(n))

log(1 + U(X̃(n))

∣∣∣∣∣ X̃(n) = x = (q,y)

]

≤ K13

log(1 + U(q))
− εSminK1 ≤ −εSminK1

2

whenever U(q) > e(2K13/εSminK1). Thus, U(n) satisfies condition C1 of Lemma

3.5 for the filtration generated by the {X̃(n)}. From Lemma 3.6, Lemma 3.7

and (3.16), we have

(U(tn + τ + 1)− U(tn + τ))

≤ [V (tn + τ + 1)− V (tn + τ)]

log(1 +G−1(V (Q(tn + τ))))

≤
K8 + Amax

∑
m,i Smg(Qmi(tn + τ))

log(1 +G−1(V (Q(tn + τ))))

55

≤ K8

log(1 +G−1(V (Q(tn + τ))))
+
AmaxSmax

LM

(a)

≤K14 if U(tn + τ) > 0,

where K14 = K8

log(2)
+ AmaxSmax

LM
. Since U(Q) > 0 if and only if V (Q) > 0 if

and only if Q 6= 0, there is at least one nonzero component of Q = 0 and

so V (tn + τ) > G(1). This gives the inequality (a). If U(tn + τ) = 0, from

(3.16), we have (U(tn + τ + 1) − U(tn + τ)) ≤ K15
∆
= G−1 (K4). Thus, we

have

(U(tn + τ + 1)− U(tn + τ)) ≤ K16,

where K16 = max{K14, K15}. Similarly, from (3.17) it can be shown that

(U(tn + τ)− U(tn + τ + 1)) ≤ K18,

where K18 = max{K17, K15} and K17 = K8

log(2)
+ Nmax

LM
. Setting K19 =

max{K16, K18}, we have

(|U(tn + τ)− U(tn + τ + 1)|) ≤ K19

(|U(tn + τ)− U(tn + τ + 1)||X(tn)) ≤ K19(
|U(X̃(n+ 1))− U(X̃(n))|

∣∣∣ X̃(n)
)
≤ K19zn, ≤ K19zn

where zn is the coupled random variable constructed in the proof of Lemma

3.1. Since zn is a geometric random variable by construction, it satisfies

condition C1 in Lemma 3.5. Thus, we have that there are constants θ∗ > 0

and K4 > 0 such that, limn→∞
∑

m

∑
iE[eθ

∗U(X̃(n))] ≤ K4. Since G(.) is

convex, from Jensen’s inequality, we have

G

(∑
m,i Qmi(tn)

LM

)
≤
∑

m,iG
(
Qmi(tn)

)
LM

≤ V (Q(tn)). (3.25)

Then, from Lemma 3.2 and (b), we get

∑
m,i

Qmi(tn) ≤
∑
m,i

Qmi(tn) ≤ LMU(Q(tn)) ≤ LM

θ∗
eθ
∗U(X̃(n)).

56

Thus, we have limn→∞
∑

m

∑
iE[Qmi(tn)] ≤ LM

θ∗
K4.

For any t > 0, if tn+1 is the next refresh time after t, from (3.11) we have

Qmi(t) ≤ Qmi(t) ≤ Qmi(tn+1) + zn
Nmax

C

≤ C̃Qmi(tn+1) + zn
Nmax

C∑
m

∑
i

E[Qmi(t)] ≤
∑
m

∑
i

E[C̃ (Qmi(tn+1) + znNmax/C)].

As t→∞, we get

lim sup
t→∞

∑
m,i

E[Qmi(t)] ≤ lim sup
n→∞

∑
m,i

E

[
C̃Qmi(tn)+zn

Nmax

C

]
≤ LM

θ∗
C̃K4 +

K1LMNmax

C
.

A centralized queuing architecture was considered in Chapter 2. In such

a model, all the jobs are queued at a central location and all the servers

serve jobs from the same queues. There are no queues at the servers. The

scheduling algorithm in Algorithm 4 can be used in this case with each server

using the central queue lengths for the MaxWeight policy. It can be shown

that this algorithm is throughput optimal. The proof is similar to that of

Theorem 3.1 and so we skip it.

3.4 Local Refresh Times

According to Algorithm 4, each server performs MaxWeight scheduling only

at refresh times. At other times, it uses the same schedule as before. Since

a refresh time happens only when none of the servers are serving any jobs,

refresh times could be pretty infrequent in practice. Moreover, refresh times

become rarer as the number of servers increases. This may lead to large

queue lengths and delays in practice.

Another disadvantage with the use of (global) refresh times is that there

needs to be some form of coordination between the servers to know if a time

slot is a refresh time or not. So, we propose the use of local refresh times

instead. For server m, a local refresh time is a time when all the jobs that

57

are in service at server m finish their service simultaneously. Thus, if a time

instant is a local refresh time for all the servers, it is a (global) refresh time

for the system.

Consider the following Algorithm 5. Routing is done according to the Join

the shortest Queue algorithm as before. For scheduling, each server chooses

a MaxWeight schedule only at local refresh times. Between the local refresh

times, a server maintains the same configuration. It is not clear if this is

throughput optimal or not. Each server may have multiple local refresh times

between two (global) refresh times and the schedule changes at these refresh

times. So the proof approach from the previous section is not applicable here.

Investigating throughput optimality of this algorithm is an open problem.

We propose Algorithm 6 with a simpler routing algorithm which is more

tractable analytically. In traditional load balancing problem without any

scheduling (i.e., when the jobs and servers are one dimensional), random

routing is known to be throughput optimal when all the servers are identical.

In practice, many data centers have identical servers. In such a case, the

following proposition presents throughput optimality of Algorithm 6.

Algorithm 6 Random Routing and MaxWeight Scheduling at Local Refresh
times

1. Routing Algorithm (JSQ Routing): Each job that arrives into the sys-
tem is routed to one of the servers uniformly at random.

2. Scheduling Algorithm (MaxWeight Scheduling) for each server i: Let

Ñ
(i)
m (t) denote a configuration chosen in each time slot. If the time slot

is a local refresh time, Ñ
(i)
m (t) is chosen according to the MaxWeight

policy, i.e.,

Ñ (i)(t) ∈ arg max
N∈Ni

∑
m

g(Qmi(t))Nm.

If it is not a refresh time, Ñ
(i)
m (t) = Ñ

(i)
m (t− 1).

Proposition 3.2. Assume that all the servers are identical and the job size

distribution satisfies Assumption 3.1. Then, any job load vector that satisfies

(λ, S) ∈ int(Ĉ) is supportable under random routing and MaxWeight schedul-

ing at local refresh times as described in Algorithm 6 with g(q) = log(1 + q).

58

We skip the proof here because it is very similar to that of Theorem 3.1.

Since routing is random, each server is independent of other servers in the

system. So, one can show that each server is stable under the job load vector

(λ/L, S) using the Lyapunov function in (3.13). This then implies that the

whole system is stable.

In the next section, we study the performance of these algorithms by sim-

ulations.

3.5 Simulations

In this section, we use simulations to compare the performance of the Algo-

rithms presented so far. We use the same simulation set up as in Chapter 2

with 100 identical servers, three types of jobs and three maximal VM config-

urations for each server viz., (2, 0, 0), (1, 0, 1), and (0, 1, 1). We consider two

load vectors, λ(1) = (1, 1
3
, 2

3
) and λ(2) = (1, 1

2
, 1

2
) which are on the boundary

of the capacity region of each server. λ(1) is a linear combination of all the

three maximal schedules whereas λ(2) is a combination of two of the three

maximal schedules.

We consider three different job size distributions. Distribution A is the

same bounded distribution that was considered in Chapter 2, which models

the high variability in jobs sizes. When a new job is generated, with probabil-

ity 0.7, the size is an integer that is uniformly distributed between 1 and 50;

with probability 0.15, it is an integer that is uniformly distributed between

251 and 300; and with probability 0.15, it is uniformly distributed between

451 and 500. Therefore, the average job size is 130.5.

Distribution B is a geometric distribution with mean 130.5. Distribution

C is a combination of distributions A and B with equal probability, i.e., the

size of a new job is sampled from distribution A with probability 1/2 and

from distribution B with probability 1/2.

We further assume the number of type-i jobs arriving at each time slot

follows a binomial distribution with parameter (ρ λi
130.5

, 100).

All the plots in this section compare the mean delay of the jobs under

various algorithms. The parameter ρ is varied to simulate different traffic

intensities. Each simulation was run for one million time slots.

59

Figure 3.1: Comparison of mean delay under Algorithms 4 and 6 for load
vector λ(1) and job size distribution A

3.5.1 Local vs. Global Refresh Times

In this subsection, we compare the performance of Algorithms 4 and 6 which

are proven to be throughput optimal. Figure 3.1 shows the mean delay of

the jobs under the job size distribution A and load vector λ(1).

Algorithm 4 has poor performance because of the amount of time between

two refresh times. However, using Algorithm 6 with local refresh times gives

much better performance (in the case when servers are identical). Even

though both algorithms are throughput optimal, Algorithm 6 has better

performance in practice.

3.5.2 Heuristics

In this section, we study the performance of some heuristic algorithms. We

have seen in the previous subsection that the idea of using local refresh times

is good. Since JSQ routing provides better load balancing than random

routing, a natural algorithm to study is one that does JSQ routing and

updates schedules at local refresh times. This leads us to Algorithm 5. Since

we don’t know if Algorithm 5 is throughput optimal, we study its performance

using simulations.

We also consider another heuristic algorithm motivated by Algorithm 4

60

Figure 3.2: Comparison of mean delay under Algorithms 5, 7 and 6 for load
vector λ(1) and job size distribution A

and Algorithm 3 in Chapter 2 as follows. Routing is done according to the

join the shortest queue algorithm. At refresh times, a MaxWeight schedule

is chosen at each server. At all other times, each server tries to choose a

MaxWeight schedule myopically. It does not preempt the jobs that are in

service. It adds new jobs to the existing configuration so as to maximize

the weight using g(Qmi(t)) as weight without disturbing the jobs in service.

This algorithm tries to emulate a MaxWeight schedule in every time slot by

greedily adding new jobs with higher priority to long queues. We call this

Algorithm 7.

This algorithm has the advantage that, at refresh times, an exact MaxWeight

schedule is chosen automatically, so the servers need not keep track of the

refresh times. It is not clear if this algorithm is throughput optimal. The

proof in section 3.3 is not applicable here because one cannot use Wald’s

identity to bound the drift. This algorithm is an extension of Algorithm 3

Chapter 2 when the super time slots are taken to be infinite. However as

stated in Chapter 2, Algorithm 3 is almost throughput optimal only when

the super time slot is finite. Investigating throughput optimality of 7 under

appropriate assumptions is an open problem.

Figures 3.2, 3.3 and 3.4 compare the mean delay of the jobs under Algo-

rithms 5, 7 and 6 with the three job size distributions using the load vector

λ(1). Figure 3.5 shows the case when the load vector λ(2) is used.

61

Figure 3.3: Comparison of mean delay under Algorithms 5, 7 and 6 for load
vector λ(1) and job size distribution B

Figure 3.4: Comparison of mean delay under Algorithms 5, 7 and 6 for load
vector λ(1) and job size distribution C

62

Figure 3.5: Comparison of mean delay under Algorithms 5, 7 and 6 for load
vector λ(2) and job size distribution A

The simulations indicate that both Algorithms 5 and 7 have better delay

performance than Algorithm 6 for all job size distributions and both the load

vectors. The performance improvement is more significant at higher traffic

intensities. In the cases studied, simulations suggest that Algorithms 5 and

7 are also throughput optimal. Since we do not know if this always true, it

is an open question for future research to characterize the throughput region

of Algorithms 5 and 7.

In sections 3.2, it was noted that a wide class of weight functions can be

used for MaxWeight schedule in the case of geometric job sizes. However,

the proof in section 3.3 required a log(1 + q) weight function for general

job size distributions. So, we now study the delay performance under linear

and log weight functions. Figure 3.6 shows the delay of Algorithms 5 and

7 under the weight functions, q and log(1 + q). Job size distribution A was

used with the load vector λ(1). It can be seen that there is no considerable

difference in performance between the two weight functions. It is an open

question whether Algorithms 4 and 6 are throughput optimal under more

weight functions.

63

Figure 3.6: Comparison of mean delay under Algorithms 5 and 7 for load
vector λ(1) and job size distribution A with log and linear weights

3.6 Conclusion

In this chapter, we studied various algorithms for the problem of routing

and nonpreemptive scheduling jobs with variable, unknown and unbounded

sizes in a cloud computing data center. The key idea in these algorithms is to

choose a MaxWeight schedule at either local or global refresh times. We have

presented two algorithms that are throughput optimal. The key idea in the

proof is to show that the refresh times occur often enough and then use this

to show that the drift of a Lyapunov function is negative. We then presented

two heuristic algorithms and studied their performance using simulations.

64

CHAPTER 4

LIMITED PREEMPTION

In the last two chapters, we have assumed that preemption is absolutely

not allowed. For the algorithm studied in chapter 2, we were only able to

characterize an inner bound of the capacity region. Due to the wasted time

with in a super time slot, these algorithms did not achieve 100% of the

capacity region. In Chapter 3, when global refresh times were used even

though we were able to prove throughput optimality, poor performance of

the algorithm makes it impractical to use. When local refresh times were

used in conjunction with random routing, we were able to prove throughput

optimality, performance was not satisfactory. However, using JSQ routing

gave much better performance.

In this chapter, we assume that jobs are allowed to be preempted every

T time slots. This is a reasonable assumption because in practice, when a

job lasts for a long time, it is preempted to accommodate other potentially

shorter jobs. Every T time slots are grouped into a super time slot. We

assume that at the beginning of every super time slot, one is allowed to

interrupt/reshuffle jobs. Therefore, a MaxWeight algorithm can be chosen

at the beginning of every super time slot. Between super time slots, we will

use myopic MaxWeight scheduling. We will primarily focus on JSQ routing

in this chapter. The results can be extended to power-of-two choices routing

algorithm as well.

In this chapter, we consider the case when job sizes are unknown, similar

to the results in Chapter 3. In the next chapter, we will assume that job

sizes are known, similar to the case studied in Chapter 2 and study delay

optimality.

65

4.1 Unknown Job Sizes

As in Chapter 3, in this section we will assume that the job sizes are not

known either at arrival or during the service. Since reshuffling of jobs is

allowed every super time slot, we do not need the notion of refresh times any

more. The details of the algorithm are presented in Algorithm 8.

Algorithm 8 JSQ Routing and myopic MaxWeight Scheduling

1. Routing Algorithm (JSQ Routing): All the type m jobs that arrive in
time slot t are routed to the server with the shortest queue for type m
jobs i.e., the server i∗m(t) = arg min

i∈{1,2,,,L}
Qmi(t). Therefore, the arrivals to

Qmi in time slot t are given by

Ami(t) =

{
Am(t) if i = i∗m(t)

0 otherwise.
(4.1)

2. Scheduling Algorithm (Myopic MaxWeight Scheduling) for each server
i: T time slots are grouped into a super time slot. A MaxWeight
configuration is chosen at the beginning of a super time slot. So, for
t = nT , configuration Ñ (i)(t) is chosen according to

Ñ (i)(t) ∈ arg max
N∈Ni

∑
m

g(Qmi(t))Nm. (4.2)

For all other t, at the beginning of the time slot, a new configuration
is chosen as follows:

Ñ (i)(t) ∈ arg max
N :N+N(i)(t−)∈Ni

∑
m

g(Qmi(t))Nm,

where N (i)(t−) is the configuration of jobs at server i that are still

in service at the end of the previous time slot. However, Ñ
(i)
m (t) jobs

of type m may not be present at server i, in which case all the jobs
in the queue that are not yet being served will be included in the

new configuration. If N
(i)

m (t) denotes the actual number of type m jobs

selected at server i, then the configuration at time t is N (i)(t) = N
(i)

(t).
Otherwise, i.e., if there are enough number of jobs at server i, N (i)(t) =

Ñ (i)(t).

To prove throughput optimality, Assumption 3.1 in Chapter 3 can now

be relaxed. Before we state the new assumption, we need the following

66

definition.

Definition 4.1. For a random variable S, W (s) = E[S − s|S > s] is called

its Mean Residual Life function or Mean excess function.

If S is a random variable denoting the job size distribution, then the mean

residual life is the expected remaining amount of service of that job given

that it has been served for s time slots.

Assumption 4.1. The mean residual function of the job size distribution of

type m jobs is upper bounded by a constant 1/Cm.

Example 4.1. A geometric random variable has a constant mean residual

function and so satisfies Assumption 4.1. Any distribution with finite support

also satisfies Assumption 4.1.

Example 4.2. Zeta distribution, a heavy-tailed distribution and a discrete

counterpart of Pareto distribution, is given by P (S = k) = k−a/ζ(a) where

ζ(a) is the Reimann-Zeta function and a > 1. Then, the mean residual

function is

W (s) = E[S − s|S > s]

=

∑∞
s′=s+1 P (S ≥ s′)

P (S ≥ s+ 1)

=

∑∞
s′=s+1

∑∞
s′′=s′(s

′′)−a∑∞
s′=s+1(s′)−a

.

Note that
∑∞

s′′=s′(s
′′)−a >

∫∞
s′
x−adx = (s′)1−a

a−1
since a > 1. So, we have

W (s) >
1

a− 1

∑∞
s′=s+1(s′)1−a∑∞
s′=s+1(s′)−a

≥ s+ 1

a− 1

∑∞
s′=s+1(s′)−a∑∞
s′=s+1(s′)−a

=
s+ 1

a− 1
.

Therefore, W (s) cannot be upper bounded by a constant and so Zeta distri-

bution does not satisfy Assumption 4.1.

We will now show that Algorithm 8 is throughput optimal with appropri-

ately chosen g(.) when the job size distributions satisfy Assumption 4.1.

67

The process X(t) = (Q(t),Y(t)) is a Markov chain, where Y(t) is defined

in the section 3.2 of Chapter 3. Let Wm(l) be the mean residual life of a job

of type m given that it has already been served for l time slots. In other

words, Wm(l) = E[Sm− l|Sm > l]. Note that Wm(0) = Sm. Then, we denote

the expected backlogged workload at each queue by Qmi(t). Thus,

Qmi(t) =

Qmi∑
j=1

Wm(lj),

where lj is the duration of completed service for the jth job in the queue.

Note that lj = 0 if the job was never served.

The expected backlog evolves as follows:

Qmi(t+ 1) = Qmi(t) + Ami(t)−Dmi(t),

where Ami(t) = Ami(t)Sm since each arrival of type m brings in an expected

load of Sm. Dmi(t) is the departure of the load.

Let p̂ml = P (Sm = l + 1|Sm > l). A job of type m that is scheduled for l

amount of time has a backlogged workload of Wm(l). It departs in the next

time slot with a probability p̂ml. With a probability 1 − p̂ml, the job does

not depart, and the expected remaining load changes to Wm(l + 1), so the

departure in this case is Wm(l)−Wm(l + 1). In effect, we have

Dmi(t) =

Wm(l) with prob p̂ml

Wm(l)−Wm(l + 1) with prob 1− p̂ml.
(4.3)

This means that the Dmi(t) could be negative sometimes, which means

the expected backlog could increase even if there are no arrivals.

Then from (4.3), the increase in backlog of workload due to ‘departure’

for each scheduled job can increase by at most Wm(l + 1), which is upper

bounded by 1/Cm due to Assumption 4.1. There are at most Nmax jobs

of each type that are scheduled. The arrival in backlog queue is at most

AmaxSmax. Then, defining C = minm{Cm} we have

Qmi(t+ 1)−Qmi(t) ≤ AmaxSmax +
Nmax

Cm

≤ AmaxSmax +
Nmax

C
. (4.4)

68

Similarly, since the maximum departure in work load for each scheduled job

is 1/Cm, we have

Qmi(t+ 1)−Qmi(t) ≥ −
Nmax

Cm
≥ −Nmax

C
. (4.5)

Theorem 4.1. Assume that the job arrivals satisfy Am(t) ≤ Amax for all m

and t and that the job size distribution satisfies Assumption 4.1. Then, any

job load vector that satisfies (λ, S) ∈ int(Ĉ) is supportable under JSQ routing

and myopic myopic MaxWeight allocation as described in Algorithm 8 with

g(q) = log(1 + q).

Proof. When the queue length vector is Qmi(t), let Y(t) = {Ymi(t)}m,i de-

note the state of jobs of type-m at server i. When Qmi(t) 6= 0, Ymi(t) is

a vector with one entry for each job that was partially served. Some of the

partially served jobs are currently scheduled and some were interrupted at

the beginning of a super time slot. Therefore, the size of Ymi(t) is at most

Qmi(t) and Yj
mi(t) is the amount of time the jth partially served type-m job

that is in service at server i has been served.

It is easy to see that X(t) = (Q(t),Y(t)) is a Markov chain under Algo-

rithm 8.

Obtain a new process, X̃(n), by sampling the Markov chain X(t) every T

time slots, i.e., X̃(n) = X(nT). Note that X̃(n) is also a Markov chain.

We will show stability of X(t) by first showing that the Markov Chain

X̃(n) corresponding to the sampled system is stable.

With slight abuse of notation, we will use V (t) for V (Q(t)). Similarly,

V (n), U(t) and U(n). We will establish this result by showing that the

Lyapunov function U(n) satisfies both the conditions of Lemma 3.5. We will

study the drift of U(n) in terms of drift of V (n) using Lemma 3.6. First

consider the following one step drift of V (t):

(V (t+ 1)− V (t))

=
∑
m,i

(
G
(
Qmi(t+ 1)

)
−G

(
Qmi(t)

))
≤
∑
m,i

(
Qmi(t+ 1)−Qmi(t)

)
g(Qmi(t+ 1)) (4.6)

=
∑
m,i

(
Qmi(t+ 1)−Qmi(t)

) (
g(Qmi(t+ 1))− g(Qmi(t))

)
69

+
∑
m,i

(
Ami(t)−Dmi(t)

)
g(Qmi(t)), (4.7)

where (4.6) follows from the convexity of G(.). To bound the first term in

(4.7), first consider the case when Qmi(t+ 1) ≥ Qmi(t). Since g(.) is strictly

increasing and concave, we have

∣∣g(Qmi(t+ 1))− g(Qmi(t))
∣∣

= g(Qmi(t+ 1))− g(Qmi(t))

≤ g′(Qmi(t))(Qmi(t+ 1)−Qmi(t))

≤ (Qmi(t+ 1)−Qmi(t)) =
∣∣Qmi(t+ 1)−Qmi(t)

∣∣ ,
where the second inequality follows from g′(.) ≤ 1. Similarly, we get the

same relation even when Qmi(t) > Qmi(t+ 1).

So the first term in (4.7) can be bounded as∑
m,i

(
Qmi(t+ 1)−Qmi(t)

) (
g(Qmi(t+ 1))− g(Qmi(t))

)
≤
∑
m,i

∣∣Qmi(t+ 1)−Qmi(t)
∣∣ ∣∣g(Qmi(t+ 1))− g(Qmi(t))

∣∣
≤
∑
m,i

∣∣(Qmi(t+ 1)−Qmi(t)
)∣∣2 ≤ K8,

where K8 = LM(AmaxSmax + Nmax

C
)2 as defined in Chapter 3. The last

inequality follows from (4.4) and (4.5). Thus, we have

V (t+ 1)− V (t) ≤ K8 +
∑
m,i

(Ami(t)−Dmi(t))g(Qmi(t)). (4.8)

Similarly, it can be shown that

V (t)− V (t+ 1) ≤ K8 +
∑
m,i

(
Dmi(t)−Ami(t)

)
g(Qmi(t+ 1)). (4.9)

Again, we use Eq [(.)] to denote E [(.)|Q(nT) = q,Y(nT)]. Now using

(3.16) in the drift of the sampled system, we get

E[V (X̃(n+ 1))− V (X̃(n))|Q̃(n) = q, Ỹ(n)]

=E[V ((n+ 1)T)− V (nT)|Q(nT) = q,Y(nT)]

70

=Eq

[
T−1∑
τ=0

V (nT + τ + 1)− V (nT + τ)

]

≤Eq

[
T−1∑
τ=0

(∑
m,i

(
g(Qmi(nT + τ))Ami(nT + τ)

−g(Qmi(nT + τ))Dmi(nT + τ)
))

+K8

]
. (4.10)

The last term above is bounded by K8T . We will now bound the first term

in (4.10).

Eq

[
T−1∑
τ=0

∑
m

∑
i

g(Qmi(nT + τ))Ami(nT + τ)

]

=Eq[
T−1∑
τ=0

∑
m

g(Qmi∗m(nT+τ)(nT + τ))Am(nT + τ)Sm]

(a)

≤Eq[
T−1∑
τ=0

∑
m

g(Qmi∗m
(nT) + τAmaxSm + τNmax/C)Am(nT + τ)Sm]

(b)

≤Eq[
T−1∑
τ=0

∑
m

g(Qmi∗m
(nT))Am(nT + τ)Sm + τA2

maxS
2

m + τ
Nmax

C
AmaxSm]

=
∑
m

Smg(qmi∗m)E[
T−1∑
τ=0

Am(nT + τ)] +K20

≤K21 + T
∑
m

Smg(qmîm)λm, (4.11)

where i∗m(t) = arg min
i∈{1,2,,,L}

Qmi(t), i
∗
m = i∗m(nT), îm(t) = arg min

i∈{1,2,,,L}
Qmi(t), îm =

îm(nT) and K20 =
∑

m(A2
maxS

2

m + NmaxAmax/C)T (T − 1)/2 K21 = K20 +

T
∑

m Sm log(C̃)λm. The first equality follows from the definition of Ami in

the routing algorithm in (4.1). Since Qmi∗m(nT+τ)(nT + τ) ≤ Qmi∗m(nT)(nT +

τ) ≤ Qmi∗m
(nT)+SmAmaxτ+τNmax/C because the load at each queue cannot

increase by more than AmaxSm+Nmax/C in each time slot from (4.4), we get

(a). Inequality (b) follows from concavity of g(.) and g′(.) ≤ 1. Note that

Lemma 3.2 gives qmi∗m ≤ qmi∗mC̃ ≤ qmîmC̃ ≤ qmîmC̃. This gives (4.11).

Now consider the second term in (4.10).

Eq

[
T−1∑
τ=0

g(Qmi(nT + τ))Dmi(nT + τ)

]

71

=
T−1∑
τ=0

Eq

[
g(Qmi(nT + τ))Dmi(nT + τ)

]
=

T−1∑
τ=0

Eq

[
E

[∑
i,m

g(Qmi(nT + τ))Dmi(nT + τ)∣∣∣∣∣Y(nT + τ),Q(nT + τ), N (i)
m (nT + τ)

]]

=Eq

[
T−1∑
τ=0

∑
i,m

g(Qmi(nT + τ))N (i)
m (nT + τ)

]
, (4.12)

where the last equality follows from Lemma 3.3 since the expected departure

is 1 for any job that is scheduled.

To bound this term, we will first show that the increase of
∑
m

g(Qmi(t))N
(i)
m (t)

is bounded in a super time slot. For any t such that nT ≤ t < (n+ 1)T , for

each server i,∑
m

g(Qmi(t))N
(i)
m (t− 1)

=
∑
m

g(Qmi(t))N
(i)
m (t−)

+
∑
m

g(Qmi(t))
(
N (i)
m (t− 1)−N (i)

m (t−)
)

(a)

≤
∑
m

g(Qmi(t))N
(i)
m (t−) +

∑
m

g(Qmi(t))Ñ
(i)
m (t)

=
∑
m

(
g(Qmi(t))N

(i)
m (t−) + g(Qmi(t))Ñ

(i)
m (t)

)
IQmi(t)≥Nmax

+
∑
m

(
g(Qmi(t))N

(i)
m (t−)+g(Qmi(t))Ñ

(i)
m (t)

)
IQmi(t)<Nmax

(b)

≤
∑
m

g(Qmi)(t)N
(i)
m (t) +MNmaxg(C̃Nmax),

where inequality (a) follows from the definition Ñ
(i)
m (t); and inequality (b)

holds for the following reason. When Qmi(t) ≥ Nmax, there are enough

type-m jobs to be allocated to the servers, and so N
(i)

m (t) = Ñ
(i)
m (t) and

N
(i)
m (t) = N

(i)
m (t−) + Ñ

(i)
m (t). For the other case, we just use the fact that

Qmi(t) ≤ Qmi(t)C̃ from Lemma 3.2 and N
(i)
m (t) ≤ Nmax

From (4.5), since Qmi(t− 1)−Qmi(t) ≤ Nmax/C, again from concavity of

72

g(.) and g′(.) ≤ 1, we have∑
m

g(Qmi(t− 1))N (i)
m (t− 1) ≤ β′ +

∑
m

g(Qmi(t))N
(i)
m (t),

where β′ = MNmaxg(C̃Nmax)+MN2
max. Using this recursively for t = nT +τ

such that τ < T , we get

−
∑
m

g(Qmi(nT + τ))N (i)
m (nT + τ) ≤ τβ′ −

∑
m

g(Qmi(nT))N (i)
m (nT).

Since (λ, S) ∈ Ĉ, there exists {λi}i such that λ =
∑

i λ
i and λi ◦ S ∈

int(Conv(Ni)) for all i . Then, there exists an ε > 0 such that (λi + ε) ◦ S ∈
Conv(Ni) for all i. From Lemma 3.2, we have g(Qmi(nT)) ≤ g(C̃Qmi(nT)) ≤
log(C̃(1 + Qmi(nT))) ≤ g(Qmi(nT)) + log(C̃). The last inequality which is

an immediate consequence of the log function has also been exploited in [38],

[39] for a different problem. For each server i, we have∑
m

g(Qmi(nT))(λim + ε)Sm − log(C̃)
∑
m

(λim + ε)Sm

≤
∑
m

g(Qmi(nT))(λim + ε)Sm

=
∑
m

(
g(Qmi(nT))(λim + ε)Sm

)
IQmi(nT)≥Nmax

+
∑
m

(
g(Qmi(nT))(λim + ε)Sm

)
IQmi(nT)<Nmax

≤
∑
m

g(Qmi(nT))N (i)
m (nT) + g(Nmax)

∑
m

(λim + ε)Sm

≤
∑
m

g(Qmi(nT))N (i)
m (nT) + g(Nmax)

∑
m

(λim + ε)Sm.

Since the schedule chosen is MaxWeight schedule whenever Qmi(nT) ≥
Nmax, we have the first inequality. The last inequality again follows from

Lemma 3.2. Summing over i, we get

−
∑
i

∑
m

g(Qmi(nT + τ))N (i)
m (nT + τ)

≤ Lτβ′ −
∑
i

∑
m

g(Qmi(nT))N (i)
m (nT)

≤ Lτβ′ −
∑
i

∑
m

g(Qmi(nT))(λim + ε)Sm +K22,

73

where K22 = (g(Nmax)+log(C̃))
∑

m(λm+Lε)Sm. Substituting this in (4.12),

summing over τ and using Lemma 3.1, we get

−Eq

[
T−1∑
τ=0

∑
i,m

g(Qmi(nT + τ))Dmi(nT + τ)

]
≤K23 − T

∑
i

∑
m

g(qmi(nT))(λim + ε)Sm,

where K23 = K22T + Lβ′T (T − 1)/2.

Substituting this and (4.11) in (3.18), we get

E[V (X̃(n+ 1))− V (X̃(n))|Q̃(n) = q, Ỹ(n)]

≤K24+T
∑
m

(
g(qmîm)λmSm−

∑
i

g(qmi)(λ
i
m + ε)Sm

)
(a)

≤K24 − εSminT
∑
i

∑
m

g(qmi)

≤K25 − εSminT log(1 +G−1(V (q))),

where K24 = K8 + K21 + K23 + log(C̃)
∑

m(λm + Lε)Sm and K25 = K24 +

εSminT . Inequality (a) follows from λ =
∑

i λ
i and qmîm ≤ qmi. The last

inequality follows from Lemma 3.7.

If the job sizes were bounded, we can find a finite set of states B = {x :∑
m

∑
i g(qmi) <M} so that the drift is negative whenever x ∈ Bc. Then,

similar to the proof in section 3.2, the Foster-Lyapunov theorem can be used

to show that the sampled Markov Chain X̃(n) is positive recurrent. We need

the bounded job size assumption here because, without it the set B could be

infinite since for each q there are infinite possible values of state x = (q,y)

with different values of y.

Since the job sizes are not bounded in general, we will use Lemma 3.5 to

show stability of Algorithm 3 for the random process U(n). From Lemma

3.6, we have

E[U(X̃(n+ 1))− U(X̃(n))|X̃(n) = x = (q,y)]

≤E

[
V (X̃(n+ 1))− V (X̃(n))

log(1 + U(X̃(n))

∣∣∣∣∣ X̃(n) = x = (q,y)

]

74

≤ K25

log(1 + U(q))
− εSminT ≤ −εSminT

2

whenever U(q) > e(2K25/εSminT). Thus, U(n) satisfies condition C1 of Lemma

3.5 for the filtration generated by the {X̃(n)}. We will now verify condition

C2. From Lemma 3.6, Lemma 3.7 and (4.8), we have

(U(nT + τ + 1)− U(nT + τ))

≤ [V (nT + τ + 1)− V (nT + τ)]

log(1 +G−1(V (Q(nT + τ))))

≤
K8 + Amax

∑
m,i Smg(Qmi(nT + τ))

log(1 +G−1(V (Q(nT + τ))))

≤ K8

log(1 +G−1(V (Q(nT + τ))))
+
AmaxSmax

LM

(a)

≤K14 if U(nT + τ) > 0,

where K14 = K8

log(2)
+ AmaxSmax

LM
. Since U(Q) > 0 if and only if V (Q) > 0 if

and only if Q 6= 0, there is at least one nonzero component of Q = 0 and so

V (nT + τ) > G(1). This gives the inequality (a). If U(nT + τ) = 0, from

(3.16), we have (U(nT + τ + 1)− U(nT + τ)) ≤ K15 = G−1 (K4). Thus, we

have

(U(nT + τ + 1)− U(nT + τ)) ≤ K16,

where K16 = max{K14, K15}. Similarly, from (3.17) it can be shown that

(U(nT + τ)− U(nT + τ + 1)) ≤ K18,

where K18 = max{K17, K15} and K17 = K8

log(2)
+ Nmax

LM
. Constants K14 −K18

were defined in Chapter 3. Setting K19 = max{K16, K18}, we have

(|U(nT + τ)− U(nT + τ + 1)|) ≤ K19

(|U(nT + τ)− U(nT + τ + 1)||X(nT)) ≤ K19(
|U(X̃(n+ 1))− U(X̃(n))|

∣∣∣ X̃(n)
)
≤ K19T.

Thus, U(n) satisfies condition C2 in Lemma 3.5 and so we have that there are

constants θ∗ > 0 and K4 > 0 such that, limn→∞
∑

m

∑
iE[eθ

∗U(X̃(n))] ≤ K4.

75

Since G(.) is convex, from Jensen’s inequality, we have

G

(∑
m,i Qmi(nT)

LM

)
≤
∑

m,iG
(
Qmi(nT)

)
LM

≤ V (Q(nT)). (4.13)

Then, from Lemma 3.2 and (b), we get

∑
m,i

Qmi(nT) ≤
∑
m,i

Qmi(nT) ≤ LMU(Q(nT)) ≤ LM

θ∗
eθ
∗U(X̃(n)).

Thus, we have limn→∞
∑

m

∑
iE[Qmi(nT)] ≤ LM

θ∗
K4.

For any (n− 1)T ≤ t ≤ nT , from (4.5) and Lemma 3.2, we have

Qmi(t) ≤ Qmi(t) ≤ Qmi(nT) + T
Nmax

C
≤ C̃Qmi(nT) + T

Nmax

C∑
m

∑
i

E[Qmi(t)] ≤
∑
m

∑
i

E
[(
C̃Qmi(nT) + TNmax/C

)]
.

As t→∞, we get

lim sup
t→∞

∑
m,i

E[Qmi(t)] ≤ lim sup
n→∞

∑
m,i

E

[
C̃Qmi(nT)+T

Nmax

C

]
≤ C̃

LM

θ∗
K4 +

TLMNmax

C
.

4.2 Conclusion

To ameliorate the poor performance of the completely nonpreemptive algo-

rithms studied so far, in this chapter we have studied the cloud resource

allocation problem when jobs are allowed to be preempted once in a while.

We assumed that the job sizes are unknown and unbounded, and have pre-

sented a throughput optimal algorithm.

76

CHAPTER 5

DELAY OPTIMALITY

The results in previous chapters study only throughput optimality of resource

allocation algorithms. Throughput optimality makes sure that the best usage

of available resources is made. However, in practice, delay is more important.

In this chapter, we will study delay optimality in an asymptotic regime

called heavy traffic regime. However, at this point, we do not know if any of

the algorithms presented so far are delay optimal. In particular, we do not

have delay optimality when job sizes are unknown. So, we now reconsider

the case when job sizes are known as in Chapter 2 and as in the previous

chapter, we assume that preemption is allowed every T time slots.

In this chapter, we present a myopic MaxWeight algorithm with JSQ rout-

ing, described in Algorithm 9, and we prove its throughput optimality and

delay optimality in heavy traffic regime.

Studying mean delay is equivalent to studying mean queue length of back-

logged workload because they are related by Little’s law.

Characterizing the exact delay or queue length in general is difficult. So,

various asymptotic limits have been studied in the literature. One popular

approach is to study the system in the heavy-traffic regime, i.e., when the

exogenous arrival rate is close to the boundary of the capacity region. We say

that an algorithm is heavy-traffic optimal if it minimizes lim
ε→0

εE [f(q)] where

ε is the distance of the arrival rate vector from the boundary of the capacity

region, q is the vector of queue lengths of backlogged workload and f(.) is a

function which we will clearly define later.

In the heavy-traffic regime, for some systems, the multi-dimensional state

of the system reduces to a single dimension, called state-space collapse. In

[40, 41], a method was outlined to use the state-space collapse for studying

the diffusion limits of several queuing systems. This procedure has been

successfully applied to a variety of multiqueue models served by multiple

servers [42, 43, 44, 45].

77

Stolyar [46], generalized this notion of state-space collapse and resource

pooling to a generalized switch model. This was used to establish the heavy

traffic optimality of the MaxWeight algorithm.

Most of these results are based on considering a scaled version of queue

lengths and time, which converges to a regulated Brownian motion, and then

show sample-path optimality in the scaled time over a finite time interval.

This then allows a natural conjecture about steady state distribution. In [37],

the authors present an alternate method to prove heavy traffic optimality

that is not only simpler, but shows heavy traffic optimality in unscaled time.

In addition, this method directly obtains heavy-traffic optimality in steady

state. The method consists of the following three steps.

1. Lower bound: First a lower bound is obtained on the weighted sum of

expected queue lengths of backlogged workload by comparing with a

single-server queue. A lower bound for the single-server queue, similar

to the Kingman bound [47], then gives a lower bound to the original

system. This lower bound is a universal lower bound satisfied by any

joint routing and scheduling algorithm.

2. State-space collapse: The second step is to show that the state of the

system collapses to a single dimension. Here, it is not a complete state-

space collapse, as in the Brownian limit approach, but an approximate

one. In particular, this step is to show that the queue length along

a certain direction increases as the exogenous arrival rate gets closer

to the boundary of the capacity region but the queue length in any

perpendicular direction is bounded.

3. Upper bound : The state-space collapse is then used to obtain an upper

bound on the weighted queue length. This is obtained by using a

natural Lyapunov function suggested by the resource pooling. Heavy-

traffic optimality can be obtained if the upper bound coincides with

the lower bound.

Under the special case of T = 1, i.e., when jobs are allowed to be pre-

empted every time slot we have shown heavy traffic optimality in [48] and

[49]. Here, we generalize this result to arbitrary finite T . In the next sec-

tion, we present the resource allocation algorithm that is based on myopic

78

MaxWeight scheduling and JSQ routing. In section 5.2, we show its through-

put optimality. In section 5.3, we apply the above three-step procedure

and prove heavy-traffic optimality when all the servers are identical. The

lower bound in this case is identical to the case of the MaxWeight schedul-

ing problem in ad hoc wireless networks in [37]. The state-space collapse

and upper bound do not directly follow from the corresponding results for

the MaxWeight algorithm in [37] due to the additional routing step here.

In section 5.4 we present heavy traffic optimality when power-of-two-choices

routing is used instead of JSQ for the indentical server case.

Note on Notation: The set of real numbers, the set of non-negative real

numbers, and the set of positive real numbers are denoted by R, R+ and R++

respectively. We use a slightly different notation in this chapter. We denote

vectors in RM or RL by x, in normal font. We use bold font x only to denote

vectors in RML. Dot product in the vector spaces RM or RL is denoted by

〈x, y〉 and the dot product in RML is denoted by 〈x,y〉.

5.1 Algorithm with Limited Preemption - Known Job

Sizes

In this chapter, we use the same notation as in Chapter 2, for instance, q for

the backlogged workload, etc. Recall that am(t) is the total workload of type

m that arrives in time slot t, E[am(t)] = λ̌m var[am(t)] = σ2
m, λ̌ = (λ̌1,λ̌M)

and σ = (σ1,σM). We denote σ2 = (σ2
1,σ

2
M). We assume that the job

sizes are upper bounded by Dmax.

Consider server i. In this chapter, we say that server i is in configuration

s = (s1, s2, ..., sM) ∈ (Z+)M if the server is serving s1 jobs of type 1, s2

jobs of type 2, etc. We have earlier used N to denote this. Let smax be the

maximum number of jobs of any type that can be scheduled on any server.

Recall that Ni is the set of feasible configurations on server i. Let C∗i be the

convex hull of the maximal configurations of server i. Let Ci = {s ∈ (R+)M :

s ≤ s∗ for some s∗ ∈ C∗i }. Here s ≤ s∗ means sm ≤ s∗m∀m ∈ {1, 2, ...,M}. Ci
can be thought of as the capacity region for server i. Ci is a convex polytope

in the nonnegative quadrant of RM .

Then the capacity region C would be C =
L∑
i=1

Ci = {s ∈ (R+)M : ∃si ∈

79

Ci ∀ i s.t. s ≤
L∑
i=1

si}. Here si just denotes an element in Ci and not ith power

of s. Here
∑

denotes the Minkowski sum of sets. Therefore, C is again a

convex polytope in the nonnegative quadrant of RM , and it can be described

by a set of hyperplanes as follows:

C = {s ≥ 0 :
〈
c(k), s

〉
≤ b(k), k = 1, ...K},

whereK is the number of hyperplanes that completely defines C, and (c(k), b(k))

completely defines the kth hyperplane H(k),
〈
c(k), s

〉
= b(k). Since C is in the

first quadrant, we have

||c(k)|| = 1 , c(k) ≥ 0, b(k) ≥ 0 for k = 1, 2, ...K.

Similar to C, define S =
L∑
i=1

Si. WLOG, we assume that the C is full-

dimensional, i.e., it is J-dimensional.

Lemma 5.1. Given the kth hyperplane H(k) of the capacity region C (i.e.,〈
c(k), λ̌

〉
= b(k)), for each server i, there is a b

(k)
i such that

〈
c(k), λ̌

〉
= b

(k)
i is

the boundary of the capacity region Ci, and b(k) =
L∑
i=1

b
(k)
i . Moreover, for

every set
{
λ̌

(k)
i ∈ Ci

}
i

such that λ̌(k) =
L∑
i=1

λ̌
(k)
i and λ̌(k) ∈ C lies on the kth

hyperplane H(k) , we have that
〈
c(k), λ̌

(k)
i

〉
= b

(k)
i .

Proof. Define b
(k)
i = max

s∈Ci

〈
c(k), s

〉
. Then, since

C =
L∑
i=1

Ci, we have that b(k) =
L∑
i=1

b
(k)
i .

Again, by the definition of C, for every λ̌ ∈ C, there are λ̌
(k)
i ∈ Ci for each

i such that λ̌(k) =
L∑
i=1

λ̌
(k)
i . However, these may not be unique. We will prove

that for every such
{
λ̌

(k)
i

}
i
, for each i,

〈
c(k), λ̌

(k)
i

〉
= b

(k)
i . Suppose, for some

server i1,
〈
c(k), λ̌

(k)
i1

〉
< b

(k)
i1

. Then since

〈
c(k),

L∑
i=1

λ̌
(k)
i

〉
=

L∑
i=1

b
(k)
i , there exists

i2 such that〈
c(k), λ̌

(k)
i2

〉
> b

(k)
i2

which is a contradiction. Thus, we have the lemma.

The JSQ routing and myopic MaxWeight scheduling is described in Algo-

rithm 9.

80

Algorithm 9 JSQ Routing and myopic MaxWeight Scheduling

1. Routing Algorithm: All the type m arrivals in a time slot are routed to
the server with the smallest backlogged workload for type m jobs, i.e.,
the server i∗m = arg min

i∈{1,2,...L}
qmi. Ties are broken uniformly at random.

2. Scheduling Algorithm (Myopic MaxWeight Scheduling) for each server
i:

T time slots are grouped into a super time slot. A MaxWeight config-
uration is chosen at the beginning of a super time slot. So, for t = nT ,
configuration si ∈ C∗i is chosen according to

si(t) ∈ arg max
s∈C∗i

M∑
m=1

smqmi.

It then schedules up to a maximum of sim(t) jobs of type m (in a
preemptive manner). Note that even if the queue length is greater
than the allocated service, all of it may not be utilized, e.g., when the
backlogged size is from a single job, since different chunks of the same
job cannot be scheduled simultaneously. Denote the actual number of
jobs chosen by sim(t). Note that if qmi ≥ Dmaxsmax, then sim = sim. For
all other t, at the beginning of the time slot, a new configuration is
chosen as follows:

si(t) ∈ arg max
s:s+si(t−)∈C∗i

M∑
m=1

smqmi,

where si(t−)is the configuration of jobs at server i that are still in
service at the end of the previous time slot.

However, sim(t)jobs of type m may not be present at server i, in which
case all the jobs in the queue that are not yet being served will be

included in the new configuration. If s̃im(t) denotes the actual number
of type m jobs selected at server m, then the configuration at time t

is si(t) = s̃i(t). Otherwise, i.e., if there are enough number of jobs at
server i, si(t) = si(t).

81

Let Ymi(t) denote the state of the queue for type-m jobs at server i. If there

are J such jobs, Ymi(t) is a vector of size J and Y j
mi(t) is the (backlogged) size

of the jth type-m job at server i. It is easy to see that Y(t) = {Ymi(t)}mi is a

Markov chain under the JSQ routing and MaxWeight scheduling. Let qmi(t)

denote the queue length of backlogged workload of type-m jobs at server i.

Then the vector of backlogged workloads, q(t) = {qmi(t)}mi, is a function

q(Y) of the state Ymi(t) given by qmi(t) =
∑

j Y
j
mi(t).

However, note that Y(t) is not a time-homogeneous Markov process. Sam-

pling the process Y(t) every T time slots, we obtain the process Ỹ(n) =

Y(nT), which is a time-homogeneous Markov process. Moreover, note that

the process Ŷ(n) = (Y(nT),Y(nT + 1) . . .Y(nT + T − 1)) is also a time-

homogeneous Markov process.

The queue lengths of backlogged workload evolve according to the following

equation:

qmi(t+ 1) = qmi(t) + ami(t)− sim(t)

= qmi(t) + ami(t)− sim(t) + umi(t), (5.1)

where umi(t) is the unused service, given by umi(t) = sim(t) − sim(t), sim(t)

is the MaxWeight or myopic MacWeight schedule as defined in Algorithm 9

and sim(t) is the actual schedule chosen by the scheduling algorithm and the

arrivals are

ami(t) =

am(t) if i = i∗m(t)

0 otherwise
. (5.2)

Here, i∗m is the server chosen by the routing algorithm for type m jobs. Note

that

umi(t) = 0 when qmi(t) + ami(t) ≥ Dmaxsmax. (5.3)

Also, denote s = (sm)m where

sm =
L∑
i=1

sim. (5.4)

Denote a = (ami)mi, s = (sim)mi and u = (umi)mi. Also denote 1 to be the

vector with 1 in all components.

82

5.2 Throughput Optimality

In this section, we will first show that Algorithm 9 is throughput optimal.

We show not only stability in the sense that queue lengths are finite, but we

show a stronger result, viz., positive recurrence.

Theorem 5.1. Assume am(t) ≤ amax for all t and m and assume that

the job load vector satisfies λ̌ ∈ int(C). Then, the JSQ routing and my-

opic MaxWeight scheduling as described in Algorithm 9 stabilizes the system.

Moreover, the sampled Markov processes Ỹ(n) as well as the Markov process

Ŷ(n) are positive recurrent. Consequently, both the processes have a steady

state distribution.

Proof. The proof of positive recurrence of Ỹ(n) and stability of the system

is very similar to the proof of Theorem 2.1 in Chapter 2 and so we skip

the details here. Recall that the proof uses a quadratic Lyapunov function,

V (Y) = ‖q(Y)‖2 =
L∑
i=1

M∑
m=1

q2
mi and shows that its drift over T time slots is

negative outside the finite set B = {Y :
∑

i

∑
m qmi(Y)λ̌im ≤ K2/εT}. In

other words, we have shown the following:

E[V (Ỹ(n+ 1))− V (Ỹ(n))|Ỹ(n) = Ỹ]

=E[V (Y((n+ 1)T))− V (Y(nT))|Y(nT) = Ỹ]

≤−K2 whenever Ỹ /∈ B.

Then the Foster-Lyapunov theorem was used to show positive recurrence of

Ỹ(n).

Now for the Markov process Ŷ(n), consider the Lyapunov function V̂ (Ŷ) =

V̂ (Y0,Y1, . . . ,YT−1) , V (Y1) = ‖q(Y1)‖2. Then the one-step drift of this

Lyapunov function is

E
[
V̂ (Ŷ(n+ 1))− V (Ŷ(n))

∣∣∣ Ŷ(n) = Ŷ = (Y0,Y1, . . . ,YT−1)
]

=E [V (Y((n+ 1)T))− V (Y(nT))

|(Y(nT),Y(nT + 1), . . . ,Y(nT + T − 1)) = (Y0,Y1, . . . ,YT−1)]

=E [E[V (Y((n+ 1)T))− V (Y(nT))|Y(nT) = Y0]

|(Y(nT),Y(nT + 1), . . . ,Y(nT + T − 1)) = (Y0,Y1, . . . ,YT−1)]

≤−K2 whenever Y0 /∈ B.

83

Now define the set B′ as follows:

B′ =

(Y0,Y1, . . . ,YT−1) :

Y0 ∈ B. for τ ∈ {1, 2, . . . , T − 1}and,
Yτ is such that it is a feasible state for

the Markov chain Y(t) at time τ assuming

it has started in state Y0 at time 0

 .

Since we assume that the total number of job arrivals, job sizes and total

number of departures in the queue is bounded in each time slot and since

the set B is finite, we have that set B′ is also finite. Then, using the Foster-

Lyapunov theorem, we have that the Markov process Ŷ(n) is also positive

recurrent. Note that this is the only instance in this chapter where we assume

that am(t) ≤ amax. This assumption can easily be relaxed.

Note that the steady-state distributions of the processes Ỹ(n) and Ŷ(n)

are related. Let (q0,q1, . . . ,qT−1) be the queue lengths of backlogged

workloads corresponding to the state of the Markov process Ŷ(n). Let

(π0(q), π1(q), . . . , πT−1(q)) denote their marginal probability distributions in

steady state. Then, the probability distribution of the queue lengths of the

sampled process Ỹ(n) is given by π0(q).

Now that we have shown that a steady-state exists, in the next section, we

will show that the queue lengths of backlogged workload are optimal in the

steady state in the heavy-traffic regime.

5.3 Heavy Traffic Optimality

Recall that the capacity region is bounded by K hyperplanes, each hyper-

plane H(k) described by its normal vector c(k) and the value b(k). Then, for

any λ̌ ∈ interior(C), we can define the distance of λ̌ to H(k) and the closest

point, respectively, as

ε(k) = min
s∈H(k)

||λ̌− s|| (5.5)

λ̌(k) = λ̌+ ε(k)c(k),

where ε(k) > 0 for each k since λ̌ ∈ interior(C). We let ε ,
(
ε(k)
)K
k=1

denote

the vector of distances to all hyperplanes. Note that λ̌(k) may be outside the

84

capacity region C for some hyperplanes. So define

Kλ̌ ,
{
k ∈ {1, 2, ...K} : λ̌(k) ∈ C

}
.

The set Kλ̌ identifies the set of dominant hyperplanes whose closest point to

λ̌ is on the boundary of the capacity region C and hence is a feasible average

rate for service. Note that for any λ̌ ∈ interior(C), the set Kλ̌ is non-empty,

and hence is well-defined. We further define

Ko
λ̌
,
{
k ∈ K

λ̌
: λ̌(k) ∈ Relint(F (k))

}
,

where F (k) denotes the face on which λ̌(k) lies and Relint means relative

interior. Thus, Ko
λ̌

is the subset of faces in Kλ̌ for which the projection of λ̌

is not shared by more than one hyperplane.

For ε ,
(
ε(k)
)K
k=1

> 0, let λ̌(ε) be the arrival rate in the interior of the

capacity region so that its distance from the hyperplane H(k) is ε(k). Let λ̌(k)

be the closest point to λ̌(ε) on H(k). Thus, we have

λ̌(k) = λ̌(ε) + ε(k)c(k). (5.6)

Let q(ε)(t) be the backlogged workload queue length process when the arrival

rate is λ̌(ε).

Define c(k) ∈ RML
+ , indexed by m, i as c

(k)
mi = c

(k)
m√
L

. We expect that the state

space collapse occurs along the direction c(k). This is intuitive. For a fixed m,

JSQ routing tries to equalize the queue lengths of backlogged workload across

servers. For a fixed server i, we expect that the state space collapse occurs

along c(k) when approaching the hyperplane H(k), as shown in [37]. Thus, for

JSQ routing and MaxWeight, we expect that the state space collapse occurs

along c(k) in RML.

For each k ∈ Ko
λ̌(ε)
, define the projection and perpendicular component of

q(ε) to the vector c(k) as follows:

q
(ε,k)
|| ,

〈
c(k),q(ε)

〉
c(k)

q
(ε,k)
⊥ , q(ε) − q

(ε,k)
|| .

In this section, we will prove the following theorem.

85

Theorem 5.2. Consider the cloud computing system described in section

5.1 with the assumption that the job arrivals satisfy am(t) ≤ amax for all

m and t. Assume all the servers are identical and that JSQ routing and

myopic MaxWeight scheduling as described in Algorithm 9 are used. Let the

exogenous arrival rate be λ̌(ε) ∈ Interior(C) and the standard deviation of the

arrival vector be σ(ε) ∈ RM
++ where the parameter ε =

(
ε(k)
)K
k=1

is such that

ε(k) is the distance of λ̌(ε) from the kth hyperplane H(k) as defined in (5.5).

Then for each k ∈ Ko
λ̌(ε)

, the steady state queue length of backlogged workload

satisfies

ε(k)E
[〈

c(k),q(ε)(t)
〉]
≤ ζ(ε,k)

2
+B

(ε,k)
3 ,

where ζ(ε,k) = 1√
L

〈(
c(k)
)2
,
(
σ(ε)
)2
〉

+
(ε(k))

2

√
L

, B
(ε,k)
3 is o(1

ε(k)
).

In the heavy traffic limit as ε(k) ↓ 0, this bound is tight, i.e.,

lim
ε(k)↓0

ε(k)E
[〈

c(k),q(ε)(t)
〉]

=
ζ(k)

2
,

where ζ(k) = 1√
L

〈(
c(k)
)2
, (σ)2

〉
.

Note that since the process Y(t) is not time-homogeneous, the steady state

referred to in the theorem is that of the process Ŷ(n). The theorem gives

a bound on E
[〈

c(k),q(t)
〉]

, where the expectation is taken according to the

distribution πt mod T (.) and the bound is valid for all τ ∈ {0, 1, 2, . . . , T −
1}. We do no need the assumption am(t) ≤ amax in the proof of heavy-

traffic optimality. This assumption was needed for throughput optimality

in Theorem 5.1 (and so for the existence of steady-state) and can easily be

relaxed.

We will prove this theorem by following the three-step procedure described

before, by first obtaining a lower bound, then showing state space collapse

and finally using the state space collapse result to obtain an upper bound.

5.3.1 Lower Bound

We will obtain a lower bound on E
[〈

c(k),q(ε)
〉]

= E
[
M∑
m=1

c
(k)
m√
L

(
L∑
i=1

qmi

)]
in

steady state using the lower bound on the queue length of a single server

86

queue. For the cloud system, given the capacity region and the face F (k),

we will construct a single server queue with appropriate arrivals and service

rates to obtain a lower bound.

Consider a single server queuing system, φ(ε)(t), with arrival process
1√
L

〈
c(k), a(ε)(t)

〉
and service process given by b(k)√

L
at each time slot. Then

φ(ε)(t) is stochastically smaller than
〈
c(k),q(ε)(t)

〉
. Thus, for every t, we have

E
[〈

c(k),q(ε)(t)
〉]
≥ E

[
φ(ε)(t)

]
.

The process φ(ε)(t) is a time-homogeneous Markov process and it is positive

recurrent since the arrival rate 1√
L

〈
c(k), λ̌(ε)(t)

〉
is smaller than the departure

rate b(k)√
L

. Therefore, a steady state distribution exists for φ(ε)(t). Using φ2 as

Lyapunov function and noting that the drift of it should be zero in steady

state, we get that in steady state [37],

ε(k)E
[
φ(ε)(t)

]
≥ ζ(ε,k)

2
−B(ε,k)

1 , (5.7)

where
(
c(k)
)2

=

((
c

(k)
m

)2
)M
m=1

, B
(ε,k)
1 = b(k)ε(k)

2
and ζ(ε,k) = 1√

L

〈(
c(k)
)2
,
(
σ(ε)
)2
〉

+

(ε(k))
2

√
L

.

Thus, in steady state, in the heavy traffic limit as ε(k) ↓ 0, we have that

lim
ε(k)↓0

ε(k)E
[〈

c(k),q(ε)(t)
〉]
≥ ζ(k)

2
, (5.8)

where ζ(k) = 1√
L

〈(
c(k)
)2
, (σ)2

〉
.

Note that this lower bound is a universal lower bound that is valid for any

joint routing and scheduling algorithm.

5.3.2 State Space Collapse

In this subsection, we will show that there is a state space collapse along the

direction c(k). We know that as the arrival rate approaches the boundary

of the capacity region, i.e., ε(k) → 0, the steady state mean queue length of

backlogged workload, E[||q||] → ∞. We will show that as ε(k) → 0, queue

length of backlogged workload projected along any direction perpendicular

87

s2

s1

c(k)
q

(ε,k)
||

q(ε) is O(1
ε
)

q
(ε,k)
⊥ is bounded

Figure 5.1: Illustration of the capacity region, the vector c(k) and state
space collapse. As the arrival rate approaches the boundary of the capacity
region, the queue length vector q is increasing as O(1

ε
). But the component

perpendicular to c, i.e. q⊥ is bounded.

to c(k) is bounded. This is illustrated in Figure 5.1. So the constant does

not contribute to the first order term in 1
ε(k)

, in which we are interested.

Therefore, it is sufficient to study a bound on the queue length of backlogged

workload along c(k). This is called state-space collapse.

Define the following Lyapunov functions:

V (q) , ‖q‖2 =
L∑
i=1

M∑
m=1

q2
mi, W

(k)
⊥ (q) ,

∥∥∥q(k)
⊥

∥∥∥ , W (k)
|| (q) ,

∥∥∥q(k)
||

∥∥∥
V

(k)
|| (q) ,

〈
c(k),q(ε)

〉2
=
∥∥∥q(k)
||

∥∥∥2

=
1

L

(
L∑
i=1

M∑
m=1

qmicm

)2

.

With a slight abuse of notation, we will use V (Y) for V (q(Y)) and sim-

ilarly with the other Lyapunov functions. Define the one step drift of the

above Lyapunov functions for the original system Y(t) and for the sampled

system Ỹ(n) respectively as follows:

∆V (Y) , [V (q(Y(t+ 1)))− V (q(Y(t)))] I(Y(t) = Y)

∆Ṽ (Ỹ) , [V (q(Y((n+ 1)T)))− V (q(Y(nT)))] I(Y(nT) = Ỹ).

Similarly define ∆W
(k)
⊥ (Y), ∆V

(k)
|| (Y), ∆W̃

(k)
⊥ (Ỹ) and ∆Ṽ

(k)
|| (Ỹ). We will

show that the state space collapse happens along the direction of c(k) for the

sampled system Ỹ(n). We will need Lemma 3.5 by Hajek [33], which gives

88

a bound on
∥∥∥q̃(k)
⊥

∥∥∥ in steady-state if the drift of W̃
(k)
⊥ (Ỹ) is negative. Here

we use the following special case of Lemma 3.5, as presented in [37].

Lemma 5.2. For an irreducible and aperiodic Markov chain {X[t]}t≥0 over

a countable state space X , suppose Z : X → R+ is a nonnegative-valued

Lyapunov function. We define the drift of Z at X as

∆Z(X) , [Z(X[t+ 1])− Z(X[t])] I(X[t] = X),

where I(.) is the indicator function. Thus, ∆Z(X) is a random variable that

measures the amount of change in the value of Z in one step, starting from

state X. This drift is assumed to satisfy the following conditions:

1. There exists an η > 0, and a κ < ∞ such that for all X ∈ X with

Z(X) ≥ κ,

E[∆Z(X)|X[t] = X] ≤ −η.

2. There exists a D <∞ such that for all X ∈ X ,

P (|∆Z(X)| ≤ D) = 1.

Then, there exists a θ? > 0 and a C? <∞ such that

lim sup
t→∞

E
[
eθ
?Z(X[t])

]
≤ C?.

If we further assume that the Markov chain {X[t]}t is positive recurrent, then

Z(X[t]) converges in distribution to a random variable Z̄ for which

E
[
eθ
?Z̄
]
≤ C?,

which directly implies that all moments of Z̄ exist and are finite.

We will use this result for the Markov process Ỹ(n) and the Lyapunov

function W̃
(k)
⊥ (Ỹ). We will use the following lemma (similar to Lemma 7

in [37]) to bound the drift ∆W̃
(k)
⊥ (Ỹ) in terms of the drifts ∆Ṽ (q̃) and

∆Ṽ
(k)
|| (Ỹ). The proof follows from concavity of square-root function and

using Pythagoras theorem. See [37] for details.

89

Lemma 5.3. Let q̃ , q(Ỹ). The drift of W̃
(k)
⊥ (Ỹ) can be bounded as follows:

∆W̃
(k)
⊥ (Ỹ) ≤ 1

2
∥∥∥q̃(k)
⊥

∥∥∥
(

∆Ṽ (Ỹ)−∆Ṽ
(k)
|| (Ỹ)

)
∀ q̃ ∈ RML

+ . (5.9)

Note that

E
[
∆Ṽ (Ỹ)

∣∣∣Y(nT) = Ỹ
]

=E [V (Y((n+ 1)T))− V (Y(nT))|Y(nT) = Ỹ
]

=
nT+T−1∑
t=nT

E [V (Y(t+ 1))− V (Y(t))|Y(nT) = Ỹ
]

=
nT+T−1∑
t=nT

E
[
E [V (Y(t+ 1))− V (Y(t))|Y(t) = Y,Y(nT) = Ỹ

]∣∣∣Y(nT) = Ỹ
]

(a)
=

nT+T−1∑
t=nT

E [E [∆V (Y)|Y(t) = Y]|Y(nT) = Ỹ
]
,

where (a) follows from the fact that Y(t) is Markov. Similarly, one can bound

the conditional drift of ∆Ṽ||(Ỹ). Then using these equalities in (5.9), we get

E
[
∆W̃

(k)
⊥ (Ỹ)

∣∣∣Y(nT) = Ỹ
]

≤ 1

2
∥∥∥q̃(k)
⊥

∥∥∥
(
nT+T−1∑
t=nT

E [E [∆V (Y)|Y(t) = Y]

−E
[
∆V

(k)
|| (Y)

∣∣∣Y(t) = Y
]∣∣∣Y(nT) = Ỹ

])
. (5.10)

In the following, we will use q(ε) for q(Y(ε)) and q̃(ε) for q(Ỹ(ε)). We will

start by bounding the one step drift of V
(k)
|| .

E
[
M V

(k)
|| (Y(ε))

∣∣∣Y(ε)(t) = Y(ε)
]

=E
[
V

(k)
|| (q(ε)(t+ 1))− V (k)

|| (q(ε)(t))
∣∣∣Y(ε)(t) = Y(ε)

]
=E

[〈
c(k),q(ε)(t+ 1)

〉2 −
〈
c(k),q(ε)(t)

〉2
∣∣∣Y(t) = Y(ε)

]
=E

[〈
c(k),q(ε)(t) + a(ε)(t)− s(ε)(t) + u(ε)(t)

〉2 −
〈
c(k),q(ε)(t)

〉2
∣∣∣Y(t) = Y(ε)

]
=E

[〈
c(k),q(ε)(t) + a(ε)(t)− s(ε)(t)

〉2
+
〈
c(k),u(ε)(t)

〉2 −
〈
c(k),q(ε)(t)

〉2

90

+2
〈
c(k),q(ε)(t) + a(ε)(t)− s(ε)(t)

〉 〈
c(k),u(ε)(t)

〉∣∣Y(t) = Y(ε)
]

≥E
[〈

c(k), a(ε)(t)− s(ε)(t)
〉2 − 2

〈
c(k), s(ε)(t)

〉 〈
c(k),u(ε)(t)

〉
+2
〈
c(k),q(ε)(t)

〉 〈
c(k), a(ε)(t)− s(ε)(t)

〉∣∣Y(t) = Y(ε)
]

≥2
〈
c(k),q(Y(ε))

〉 (〈
c(k),E

[
a(ε)(t)

∣∣Y(t) = Y(ε)
]
−E

[
s(ε)(t)

∣∣Y(t) = Y(ε)
]〉)

− 2
〈
c(k), smax1

〉2

=
2||q(ε,k)

|| ||√
L

M∑
m=1

cm

(
L∑
i=1

E
[
a

(ε)
mi(t)|Y(t) = Y(ε)

]
−

L∑
i=1

E
[
si(ε)m (t)|Y(t) = Y(ε)

])
−K26

=
2||q(ε,k)

|| ||√
L

M∑
m=1

cm

(
λ̌(ε)
m −

L∑
i=1

E
[
si(ε)m (t)|Y(t) = Y(ε)

])
−K26 (5.11)

=
2||q(ε,k)

|| ||√
L

M∑
m=1

cm
(
λ̌(k)
m − ε(k)c(k)

m −
L∑
i=1

E
[
si(ε)m (t)|Y(t) = Y(ε)

])
−K26 (5.12)

=
2||q(ε,k)

|| ||√
L

M∑
m=1

cm

(
L∑
i=1

λ̌m(k)
m −

L∑
i=1

E
[
sm(ε)
m (t)|Y(t) = Y(ε)

])
−K26

− 2ε(k)

√
L
||q(ε,k)
|| || (5.13)

=
2||q(ε,k)

|| ||√
L

L∑
i=1

M∑
m=1

cm
(
λ̌i(k)
m − E

[
si(ε)m (t)|Y(t) = Y(ε)

])
−K26 −

2ε(k)

√
L
||q(ε,k)
|| ||

≥ −K26 −
2ε(k)

√
L
||q(ε,k)
|| ||, (5.14)

where K26 = 2JMs2
max and recall q

(ε,k)
|| , q(Y(ε))

(k)
|| . Equation (5.11) follows

from the fact that the sum of arrival rates at each server is same as the

external arrival rate. Equation (5.12) follows from (5.6). From the definition

of C, we have that there exists λ̌i(k) ∈ Ci such that λ̌(k) =
L∑
i=1

λ̌i(k). This gives

(5.13). From Lemma 5.1, we have that for each i, there exists b
(k)
i such that

M∑
m=1

cmλ̌
i(k)
m = b

(k)
i and

〈
c(k), si(ε)

〉
≤ b

(k)
i for every si(ε)(t) ∈ Ci. Therefore, we

have, for each i,

M∑
m=1

cm
(
λ̌i(k)
m − E

[
si(ε)m (t)|Y(t) = Y(ε)

])
≥ 0

and so (5.14) is true.

91

Now, we will bound the one step drift of V (.). By expanding the drift of

V (q(ε)) and using (5.3), it can be easily seen that

E
[
M V (Y(ε))|Y(ε)(t)=Y(ε)

]
≤K27 + EY(ε)

[
L∑
i=1

M∑
m=1

2q
(ε)
mi

(
ami(t)− sim(t)

)]
,

(5.15)

where K27 = M

(∑
m

(
λ̌2
m + σ2

m

)
+ 2Ms2

max(1 +Dmax)

)
and EY(ε) [.] is short-

hand for E[.|Y(ε)(t) = Y(ε)].

By definition of ami(t), (5.2) we have

EY(ε)

[
L∑
i=1

M∑
m=1

2q
(ε)
miami(t)

]
= EY(ε)

[
M∑
m=1

2q
(ε)
mi∗m

am(t)

]

=
M∑
m=1

2q
(ε)
mi∗m

λ̌(ε)
m .

Then we have

E
[
M V (Y(ε))|Y(ε)(t) = Y(ε)

]
≤K27 + 2

M∑
m=1

λ̌(ε)
m q

(ε)
mi∗m
− 2

L∑
i=1

Eq(ε)

[
M∑
m=1

q
(ε)
mis

i
m(t)

]

=K27 + 2
M∑
m=1

λ̌(ε)
m q

(ε)
mi∗m
− 2

M∑
m=1

λ̌(ε)
m

L∑
i=1

q
(ε)
mi

L
(5.16)

+ 2
M∑
m=1

λ̌(ε)
m

L∑
i=1

q
(ε)
mi

L
− 2

L∑
i=1

Eq(ε)

[
M∑
m=1

q
(ε)
mis

i
m(t)

]
. (5.17)

We will bound the terms in (5.17).

2
M∑
m=1

λ̌(ε)
m

L∑
i=1

q
(ε)
mi

L
− 2

L∑
i=1

EY(ε)

[
M∑
m=1

q
(ε)
mis

i
m(t)

]

=
M∑
m=1

2
(
λ̌(k)
m − ε(k)c(k)

m

) L∑
i=1

q
(ε)
mi

L
− 2

L∑
i=1

EY(ε)

[
M∑
m=1

q
(ε)
mis

i
m(t)

]

=− 2ε(k)

√
L
||q(ε,k)
|| ||+ 2

L∑
i=1

EY(ε)

[
M∑
m=1

q
(ε)
mi

(
λ̌

(k)
m

L
− sim(t)

)]
. (5.18)

92

Substituting all the bounds, i.e., (5.14), (5.17), and (5.18) in (5.10), and

using q̃(ε) for q(Ỹ(ε)), we get

E
[
∆W̃

(k)
⊥ (Ỹ(ε))

∣∣∣Y(ε)(nT) = Ỹ(ε)
]

≤ 1

2
∥∥∥q̃(ε,k)
⊥

∥∥∥
(
nT+T−1∑
t=nT

E

[
K28 + 2

M∑
m=1

λ̌(ε)
m q

(ε)
mi∗m(t)(t)− 2

M∑
m=1

λ̌(ε)
m

L∑
i=1

q
(ε)
mi(t)

L

(5.19)

+2
L∑
i=1

EY(ε)

[
M∑
m=1

q
(ε)
mi

(
λ̌

(k)
m

L
− sim(t)

)]∣∣∣∣∣Y(ε)(nT) = Ỹ(ε)

])
, (5.20)

where K28 = K26 + K27 and i∗m(t) denotes the server to which type m jobs

were routed at time t. We will first bound the terms in (5.19). Note that

from the queue evolution equation (5.1), we have that

|q(ε)
mi(t+ 1)− q(ε)

mi(t)| ≤ ami(t) + smax

|q(ε)
mi(t)− q

(ε)
mi(nT)| ≤

nT+T−1∑
t=nT

ami(t) + Tsmax for t ∈ {nT + 1, . . . , nT + T − 1}

(5.21)

q
(ε)
mi∗m(t)(t)

(a)

≤ q
(ε)
mi∗m(nT)(t)

≤ q
(ε)
mi∗m(nT)(nT) +

nT+T−1∑
t=nT

ami∗m(nT)(t) + Tsmax

1

L

L∑
i=1

q
(ε)
mi(nT) ≤ 1

L

L∑
i=1

(
q

(ε)
mi(t) +

nT+T−1∑
t=nT

ami(t) + Tsmax

)
,

where (a) follows from the fact that the server i∗m(t) has the smallest workload

at time t for type-m jobs. Using EỸ(ε) [.] for E[.|Y(ε)(nT) = Ỹ(ε)], we bound

the terms in (5.19). We will assume that the arrival rate λ̌(ε) is such that there

exists a δ > 0 such that λ̌
(ε)
j > δ for all m. This assumption is reasonable

because we are interested in the limit when the arrival rate is on the boundary

of the capacity region.

nT+T−1∑
t=nT

2
M∑
m=1

λ̌(ε)
m EỸ(ε)

[
q

(ε)
mi∗m(t)(t)−

L∑
i=1

q
(ε)
mi(t)

L

]

93

≤
nT+T−1∑
t=nT

2
M∑
m=1

λ̌(ε)
m

(
EỸ(ε)

[
q

(ε)
mi∗m(nT)(nT)−

L∑
i=1

q
(ε)
mi(nT)

L

]
+ 2T λ̌(ε)

m + 2Tsmax

)

≤ K29 +
nT+T−1∑
t=nT

2
M∑
m=1

λ̌(ε)
m

(
q̃

(ε)
mi∗m
−

L∑
i=1

q̃
(ε)
mi

L

)

= K29 − 2T
M∑
m=1

λ̌(ε)
m

(
L∑
i=1

(
q̃

(ε)
mi

L
−
q̃

(ε)
mi∗m

L

))

= K29 −
2T

L

M∑
m=1

λ̌(ε)
m

(
L∑
i=1

∣∣∣q̃(ε)
mi − q̃

(ε)
mi∗m

∣∣∣)

≤ K29 −
2T

L

M∑
m=1

λ̌(ε)
m

√√√√ L∑

i=1

(
q̃

(ε)
mi − q̃

(ε)
mi∗m

)2

 (5.22)

≤ K29 −
2T

L

M∑
m=1

λ̌(ε)
m

√√√√ L∑

i=1

(
q̃

(ε)
mi −

1

M

L∑
i′=1

q̃
(ε)
mi′

)2
 (5.23)

≤ K29 −
2Tδ

L

M∑
m=1

√√√√ L∑

i=1

(
q̃

(ε)
mi −

1

M

L∑
i′=1

q̃
(ε)
mi′

)2
 (5.24)

= K29 −
2Tδ

L

M∑
m=1

√√√√ L∑
i=1

(
q̃

(ε)
mi

)2

− 1

M

(
L∑
i′=1

q̃
(ε)
mi′

)2

≤ K29 −
2Tδ

L

√√√√ M∑
m=1

L∑
i=1

(
q̃

(ε)
mi

)2

− 1

M

M∑
m=1

(
L∑
i′=1

q̃
(ε)
mi′

)2

, (5.25)

where K29 = 4T 2
∑M

m=1(λ̌
(ε)
m)2 + 4T 2smax

∑M
m=1 λ̌

(ε)
m . Equation (5.22) follows

from the fact that the `1 norm of a vector is no more than its `2 norm for a

vector in RL. The minimum mean square constant estimator of a vector is

its empirical mean. In other words, for a vector x in RL, the convex function√∑
i(xi − y)2 is minimized for y = 1

L

∑
i xi. This gives (5.23). Equation

(5.24) follows from the assumption that λ̌
(ε)
m > δ. Equation (5.25) follows

from the observation that (
∑

m

√
xm)2 ≥

∑
m xm.

We will now bound the terms in (5.20). To do this, we will first show that

the sum
∑J

m=1 q
(ε)
mi(t)s

i
m(t) does not change by much with in T time-slots.

94

For any t ∈ {nT + 1, . . . , (n+ 1)T}, we have

M∑
m=1

q
(ε)
mi(t)s

i
m(t− 1)

=
M∑
m=1

q
(ε)
mi(t)s

i
m(t−) +

M∑
m=1

q
(ε)
mi(t)(s

i
m(t− 1)− sim(t−))

(a)

≤
M∑
m=1

q
(ε)
mi(t)s

i
m(t−) +

M∑
m=1

q
(ε)
mi(t)s

i
m(t)

=

(
M∑
m=1

q
(ε)
mi(t)s

i
m(t−) +

M∑
m=1

q
(ε)
mi(t)s

i
m(t)

)
I
q
(ε)
mi(t)≥Dmaxsmax

+

(
M∑
m=1

q
(ε)
mi(t)s

i
m(t−) +

M∑
m=1

q
(ε)
mi(t)s

i
m(t)

)
I
q
(ε)
mi(t)<Dmaxsmax

(b)

≤
M∑
m=1

q
(ε)
mi(t)s

i
m(t) +MDmaxs

2
max,

where Inequality (a) follows from the scheduling algorithm and definition

of sim(t). Inequality (b) holds because when q
(ε)
mi(t) ≥ Dmaxsmax, there are

enough number of jobs so that there is no unused service. From (5.1), we get

M∑
m=1

q
(ε)
mi(t− 1)sim(t− 1)

(c)

≤Ms2
max(Dmax + 1) +

M∑
m=1

q
(ε)
mi(t)s

i
m(t)

−
M∑
m=1

q
(ε)
mi(t)s

i
m(t) ≤K30 −

M∑
m=1

q
(ε)
mi(nT)sim(nT)

where K30 = T (Ms2
max(Dmax + 1)). Repeatedly applying Inequality (c), we

get the last relation. We now use this relation along with (5.21) to bound

the terms in (5.20).

2
nT+T−1∑
t=nT

E

[
L∑
i=1

EY(ε)

[
M∑
m=1

q
(ε)
mi

(
λ̌

(k)
m

L
− sim(t)

)]∣∣∣∣∣Y(ε)(nT) = Ỹ(ε)

]

=2
nT+T−1∑
t=nT

L∑
i=1

EỸ(ε)

[
M∑
m=1

q
(ε)
mi(t)

(
λ̌

(k)
m

L
− sim(t)

)]

≤2
nT+T−1∑
t=nT

L∑
i=1

EỸ(ε)

[
M∑
m=1

q
(ε)
mi(nT)

(
λ̌

(k)
m

L
− sim(nT)

)]
+ 2T 2

M∑
m=1

λ̌(k)
m λ̌(ε)

m

95

+ 2TLK30

=2T
L∑
i=1

EỸ(ε)

[
M∑
m=1

q
(ε)
mi(nT)

(
λ̌

(k)
m

L
− sim(nT)

)]
+2T 2

M∑
m=1

λ̌(k)
m λ̌(ε)

m +2TLK30

(a)
=K31 + 2T

L∑
i=1

[
min
ri∈Ci

M∑
m=1

q̃
(ε)
mi

(
λ̌

(k)
m

L
− rim

)]
, (5.26)

where K31 = 2T 2
∑M

m=1 λ̌
(k)
m λ̌

(ε)
m + 2TLK30 + +2TMLDmaxs

2
max. Equation

(a) is true because of MaxWeight scheduling. Note that in Algorithm 9, the

actual service allocated to jobs of type m at server i is same as that of the

MaxWeight schedule as long as the corresponding queue length of backlogged

workload is greater than Dmaxsmax. This gives the additional 2MLDmaxs
2
max

term.

Assuming all the servers are identical, we have that for each i, Ci = {λ̌/L :

λ̌ ∈ C}, so Ci is a scaled version of C. Thus, λ̌i = λ̌/L. Since k ∈ Ko
λ̌(ε)
,

we also have that k ∈ Ko
λ̌i(ε)

for the capacity region Ci. Thus, there exists

δ(k) > 0 so that

B(k)

δ(k)
, H(k) ∩ {r ∈ RM

+ : ||r − λ̌(k)/L|| ≤ δ(k)}

lies strictly within the face of Ci that corresponds to F (k). (Note that this is

the only instance in the proof of Theorem 5.2 in which we use the assumption

that all the servers are identical.) Call this face F (k)
i . Thus we have

L∑
i=1

[
min
ri∈Ci

M∑
m=1

q̃
(ε)
mi

(
λ̌

(k)
m

L
− rim

)]

≤
L∑
i=1

 min
ri∈B(k)

δ(k)

M∑
m=1

q̃
(ε)
mi

(
λ̌

(k)
m

L
− rim

) (5.27)

=
L∑
i=1

 min
ri∈B(k)

δ(k)

M∑
m=1

(
q̃

(ε)
mi −

(
M∑

m′=1

q̃
(ε)
m′icm′

)
cm

)(
λ̌

(k)
m

L
− rim

) (5.28)

=− δ(k)

L∑
i=1

√√√√ M∑
m=1

(
q̃

(ε)
mi −

(
M∑

m′=1

q̃
(ε)
m′icm′

)
cm

)2

(5.29)

=− δ(k)

L∑
i=1

√√√√ M∑
m=1

(
q̃

(ε)
mi

)2

−

(
M∑

m′=1

q̃
(ε)
m′icm′

)2

(5.30)

96

≤− δ(k)

√√√√ L∑
i=1

M∑
m=1

(
q̃

(ε)
mi

)2

−
L∑
i=1

(
M∑

m′=1

q̃
(ε)
m′icm′

)2

. (5.31)

Equation (5.28) is true because c is a vector perpendicular to the face

F (k)
i of Ci whereas both λ̌(k)/L and ri lie on the face F (k)

i . So,(∑M
m′=1 q̃

(ε)
m′icm′

) M∑
m=1

cm

(
λ̌
(k)
m

L
− rim

)
= 0. The vector q̃

(ε)
i ,

(
q̃

(ε)
mi

)
m

is in

RM . Its component along c ∈ RM is q̃
(ε)
i|| =

(∥∥∥q̃(ε)
i||

∥∥∥ cm)
m

where
∥∥∥q̃(ε)

i||

∥∥∥ =∑M
m=1 q̃

(ε)
micm. Then, the component perpendicular to c is

q̃
(ε)
i⊥ =

(
q̃

(ε)
mi −

(∑M
m′=1 q̃

(ε)
m′icm′

)
cm

)
m

and the term in (5.28) is∑
m(q̃

(ε)
i⊥)m

(
λ̌
(k)
m

L
− rim

)
. This term is an inner product in RM which is mini-

mized when ri is chosen to be on the boundary of B(k)

δ(k)
so that

(
λ̌
(k)
m

L
− rim

)
m

points in the opposite direction to q̃
(ε)
i⊥ and the minimum value is −δ(k)‖q̃(ε)

i⊥‖.
This gives (5.29). Equation (5.30) can be obtained either by expanding or

by using Pythagorean theorem, viz., ‖q̃(ε)
i⊥‖2 = ‖q̃(ε)

i ‖2 − ‖q̃(ε)
i|| ‖2. Similar to

(5.25), since (
∑

i

√
xi)

2 ≥
∑

i xi, we get (5.31).

Now substituting (5.25) and (5.31) in (5.20), we get

E
[
∆W̃

(k)
⊥ (Ỹ(ε))

∣∣∣Y(ε)(nT) = Ỹ(ε)
]

≤ 1

2
∥∥∥q̃(ε,k)
⊥

∥∥∥
K28T +K29 −

2Tδ

L

√√√√ M∑
m=1

L∑
i=1

(
q̃

(ε)
mi

)2

− 1

L

M∑
m=1

(
L∑
i′=1

q̃
(ε)
mi′

)2

+K31 − 2Tδ(k)

√√√√ L∑
i=1

M∑
m=1

(
q̃

(ε)
mi

)2

−
L∑
i=1

(
M∑

m′=1

q̃
(ε)
m′icm′

)2
 (5.32)

(a)

≤ K32

2
∥∥∥q̃(ε,k)
⊥

∥∥∥ − Tδ′∥∥∥q̃(ε,k)
⊥

∥∥∥
 M∑
m=1

L∑
i=1

(
q̃

(ε)
mi

)2

− 1

L

M∑
m=1

(
L∑
i=1

q̃
(ε)
mi

)2

+
L∑
i=1

M∑
m=1

(
q̃

(ε)
mi

)2

−
L∑
i=1

(
M∑
m=1

q̃
(ε)
micm

)2
 1

2

(b)

≤ K32

2
∥∥∥q̃(ε,k)
⊥

∥∥∥ − Tδ′∥∥∥q̃(ε,k)
⊥

∥∥∥
√√√√ M∑

m=1

L∑
i=1

(
q̃

(ε)
mi

)2

−

(
L∑
i=1

M∑
m=1

q̃
(ε)
mi

cm√
L

)2

97

=
K32

2
∥∥∥q̃(ε,k)
⊥

∥∥∥ − Tδ′∥∥∥q̃(ε,k)
⊥

∥∥∥
√
‖q̃(ε)‖2 −

∥∥∥q̃(ε,k)
||

∥∥∥2

=
K32

2
∥∥∥q̃(ε,k)
⊥

∥∥∥ − Tδ′
≤−Tδ

′

2
whenever

(
W

(k)
⊥ (q(Ỹ(ε))) =

∥∥∥q̃(ε,k)
⊥

∥∥∥ ≥ K32

Tδ′

)
, (5.33)

where K32 = K28T +K29 +K31 and δ′ = min{ δ
M
, δ(k)}. Inequality (a) follows

from the fact that (
√
x +
√
y)2 ≥ x + y. Inequality (b) follows from the

following claim, which is proved in C.

Claim 5.1. For any q̃ ∈ RML,

− 1

L

M∑
m=1

(
L∑
i=1

q̃
(ε)
mi

)2

+
L∑
i=1

M∑
m=1

(
q̃

(ε)
mi

)2

−
L∑
i=1

(
M∑
m=1

q̃
(ε)
micm

)2

≥ − 1

L

(
L∑
i=1

M∑
m=1

q̃
(ε)
micm

)2

.

In addition to (5.33), since the departures in each time slot are bounded

and the arrivals are finite there is a D < ∞ such that P (|∆Z(X)| ≤ D)

almost surely. Now, applying Lemma 5.2, we have the following proposition.

Proposition 5.1. Assume all the servers are identical and the arrival rate

λ̌(ε) ∈ int(C) is such that there exists a λ̌
(ε)
m > δ for all m for some δ > 0. Con-

sider the sampled system Ỹ(ε)(n) under JSQ routing and myopic MaxWeight

scheduling according to Algorithm 9. For every k ∈ Ko
λ̌(ε)

, there exists a set of

finite constants {N (k)
r }r=1,2,... such that in steady state, E

[∥∥∥q(k)
⊥ (Ỹ(ε)(n))

∥∥∥r] ≤
N

(k)
r for all ε > 0 and for each r = 1, 2,

As in [46, 37], note that k ∈ Ko
λ̌(ε)

is an important assumption here. This is

called the ‘Complete Resource Pooling’ assumption and was used in [46, 50,

51]. If k ∈ KrKo
λ̌(ε)

, i.e., if the arrival rate approaches a corner point of the

capacity region as ε(k) → 0, then there is no constant δ(k) so that B(k)

δ(k)
lies

in the face F (k). In other words, the δ(k) depends on ε(k) and so the bound

obtained by Lemma 5.2 also depends on ε(k).

Remark: As stated in Theorem 5.2, our results hold only for the case of

identical servers, which is the most practical scenario. However, we have

98

written the proofs more generally whenever we can so that it is clear where

we need the identical server assumption. In particular, in this subsection,

up to Equation (5.3.2), we do not need this assumption, but we have used

the assumption after that, in analyzing the drift of V (q). The upper bound

in the next section is valid more generally if one can establish state-space

collapse for the non-identical server case. However, at this time, this is an

open problem.

5.3.3 Upper Bound

In this section, we will obtain an upper bound on the steady state weighted

queue length of backlogged workload, E
[〈

c(k),q(ε)(t)
〉]

and show that in the

asymptotic limit as ε(k) ↓ 0, this coincides with the lower bound. For ease

of exposition, we will omit the superscript (ε) in this section. In order to

obtain a matching upper bound, we consider the drift of the same Lyapunov

function that was used in the lower bound, viz., V
(k)
|| (.). As a result, we have

the following lemma.

Lemma 5.4. In steady state,

nT+T−1∑
t=nT

E
[〈

c(k),q(t)
〉 〈

c(k), s(t)− a(t)
〉]

(5.34)

=
nT+T−1∑
t=nT

E
[〈

c(k), s(t)− a(t)
〉2
]

2
+

nT+T−1∑
t=nT

E
[〈

c(k),u(t)
〉2
]

2
(5.35)

+
nT+T−1∑
t=nT

E
[〈

c(k),q(t) + a(t)− s(t)
〉 〈

c(k),u(t)
〉]
. (5.36)

Proof. First we expand the drift of the Lyapunov function V
(k)
|| for the sam-

pled system Ỹ(n), i.e., ∆Ṽ
(k)
|| (Ỹ).

∆Ṽ (k)(Y(nT))

=
[
V

(k)
|| (q(Y((n+ 1)T)))− V (k)

|| (q(Y(nT)))
]

=
nT+T−1∑
t=nT

[
V

(k)
|| (q(t+ 1)− V (k)

|| (q(t))
]

99

=
nT+T−1∑
t=nT

[〈
c(k),q(t+ 1)

〉2 −
〈
c(k),q(t)

〉2
]

(a)
=

nT+T−1∑
t=nT

[〈
c(k),q(t) + a(t)− s(t) + u(t)

〉2 −
〈
c(k),q(t)

〉2
]

=
nT+T−1∑
t=nT

[〈
c(k),q(t) + a(t)− s(t)

〉2
+ 2

〈
c(k),q(t) + a(t)− s(t)

〉 〈
c(k),u(t)

〉
+
〈
c(k),u(t)

〉2 −
〈
c(k),q(t)

〉2
]

=
nT+T−1∑
t=nT

[〈
c(k), a(t)− s(t)

〉2
+ 2

〈
c(k), a(t)− s(t)

〉 〈
c(k),q(t)

〉
+ 2

〈
c(k),q(t) + a(t)− s(t)

〉 〈
c(k),u(t)

〉
+
〈
c(k),u(t)

〉2
]
.

Equation (a) follows from (5.1). Noting that the expected drift of ∆V
(k)
|| is

zero in steady state, we have the lemma.

Note that the expectation in the lemma is according to the steady state

distribution of the process Ŷ(n), i.e., at time t, the queue length distribution

is πτ (q) where τ = t mod T .

We will obtain an upper bound on E
[〈

c(k),q(t)
〉]

by bounding each of the

above terms. Before that, we need the following definitions and results.

Let π
(k)
τ be the steady-state probability that the MaxWeight schedule cho-

sen is from the face F (k) at a time t such that t mod T = τ , i.e.,

π(k)
τ = P

(
〈c, s(t)〉 = b(k)

)
whenever t mod t = τ,

where sm =
L∑
i=1

sim as defined in (5.4). Let π(k) denote 1
T

∑T
τ=0 π

(k)
τ . Also,

define

γ(k) = min
{
b(k) − 〈c, r〉 : r ∈ S \ F (k)

}
.

Then we have the following Claim.

Claim 5.2. For any ε(k) ∈
(
0, γ(k)

)
, Then, note that

nT+T−1∑
t=nT

E

[(
b(k)

√
L
−
〈
c(k), s(t)

〉)2
]
≤Tε

(k)

Lγ(k)

((
b(k)
)2

+ 〈c, smax1〉2
)
. (5.37)

100

Proof. We will first show that

(
1− π(k)

)
≤ ε(k)

γ(k)
.

From the stability of the system, we have that in steady state,

nT+T−1∑
t=nT

E
[〈
c(k), s(q(t))

〉]
≥ T

〈
c(k), λ̌ε

〉
= T (b(k) − ε(k))

nT+T−1∑
t=nT

E
[〈
c(k), s(q(t))

〉
I
(
〈c, s(t)〉 = b(k)

)]
+

nT+T−1∑
t=nT

E
[〈
c(k), s(q(t))

〉
I
(
〈c, s(t)〉 6= b(k)

)]
≥ T (b(k) − ε(k))

nT+T−1∑
t=nT

E
[〈
c(k), s(q(t))

〉
I
(
〈c, s(t)〉 6= b(k)

)]
≥ T (b(k) − ε(k))− Tb(k)π(k).

Also note that

nT+T−1∑
t=nT

E
[〈
c(k), s(q(t))

〉
I
(
〈c, s(t)〉 6= b(k)

)]
≤

nT+T−1∑
t=nT

(b(k) − γ(k))(1− π(k)
t mod T)

≤ T (b(k) − γ(k))(1− π(k)).

Combining the lower and upper bounds, we get
(
1− π(k)

)
≤ ε(k)

γ(k)
.

Then, note that

nT+T−1∑
t=nT

E

[(
b(k)

√
L
−
〈
c(k), s(t)

〉)2
]

=
1

L

nT+T−1∑
t=nT

E
[(
b(k) − 〈c, s(t)〉

)2
]

=
1

L

nT+T−1∑
t=nT

(
1− π(k)

t mod T

)
E
[(
b(k) − 〈c, s(t)〉

)2 |
(
〈c, s(t)〉 6= b(k)

)]
≤T
L

(1− π(k))
((
b(k)
)2

+ 〈c, smax1〉2
)

101

≤Tε
(k)

Lγ(k)

((
b(k)
)2

+ 〈c, smax1〉2
)
.

Define C̃i ⊆ RJM
+ as C̃i = C1 × ...× CM . Then, C̃i is a convex polygon.

Claim 5.3. Let qi ∈ RM
+ for each i ∈ {1, 2,L}. Denote q = (qi)

L
i=1 ∈ RML

+ .

If, for each i, (si)
∗

is a solution of max
s∈Ci
〈qi, s〉 then s∗ = ((si)

∗
)i is a solution

of max
s∈C̃i
〈q, s〉.

Proof. Since s∗ ∈ C̃i, 〈q, s∗〉 ≤ max
s∈C̃i
〈q, s〉. Note that max

s∈C̃i
〈q, s〉 =

L∑
i=1

max
si∈Ci
〈qi, si〉 . Therefore, if 〈q, s∗〉 < max

s∈C̃i
〈q, s〉, we have

L∑
i=1

〈
qi, (si)

∗〉
<

L∑
i=1

max
si∈Ci
〈qi, si〉. Then there exists an i ≤ L such that

〈
qi, (si)

∗〉
< max

si∈Ci
〈qi, si〉,

which is a contradiction.

Therefore, choosing a MaxWeight schedule at each server is the same

as choosing a MaxWeight schedule from the convex polygon, C̃i. Since

there are a finite number of feasible schedules, given c(k) ∈ RML
+ such

that ||c(k)|| = 1, there exists an angle θ(k) ∈ (0, π
2
] such that, for all

q ∈
{

q ∈ RML
+ : ||q(k)

|| || ≥ ||q|| cos
(
θ(k)
)}

(i.e., for all q ∈ RML
+ such that

θ
qq

(k)
||
≤ θ(k) where θab represents the angle between vectors a and b), we

have 〈
c(k), s(t)

〉
I (q(t) = q) = b(k)/

√
LI (q(t) = q) .

We can bound the unused service at each time t in steady-state as follows.

E
[〈

c(k),u(t)
〉]
≤ E

[〈
c(k), s(t)− a(t)

〉]
=

1√
L

(
E
[〈
c(k), s(t)

〉]
−
〈
c(k), λ̌ε

〉)
=

1√
L

(
E
[〈
c(k), s(t)

〉]
−
(
b(k) − ε(k)

))
≤ ε(k)

√
L
, (5.38)

where the last inequality follows from the fact that the MaxWeight schedule

lies inside the capacity region and so E
[〈
c(k), s(t)

〉]
≤ b(k).

102

We will also need the following bound. Since the change in workload

between T time-slots is bounded as in (5.21), we get

||q(k)
|| (t)− q

(k)
|| (nT)|| =

∣∣〈q(k)(t)− q(k)(nT), c(k)
〉∣∣

≤||q(k)(t)− q(k)(nT)||

≤

∥∥∥∥∥
nT+T−1∑
t̆=nT

a(t̆)

∥∥∥∥∥+
√
MLTsmax. (5.39)

Now, we will bound each of the terms in (5.36). Let us first consider the

first term in (5.35). Again, using the fact that the arrival rate is λ̌ε, we have

nT+T−1∑
t=nT

E
[〈

c(k), s(t)− a(t)
〉2
]

(a)
=

nT+T−1∑
t=nT

E

[(〈
c(k), a(t)

〉
− b

(k)

√
L

)2
]

+
nT+T−1∑
t=nT

E

[(
b(k)

√
L
−
〈
c(k), s(t)

〉)2
]

− 2
ε(k)

√
L

nT+T−1∑
t=nT

E
[(

b(k)

√
L
−
〈
c(k), s(t)

〉)]
(b)

≤
nT+T−1∑
t=nT

E

(1√
L

〈
c(k), a(t)− λ̌ε

〉
+

〈
c(k), λ̌ε

〉
− b(k)

√
L

)2

+
nT+T−1∑
t=nT

E

[(
b(k)

√
L
−
〈
c(k), s(t)

〉)2
]

(c)

≤ 1

L

nT+T−1∑
t=nT

E
[(〈

c(k), a(t)− λ̌ε
〉)2
]

+ 2
ε(k)

√
L

nT+T−1∑
t=nT

E
[〈
c(k), a(t)− λ̌ε

〉]
+ T

(
ε(k)
)2

L
+
T

L

ε(k)

γ(k)

((
b(k)
)2

+ 〈c, smax1〉2
)

≤T
L

〈(
c(k)
)2
, σ2
〉

+
T
(
ε(k)
)2

L
+
T

L

ε(k)

γ(k)

((
b(k)
)2

+ 〈c, smax1〉2
)

(5.40)

=
T√
L

(
ζ(ε,k) +

1√
L

ε(k)

γ(k)

((
b(k)
)2

+ 〈c, smax1〉2
))

, (5.41)

where ζ(ε,k) was earlier defined as ζ(ε,k) =
(ε(k))

2

√
L

+ 1√
L

〈(
c(k)
)2
,
(
σ(ε)
)2
〉

. The

last term in (a) is dropped to get (b) since it is negative. Inequality (c)

follows from (5.37) in Claim 5.2. The first term in (5.40) is obtained by noting

that E [a(t)] = λ̌ε and so E
[(〈

c(k), a(t)− λ̌ε
〉)2
]

= var
(〈
c(k), a(t)− λ̌ε

〉)
=

103

〈
c(k), var(a(t)− λ̌ε)

〉
. Consider the second term in (5.35).

nT+T−1∑
t=nT

E
[〈

c(k),u(t)
〉2
]
≤

nT+T−1∑
t=nT

〈
c(k),1smax

〉
E
[〈

c(k),u(t)
〉]

≤ Tε(k)

√
L

〈
c(k),1smax

〉
, (5.42)

where the last inequality follows from (5.38).

Now, we consider the term in (5.36). We need some definitions so

that we can only consider the non-zero components of c. Let L(k)
++ ={

m ∈ {1, 2, ...M} : c
(k)
m > 0

}
. Define c̆(k) =

(
c

(k)
mi

)
m∈L(k)++

,q̆ = (qmi)m∈L(k)++

and ŭ = (umi)m∈L(k)++
. Also define, the projections, q̆

(k)
|| =

〈
c̆(k), q̆

〉
c̆(k) and

q̆
(k)
⊥ = q̆− q̆

(k)
|| . Similarly, define ŭ

(k)
|| and ŭ

(k)
⊥ . Then in steady-state, for all

time t we have

E
[〈

c(k),q(t) + a(t)− s(t)
〉 〈

c(k),u(t)
〉]

=E
[〈

c(k),q(t+ 1)
〉 〈

c(k),u(t)
〉]
− E

[〈
c(k),u(t)

〉2
]

≤E
[〈

c(k),q(t+ 1)
〉 〈

c(k),u(t)
〉]

=E
[〈

c̆(k), q̆(t+ 1)
〉 〈

c̆(k), ŭ(t)
〉]

=E
[
||q̆(k)
|| (t+ 1)||||ŭ(k)

|| ||
]

=E
[〈

q̆
(k)
|| (t+ 1),

˘
u

(k)
|| (t)

〉]
=E

[〈
q̆

(k)
|| (t+ 1), ŭ(t)

〉]
=E [〈q̆(t+ 1), ŭ(t)〉] + E

[〈
−q̆

(k)
⊥ (t+ 1), ŭ(t)

〉]
≤E [〈Dmaxsmax1, ŭ(t)〉] +

√
E
[
||q̆(k)
⊥ (t+ 1)||2

]
E [||ŭ(t)||2] (5.43)

≤DmaxsmaxE [〈1, ŭ(t)〉] +

√
N

(k)
2 E [〈ŭ(t), ŭ(t)〉] (5.44)

≤DmaxsmaxE [〈1, ŭ(t)〉] +

√
N

(k)
2 smaxE [〈1, ŭ(t)〉],

where (5.43) follows from (5.3) and from Cauchy-Schwarz inequality.

Equation (5.44) follows from state-space collapse (Proposition 5.1), since

E
[
||q̆(k)
⊥ ||2

]
≤ E

[
||q(k)
⊥ ||2

]
≤ N

(k)
2 .

104

Note that

E [〈1, ŭ(t)〉] ≤ 1

c
(k)
min

E
[〈

c̆(k), ŭ(t)
〉]

=
1

c
(k)
min

E
[〈

c(k),u(t)
〉]

≤ ε(k)

√
Lc

(k)
min

,

where c
(k)
min

∆
= min

m∈L(k)++

c
(k)
m > 0 and the last inequality follows from (5.38). Thus,

we have

nT+T−1∑
t=nT

E
[〈

c(k),q(t) + s(t)− a(t)
〉 〈

c(k),u(t)
〉]

≤TDmaxsmax
ε(k)

√
Lc

(k)
min

+ T

√
N

(k)
2 smax

ε(k)

√
Lc

(k)
min

. (5.45)

We will now consider the left hand side term in (5.34). Given that the

arrival rate is λ̌ε for every t in steady-state, we have

E
[〈

c(k),q(t)
〉 〈

c(k), s(t)− a(t)
〉]

=E
[〈

c(k),q(t)
〉](b(k)

√
L
− 1√

L

〈
c(k), λ̌

〉)
− E

[〈
c(k),q(t)

〉(b(k)

√
L
−
〈
c(k), s(t)

〉)]
=
ε(k)

√
L
E
[〈

c(k),q(t)
〉]
− E

[
||q(k)
|| (t)||

(
b(k)

√
L
−
〈
c(k), s(t)

〉)]
. (5.46)

Now, we will bound the last term in this equation, summed over T time slots

in steady-state using the following lemma.

Lemma 5.5. In steady-state, we have

nT+T−1∑
t=nT

E
[
||q(k)
|| (t)||

(
b(k)

√
L
−
〈
c(k), s(t)

〉)]

≤T
√
K33 + cot2 (θ(k))K34

√
ε(k)

Lγ(k)

(
(b(k))

2
+ 〈c, smax1〉2

)
, (5.47)

where K33 = MLT 2s2
max+2

√
MLT 2smax

√
‖λ̌(ε)‖+ ||σ||2+T 2‖λ̌(ε)‖2+T 2||σ||2

105

and K34 = N
(k)
2 + 4N

(k)
1 K33

(
T
√
‖λ̌(ε)‖2 + ‖σ‖2 +

√
MLTsmax

)
+ 4K33.

Proof. Using the definition of θ(k), we will consider three cases.

Case(i): θq(nT)c(k) > θ(k)

In this case, we have ||q(k)
|| (nT)|| = ||q(nT)|| cos

(
θq(nT)c(k)

)
≤

||q(k)
⊥ (nT)|| cot

(
θq(nT)c(k)

)
≤ ||q(k)

⊥ (nT)|| cot
(
θ(k)
)
. Intuitively this means

that, in steady state, when θq(nT)c(k) > θ(k), q(nT) must be small. Oth-

erwise, it would contradict the state-space collapse result that q
(k)
⊥ (nT) is

small. Here is the precise argument.

nT+T−1∑
t=nT

E
[
||q(k)
|| (t)||

(
b(k)

√
L
−
〈
c(k), s(t)

〉)]

≤
nT+T−1∑
t=nT

E

[(
||q(k)
|| (nT)||+

∥∥∥∥∥
nT+T−1∑
t̆=nT

a(t̆)

∥∥∥∥∥+
√
MLTsmax

)(
b(k)

√
L
−
〈
c(k), s(t)

〉)]

≤
nT+T−1∑
t=nT

E
[
||q(k)
⊥ (nT)|| cot

(
θ(k)
)(b(k)

√
L
−
〈
c(k), s(t)

〉)]

+
nT+T−1∑
t=nT

E

[(∥∥∥∥∥
nT+T−1∑
t̆=nT

a(t̆)

∥∥∥∥∥+
√
MLTsmax

)(
b(k)

√
L
−
〈
c(k), s(t)

〉)]

≤
nT+T−1∑
t=nT

√√√√E

[(
b(k)

√
L
− 〈c(k), s(t)〉

)2
]

×

√√√√√cot2 (θ(k))E
[
||q(k)
⊥ (nT)||2

]
+ E

(∥∥∥∥∥
nT+T−1∑
t̆=nT

a(t̆)

∥∥∥∥∥+
√
MLTsmax

)2

(5.48)

≤
√
K33 + cot2 (θ(k))N

(k)
2

√√√√T
nT+T−1∑
t=nT

E

[(
b(k)

√
L
− 〈c(k), s(t)〉

)2
]

(5.49)

≤T
√
K33 + cot2 (θ(k))N

(k)
2

√
ε(k)

Mγ(k)

(
(b(k))

2
+ 〈c, smax1〉2

)
.

Equation (5.48) follows from Cauchy-Schwarz inequality. In (5.49), we get

N
(k)
2 from state-space collapse, Proposition 5.1, the summation was moved

inside the square root (along with an additional T) term due to Jensen’s

inequality, and finally the bound K33 uses the fact that ||a(t)|| ≤ ||a(t)||.
The last inequality follows from (5.37).

106

Case(ii): θq(t)c(k) ≤ θ(k) for all t ∈ {nT, nT + 1, . . . , nT + T − 1}
Since a MaxWeight schedule is chosen at t = nT , by definition of θ(k), we

have that
〈
c(k), s(nT)

〉
= b(k)√

L
. One can then inductively argue as follows

for other times t. Suppose that at time t
〈
c(k), s(t)

〉
= b(k)√

L
. Then at time

t+1, s(t) is still feasible and it maximizes 〈q(t+ 1), s〉 since θq(t+1)c(k) ≤ θ(k).

Therefore, myopic MaxWeight chooses a schedule such that
〈
c(k), s(t+ 1)

〉
=

b(k)√
L

. Therefore, in this case,

nT+T−1∑
t=nT

E
[
||q(k)
|| (t)||

(
b(k)

√
L
−
〈
c(k), s(t)

〉)]
= 0.

Case(iii): θq(nT)c(k) ≤ θ(k) but θq(t)c(k) > θ(k)for some t ∈ {nT + 1, . . . , nT +

T − 1}
Let t0 denote the first time θq(t)c(k) exceeds θ(k). Then, similar to Case (ii),

up to time t0, a schedule is chosen so that
〈
c(k), s(t)

〉
= b(k)√

L
. We can now

bound the remaining terms similar to Case (i). As in Case(i), we have that

||q(k)
|| (t0)|| ≤ ||q(k)

⊥ (t0)|| cot
(
θ(k)
)
. Also, note that from (5.21), we can show

that the bound in (5.39) is valid for ||q(k)
|| (t)−q

(k)
|| (t0)|| too. Then, using the

same argument as in Case (i), we get

nT+T−1∑
t=nT

E
[
||q(k)
|| (t)||

(
b(k)

√
L
−
〈
c(k), s(t)

〉)]

=
nT+T−1∑
t=t0

E
[
||q(k)
|| (t)||

(
b(k)

√
L
−
〈
c(k), s(t)

〉)]

≤
nT+T−1∑
t=t0

E

[(
||q(k)
|| (t0)||+

∥∥∥∥∥
nT+T−1∑
t=nT

a(t)

∥∥∥∥∥+
√
MLTsmax

)(
b(k)

√
L
−
〈
c(k), s(t)

〉)]

≤T
√
K33 + cot2 (θ(k))E

[
||q(k)
⊥ (t0)||2

]√ ε(k)

Lγ(k)

(
(b(k))

2
+ 〈c, smax1〉2

)
.

(5.50)

We will now bound

√
E
[
||q(k)
⊥ (t0)||2

]
using state-space collapse.

107

First, from (5.39), we get

||q(k)
⊥ (t)− q

(k)
⊥ (nT)|| =|| (q(t)− q(nT))−

(
q

(k)
|| (t)− q

(k)
|| (nT)

)
||

≤||q(t)− q(nT)||+ ||q(k)
|| (t)− q

(k)
|| (nT)||

≤2

∥∥∥∥∥
nT+T−1∑
t̆=nT

a(t̆)

∥∥∥∥∥+ 2
√
MLTsmax

E
[
||q(k)
⊥ (t0)||2

]
≤E

(||q(k)
⊥ (nT)||+ 2

∥∥∥∥∥
nT+T−1∑
t̆=nT

a(t̆)

∥∥∥∥∥+ 2
√
MLTsmax||

)2

≤N (k)
2 + 4N

(k)
1

(
T

√
‖λ̌(ε)‖2 + ‖σ‖2 +

√
MLTsmax

)
+ 4K33.

The last inequality follows from state-space collapse, Proposition 5.1,

E
[
||q(k)
⊥ (nT)||2

]
≤ N

(k)
2 and E

[
||q(k)
⊥ (nT)||

]
≤ N

(k)
1 . Combining the three

cases, we have the lemma.

Now, substituting (5.46), (5.47), (5.41), (5.42) and (5.45) in (5.36), we get

ε(k)

nT+T−1∑
t=nT

E
[〈

c(k),q(t)
〉]
≤ Tζ(ε,k)

2
+ TB

(ε,k)
2 ,

where

B
(ε,k)
2 =

1

2
√
L

ε(k)

γ(k)

((
b(k)
)2

+ 〈c, smax1〉2
)

+
Dmaxsmaxε

(k)

c
(k)
min

+
ε(k)

2

〈
c(k),1smax

〉
+
√
K33 + cot2 (θ(k))K34

√
ε(k)

γ(k)

(
(b(k))

2
+ 〈c, smax1〉2

)
+

√
√
LN

(k)
2 smax

ε(k)

c
(k)
min

.

We will now use (5.39) to get a bound on E
[〈

c(k),q(t)
〉]

in steady-state

for any time t. Let nT ≤ t ≤ nT + T − 1. Then,

ε(k)E
[〈

c(k),q(t)
〉]
≤ε(k)E

[〈
c(k),q(nT)

〉]
+ ε(k)E

[
||q(k)
|| (t)− q

(k)
|| (nT)||

]
≤ε

(k)

T

nT+T−1∑
t̆

(
E
[〈

c(k),q(t̆)
〉]

+ E
[
||q(k)
|| (nT)− q

(k)
|| (t̆)||

])

108

+ ε(k)E
[
||q(k)
|| (t)− q

(k)
|| (nT)||

]
≤ζ

(ε,k)

2
+B

(ε,k)
2 + 2ε(k)E

[∥∥∥∥∥
nT+T−1∑
t̆=nT

a(t̆)

∥∥∥∥∥
]

+ 2ε(k)
√
MLTsmax

≤ζ
(ε,k)

2
+B

(ε,k)
3 ,

where B
(ε,k)
3 = B

(ε,k)
2 + 2ε(k)T

√
‖λ̌(ε)‖+ ||σ||2 + 2ε(k)

√
MLTsmax

Note that in the heavy traffic limit as ε(k) ↓ 0, B
(ε,k)
3 → 0. Thus, in the

heavy traffic limit as ε(k) ↓ 0, for any time t, we have

lim
ε(k)↓0

ε(k)E
[〈

c(k),q(ε)(t)
〉]
≤ ζ(k)

2
, (5.51)

where ζ(k) was defined as ζ(k) = 1√
L

〈(
c(k)
)2
, (σ)2

〉
. Thus, (5.8) and (5.51) es-

tablish the first moment heavy-traffic optimality of JSQ routing and MaxWeight

scheduling policy. The proof of Theorem 5.2 is now complete.

5.3.4 Some Extensions

We have so far, obtained heavy traffic optimality of
〈
c(k),q(t)

〉
, which de-

pends on the vector c(k). In other words, we have optimality of a particular

linear combination of queue lengths and we do not have a choice on this linear

combination. In this subsection, we will extend the heavy traffic optimality

result to ||q(t)||2. We will do that by first obtaining lower and upper bounds

on
〈
c(k),q(t)

〉n
for any n ≥ 1.

Proposition 5.2. Consider the cloud computing system described in section

5.1. Under the same conditions as in Theorem 5.2, for any n ≥ 1, we have

n!

(
ζ

(ε,k)
1

2

)n

−B(ε,k)
1,n ,≤ (ε(k))nE

[〈
c(k),q(ε)(t)

〉n] ≤ n!

(
ζ

(ε,k)
1

2

)n

+B
(ε,k)
2,n ,

where ζ
(ε,k)
1 = 1√

L

〈(
c(k)
)2
,
(
σ(ε)
)2
〉

and B
(ε,k)
1,n , B

(ε,k)
2,n are o(1

ε(k)
). The lower

bound is a universal lower bound applicable to all resource allocation algo-

rithms. The upper bound is attained by Algorithm 9.

109

In the heavy traffic limit as ε(k) ↓ 0, this bound is tight, i.e.,

lim
ε(k)↓0

(ε(k))nE
[〈

c(k),q(ε)(t)
〉n]

= n!

(
ζ(k)

2

)n
,

where ζ(k) = 1√
L

〈(
c(k)
)2
, (σ)2

〉
.

The proof is based on the three-step procedure as in the previous subsec-

tions. The first step is to prove the lower bound in Proposition 5.2. It follows

directly from Lemma 10 in [37], which is a bound on the nth power of single

server queue, in the lines of 5.7. State space collapse as stated in Proposition

5.1 is applicable here. Upper bound is obtained by first setting the drift of

the following Lyapunov function to zero in steady state,

V
(k)
n|| (q) ,

〈
c(k),q(ε)

〉n
=
∥∥∥q(k)
||

∥∥∥n =
1

L

(
L∑
i=1

M∑
m=1

qmicm

)n

,

similar to Lemma 5.4 (see Appendix D of [37]), we get

nT+T−1∑
t=nT

(n+ 1)
(
ε(k)
)n E [〈c(k),q(t)

〉n]
(5.52)

=
nT+T−1∑
t=nT

n−1∑
j=0

(
n+ 1

j

)
(ε(k))n−1E

[〈
c(k),q(t)

〉j (〈
c(k), a(t)

〉
− b(k)

)(n−j+1)
]

(5.53)

+
nT+T−1∑
t=nT

n∑
j=0

(
n+ 1

j

)
(ε(k))n−1

× E
[(
〈c(k),q(t) + a(t)〉 − b(k)

)j (
b(k) −

〈
c(k), s(t)

〉)(n−j+1)
]

(5.54)

+
nT+T−1∑
t=nT

n∑
j=0

(
n+ 1

j

)
(ε(k))n−1

× E
[(
〈c(k),q(t) + a(t)− s(t)〉 − b(k)

)j (
b(k) −

〈
c(k),u(t)

〉)(n−j+1)
]

(5.55)

Each of these terms are then bounded, similar to the previous subsection

and appendices C and D of [37]. We skip the details here. Unlike the proof

of Theorem 5.2, we need the assumption that am(t) ≤ amax in the proof of

heavy traffic optimality in Proposition 5.2. We can now obtain heavy traffic

110

optimality of ||q(t)||2 using Proposition 5.2 for n = 2.

Theorem 5.3. Consider the cloud computing system described in section

5.1. Under the same conditions as in Theorem 5.2,(
ζ

(ε,k)
1

)2

2
−B(ε,k)

1,2 ,≤ (ε(k))2E
[∥∥q(ε)(t)

∥∥2
]
≤

(
ζ

(ε,k)
1

)2

2
+B

(ε,k)
3,2 ,

where ζ
(ε,k)
1 = 1√

L

〈(
c(k)
)2
,
(
σ(ε)
)2
〉

and B
(ε,k)
1,2 , B

(ε,k)
2,2 are o(1

ε(k)
).

In the heavy traffic limit as ε(k) ↓ 0, this bound is tight, i.e.,

lim
ε(k)↓0

(ε(k))2E
[∥∥q(ε)(t)

∥∥2
]

=

(
ζ(k)
)2

2
,

The lower bound is a universal lower bound applicable to all resource al-

location algorithms. The upper bound is attained by Algorithm 9. Thus,

Algorithm 9 is second moment heavy traffic optimal

Proof. From the Pythagorean theorem, we have∥∥∥q(ε)
|| (t)

∥∥∥2

≤
∥∥q(ε)(t)

∥∥2
=
∥∥∥q(ε)
|| (t)

∥∥∥2

+
∥∥∥q(ε)
⊥ (t)

∥∥∥2

The result then follows from Proposition 5.2 and state space collapse in

Proposition 5.1 that
∥∥∥q(ε)
⊥ (t)

∥∥∥2

≤ N
(k)
2 .

In the following section, we will study the power-of-two choices routing

algorithm that is easier to implement than JSQ.

5.4 Power-of-Two-Choices Routing and MaxWeight

Scheduling

Power-of-two-choices routing algorithm, studied in Chapter 2, is much sim-

pler to use than JSQ routing algorithm. In this section, we will consider

the power-of-two-choices routing algorithm with the MaxWeight schedul-

ing algorithm for the cloud resource allocation problem. Recall that in the

power-of-two-choices routing algorithm, in each time slot t, for each type

of job i, two servers i1m(t) and i2m(t) are chosen uniformly at random.

111

All the type i job arrivals in this time slot are then routed to the server

with the shorter queue length of backlogged workload among these two, i.e.,

i∗m(t) = arg min
i∈{i1m(t),i2m(t)}

qmi(t).

Then, we have that the cloud computing system is heavy traffic optimal.

In other words, we have the following result.

Theorem 5.4. Theorems 5.1 and 5.2 hold when power-of-two-choices routing

is used instead of JSQ routing in Algorithm 9.

Proof. Proof of Theorem 5.1 when power-of-two choices algorithm is used, is

very similar to proof of Theorem 2.2 in Chapter 2 and so we skip it. Proof

of this theorem is similar to that of Theorem 5.2 and so here we present only

the differences that arise in the proof due to power-of-two choices routing.

We will use the same Lyapunov functions defined in the proof of Propo-

sition 5.2. We will first bound the one-step drift of the Lyapunov function

V (.). Note that the bound (5.15) on the drift of V (.) is valid. Recall that we

use q(ε) for q(Y(ε)).

E
[
M V (Y(ε))|Y(ε)(t)=Y(ε)

]
≤K27 + EY(ε)

[
L∑
i=1

M∑
m=1

(
2q

(ε)
mi

(
ami(t)− sim(t)

))]
.

(5.56)

The arrival term here can be bounded as follows. Let Xj = (i1m, i2m) de-

note the two servers randomly chosen by power-of-two-choices algorithms for

routing of type m jobs.

EY(ε)

[
M∑
m=1

L∑
i=1

(
2q

(ε)
mi (ami(t))

)]

= E

[
E

[
M∑
m=1

L∑
i=1

(
2q

(ε)
mi (ami(t))

)∣∣∣Y(t)=Y(ε), Xj=(i1m, i2m)

]∣∣∣∣∣Y(t)=Y(ε)

]

(a)
= E

 M∑
m=1

∑
(i1m,i2m):i1m<i2m

1
LC2

2am(t) min{q(ε)
mi1m

, q
(ε)
mi2m
}|Y(t) = Y(ε)

=

M∑
m=1

λ̌m
1

LC2

∑
(i1m,i2m):i1m<i2m

2 min{q(ε)
mi1m

, q
(ε)
mi2m
}

112

(b)

≤
M∑
m=1

λ̌m
1

LC2

 ∑
(i1m,i2m):i1m<i2m

q
(ε)
mi1m

+ q
(ε)
mi2m

− (q(ε)
mmax − q

(ε)
mmin)

=

M∑
m=1

λ̌m

(
L∑
i=1

2q
(ε)
mi

L
− 1

LC2

(q(ε)
mmax − q

(ε)
mmin)

)
,

where q
(ε)
mmax = maxm q

(ε)
mi and q

(ε)
mmin = minm q

(ε)
mi. Equation (a) follows

from the definition of power-of-two-choices routing and (b) follows from

the fact that 2 min{q(ε)
mi1m

, q
(ε)
mi2m
} ≤ q

(ε)
mi1m

+ q
(ε)
mi2m

for all i1m and i2m and

2 min{q(ε)
mmax, q

(ε)
mmin} ≤ (q

(ε)
mmax+q

(ε)
mmin)−(q

(ε)
mmax−q(ε)

mmin). Then, from (5.56),

we have

E
[
M V (Y(ε))|Y(ε) = Y(ε)

]
≤K27 −

M∑
m=1

λ̌m
1

LC2

(q(ε)
mmax − q

(ε)
mmin)

+ 2
M∑
m=1

λ̌m

L∑
i=1

q
(ε)
mi

L
− 2Eq(ε)

[
L∑
i=1

M∑
m=1

2q
(ε)
mis

i
m(t)

]
.

(5.57)

The terms in (5.57) are identical to the ones in (5.17) and so can be bounded

by (5.18). Moreover, the bound on one step drift of the Lyapunov function

V||(.) in (5.14) as well as the bound on the drift ∆W̃
(k)
⊥ (Ỹ(ε)) in (5.10) are

valid here since it does not depend on the routing policy. Substituting (5.14),

(5.57) and (5.18) in (5.10), and using q̃(ε) for q(Ỹ(ε)), we get

E
[
∆W̃

(k)
⊥ (Ỹ(ε))

∣∣∣Y(ε)(nT) = Ỹ(ε)
]

≤ 1

2
∥∥∥q̃(ε,k)
⊥

∥∥∥
(
nT+T−1∑
t=nT

E

[
K28 −

M∑
m=1

λ̌m
1

LC2

(q
(ε)
mmax(t)(t)− q

(ε)
mmin(t))(t) (5.58)

+2
L∑
i=1

EY(ε)

[
M∑
m=1

q
(ε)
mi

(
λ̌

(k)
m

L
− sim(t)

)]∣∣∣∣∣Y(ε)(nT) = Ỹ(ε)

])
. (5.59)

In the notation q
(ε)
mmax(t)(t

′), max(t) denotes the server with highest workload

at time t, even though we are interested in the workload at time t′. We will

first bound the terms in (5.19). Using (5.21), we have

q
(ε)
mmin(t)(t)

(a)

≤ q
(ε)
mmin(nT)(t)

113

≤ q
(ε)
mmin(nT)(nT) +

nT+T−1∑
t=nT

ammin(nT)(t) + Tsmax

−q(ε)
mmax(t)(t)

(b)

≤ −q(ε)
mmax(nT)(t)

≤ −q(ε)
mmax(nT)(nT) +

nT+T−1∑
t=nT

ammax(nT)(t) + Tsmax,

where (a) follows from the fact that the server min(t) has the smallest work-

load at time t for type-m jobs. Using EỸ(ε) [.] for E[.|Y(ε)(nT) = Ỹ(ε)], we

bound the terms in (5.58). As in Section 5.3.2, we will assume that the

arrival rate λ̌(ε) is such that there exists a δ > 0 such that λ̌
(ε)
m > δ for all m.

−
nT+T−1∑
t=nT

M∑
m=1

λ̌(ε)
m

1
LC2

EỸ(ε)

[
q

(ε)
mmax(t)(t)− q

(ε)
mmin(t)(t)

]
≤

nT+T−1∑
t=nT

M∑
m=1

λ̌(ε)
m

1
LC2

(
−EỸ(ε)

[
q

(ε)
mmax(nT)(nT)− q(ε)

mmin(nT)(nT)
]

+ 2T λ̌(ε)
m + 2Tsmax

)
≤K29 −

nT+T−1∑
t=nT

M∑
m=1

λ̌(ε)
m

1
LC2

(q̃(ε)
mmax − q̃

(ε)
mmin)

=K29 −
nT+T−1∑
t=nT

M∑
m=1

λ̌(ε)
m

1
LC2

√
L

√
L
(
q̃

(ε)
mmax − q̃(ε)

mmin

)2

≤K29 −
nT+T−1∑
t=nT

M∑
m=1

λ̌(ε)
m

1
LC2

√
L

√√√√ L∑
i=1

(
q̃

(ε)
mi −

∑
i′ q̃

(ε)
mi′

L

)2

≤K29 −
nT+T−1∑
t=nT

2

L

M∑
m=1

δ′′

√√√√ L∑
i=1

(
q̃

(ε)
mi −

∑
i′ q̃

(ε)
mi′

L

)2

,

whereK29 was already defined asK29 = 4T 2
∑M

m=1(λ̌
(ε)
m)2+4T 2smax

∑M
m=1 λ̌

(ε)
m

and δ′′ = δ
(M−1)

√
L

. This term is same as the term in (5.24) with δ′′ instead

of δ. This term can then be bound by the term in (5.25) with δ′′ instead of

δ. Noting that the terms in (5.59) are identical to the ones in (5.20), we can

bound them using (5.26) and (5.31) as in section 5.3.2, and we get (5.32)

with δ′′ instead of δ. Note that the remainder of the proof of state-space

collapse in section 5.3.2 does not use the routing policy and is valid when δ

is replaced with δ′′. Moreover, the proofs of lower bound in section 5.3.1 and

upper bound in section 5.3.3 are also valid here. Thus, the proof of Theorem

114

5.4 is complete.

Similarly, we have the following result of heavy traffic optimality of E
[∥∥q(ε)(t)

∥∥2
]

under power-of-two choices routing, which we state without proof.

Proposition 5.3. Proposition 5.2 and Theorem 5.3 hold when poer-of-two-

choices routing algorithm is used instead of JSQ routing in Algorithm 9.

5.5 Conclusions

In this chapter, we studied the resource allocation problem assuming that

the job sizes are known and preemption is allowed once every few time slots.

We presented two algorithms based on myopic MaxWeight scheduling and

join the shortest queue or power-of-two choices routing algorithms. We have

shown that these algorithms are not only throughput optimal, but also delay

optimal in the heavy traffic regime when all the servers are assumed to be

identical.

115

CHAPTER 6

CONCLUSION

In this thesis, we have studied the problem of optimally allocating limited

server resources to virtual machines in a IaaS cloud computing data center in

an optimal manner. The resource allocation algorithm has two components,

viz., a load balancing or routing algorithm that assigns virtual machines to

the servers and a scheduling algorithm for each server. We have shown that

the widely used Best-Fit algorithm is not throughput optimal. We have

presented a stochastic framework to study the resource allocation problem.

We made a connection with scheduling in ad hoc wireless networks and pre-

sented different versions of MaxWeight scheduling algorithm. In conjunction

with the MaxWeight scheduling, we have presented three different routing

algorithms, viz., join the shortest queue, power-of-two choices and pick-and

compare.

We have considered various assumptions on job sizes and preemption of

jobs. We have studied the case when job sizes are known and bounded, and

when they are unknown and unbounded. We have also studied nonpreemp-

tive algorithms as well as algorithms with limited preemption. Under all

these cases, we have shown that the algorithms that we have presented are

throughput optimal. In the case of limited preemption and known job sizes,

we have also shown that our algorithm is delay optimal in the heavy traf-

fic limit. We have compared the performance of various algorithms through

simulations.

6.1 Open Problems and Future Directions

There are several open problems and future directions that we mentioned

throughout the thesis. Here we list some of them.

• The parameter T corresponding to the duration of a super time slot

116

plays an important role in the proof of Algorithm 3. Even though

any finite T stabilizes the system, a small T sacrifices a large part

of the capacity region. Studying this algorithm when T = ∞ is an

open problem. In Algorithm 4, we have used a fixed schedule between

refresh times. But using a myopic MaxWeight schedule between the

refresh times is more natural and we have noticed better performance

in simulations. We named this Algorithm 7 and proving its throughput

optimality under appropriate assumptions is an open problem. Algo-

rithm 7 and Algorithm 3 with T =∞ are similar. The only difference

is in the knowledge of job sizes.

• When preemption is not allowed, the delay performance of throughput

optimal algorithms that we have presented is poor. We have presented

heuristic algorithms in Chapter 3 with better performance but we do

not have any analytic guarantees on their throughput or delay perfor-

mances. Therefore, presenting an algorithm that is provably through-

put optimal with a tight bound on its delay performance is an problem

for future investigation.

• When job sizes are unknown, our throughput optimality results make

certain assumptions on job sizes. In particular, these assumptions do

not allow for heavy-tailed job size distributions, which are common in

data centers. Therefore, another important open problem is to present

a throughput optimal algorithm when job sizes are unknown and are

allowed to be heavy tailed.

• The result on delay optimality makes several assumptions. In partic-

ular, all the servers need to be identical and the job sizes need to be

known and bounded. Relaxing any or both of these two assumptions

is a direction for future research

• Our delay optimality result is valid only when approaching a corner

point of the capacity region. Most of the literature on heavy traffic

optimality in switches and ad hoc wireless networks and other gener-

alized switch models faces this limitation. Addressing this issue even

in the simplest possible setting of an input-queued switch has been a

longstanding open problem [52].

117

APPENDIX A

PROOF OF LEMMA 3.6

Since G(.) is a strictly increasing bijective convex function on the open in-

terval (0,∞), it is easy to see that G−1(.) is a strictly increasing concave

function on (0,∞). Thus, for any two positive real numbers v2 and v1,

G−1(v2)−G−1(v1) ≤ (v2 − v1) (G−1(v1))
′

where (.)′ denotes derivative.

Let u = G−1(v). Then,

v = G(u)

dv

du
= G′(u) = g(u) = g(G−1(v))

du

dv
=

1

g(G−1(v))
.

Since du
dv

= (G−1(v))
′
, we have (G−1(v))

′
= 1

g(G−1(v))
. Thus, G−1(v2) −

G−1(v1) ≤ (v2−v1)
g(G−1(v1))

. Using V (Q
(1)

) and V (Q
(2)

) for v1 and v2, we get the

lemma.

118

APPENDIX B

PROOF OF LEMMA 3.7

Since the arithmetic mean is at least as large as the geometric mean and

since G(.) is strictly increasing, we have

G

(∏
i,m

(1 + Qmi)
1
LM − 1

)

≤G

(∑
i,m(1 + Qmi)

LM
− 1

)

=

∑
i,m(1 + Qmi)

LM
log

(∑
i,m(1 + Qmi)

LM

)
−
∑

i,m(1 + Qmi)

LM
+ 1

(a)

≤ 1

LM

∑
i,m

(1 + Qmi) log
(
(1 + Qmi)

)
−
∑

i,m(Qmi)

LM

=
V (Q))

LM

≤V (Q)),

where inequality (a) follows from log sum inequality. Now, since G(.) and

log(.) are strictly increasing, we have

e(
1
LM

∑
i,m log(1+Qmi)) ≤ 1 +G−1

(
V (Q))

)
1

LM

∑
i,m

log(1 + Qmi) ≤ log
(
(1 +G−1

(
V (Q))

))
. (B.1)

Now to prove the second inequality, note that since Qmi is nonnegative for

all i and m,

∑
i,m

(
log(1 + Qmi)

∏
i′,m′

(1 + Qm′i′)

)

119

≥
∑
i,m

(
log(1 + Qmi)(1 + Qmi)

)
≥
∑

i,m

(
(1 + Qmi) log(1 + Qmi)

)
−
∑

i,m Qmi − 1

e
.

Shuffling the terms, we get(
e
∏
i,m

(1 + Qmi)

)
log

(
e
∏
i,m

(1 + Qmi)

)
−

(
e
∏
i,m

(1 + Qmi)

)
+ 1

≥
∑
i,m

(
(1 + Qmi) log(1 + Qmi)

)
−
∑
i,m

Qmi.

From the definition of G(.) and V (.), this is same as

G

(
e
∏
i,m

(1 + Qmi)− 1

)
≥ V (Q)

e(1+
∑
i,m log(1+Qmi)) ≥ 1 +G−1(V (Q))

1 +
∑
i,m

log(1 + Qmi) ≥ log(1 +G−1(V (Q))).

The last two inequalities again follow from the fact that G(.) and log(.) are

strictly increasing.

120

APPENDIX C

PROOF OF CLAIM 5.1

For any two job types m and m′ as well as servers i and i′, we have

0 ≤
[(

(q̃
(ε)
mi − q̃

(ε)
mi′)cm′

)
−
(

(q̃
(ε)
m′i − q̃

(ε)
m′i′)cm

)]2

∑
m<m′

2(q̃
(ε)
mi− q̃

(ε)
mi′)cm′(q̃

(ε)
m′i− q̃

(ε)
m′i′)cm ≤

∑
m<m′

(
(q̃

(ε)
mi− q̃

(ε)
mi′)cm′

)2

+
(
(q̃

(ε)
m′i− q̃

(ε)
m′i′)cm

)2

(C.1)

M∑
m=1

M∑
m′=1

(q̃
(ε)
mi − q̃

(ε)
mi′)cm(q̃

(ε)
m′i − q̃

(ε)
m′i′)cm′ ≤

M∑
m=1

M∑
m′=1

(q̃
(ε)
mi − q̃

(ε)
mi′)

2(cm′)
2 (C.2)

(
M∑
m=1

(q̃
(ε)
mi − q̃

(ε)
mi′)cm

)2

≤

[
M∑
m=1

(q̃
(ε)
mi − q̃

(ε)
mi′)

2

]
M∑

m′=1

(cm′)
2.

The left-hand sides of (C.1) and (C.2) are equal for the following reason.

The two sums in the LHS of (C.2) can be split into three cases, viz., m = m′,

m < m′ and m > m′. The term corresponding to m = m′ is zero. The other

two cases correspond to the same term which gives the factor 2 in (C.1).

Considering the three cases, it can be shown that the right-hand sides of

(C.1) and (C.2) are equal. Noting that
∑M

m′=1(cm′)
2 = 1 and summing over

i, i′ such that i < i′, we get

∑
i<i′

(M∑
m=1

(q̃
(ε)
mi − q̃

(ε)
mi′)cm

)2
 ≤∑

i<i′

[
M∑
m=1

(
q̃

(ε)
mi − q̃

(ε)
mi′

)2
]

(C.3)

L∑
i=1

L∑
i′=1

[(
M∑
m=1

q̃
(ε)
micm

)(
M∑
m=1

(q̃
(ε)
mi − q̃

(ε)
mi′)cm

)]
≤

L∑
i=1

L∑
i′=1

[
M∑
m=1

(
q̃

(ε)
mi

)(
q̃

(ε)
mi−q̃

(ε)
mi′

)]
.

(C.4)

The left-hand side of (C.4) is obtained using the same method as in (C.2) as

follows. The two sums in the LHS of (C.4) can be split into three cases, viz.,

121

i = i′, i < i′ and i > i′. The term corresponding to i = i′ is zero. The other

two cases, can be combined to get

∑
i<i′

[(
M∑
m=1

q̃
(ε)
micm

)(
M∑
m=1

(q̃
(ε)
mi − q̃

(ε)
mi′)cm

)
+

(
M∑
m=1

q̃
(ε)
mi′cm

)(
M∑
m=1

(q̃
(ε)
mi′ − q̃

(ε)
mi)cm

)]
,

which is same as the term in the left hand side of (C.3). Similarly, the right

hand side term can be obtained. Expanding the products in (C.4), we get

L∑
i=1

L∑
i′=1

(
M∑
m=1

q̃
(ε)
micm

)2

−
L∑
i=1

L∑
i′=1

(
M∑
m=1

q̃
(ε)
micm

)(
M∑
m=1

q̃
(ε)
mi′cm

)

≤
M∑
m=1

[
L∑
i=1

L∑
i′=1

(
q̃

(ε)
mi

)2

−
L∑
i=1

L∑
i′=1

q̃
(ε)
miq̃

(ε)
mi′

]

L
L∑
i=1

(
M∑
m=1

q̃
(ε)
micm

)2

−

(
L∑
i=1

M∑
m=1

q̃
(ε)
micm

)2

≤ L
M∑
m=1

L∑
i=1

(
q̃

(ε)
mi

)2

−
M∑
m=1

(
L∑
i=1

q̃
(ε)
mi

)2

.

The claim is now proved.

122

REFERENCES

[1] EC2, http://aws.amazon.com/ec2/.

[2] AppEngine, http://code.google.com/appengine/.

[3] Azure, http://www.microsoft.com/windowsazure/.

[4] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid com-
puting 360-degree compared,” in Grid Computing Environments Work-
shop, 2008. GCE’08, 2008, pp. 1–10.

[5] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “Above the clouds: A
Berkeley view of cloud computing,” 2009, Tech. Rep. UCB/eeCs-2009-
28, EECS department, U.C. Berkeley.

[6] D. A. Menasce and P. Ngo, “Understanding cloud computing: Exper-
imentation and capacity planning,” in Proc. 2009 Computer Measure-
ment Group Conf., 2009.

[7] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.
IEEE Infocom., 2010, pp. 1–9.

[8] Y. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti,
and Y. Coady, “Dynamic resource allocation in computing clouds us-
ing distributed multiple criteria decision analysis,” in 2010 IEEE 3rd
International Conference on Cloud Computing, 2010, pp. 91–98.

[9] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, and
A. Delis, “Flexible use of cloud resources through profit maximization
and price discrimination,” in Data Engineering (ICDE), 2011 IEEE 27th
International Conference on, 2011, pp. 75–86.

[10] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” in Proc. IEEE Infocom.,
2011, pp. 1098–1106.

123

http://aws.amazon.com/ec2/
http://code.google.com/appengine/
http://www.microsoft.com/windowsazure/

[11] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines with
dynamic bandwidth demand in data centers,” in Proc. IEEE Infocom.,
2011, pp. 71–75.

[12] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “Kingfisher: Cost-aware
elasticity in the cloud,” in Proc. IEEE Infocom., 2011, pp. 206–210.

[13] B. Speitkamp and M. Bichler, “A mathematical programming approach
for server consolidation problems in virtualized data centers,” IEEE
Transactions on Services Computing, pp. 266–278, 2010.

[14] A. Beloglazov and R. Buyya, “Energy efficient allocation of virtual ma-
chines in cloud data centers,” in 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, 2010, pp. 577–578.

[15] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Automat. Contr., vol. 4, pp.
1936–1948, December 1992.

[16] T. Bonald and D. Cuda, “Rate-optimal scheduling schemes for asyn-
chronous input-queued packet switches,” in ACM Sigmetrics MAMA
Workshop, 2012.

[17] Y. Shunyuan and S. Yanming Shenand Panwar, “An o(1) scheduling al-
gorithm for variable-size packet switching systems,” in Proc. Ann. Aller-
ton Conf. Communication, Control and Computing, 2010.

[18] J. Ghaderi and R. Srikant, “On the design of efficient CSMA algorithms
for wireless networks,” in Proc. Conf. on Decision and Control. IEEE,
2010, pp. 954–959.

[19] M. A. Marsan, A. Bianco, P. Giaccone, S. Member, E. Leonardi, and
F. Neri, “Packet-mode scheduling in input-queued cell-based switches,”
IEEE/ACM Transactions on Networking, vol. 10, pp. 666–678, 2002.

[20] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in Proc. IEEE
Infocom., 2012, pp. 702–710.

[21] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load bal-
ancing and scheduling in cloud computing clusters,” Technical Report,
http://hdl.handle.net/2142/28577.

[22] S. Asmussen, Applied Probability and Queues. New York: Springer-
Verlag, 2003.

[23] S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability.
Cambridge University Press, 2009.

124

http://hdl.handle.net/2142/28577

[24] M. Mitzenmacher, “The power of two choices in randomized load bal-
ancing,” Ph.D. dissertation, University of California at Berkeley, 1996.

[25] Y. T. He and D. G. Down, “Limited choice and locality considerations
for load balancing,” Performance Evaluation, vol. 65, no. 9, pp. 670 –
687, 2008.

[26] H. Chen and H. Q. Ye, “Asymptotic optimality of balanced routing,”
2010, http://myweb.polyu.edu.hk/∼lgtyehq/papers/ChenYe11OR.pdf.

[27] L. Tassiulas, “Linear complexity algorithms for maximum throughput
in radionetworks and input queued switches,” in Proc. IEEE Infocom.,
1998.

[28] Y. Ganjali, A. Keshavarzian, and D. Shah, “Cell switching versus packet
switching in input-queued switches,” IEEE/ACM Trans. Networking,
vol. 13, pp. 782–789, 2005.

[29] A. Eryilmaz, R. Srikant, and J. R. Perkins, “Stable scheduling poli-
cies for fading wireless channels,” IEEE/ACM Trans. Network., vol. 13,
no. 2, pp. 411–424, 2005.

[30] V. Venkataramanan and X. Lin, “On the queue-overflow probability
of wireless systems: A new approach combining large deviations with
Lyapunov functions,” IEEE Trans. Inform. Theory, 2013.

[31] D. Shah and J. Shin, “Randomized scheduling algorithm for queueing
networks,” The Annals of Applied Probability, vol. 22, no. 1, pp. 128–
171, 2012.

[32] J. Ghaderi and R. Srikant, “Flow-level stability of multihop wireless
networks using only MAC-layer information,” in WiOpt, 2012.

[33] B. Hajek, “Hitting-time and occupation-time bounds implied by drift
analysis with applications,” Advances in Applied Probability, pp. 502–
525, 1982.

[34] S. T. Maguluri and R. Srikant, “Scheduling jobs with unknown duration
in clouds,” in INFOCOM, 2013 Proceedings IEEE, 2013, pp. 1887–1895.

[35] S. T. Maguluri and R. Srikant, “Scheduling jobs with unknown duration
in clouds,” to appear in IEEE/ACM Transactions on Networking.

[36] S. Karlin and H. M. Taylor, A First Course in Stochastic Processes.
Academic Press, 1975.

[37] A. Eryilmaz and R. Srikant, “Asymptotically tight steady-state queue
length bounds implied by drift conditions,” Queueing Systems, pp. 1–49,
2012.

125

http://myweb.polyu.edu.hk/~lgtyehq/papers/ChenYe11OR.pdf

[38] J. Ghaderi, T. Ji, and R. Srikant, “Connection-level scheduling in wire-
less networks using only MAC-layer information,” in INFOCOM, 2012,
pp. 2696–2700.

[39] T. Ji and R. Srikant, “Scheduling in wireless networks with connec-
tion arrivals and departures,” in Information Theory and Applications
Workshop, 2011.

[40] M. Bramson, “State space collapse with application to heavy-traffic lim-
its for multiclass queueing networks,” Queueing Systems Theory and
Applications, pp. 89 – 148, 1998.

[41] R. J. Williams, “Diffusion approximations for open multiclass queueing
networks: Sufficient conditions involving state space collapse,” Queueing
Systems Theory and Applications, pp. 27 – 88, 1998.

[42] M. I. Reiman, “Some diffusion approximations with state space col-
lapse,” in Proceedings of International Seminar on Modelling and Per-
formance Evaluation Methodology, Lecture Notes in Control and Infor-
mation Sciences. Berlin: Springer, 1983, pp. 209–240.

[43] J. M. Harrison, “Heavy traffic analysis of a system with parallel servers:
Asymptotic optimality of discrete review policies,” Ann. App. Probab.,
pp. 822–848, 1998.

[44] J. M. Harrison and M. J. Lopez, “Heavy traffic resource pooling in
parallel-server systems,” Queueing Systems, pp. 339–368, 1999.

[45] S. L. Bell and R. J. Williams, “Dynamic scheduling of a parallel server
system in heavy traffic with complete resource pooling: asymptotic opti-
mality of a threshold policy,” Electronic J. of Probability, pp. 1044–1115,
2005.

[46] A. Stolyar, “MaxWeight scheduling in a generalized switch: State space
collapse and workload minimization in heavy traffic,” Adv. Appl. Prob.,
vol. 14, no. 1, 2004.

[47] J. F. C. Kingman, “Some inequalities for the queue GI/G/1,”
Biometrika, pp. 315–324, 1962.

[48] S. T. Maguluri, R. Srikant, and L. Ying, “Heavy traffic optimal resource
allocation algorithms for cloud computing clusters,” in International
Teletraffic Congress, 2012, pp. 1–8.

[49] S. T. Maguluri, R. Srikant, and L. Ying, “Heavy traffic optimal resource
allocation algorithms for cloud computing clusters,” Performance Eval-
uation, vol. 81, pp. 20–39, 2014.

126

[50] A. Mandelbaum and A. L. Stolyar, “Scheduling flexible servers with
convex delay costs: heavy-traffic optimality of the generalized cµ-rule,”
Operations Research, vol. 52, no. 6, pp. 836–855, 2004.

[51] H. Q. Ye and D. D. Yao, “Utility-maximizing resource control: Diffusion
limit and asymptotic optimality for a two-bottleneck model,” Operations
Research, vol. 58, 2010.

[52] D. Shah, J. Tsitsiklis, and Y. Zhong, “Optimal scaling of average queue
sizes in an input-queued switch: an open problem,” Queueing Systems,
vol. 68, no. 3-4, pp. 375–384, 2011.

127

	INTRODUCTION
	Best Fit Is Not Throughput Optimal
	A Stochastic Model for Cloud Computing

	Throughput Optimality: Known Job sizes
	A Centralized Queueing Approach
	Preemptive Algorithm
	Nonpreemptive Algorithms

	Resource Allocation with Load Balancing
	Simpler Load Balancing Algorithms
	Power-of-two-choices Routing and Myopic MaxWeight Scheduling
	Pick-and-Compare Routing and Myopic MaxWeight Scheduling

	Discussion and Simulations
	Conclusions

	Unknown Job Sizes
	Algorithm
	Refresh Times

	Throughput Optimality - Geometric Job Sizes
	Throughput Optimality - General Job Size Distribution
	Local Refresh Times
	Simulations
	Local vs. Global Refresh Times
	Heuristics

	Conclusion

	Limited Preemption
	Unknown Job Sizes
	Conclusion

	Delay Optimality
	Algorithm with Limited Preemption - Known Job Sizes
	Throughput Optimality
	Heavy Traffic Optimality
	Lower Bound
	State Space Collapse
	Upper Bound
	Some Extensions

	Power-of-Two-Choices Routing and MaxWeight Scheduling
	Conclusions

	Conclusion
	Open Problems and Future Directions

	Proof of Lemma 3.6
	Proof of Lemma 3.7
	Proof of Claim 5.1
	REFERENCES

