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Abstract

The remarkable molecule that encodes genetic information for all life on earth—DNA—is a polymer with

unusual physical properties. The mechanical and electrostatic properties of DNA are utilized extensively by

cells in the replication, regular maintenance, and expression of their genetic material. This can be illustrated

by considering the journey of a typical gene regulating protein, the lac repressor, which recognizes a particular

gene and prevents its expression. First, the large electrostatic charge density of DNA provides an energetic

track that guides the repressor’s search for its target binding site. Next, as the protein moves along the

DNA, it attempts to deform the DNA. The repressor is only able to form an active complex with DNA that

has the right sequence-dependent flexibility. Finally, the repressor is believed to form a very small DNA

loop that prevents the gene from being expressed. The stability of the loop can be expected to depend

sensitively on the global flexibility of DNA. Thus, the key to understanding some of the most important

cellular processes lies in understanding the physical properties of DNA. Single-molecule experiments allow

direct observation of the behavior of individual DNA molecules, but act on length and timescales that

are often too large and fast to observe underlying DNA and DNA–protein dynamics. Acting on length

and timescales that complement single-molecule experiments, molecular dynamics simulations provide a

high-resolution glimpse into the mechanics of a biomolecular world. Here, several simulation studies are

presented, each of which quantified one or more properties of DNA. Specifically, the repulsive forces between

parallel duplex DNA molecules were measured; the short-ranged, attractive end-to-end stacking energy was

obtained; a single-stranded DNA model was developed that reproduced experimental measurements of its

extension upon applied force; and finally the nature of single-stranded DNA binding to a single-stranded

DNA binding protein was investigated. These works represent important steps towards larger simulations

of more biologically complete DNA–protein systems.
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Chapter 1

Background
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1.1 DNA is more than just a sequence

After water and oxygen, DNA is, very likely, the most famous molecule of life known to humankind. This is

not surprising, as we all know that an eye-catching, double-helical molecule of DNA carries instructions to

manufacture and assemble all the components of a living organism. The wealth of information encoded in

a DNA molecule often overshadows its unique physical properties, which facilitate its role as the carrier of

genomic information [2–4]. For example, the hybridization of a DNA strand with a complementary strand,

which occurs through interlocked hydrogen bonds, provides a nearby redundant source of information in

case of spontaneous mutation. More impressively, the proteins that recognize DNA mismatches are believed

to detect these genetic errors by sensing the flexibility of the DNA molecule.

Despite a very large number of theoretical and experimental studies, the behavior of DNA in very many

contexts remains highly debated. With the advent of massively parallel supercomputers it has become

possible to characterize DNA properties directly, through all-atom molecular dynamics (MD) simulations.

Because the all-atom MD method explicitly describes the trajectory of every atom in the system with fem-

tosecond resolution, it has the potential to give unparalleled insight into an experimental system. The

primary use of the MD method is to suggest a physically plausible explanation or justification of an ex-

perimental measurement by animating an equivalent system in silico. Equipped with a physically correct

description of interatomic interactions and adequate computational power, the MD method should be able

to predict the physical behavior of any biological system. Despite ever-increasing availability of massive

parallel computing platforms, making quantitative predictions using MD remains challenging, in part due

to imperfections of the inter-atom interaction models.

Before we proceed, let’s review the basic chemical structure of DNA, Fig. 1.1. A molecule of DNA is a

polymer made up of many DNA nucleotides linearly arranged into a polymer chain. Single-stranded DNA

(ssDNA) is made of one such chain, whereas in double-stranded DNA (dsDNA), two ssDNA molecules are

arranged into a DNA double helix through non-covalent interactions. The basic unit of DNA structure—a

DNA nucleotide—has three major groups: backbone, sugar and base. The backbone is negatively charged

under physiological conditions and has a direction (5′-to-3′) determined by the order of the atoms forming the

backbone. The sugar group links the backbone to the base. The chemical difference between DNA and RNA

is the presence of an extra hydroxyl (OH) moiety in the sugar group, which strongly alters the properties of

Reproduced with permission in part from Christopher Maffeo, Jejoong Yoo, Jeffrey Comer, David Wells, Binquan Luan, and
Aleksei Aksimentiev. Close encounters with DNA. J. Phys.: Condens. Matter, 2014. Accepted (Copyright c© 2014 Institutes
of Physics).
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the molecule. The DNA base carries genetic information and typically comes in the one following four types:

adenine (A), cytosine (C), guanine (G) and thymine (T). The complementary hydrogen bond paring of A with

T and G with C governs the nucleotide sequence-specific assembly of two single strands into a double helix.

However, chemical modification of DNA bases are common. The most abundant variation is the addition of

a methyl group to cytosine, transforming it into a methylated cytosine—a carrier of epigenetic information

(derived from the history of an organism). Modifications are possible, including hydroxymethylation and

other derivatives [5]. Under physiological conditions, each DNA nucleotide carries a charge of one electron.

A single DNA strand is much more flexible than a double helix. The following discussion implicitly assumes

that DNA is in an aqueous environment at pH 7.0.

The rest of this Chapter includes a brief historical review of the field of DNA simulation and a review

some key DNA properties. The second Chapter discusses, in mostly general terms, the simulation methods

used throughout this thesis. Finally, the remaining Chapters present simulation studies that quantitatively

investigated the properties of DNA.

(negatively charged) phosphate

deoxyribose (sugar)

nucleobase

3′-end

5′-end

ssDNA anneals

to form dsDNA

nucleotides

polymerize

to form ssDNA

thymine

adenine cytosine

guanine

hydroxymethyl-cytosine

methyl-cytosine

or

Figure 1.1: Chemical model of DNA. DNA is a polymer composed of nucleotides, each having a negatively
charged phosphate, a deoxyribose sugar ring and one of the four nucleobases: adenine, thymine, guanine,
cytosine. Two single DNA strands form a double helix held together through non-covalent interactions. In
addition to the four types of DNA nucleotides, chemical modification of DNA occurs frequently and includes
methylation and hydroxymethylation.

1.2 Historical perspective of DNA modeling and simulation

The year 1952 witnessed the publication of the first solid evidence that DNA is the genetic material [6].

Just one year later in 1953, the basepaired double-helical structure of DNA was proposed [7]. In that same

year, Hermann Staudinger received a Nobel Prize for his work in 1922 demonstrating that polymers are

composed of long chains of covalently bonded atoms, and Paul Flory—later a Nobel laureate for his work
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in theoretical polymer chemistry—published his seminal book “Principles of Polymer Chemistry”. Thus,

a theoretical framework for discussing polymers was available for the study of DNA, including the widely

employed freely-jointed and worm-like chain models [8–10], see Sec. 1.3. No time was wasted; in that same

year, the worm-like chain (WLC) model was used to analyze the angular dependence of the intensity of

scattered light to suggest a surprisingly accurate measure of the flexibility of DNA [11, 12]. Other early

theoretical studies of DNA focused on the thermodynamic transition of denaturation using a variety of

approaches [13–16]. One perhaps iconic approach was an adaptation of the one-dimensional Ising model

(originally developed to describe magnetization), whereby the likelihood of a given basepair’s unpairing

depends on the paired status of its nearest neighbors in a DNA helix [13].

By 1975, it was known that DNA was a rather rigid polymer, yet it could form compact structures like

chromatin [17], sparking a debate about kinked versus smoothly bent DNA. In the earliest atomic-modeling

studies that employed computation, models of kinked and bent DNA were produced by performing least-

squares searches of toy potentials linking rigid groups of atoms [18,19]. Soon after, Levitt borrowed atomic

interaction potentials from protein and RNA refinement studies to relax the full set of atomic coordinates of a

DNA molecule that was bent and twisted by varying amounts [20]. Although both solvent and electrostatics

were absent in the calculations and the calculations probed only the local energy minima, the study correctly

determined the 10.5 basepairs-per-turn pitch of a DNA helix in solution, departing from the 10 basepairs-

per-turn pitch observed in the solid-state Watson-Crick structure.

The first room-temperature computations involving DNA were performed by Clementi and Corongiu

in 1979 and 1980 [21, 22]. These Monte Carlo (MC) simulations, performed using a model optimized to

reproduce energies of ab initio calculations, revealed the structure of water molecules around fixed DNA

helices and nucleotides. In the MC method, atomic coordinates were propagated according to Boltzmann

statistics, so equilibrium, but not dynamical, properties of the system could be studied. In the beginning of

1983, Levitt, borrowing again the methods developed for the study of proteins, reported an MD simulation

that showed asymmetric bending and twisting motions of duplex DNA in the absence of solvent [23]. This

was followed only a few months later by a similar MD report by the Karplus group [24]. Finally in 1985,

the Kollman group performed the first MD simulation of a DNA fragment in electrolyte solution [25].

Beveridge et al. comprehensively reviewed the following decade of MD studies of DNA [26,27]. At that

time, simulations were rapidly approaching the nanosecond timescale [28]. Nevertheless, most simulations

from that era described DNA using implicit solvent and truncated electrostatics. In 1995, it was noted

that the outcome of a simulation could qualitatively depend on the method used to describe the dielectric

environment of a charged polymer [29]. The Kollman group (1995) demonstrated that simulations of DNA
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using the particle mesh Ewald (PME) method, which efficiently calculates long-range electrostatic interac-

tions in Fourier space, are more accurate than the simulations performed using truncated electrostatics [30].

Although accurate representation of electrostatics is essential for modeling of a highly charged molecule such

as DNA, the community was at first slow to adopt the particle mesh Ewald method due to the high compu-

tational cost [31]. At that time, several “second-generation” all-atom force fields with explicit solvent were

released, including AMBER-94 and CHARMM22 [32]. Around the same time, National Science Foundation

supercomputers became more accessible to researchers and the major MD codes AMBER and CHARMM

were parallelized.

Prompted by these methodological advances, longer and more accurate studies of DNA structure and

dynamics were performed. Of particular note, Cheatham and Kollman (1996) observed a spontaneous

transition of DNA from A-form to a more stable B-form during the first multi-nanosecond simulation of ex-

plicitly solvated DNA, indicating good accuracy for the AMBER force field [33]. Shortly thereafter Young,

Ravishanker and Beveridge reported the first 5-nanosecond trajectory of B-DNA [34], which revealed sub-

stantial fluctuation of the DNA structure, in agreement with with x-ray crystallography and NMR. The

latter study was one among several that found that MD simulations employing the CHARMM or AMBER

force field could reproduce the crystal and NMR structures [31]—an important test of the force fields. The

sequence-specificity of DNA structures began to be investigated including comparisons of twist, roll, and tilt

obtained for different basepair stacks [35]. More dramatically, the intrinsic curvature of A-tract DNA was

observed [34] (see Sec. 1.3 for details). Back in 1986, it had been recognized from crystal structures that

water may considerably affect the conformation of DNA (A-form vs. B-form) [36]. Feig and Pettitt (1998)

reviewed molecular dynamics simulations that investigated the structure and properties of water surrounding

DNA [37]. Another question of outstanding importance was the location and dynamics of ions, which were

believed to bind DNA tightly [38]. A number of studies investigated whether and where the ions would bind

to DNA [39] and began to characterize the ion atmosphere [40–42]. Around the same time, the generalized

Born method [43] was introduced to implicit solvent simulations with AMBER [44] and CHARMM [45]

parameters for more accurate estimation of the electrostatic solvation energy.

From 1995 to 2000, the era of quantitative MD simulations of DNA began to emerge, starting with free

energy perturbation simulations of ligand binding [31, 35]. The structural and intramolecular character of

DNA was investigated through free energy simulations of base pairing, stacking, and DNA stretching [31]. In

particular, MacKerell and Lee (1999) used umbrella sampling MD simulations and atomic force microscopy

to study stretch-induced melting of short DNA fragments [46]. Near-quantitative agreement was obtained

between simulation and experiment, indicating good overall performance of the CHARMM22 force field. It
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must be cautioned that the AFM results were not in complete agreement with the seminal study of stretching

long (48.5 kbp) λ-phage DNA using an optical trap [47], perhaps because different DNA constructs were

employed [46]. Nevertheless, the simulation represented the first, to our knowledge, quantitative comparison

of mechanical DNA properties observed in experiment and in simulation.

number of nucleotides in simulation

quantum mechanics

stacked bases DNA origamiDNA fragment plectoneme virus packaging

all-atom MD simulation CG simulation Polymer model

nucleosome wormlike chain chromatin

θ

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 1.2: Nucleic acid systems that represent the range of scales amenable to various computational and
theoretical methods. From left to right, generally increasing in number of nucleotides: (a) Base-stacking
interactions can be studied through quantum mechanics calculations, and reveal asymmetric van der Waals
radii [48]. The all-atom MD method with explicit or implicit solvent provides a balance between com-
putational speed and descriptive detail. This method can be used to study systems ranging from a few
nucleotides to (b) several turns of DNA [49] to (c) hundreds nucleotides as in the nucleosome [50]. (d)
A large multi-layer, curved DNA origami construct described by MD simulation with explicit solvent [51].
Coarse-grained simulations can describe DNA with a wide range of detail, from near atomic (e.g. to describe
(e) a plectoneme [52]) to many nucleotides per site (e.g. to describe (f) the packaging of a virus [53]). The
two dominant polymer models of DNA are (g) the wormlike chain (WLC) model [10], and the freely jointed
chain (FJC) model [8, 9]. The WLC model describes DNA under tension better than FJC, but FJC is
convenient for very coarse descriptions of DNA, (h) such as at the level of chromatin [54]. Panels adapted
with permission from (a) Ref. 55, (b) Ref. 49, (d) Ref. 51, (e) Ref. 52, (f) Ref. 53, and (h) Ref. 54.

In the new millennium, there have been a few general reviews of DNA simulations [56–58]. However,

the field has grown such an extent that there have been very many special-topic reviews on a wide range

of subjects. For example, the base stacking interactions were reviewed from a quantum mechanics (QM)

perspective [55]. Another recent review that included QM and MD descriptions of DNA focused on the

backbone rather than bases [48]. Work continued toward understanding the relationship between DNA

and the solvent [59, 60], however, it was only recently found that the standard parameterization of cation–

phosphate interaction had considerable problems [61]. Advances in computing permitted the mechanical

properties of DNA to be examined in more detail [62–65]. Finally, there were many investigations of DNA

association with other molecules, including small molecules such as anti-cancer drugs [66, 67], sequence-

specific DNA binding proteins [66, 68], non-specific DNA binding proteins such as the nucleosome [69] and

synthetic structures such as carbon nanotubes [70] and silicon nitride nanopores [71].

In recent years, MD simulations of DNA have moved toward large systems and long durations. The
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first microsecond simulation of B-DNA was performed by the Orozco group in 2007 [72], which revealed the

limitations of the AMBER-99 force field and a new parameterization of the all-atom model that addressed

the problem. Meanwhile, a number of impressive developments have happened in the related field of RNA

systems simulations. An all-atom model of one of the smallest viruses—the satellite tobacco mosaic virus—

was simulated for ∼ 50 ns, which included 60 copies of the coat protein, a 1063-nucleotide single-stranded

RNA molecule and the electrolyte solution, about one million atoms in total [73]. Even larger RNA systems

have since been simulated. Atomic simulations of the ribosome, an enormous protein synthesis factory

predominantly composed of RNA, were recently reviewed by Sanbomatsu [74]. The simulations examined

the conformational changes in the ribosome, the effects of point mutations and quantified the kinetics and

free energy barriers of conformational transitions using a 3 million atom model and the aggregate simulation

time of ∼2 µs.

Large-scale MD simulations of DNA systems have only recently matched the scale of the largest RNA

simulations, perhaps because of the lack of atomic-scale structures of large DNA assemblies. Matching the

setup of DNA array experiments of Rau and Parsegian [75], Yoo and Aksimentiev simulated the structure,

dynamics, ionic atmosphere and intermolecular forces of a DNA array [61]. The outcome of these simulations

revealed the limitations of the standard ion-DNA interactions and a method to fine-tune the parameters to

achieve quantitative agreement with experiments. One of the current frontiers of DNA simulations are DNA

origami and related self-assembled nanostructures [76–78]. The first atomic-resolution simulation of DNA

origami was reported very recently [51], revealing the situ structure of several DNA origami designs as well

as their local and global mechanical properties.

The above discussion has focused predominantly on fully-atomic simulation of DNA. By employing a less

detailed, “coarse-grained” (CG) model the timescale accessible to simulations of DNA can be significantly

extended [79–81]. In the past five years, many CG models of DNA have been developed to reproduce various

properties of double-stranded DNA [82–92]. Most available CG models employ a few interaction sites to

represent each nucleotide, but CG models can span an enormous range of scales, from the near-atomic [91]

to the meso and macroscopic [53]. An excellent review of available CG DNA models can be found in the

recent article from the de Pablo group [82].

Parameters describing the interactions of coarse-grained models are usually obtained by fitting against

experimental data, such as the nearest neighbor DNA melting parameters [93], or by reproducing structural

parameters from atomic resolution simulations. In analogy to the atomic force fields, which are optimized

against a mix of finer quantum calculations and experimental data, it is our belief that the most accurate

general purpose CG models of DNA will be obtained through a combination of all-atom simulations and
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single-molecule experiment. A recent application of such an approach is a CG model of single-stranded

thymine homopolymers specifically developed to match both the all-atom simulations and single-molecule

fluorescence resonance energy transfer measurements [94].

Finally, the coarsest biologically relevant description of DNA ignores its physical form altogether, rep-

resenting each nucleotide with one of four letters, A-C-G-T. In the field of genomics, computers play an

instrumental role in organizing, sorting, search and comparing the genomes of different species and individ-

uals. Since this field lies largely outside of our expertise, we merely mention computational genomics as an

important and exciting area of computational modeling the biological function of DNA.

1.3 Duplex DNA mechanics

Mechanical deformation of double-stranded DNA (dsDNA) occurs during many gene regulation processes.

Although the studies presented in this thesis did not directly probe the mechanical properties of DNA, we

review the mechanical properties of duplex DNA because of their important biological implications.

At length scales greatly exceeding the helical pitch of dsDNA, polymer models can provide an adequate

description of dsDNA’s equilibrium conformations. The wormlike chain (WLC) model mathematically rep-

resents a polymer of length l by a continuous set of unit-length tangent vectors t(s) parameterized by the

distance along the contour s ∈ (0, l). The polymer is assumed to behave like a cylindrically symmetric beam

with a mechanical rigidity described by an elastic modulus. Thus local bending of the polymer requires an

energy du proportional to | ∂t∂s |
2. In thermodynamic equilibrium ∂t(s)

∂s should sample from the Boltzmann

distribution and it can be shown by integrating over all possible polymer configurations that the expected

value for 〈t(s) · t(0)〉 = e−s/Lp [10]. Thus, the tangent vector of a polymer is expected to be correlated

for a characteristic contour length of Lp, the persistence length. For DNA, a range of values for Lp have

been obtained, centered around 45–50 nm by fitting the WLC model to a wide variety of experimental

measurements [95]. Finally, it is worth noting that the WLC model has been extended to incorporate elastic

stretching and twisting [96–98].

The local bending of dsDNA is highly dependent on the DNA sequence. For example, dsDNA is more

likely to bend at the AT step. The network of hydrogen bonds formed by water molecules on DNA surface

varies in accord with the DNA sequence. For a poly(dA)·poly(dT) fragment, a water “spine” is formed in

the minor groove of the dsDNA, bridging the N3 and O2 atoms in neighboring basepairs. When a sequence

contains 4–6 dA nucleotides repeated with helical periodicity, the DNA curves on average toward the minor

groove by ∼ 10–20◦ per turn. These so-called A-tracts have been recently reviewed in outstanding detail [99].
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The molecular mechanisms that underlie A-tract curvature are a challenge to determine because there are

many possible causes, including solvent interactions, ion-binding, anomalous stacking or base-pairing. It

is tempting to attempt to describe A-tract curvature using a nearest neighbor model, such as the model

that accurately describes the free energy of DNA hybridization as a sum of energies associated with pairs of

stacked basepairs [93]. However, it was shown using MD simulation that the conformation of a CG basepair

stack depended on the sequence context in the DNA [100]. Thus, it appears that the sequence-dependent

attributes of DNA mechanics cannot be fully described by a nearest neighbor model, at least if we assume

that the MD result was not due to artifacts in the force field.

1.3.1 Twisting dsDNA

A DNA molecule can be bent, stretched along its helical axis, or twisted about this axis. Measurements of

the extension of a double-stranded DNA molecule under low applied force (< 10 pN) probes the mechanical

bending of DNA [101]. At higher force (but still below the overstretching transition), the same measurements

can characterize elastic stretching along the helical axis [101]. Such experiments are usually performed using

optical traps which allow the DNA to relax torsionally. In biological cells, torsional stress in DNA was shown

to regulate gene expression [102,103].

Usually, the term flexibility refers to a polymer’s ability to bend, which is quantified by its persistence

length. For a generic dsDNA molecule, the persistence length is ∼ 45-50 nm [64, 95] or about 20 times its

diameter (2.5 nm), which makes DNA fairly stiff for a natural polymer. In direct analogy to the persistence

length, one can define a torsional persistence length for dsDNA that represents the characteristic length

scale along which a DNA molecule’s twist is correlated. This length is similar to the persistence length, but

varies considerably in the literature from 36–75 nm [95,104,105].

Analysis of the crystal structures suggests that the intrinsic twist of a DNA helix depends on its nucleotide

sequence and can range from 31◦ for an AG step to 40◦ for a TA step [106, 107]. Here we follow the

usual convention that the first letter is on the 5′-end of one strand, and we note that some sequences are

“palindromes” (e.g. AA with TT). The standard deviation of the twist is similar for different basepair steps,

ranging from 3.9◦ for an AA step to 6.5◦ for a CA step, suggesting a mild dependence of the torsional

persistence length on the DNA sequence. The sequence-dependent average twist and twist moduli were

obtained from MD simulations of DNA fragments [104] using the AMBER force field [108] without the

parmbsc0 refinement. The results of the MD simulations were in overall agreement with the results of the

crystal structure survey [107] with some discrepancies, primarily for GG steps. CG steps were found to

be the most conformationally flexible, and AT steps the least. Overall, the study demonstrated significant
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sequence-specific coupling between various coordinates used to describe basepair steps.

A more recent simulation study employed the newer AMBER-99 force field and a much larger, systematic

set of sequences to examine the flexibility of specific base-steps [109]. Despite reporting on overall flexibility,

which included contributions from both twist and bending, the results of the study were consistent with

previous observations, assessing the TA, CG and CA (but not AT, GC, and AC) steps as the most flexible.

The authors emphasized a correlation between the flexibility of a step and the absence of water molecules

in the minor groove that bridge the base pairs forming the step.

Simulations of longer DNA molecules have also been performed. Mazur has studied many DNA properties

through simulations employing an all-atom MD method that permits the integration timestep to be increased

from 1-2 to 10 fs by treating groups of DNA atoms rigidly [110]. That method enabled long-timescale

(> 160 ns) simulations of short (< 2 turns) DNA fragments that revealed a torsional persistence length

of 120 nm for AMBER-98 [111]. In contrast however, Noy and Golestanian [112] more recently found the

torsional persistence length to be 80 nm from simulations of relatively long (3-5 turns) random sequence

DNA molecules using the AMBER-99 force field with the parmbsc0 correction. The disagreement resulted

in a debate between the two groups [113, 114], which may partially be attributed to the rather different

simulation protocols employed.

When DNA is twisted enough, linear elastic models fail to describe its properties. This was demonstrated

in MD simulations where a three-turn DNA molecule was twisted by −0.22 to +0.39 turns [115]. Initially,

the DNA had uniform twist, but by the end of a 10-ns simulation it was slightly undertwisted or extremely

overtwised; the DNA conformation included a mixture of B-DNA and locally denatured DNA accommodating

the overall twist. The MD simulations also indicated that counterions were able to access the minor groove

more easily in overwound than underwound DNA.

1.3.2 DNA looping

Because cells can suppress expression of genes by looping DNA, the behavior of DNA in small loops has

long been of interest. Under thermal fluctuations or applied force, DNA bends away from its equilibrium

curvature. For moderate bending, the wormlike chain model (WLC) describes this bending very well with

a 45–50 nm persistence length. Early simulations were not long enough to allow accurate determination of

the persistence length of DNA. However, the studies from Mazur [111] and from Noy and Golestanian [112]

reported persistence lengths of 65-85 nm for AMBER-98 and 43–51 nm for AMBER-99bsc0, respectively.

The likelihood of DNA having complementary single-stranded overhangs to form a loop [116], or to

cyclize, depends on both the bending and twisting properties of DNA. As a function of DNA length, this
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likelihood has a peak around 400 bp, where the DNA is neither too long (so that the ends cannot find

each other), nor too short (so that the DNA is unable to bend into a loop). This assay has been used to

unambiguously distinguish intrinsic sequence-dependent curvature from isotropic flexibility [116]. For DNA

molecules shorter than 500 bp, the likelihood of DNA cyclization was found to fluctuate periodically with

respect to the length of the DNA fragment [64].

Under high curvature, the WLC model must break down, however, there is much disagreement with

respect to the critical curvature where the model loses its validity. It was experimentally observed that very

short DNA fragments (∼ 100 bp) could form circles more readily than predicted by the elastic models of

DNA [105], suggesting strong bending or kinking. Similar results were observed from atomic force microscope

images [2] and from the interference of x-ray scattering off gold nanoparticles tethered to either end of a

short DNA molecule [117]. Other experiments rigorously defended the validity of the WLC model for short

DNA [64, 65, 118, 119]. The controversy continues as DNA was seen to be highly flexible in recent melting

experiments of curved DNA [120] and in single-molecule experiments where the looping of 100-bp DNA

fragments was monitored by fluorescence [4]. It is interesting to note that most experimental studies that

reported sharp bending of DNA employed either divalent electrolytes or high concentrations of monovalent

electrolyte [2,4,120]. In the nucleus, counterions with valence > 2 strongly screen electrostatic interactions,

so studies of DNA bending at elevated concentrations of monovalent electrolyte may still be biologically

relevant.

1.4 Duplex DNA electrostatics

Besides the base pairing and stacking interactions, the most dominant attribute of a DNA molecule is its

extreme negative charge; each nucleotide carries a surplus electron charge. In biology, a DNA molecule is

surrounded by counterions that screen its electrostatic field. For small electrolytes, the Poisson-Boltzmann

(PB) equation provides an approximate description of electrostatics.

The PB equation is easily derived. First, the density ρi of ion species i is assumed to be Boltzmann

distributed with respect to the charge qi times the average electrostatic potential φ(r) in the system, ρi(r) =

qiρ0,ie−qiφ(r)/kBT , where ρ0,i is the bulk concentration of ion species i and kBT is the thermal energy. The

average electrostatic potential is obtained from the average charge density ρ(r) obtained from the sum of

the fixed charge density ρf (r) and the average mobile charge densities using Poisson’s equation of classical

electrostatics, ∇2φ(r) = ρ(r)
εε0

, where ε is the dielectric constant of the medium and ε0 is the permittivity of
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free space. By combining these, the PB equation is obtained,

∇2φ(r) = − 1
εε0

(
ρf (r) +

∑
i

qiρ0,ie−qiφ(r)/kBT

)
. (1.1)

The PB formalism presents a nonlinear equation that is difficult to solve analytically [121]. For potentials

with |qiφ| � kBT , one may linearize the equation by expanding the exponentials so that

∇2φ(r)−

(∑
i

ρ0,iq
2
i

εε0kBT

)
φ(r) = − 1

εε0

(
ρf (r)−

∑
i

qiρ0,i

)
. (1.2)

For the typical case of an electrolyte solution with cation and anions both of valence z and bulk concentration

ρ0, this expression can be simplified ∇2φ(r)+ 2ρ0z
2e2

εε0kBT
φ(r) = − 1

εε0
ρf (r). For a fixed point particle with charge

q, the above equation has the solution of the Yukawa potential φq(r) = q
4πεε0r

e−r/λD , where the Debye

length λD =
√

kBTεε0
2z2e2ρ0

is the characteristic electrostatic screening length of the solution [121]. In monovalent

electrolyte near physiological concentration, the Debye length is about 1 nm. This is considerably longer

than the linear charge density of a DNA molecule, which indicates that the validity of linearizing the PB

equation is dubious when applied to DNA.
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Chapter 2

Methodology
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2.1 All-atom molecular dynamics simulation

The all-atom molecular dynamics (MD) method provides the most detailed and complete microscopic descrip-

tion of biomolecules out of all currently available methods—theoretical, computational and experimental.

This expressive detail can give unparalleled insight into the physical mechanisms underlying biomolecular

behavior. The historically increasing availability of massive parallel computing platforms has stimulated a

shift in all-atom simulations towards long-duration simulations and ensembles of simulations, providing im-

proved statistics that permit quantitative observations. Nevertheless, such observations remain challenging

to obtain as thermal noise is very pronounced in atomic-scale systems.

2.1.1 General formulation of the MD method

U(rN ) = Ubonded(rN ) + Unonbonded(rN ) (2.1)

In MD simulations, molecules are treated as collections of point particles that each represent an atom.

Time is discretized and advances in increments referred to as the “timestep”. At a given timestep, all of

the instantaneous positions and velocities of the atoms are known. From the positions of the particles, the

MD software calculates the force on each atom. With this information, Newton’s equation (F = ma) is

integrated, advancing the system by one timestep.

The force on each atom is determined from the full atomic coordinates using a force field, which is a

set of equations and parameters that describe the system’s Hamiltonian. The most popular force fields

for MD simulation describe biomolecules as collections of atoms connected by bonded potentials applied to

bonds (two-body interactions), angles (three-body interactions) and dihedral angles (four-body interactions).

Harmonic potentials are generally applied to the bonds, angles and improper dihedral angles, whereas a

periodic potential is applied to each dihedral angle.

Atoms further apart than two or three bonds (or in different molecules) additionally interact through non-

bonded Coulomb and van der Waals (Lennard-Jones) potentials. Each atom is associated with a Lennard-

Jones radius and well-depth usually optimized to reproduce properties of liquid systems for model com-

pounds. Chemical groups have a well-defined (integer) total charge, but the way this charge is distributed

among the comprising atoms depends on the force field.

Reproduced with permission in part from Christopher Maffeo, Jejoong Yoo, Jeffrey Comer, David Wells, Binquan Luan, and
Aleksei Aksimentiev. Close encounters with DNA. J. Phys.: Condens. Matter, 2014. Accepted (Copyright c© 2014 Institutes
of Physics) and from Christopher Maffeo, Swati Bhattacharya, Jejoong Yoo, David Wells, and Aleksei Aksimentiev. Modeling
and simulation of ion channels. Chem. Rev., 112(12):6250–6284, 2012 (Copyright c© 2012 American Chemical Society).
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Intramolecular and intermolecular nonbonded forces dominate the tertiary structure of a molecule and

molecular binding, respectively. Thus, accurate description of the nonbonded forces is essential. The full

treatment of non-bonded interactions requires computation of N2 pair interaction, where N is the number of

atoms in a system, which does not scale well to large systems. The number of computations can be reduced

to order N by only considering interactions between atoms within some cutoff distance, usually 8–12 Å.

For many years this approach was widely practiced, but it was shown roughly 20 years ago by Cheatham

et al. that B-form DNA conformations were stable on a ten-nanosecond timescale only when long-range

electrostatic interactions were considered [30]. Rather than calculating the pair interaction of each particle

in real space, the particle mesh Ewald (PME) method was used to efficiently compute both short- and

long-range electrostatic interactions the crystal system (requiring periodic boundary conditions). The PME

method is currently standard for the treatment of electrostatics in all-atom MD simulations. Optimized

versions of the Ewald method [123] permit highly parallelized MD simulations to be efficiently performed

(order N logN).

2.1.2 Atomic force fields

Presently, several biomolecular force fields exist. The force fields can be categorized into types based on

whether all the atoms are explicitly treated or not. All-atom force fields, which include CHARMM [124],

AMBER [108, 125], and OPLS-AA [126, 127], treat all atoms explicitly. In the united-atom force fields

(e.g. GROMOS [128,129]), some nonpolar hydrogens are neglected. Additionally, force fields that represent

atomic polarization are under development [130, 131], but have not been applied widely and were not used

here. For the in-depth review of various force fields, interested readers are referred to a comprehensive review

by Mackerell [132].

Although there exist several all-atom force fields, the CHARMM [133] and AMBER [108] force fields

are the two most popular choices for MD simulations of DNA, and these are the force fields that have

been employed in the studies described herein. More often than not, simulations today greatly exceed the

duration and complexity of the simulations that were originally used to develop and validate the force fields.

Therefore, the force fields have received frequent updates to keep up with the opportunities offered by modern

supercomputing systems [58,134–138]. Currently, the best practice for MD simulations of DNA includes the

application of the AMBER ff99bsc0 [136] or CHARMM36 [137] force field with the recent NBFIX corrections

for ion–ion and ion–phosphate interactions from Yoo and Aksimentiev [61]. Simulations of ssDNA might be

best performed using the CHARMM36 force field, as the AMBER parameterization was found to enforce

the helical conformation of dsDNA on single DNA strands [139].
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2.1.3 Thermodynamic ensemble

Except where specified, all MD simulations reported in this thesis were performed using the MD program

NAMD [140]. In most MD software, including NAMD, it is not possible to simulate a system with a

changing number of particles. Unless a thermostat is employed, the simulation will be performed in the NVE

ensemble—that is, with a constant number of particles, volume and energy. If a thermostat is employed, a

barostat may optionally be used to adjust the volume by small amounts to maintain a given value of the

pressure. Hence, the thermodynamic ensemble will either be NVT or NPT, having a constant temperature

and a constant volume or pressure.

The Langevin thermostat, employed in the studies described in this thesis, is commonly applied to control

temperature in an MD simulation. With the Langevin thermostat applied, each thermostatted particle is

subject to a drag force to remove excess kinetic energy from the system and a random force that injects

kinetic energy into the system. The drag coefficient and magnitude of the random force are coupled such

that the target temperature is obtained on average. All NPT simulations presented in this these employed

the Langevin Nosé-Hoover barostat.

2.2 Coarse-grained molecular dynamics simulation

Atomic simulation can provide the most detailed description of large biomolecules, such as DNA and proteins,

out of any available method. However, that detail comes at a large computational cost that often prohibits

observation of biologically significant dynamics and events. By reducing the number of atoms present in a

simulation system, one can increase the timestep and perform fewer calculations each timestep. A model in

which the atomic coordinates are replaced with a smaller set of collective coordinates is generally referred to

as a coarse-grained (CG) model. The CG beads, which each represent multiple atoms, still interact through

pair potentials that must be parametrized. Parametrization can be classified into two approaches: “top-

down”, whereby relevant experimental data and intuition guide hand-tuning of parameters affecting ascribed

potential function; and “bottom-up”, whereby potentials are optimized against a more detailed description

such as all-atom MD. The CG studies presented herein employed a “bottom-up” approach to parametrization

using the iterative Boltzmann inversion procedure, followed by refinement against experimental results.

2.2.1 Iterative Boltzmann Inversion

Under the iterative Boltzmann inversion (IBI) procedure, one or more all-atom simulation trajectories are

mapped into a coarse-grained representation. A set of “target” bonded and non-bonded distributions is
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extracted from the CG-mapped all-atom trajectories. These distributions are transformed into CG potentials

via Boltzmann inversion, e.g. u(x) = −kBT ln(ρ0(x)), where x is some degree of freedom, and ρ0(x) is the

distribution of x. If x is an isolated degree of freedom, ρCG(x) obtained in a CG simulation employing u(x)

would exactly equal the target distribution ρ(x) at all values of x. Typically, ρCG(x) will be too small (or

too large) at a given value of x, indicating that the potential u(x) should be decreased (or increased) at x.

Thus, IBI prescribes a scheme for updating a potential by ∆u(x) = −kBT ln ρCG(x)
ρ0(x) after a CG simulation

is performed and ρCG calculated. This process is repeated until CG potentials are obtained causing the CG

distribution to converge to the target distribution.

2.3 Free energy methods

Perhaps the greatest disadvantage of the MD method is that simulations are costly and are currently limited

to the microsecond time scale—a duration insufficient to observe statistically significant numbers of most

biologically relevant processes. Very often, a researcher is interested in the free energy difference between

conformational states of a system as well as the free energy landscape that the system must traverse to

transition between states. Provided a collective coordinate x (one calculated from the underlying coordinates

of the system) that describes when the system is in these conformational states, the free energy along the

coordinate is the potential of the mean force (PMF) W (x). By definition,

W (x) = W (x?)− kBT log
[
〈ρ(x)〉
〈ρ(x?)〉

]
, (2.2)

〈ρ(x)〉 is the average distribution function and x? and W (x?) are arbitrary constants [141]. The PMF can

be calculated from brute-force all-atom simulations simply by observing the fraction of time x dwells at a

particular value, and building a histogram to estimate 〈ρ(x)〉. In practice, such simulations do not efficiently

sample x and are, therefore, too computationally demanding to enjoy regular use. Fortunately a host of

techniques have been developed for the purpose of calculating the PMF. Interested readers are directed to

recent comprehensive reviews on this subject [142,143].

One of the most established methods for obtaining the PMF is the umbrella sampling method, which

enforces uniform sampling along one or more collective coordinates. This is achieved by harmonically

restraining x about regularly distributed values in an ensemble of equilibrium simulations [144]. The effect

of the restraining potentials can be removed and data from multiple simulations combined to construct the

potential of mean force (PMF) along the collective coordinate by using the Weighted Histogram Analysis

Method (WHAM) [145]. This method is widely considered a gold standard against which other PMF-
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producing methods are compared, though the simulations are generally recognized as being rather costly to

perform.

A similar method, free energy perturbation (FEP), allows one to estimate a change to the Hamiltonian

governing the system dynamics by considering the change in small discrete steps [146,147]. The FEP method

is, in principle, very flexible and can be used to find the PMF. In practice, the umbrella sampling method

is easier for finding the PMF, but FEP can be applied to problems beyond the scope of umbrella sampling.

For example, using FEP one can account for free energy associated with abstract changes to the system

such as the creation and destruction of atoms or the application of new terms in the systems Hamiltonian.

Such non-physical procedures must carefully consider a complete thermodynamic cycle in order to remain

physically meaningful. However, the technique is extremely flexible and can be used to investigate and

answer questions about the physical origin of phenomena that would be very difficult to answer using other

techniques.

Other equilibrium methods for finding the PMF exist [148, 149], but it is also possible to estimate the

PMF from non-equilibrium simulations [150–156]. For example, during a steered MD (SMD) simulation, one

end of a spring is tethered to an atom and the other end of the spring is pulled at a constant velocity. The

force applied on the atom is recorded, allowing one to estimate the PMF using the Jarzynski equality [157],

which averages the work over a large ensemble of simulations.
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Chapter 3

Interaction between parallel DNA
duplexes
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3.1 Interaction between DNA duplexes in monovalent electrolyte

The charge density of a DNA molecule is a fundamental property that governs its biological function

by influencing DNA folding, packaging [158], pairing [159], and interactions with other biological macro-

molecules [160]. In order to develop meaningful quantitative models describing such systems and processes,

a precise knowledge of the interaction between two DNA molecules, which is mostly of electrostatic origin,

is mandatory. Counterions in the electrolyte surrounding a DNA screen its phosphate groups. The Poisson-

Boltzmann theory describes the electrostatics of elecrolyte systems, see Sec. 1.4 for an introduction. Under

this theory, the multibody problem of an atmosphere of interacting ions is made tractable by allowing the

ions to feel one another only through the average electrostatic potential. Further, the finite size of ions is or-

dinarily neglected. Although imperfect, the Poisson-Boltzmann equation and its linearized variant are used

widely because they provide a reasonable and accessible description of electrostatics in a medium relevant

for biomolecules.

When modeling DNA at a meso- or macroscopic level, it is common to describe electrostatics using a

potential obtained from Poisson-Boltzmann using a heuristic charge-reduction factor (CRF) that accounts for

the shortcomings of the description. Often the CRF is taken to have a value of ∼ 0.75 [161,162], consistent

with the effective charge determined from measurements of the electrophoretic mobility of DNA [163].

Recently, however, we demonstrated through combination of experiments, analytical analysis and atomic

that the CRF appropriate for the description of DNA–DNA interactions in a plectoneme was 0.42, not the

much larger factor of ∼ 0.75 obtained from electrophoresis.

3.2 Plectoneme experiment

The experimental assay of our collaborators is shown in Fig. 3.1A. One end of a 1.8–11-kbp DNA duplex

is tethered to a surface, the other end to a bead in a magnetic trap. The magnetic field applies a constant

tension to the DNA and also turns the bead to induce supercoiling while the extension is monitored. Initially,

the supercoiling induces only a small change in the DNA extension L. However, when a critical amount

of supercoiling is reached, the extension begins to drop at a constant rate with the number of turns N ,

see Fig. 3.1B. The drop in extension is due to the growth of a plectoneme (see DNA structure in Fig. 3.1A)

Reproduced with permission in part from Christopher Maffeo, Robert Schöpflin, Hergen Brutzer, René Stehr, Aleksei
Aksimentiev, Gero Wedemann, and Ralf Seidel. DNA–DNA interactions in tight supercoils are described by a small effective
charge density. Phys. Rev. Lett., 105(15):158101, 2010 (Copyright c© 2010 American Physical Society)
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that contributes negligibly to the extension but absorbs the twist introduced by turning the bead. The

growth of the plectoneme depends on the applied tension F and ion concentration. Because the two halves

of the DNA molecule are in relatively close proximity within the plectoneme, the growth of the plectoneme

can provide a very sensitive measure of the electrostatic repulsion between DNA molecules.

F

2ρh/2

N S
A B

C

Figure 3.1: Dependence of DNA supercoiling on force and salt concentration. (A) Experimental setup
and superhelix parameters. (B) DNA supercoiling curves recorded in buffer containing 170 mM Na+ at
stretching forces of 0.25, 0.5, 1.0, 2.0, 3.0 and 4.0 pN (grey, light blue, dark blue, red, green and dark gray
lines). Continuous twisting was carried out at 0.5 Hz. Data was taken at 300 Hz and smoothed to 20 Hz. (C)
Slopes after buckling as a function of force obtained from the supercoiling curves for Na+ concentrations of
30, 60, 170 and 320 mM (grey, red, black and blue circles) together with the prediction from the theoretical
model (solid lines) calculated for a charge adaptation factor χCR of 0.42. Inset: slopes for 60 mM Na+ (red
circles) together with theoretical predictions for different values of χCR (lines). Best agreement is found
for χCR= 0.42 for all ionic strengths considered. Only slight variations of χCR to 0.32 and 0.55 lead to a
significant under- or overestimation, respectively, of the slopes.

The energy Etot required to add a turn to the plectoneme can be decomposed into

Etot = Eforce + Eelas. + Eelec., (3.1)

where Eforce represents the cost of shortening the DNA under applied tension F , Eelas. the energy required

to bend the DNA in the plectoneme, and Eelec. the DNA–DNA interaction energy. We can trivially write

Eforce = F dL
dN . The plectoneme is assumed to have a tension-dependent geometry with average radius ρ

and length h per turn. Fluctuations are neglected here; it was shown that inclusion of fluctuations did not
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significantly affect the results of the present analysis [49]. Thus dL
dN = (2πρ)2+h2

h . The DNA length added to

the plectoneme by each turn of the bead is dL
dN = (2πρ)2+h2

h [162]. The DNA in the plectoneme is curved,

which—applying an elastic model for DNA bending [162]—requires a bending energy of

Eelas. =
dL

dN

1
2
pkBT

[
2πρ

(2πρ)2 + h2

]2

, (3.2)

where p is the bending persistence length (50 nm) [95] and kBT is the thermal energy.

Although DNA is a highly charged molecule, the structure of a plectoneme causes two portions of the DNA

double helix to be in close proximity. Therefore, one expects the electrostatic energy per plectonemic turn

to be significant. This energy can be approximated as the interaction energy between two cylindrical rods of

uniform charge density under the linearized Poisson-Boltzmann or Debye-Hückel (DH) theory, see Sec. 1.4.

The DH theory linearizes the Poisson-Boltzmann equation, which is convenient because the interaction

energy between the two halves of the plectoneme can then be decomposed into pairwise contributions from

infinitesimal segments of each strand. Under DH, two monovalent point charges q1 and q2 at distance r

interact with energy u(r) = kBT lB
q1q2
e2

e−r/λD
r , where λD is the ion concentration-dependent Debye length

(∼ 1 nm in 100 mM solvent), and lB is the Bjerrum length—the distance at which the Coulomb energy

between monovalent charges e is kBT in water, about 0.7 nm at room temperature.

The exponential screening of electrostatic interactions allows the problem to be further simplified by

approximating the plectoneme as an infinite structure so that the electrostatic energy per turn of the plec-

toneme is independent of the overall length of the plectoneme. Consequently, the electric field due to one

half of the plectoneme is uniform along the contour length of the other plectoneme. Then the electrostatic

energy per plectoneme turn is

Eelec. = kBT lB

∫
s1

∫
s2

e−r/λD

r

dq1dq2

e2
, (3.3)

where the charge of an infinitesimal section of contour length dsi is dqi = ξeffdsi and ξeff is the effective

charge density of the DNA. The integral over s2 spans only half the DNA added to the plectoneme, 1
2
dL
dN .

Dropping the remaining subscript,

Eelec. =
1
2
dL

dN
kBT lB

(
ξeff

e

)2 ∫
s

e−r/λD

r
ds. (3.4)

The effective charge density can be written ξeff = ξ χCR χPB, where ξ is the density of charge on DNA

2e/0.34 nm, the charge reduction factor χCR is left as a tunable parameter. The ion concentration-dependent

factor χPB fits the electrostatic potential due to a DH line charge to that from a Poisson-Boltzmann cylinder
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of uniform charge density 2e/nm and radius 1.2 nm (see Fig. S2 of Supporting Information of Ref. 49 for

details). For a given applied force and ion concentration, this integral was evaluated numerically and the

overall energy per turn Etot was minimized with respect to the plectoneme parameters ρ and h, allowing

theoretical calculation of dL
dN . By using a significantly reduced DNA charge with χCR ∼ 0.42, excellent

agreement to the experimental slopes dL
dN was obtained across a very large range of applied tensions (0.25–

4 pN) and sodium concentrations (30–320 mM).

The most commonly employed CRF of ∼ 0.75 was obtained from a best fit to the electrophoresis measure-

ments of Schellman and Stigter [163]. This CRF is commonly used in the description of DNA–DNA interac-

tions although the physics of these interactions is considerably different from the physics of electrophoretic

transport [163]. Previous experiments that quantitatively investigated the DNA–DNA interactions out of

the condensed phase also failed to find a CRF of 0.42 [161, 164]. The success of the present experiment is

likely because force was used to confine the DNA in close proximity, thereby probing the repulsion between

strands in a region of phase-space that is rarely sampled in more conventional experiments.

3.3 Verification of reduced charge factor by all-atom MD

simulation

In order to obtain a microscopic verification for χCR, all-atom molecular dynamics simulations [165] were

employed to obtain the force between parallel DNA molecules at different salt concentrations. We obtained

good agreement with the force calculated according to Eq. 3.1 using χCR = 0.42 and very poor agreement

with χCR = 1.0, see Fig. 3.2.

To test whether the value found for χCR is specific to DNA–DNA interactions or is a universal constant

for DNA electrostatics, we obtained the ion distributions around isolated double-stranded DNA molecules.

The radial ion distribution extended further from the DNA than expected from PB theory with χCR = 0.42

and approached the distribution for χCR = 1.0 at low ionic strength, see Figs. 3.3 and 3.4A. Thus, the small

value for χCR is specific to DNA–DNA interactions.

At elevated ion concentrations, the mean electrostatic potential around the DNA, obtained using the

PMEPot plugin of VMD [166,167], was too weak to create the ion distribution as observed in simulation and

as predicted by PB theory, see Fig. 3.4 B,C. This suggests that ion distributions are not only determined

by electrostatics, but that other effects such as correlations in the ion clouds, the noncontinuum nature of

the dielectric surrounding, and ion exclusion can have a significant influence. This in turn is likely to cause

the low DNA–DNA interaction forces. Additionally, deviations from the homogeneously charged rod model,
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Figure 3.2: All-atom molecular dynamics simulations of the effective force between double-stranded DNA.
(A) All-atom model used to determine the force. The DNA atoms are depicted as red spheres; the counter and
co ions are depicted as blue and purple spheres, respectively; the water is shown as a semi-transparent molec-
ular surface. The distance between the DNA molecules was restrained by a harmonic potential, schematically
depicted as a spring. (B) The simulated mean force between the DNA. Data from MD simulations (circles,
solid lines) are shown alongside the theoretical predictions using a charge adaptation factor χCR of 0.42
(dashed lines) and 1.0 (dotted lines) at 60 (red) and 170 mM (black) bulk ion concentrations. Data for
300 mM (blue) bulk ion concentrations is reproduced from previous work [165]. The relative azimuthal
orientation of the DNA did not appear to affect the obtained force within error. The atomic structure of
the interacting DNA and nearby solvent cause the force to drop at 300 mM as the separation between the
DNA surfaces approaches the atomic scale [165].

such as strongly localized charges at the phosphates and counterions entering the DNA grooves, may reduce

the interaction forces.

3.4 Conclusion

By combining single-molecule experiments, theoretical considerations, and all-atom simulations, we have

shown that, within a cylinder approximation, DNA–DNA interactions can be described only by a signif-

icantly reduced DNA charge. Furthermore, we have provided a theory that accurately describes DNA

supercoils over a broad range of tension and ionic strength. Supercoiling under tension is a unique way

to bring two DNA molecules into close proximity in the absence of interfering surfaces. In contrast to

previous topological investigations of long DNA [161, 164, 168], our force-based experiments allow a more
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Figure 3.3: The distribution of monovalent ions around double-stranded DNA. (a,b) All-atom model used
to find the ion distribution around DNA in MD simulations. The DNA atoms are depicted as red spheres;
the counter and co ions are depicted as blue and red spheres, respectively; the water is shown as a semi-
transparent molecular surface. (c,d) The radial ion distribution around DNA. Counter-ion (open symbols)
and co-ion (filled symbols) distributions are shown for 1000, 320, 170 (c), 60, and 30 (d) mM NaCl concen-
trations. (e,f) The 2D counter-ion density around DNA. A z-dependent rotation was applied in the xy-plane
to counter the helical pitch of canonical DNA; the counter-ion density was subsequently averaged along the
z-axis. Data is shown for 320 (e) and 30 (f) mM bulk ion concentrations. A typical basepair is shown after
the transformation was applied, indicating the approximate position of the DNA. The transformation has
the effect of radially smearing the ion distribution, making it appear as though the ion concentration near
the adenine is larger than that near the DNA phosphates (which are located further from the origin). In
actuality, more counter ions can be found in close proximity of a DNA phosphate than an adenine at a given
time.

reliable quantification of DNA–DNA interactions since much closer proximities are achieved (see Supporting

Information of Ref. 49). The surprisingly small DNA–DNA interactions result from a complex interplay of

a highly charged and structured molecule with solvent molecules and ions. The simple effective interaction

potential will be an important contribution for quantitative models of complex biomolecular systems which

cannot be treated with atomic detail such as DNA packaging in chromatin and viruses and possibly also for

protein–DNA interactions. The findings reveal that particular caution is necessary when applying effective

charge parameters obtained from experiments that probe a different physics such as electrophoresis [163].

3.5 Simulation methods

All MD simulations were performed using the parmbsc0 refinement of the AMBER parm99 force field [136,

169], the TIP3P water model [170], standard parameters for ions [171], periodic boundary conditions, and

1–2–4-fs multiple time stepping [172]. Van der Waals and short-range electrostatic potentials were calculated
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using a smooth (10–12 Å) cutoff; the particle mesh Ewald method was used to compute long-range electro-

statics using a 1.0 Å-spaced grid. The temperature was kept constant by applying Langevin forces [173] to

all non-hydrogen atoms; the Langevin damping constant was set to 0.1 ps−1. Simulations were performed

in the NPT ensemble using Nosé-Hoover Langevin piston pressure control [174] at 1 bar. At the time that

this research was performed, the NBFIX correction to ions was unavailable [61]. Due to the relatively low

ion concentrations and the use of monovalent electrolyte, we expect that the MD results would not be

qualitatively changed by the updated parameters.

For the force calculations, a previously described method was followed [165]. Two copies of (dA·dT)20

were placed 26, 29, 32, 35, 40, or 45 Å apart in a box containing 60 or 170 mM NaCl electrolyte. The size of

the simulation system was chosen to ensure that the force due to periodic images would be <2% of the force

between the DNA in the same unit cell, assuming an exponentially decaying force. The distance between

the DNA molecules was harmonically restrained with a force constant of 3000 pN/Å while the force was

recorded. Three copies of the system at each DNA separation and ion concentration were simulated. The

first nanosecond of the force data was removed. The data was subsequently concatenated and averaged

in 200-ps blocks to remove correlations affecting the standard error of the mean. The relative azimuthal

orientation of the DNA did not appear to affect the obtained force within error.

To find the ion distribution around double-stranded DNA, a two-turn poly(dA·dT) molecule was im-

mersed in NaCl electrolyte. The DNA was placed so that its helical axis coincided with the z-axis of

the simulation cell. Bonds were placed across the periodic boundary to make an effectively infinite DNA

molecule. Hexagonal boundary conditions were employed in the xy-plane with 40 Å between periodic im-

ages for systems containing 1000, 320, or 170 mM electrolyte, and 85 Å for systems containing 60 or 30 mM

electrolyte, Fig. 3.3 A,B. The resulting average ion distributions are show in Fig. 3.3.
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Figure 3.4: Charge distribution and potential around double-stranded DNA. Data resulting from MD sim-
ulations described in Fig. 3.3 are plotted as solid symbols. Solutions to the non-linear Poisson-Boltzmann
equation for a cylinder of 1.2 nm radius within a hexagonal unit cell (of same size as used in the simula-
tions) are shown for χCR = 1.0 (dotted lines) and χCR = 0.42 (dashed lines) at each ion concentration.
The cylinder boundary is represented by a gray box. (a) The fraction of the total ionic charge contained
within virtual cylinders of increasing radii around the DNA nearly matches the PB solution for χCR = 1.0
at low ion concentration. At higher ion concentration, the enclosed charge is somewhere between the PB
predictions for χCR = 0.42 and χCR = 1.0. (b) The mean electrostatic potential around the DNA similarly
matches the prediction for χCR = 1.0 at low ion concentration, but falls to zero even more rapidly than
predicted with χCR = 0.42 at high ion concentration. The instantaneous 3D electrostatic potential was
calculated by averaging over the trajectory in 5 ps intervals. Subsequently the z-axis and azimuthal angles
were averaged out to obtain the data shown. Using Boltzmann weights to perform the spatial average was
found to affect the results only very weakly. (c) Comparing the counter ion distribution expected from a
Boltzmann weight of the potential from the MD simulations in b (solid line) to the directly observed counter
ion density (symbols) reveals that the mean electrostatics fails to describe the counter ion density at high
ion concentration.
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Chapter 4

End-to-end attraction of duplex DNA
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4.1 Introduction

Self-assembly properties of nucleic acids are vital to the basic functions of a biological cell and have been

extensively exploited in biotechnology. DNA hybridization—self-assembly of complementary sequence single-

stranded DNA (ssDNA) into a double helix—is a central biotechnological process [176], used, among others,

in platforms for DNA detection [177], programmable assembly of DNA nano-structures [76,178], directional

transport of cargo [179], molecular computing [180], and nanofabrication [181, 182]. Another process of

outstanding importance is DNA condensation, where counterions transform electrostatic repulsion between

naked DNA molecules into attraction, facilitating packaging of double stranded DNA (dsDNA) in cell nuclei

and viral capsids [183,184].

Recently, an entirely different type of DNA self-assembly was discovered: spontaneous end-to-end ag-

gregation of short duplex DNA fragments into rod-like structures [185]. When water was evaporated from

solution containing a high concentration of short (6–20 bp) DNA fragments, liquid crystal phases were ob-

served. Since the DNA fragments were nearly as wide as they were long, the observation of axial ordering

could only be explained if the fragments formed rod-like supramolecules, suggesting end-to-end aggregation.

Further experimental evidence of end-to-end association was obtained from the analysis of small angle x-ray

scattering data from a system containing short DNA fragments and a divalent electrolyte [186, 187]. The

second virial coefficient extracted from these data was shown to be positive for DNA fragments capped with

a short hairpin (indicating overall repulsion) and negative for DNA fragments without such caps (indicating

overall attraction). It was concluded that end-to-end attraction was large enough to overcome electrostatic

repulsion in a divalent electrolyte. While the side-by-side force between long DNA molecules has been the

subject of many experimental [75, 188, 189] and theoretical [190, 191] studies, little is known about the con-

ditions and microscopic mechanism of DNA association end-to-end. Furthermore, the effects of end-to-end

attraction of duplex DNA in biological and technological processes are entirely unexplored.

Whereas traditional single-molecule experiments have provided extensive information about DNA hy-

bridization and side-by-side interactions [49, 75], applying these tools to study end-to-end assembly is ex-

tremely difficult, as a DNA duplex’s cross section is just 5 nm2 and the effective concentration of DNA

ends in a solution amenable to single-molecule studies is typically small. The all-atom molecular dynamics

(MD) method is well suited for the study of systems that share the length scale of short dsDNA molecules

Reproduced with permission in part from Christopher Maffeo, Binquan Luan, and Aleksei Aksimentiev. End-to-end at-
traction of duplex DNA. Nucl. Acids Res., 40(9):3812–3821, 2012 (Copyright c© 2012 Oxford University Press)
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and can be used to probe the atomic origin of intermolecular forces [192]. Here, we use the MD method

to characterize end-to-end association of duplex DNA in unprecedented detail, elucidating the microscopic

mechanism of spontaneous association, its free energy costs and the kinetic rates. At the end of the chapter,

we discuss the relationship between our findings and the pertinent experimental observations.

4.2 Collapse of aligned dsDNA

Spontaneous end-to-end association of duplex DNA was observed in the simulations of two (dA·dT)10 frag-

ments constrained to diffuse along a common axis. Figure 4.1 a illustrates the initial state of a typical

simulation system comprising DNA in an anisotropic volume of 100 mM NaCl electrolyte. Figure 4.1 b plots

the distance between the DNA fragments versus time for two simulation systems differed by the termination

of the DNA’s 5′-ends. The DNA fragments were observed to freely diffuse along the common axis until the

end-to-end distance fell below ≈ 8 Å, whereupon the fragments rapidly collapsed into an end-to-end bound

complex. The relative azimuthal orientation of the DNA fragments φ continued to change after the collapse,

switching between several metastable orientations, Fig. 4.1 c. We define the relative azimuthal angle φ as

the angle between the projections of the vectors connecting the O5′ and O3′ atoms of the terminal basepairs

into the plane normal to the common DNA axis (see Sec. 4.9).

In the final conformation adopted by the blunt-ended fragments, the 5′-to-3′ direction of the backbone

was discontinuous at the end-to-end junction. In the case of the 5′-phosphorylated fragments, the 5′-to-3′

direction of the backbone was continuous at the end-to-end junction as though the backbone of a continuous

20 bp B-DNA had been cut.

To determine the statistical significance of the above observations, we performed 17 additional simulations

for each system type, different by the relative azimuthal orientation of the DNA fragments at the onset of

the simulation: φt=0 = i × 20◦, where i = 1, . . . , 17. In all simulations, we observed collapse of the DNA

fragments into an end-to-end bound complex. Figure 4.1 d plots the the relative azimuthal orientation at

the time of collapse against the time to collapse. The collapse of blunt-ended fragments occurs irrespective

of their azimuthal orientation, whereas formation of a 5′-phosphorylated end-to-end assembly did not occur

with φ between 90 and 230◦.

After collapse, φ continues to evolve, reaching the states characterized in Fig. 4.1 e. The clustering of φ
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Figure 4.1: Collapse of aligned dsDNA. (a) Simulation system containing axially aligned duplex DNA. Each
DNA fragment is free to move along and rotate about the common axis. The DNA duplexes (blue and green)
are shown in van der Waals representation; sodium and chloride ions are shown as yellow and cyan spheres;
water is not depicted. (b,c) The end-to-end distance (b) and the relative azimuthal angle φ (c) of two duplex
DNA in representative simulations of the end-to-end collapse. Data from the same pair of simulations are
plotted in (b) and (c). (d,e) Scatter plot showing the relative azimuthal angle φ at the time of collapse (d),
and at the end of simulation (e). One data point is shown for each of 36 simulations of blunt-ended (black
circles) and 5′-phosphorylated (red squares) dsDNA fragments in 100 mM NaCl electrolyte.

values around −20, 36 and 180◦ indicates the three preferred binding states. At φ ≈ 36◦, the conformation

of the bound complex is similar to that of a continuous B-form DNA. At φ ≈ −20◦, the backbones of the

terminal basepairs overlap slightly (Fig. 4.2 b). At φ ≈ 180◦, the 5′-ends of the fragments are in direct contact

(Fig. 4.2 c). The conformations of the end-to-end assemblies with φ = −20 and 36◦ are similar, differing

primarily in the order in which the 5′- and 3′-termini are lapped and in their base stacking geometry. Thus,

relative to the coordinates of two consecutive basepairs in a canonical B-DNA helix, the terminal basepairs

forming an end-to-end junction have a time-averaged root mean squared deviation of 2.1 and 0.9 Å for the

φ = −20 and 36◦ conformations, respectively. For reference, basepairs in the middle of one of the DNA

fragments had a root mean squared deviation of 0.7 Å.

The preference for these three orientations suggests a hydrophobic origin of the attractive force, as

such conformations reduce exposure of the hydrophobic bases to water. The relative orientations of the

blunt-ended DNA are nearly equally split between the −20 and 180◦ states. More than 50% of the 5′-

phosphorylated fragments formed the −20◦ state, 35% formed either the 36◦ or 180◦ state (three sys-

tems each), and 12% formed the state with φ ≈ 100◦. We attribute such preferential alignment of the

5′-phosphorylated fragments to the electrostatic repulsion between the terminal phosphate groups, which

apparently renders the 180◦ orientation energetically less favorable than the −20◦ one. The free-energy

difference between these bound states is discussed below.
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Figure 4.2: Stability of the end-to-end DNA assembly (a) Simulation system containing two spatially unre-
strained dsDNA fragments in 100 mM NaCl electrolyte. Both fragments are free to rotate and move about
the simulation box. The system is drawn as in Fig. 4.1 a. (b,c) End-to-end junction of 5′-phosphorylated
dsDNA with φ=−20◦ (b) and blunt-ended dsDNA with φ=180◦ (c). (d,e) End-to-end distance (d) and
relative azimuthal angle, φ, (e) of the DNA fragments in three unrestrained MD trajectories.

4.3 Stability of the end-to-end complex

DNA fragments initially forming a bound state were simulated in the absence of any restraints using the

isotropic system shown in Fig. 4.2 a. Three systems were constructed: one containing 5′-phosphorylated

DNA bound with φ = −20◦(Fig. 4.2 b) and two containing blunt-ended DNA fragments bound at φ = 180◦

(Fig. 4.2 c) and φ = −20◦. All three systems contained 100 mM NaCl electrolyte.

The plot of the end-to-end distance, Fig. 4.2 d, indicates that all three assemblies remained bound for

the entire duration of the simulations (>200 ns). The standard deviation of the end-to-end distance in

the 5′-phosphorylated system was 0.68 Å, twice less than that of the blunt-ended systems. The greater

stability of the 5′-phosphorylated complex may be due to hydrogen bonds that were observed between

the 5′-terminal phosphate of one DNA fragment and the 3′-terminal hydroxyl of the other fragment. The

plot of the relative azimuthal angle reveals that the 5′-phosphorylated system maintained the same stable

conformation at φ ≈ −20◦, depicted in Fig. 4.2 b. Starting from a similar conformation, the blunt-ended

complex underwent two sudden rotations at 70 and 140 ns that brought φ from −20◦ to −110◦ and to 180◦;

the relative orientation continued to evolve after that.

In the simulation of the 180◦ blunt-ended complex, the terminal basepair of one of the fragments ruptured

after 33 ns. During the next few nanoseconds, Watson-Crick pairs within that fragment stochastically broke

and re-annealed, propagating the unpaired base towards the opposite end of the DNA fragment, and slipping

the entire DNA strand with respect to the other by one basepair. Despite the slippage, the DNA fragments

remained stably bound.
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4.4 Mechanics of end-to-end dissociation

The lifetime of a bound complex sharply decreases when an external force is applied to disrupt it [193].

Thus, under a constant force of 150 pN directed along the common axis of the DNA fragments, the assembly

remained intact during a 50-ns simulation but dissociated within 5 ns under a 200 pN force. These simulations

used the same initial conditions as the SMD simulations described below in Sec. 4.4.2. The phosphorous

atoms of one DNA fragment were harmonically restrained (ks = 445 pN/nm) about their initial coordinates.

Tilting of the terminal basepairs, which we associate with shearing of the end-to-end assembly, was suppressed

by the restraints; the force needed to rupture the assembly would likely have been lower in the absence of

these restraints.

To determine the dissociation pathway, the rupture force and the mechanical work required to dissociate

the assemblies, the DNA fragments were subject to the force of a harmonic spring whose equilibrium-

extension length was increased at a constant rate. Spring-driven rupture of this sort has been used extensively

in the study of proteins [194, 195]. Here, the spring was tethered to different sites. In all cases, rupture

was observed to occur by sliding of one terminal basepair relative to the other. Although the three rupture

protocols yielded different dependencies of the force on the separation distance, the average work performed

was 9.4 ± 1.5 kcal/mol, independent of the rupture protocol. The typical rupture forces varied between

100 and 200 pN and were considerably lower when the springs were tethered to each fragment’s center of

mass (CoM). Inclusion of short overhangs of complimentary sequence ssDNA at the ends of the fragments

increased the work require to rupture the end-to-end assemblies. Details of these simulations are provided

below.

4.4.1 Axial stretching of the end-to-end assembly

Force induced dissociation of the end-to-end DNA assembly was simulated using the steered molecular

dynamics (SMD) method [151]. Figure 4.3 a schematically illustrates the process. Each DNA fragment was

attached to one end of a virtual spring. The ends of the spring were anchored to the center of mass (CoM)

of either the phosphorous atoms of the DNA fragments (6 simulations) or the CoM of the closest DNA ends

(4 simulations). The rest length of the spring was increased at a constant rate of 0.4 or 0.2 Å/ns until the

rupture of the assembly occurred. The work performed during each of these simulations was recorded and

combined using the Jarzynski’s equality [157] to estimate the potential of mean force (PMF) for the process

considered:

e−β∆F =
〈
e−βW

〉
(4.1)
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The angle brackets denote an ensemble average; β is 1/kBT; ∆F is the change in free energy when the system

is brought from one state to another; W is the work done during the change of state. No clear relationship

between the pulling rate and the work performed was observed. We note that these simulations may not

have sampled rare trajectories required for accurate estimation of the PMF using Jarzynski’s equality [157].
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Figure 4.3: Axial stretching of the end-to-end DNA assembly. (a) Snapshots illustrating the conformations
of DNA fragments in a typical simulation of axial stretching performed using a spring tethered to the CoM of
the fragments. The DNA fragments are drawn using green and blue van der Waals spheres. (b) Average work
performed during the stretching simulations. The force of the virtual spring was applied either to the centers
of mass (black circles; 6 simulations) or to the ends (red squares; 4 simulations) of the DNA fragments. (c)
Force applied by the spring during the axial stretching simulations, averaged in blocks (roughly 1 block/Å
extension) using data from multiple simulation trajectories.

The free energy difference between bound and unbound states was ∼ 8.5 kcal/mol regardless of the

choice for the spring anchors, Fig. 4.3 b. However, the variation of the applied force with the rest length of

the spring (Fig. 4.3 c) depended strongly on the simulation protocol employed, reflecting differences in the
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rupture pathway. Figure 4.3 a depicts the rupture process of the end-to-end assembly by a spring tethered to

the CoM of the DNA: the DNA fragments stretch until the terminal basepairs tilt and the ends separate by

shearing. When the spring force was applied to the ends of the fragments, the rupture occurred by shearing

but without significant deformation of the DNA.

4.4.2 Transverse shearing of the end-to-end assembly

In the axial stretching simulations, the rupture of the end-to-end assembly occurred by shearing of the

terminal basepairs regardless of where the spring was anchored. We carried out a set of SMD simulations

designed to produce shearing deformation: pulling one DNA fragment with respect to the other in a direction

perpendicular to the common axis of the DNA assembly. Prior to production simulation, an end-to-end

complex of two DNA fragments was equilibrated in the presence of restraints that aligned its symmetry

axis with the z axis of the simulation cell. In the resulting configuration, the major groove of the end-

to-end junction nearly faced the y axis of our coordinate system, while the minor groove nearly faced the

−y axis. During production simulations, one end of a spring (ks = 4000 pN/nm) was tethered to the

terminal basepair of one DNA fragment while the other end of the spring was pulled in the −x, −y, +x, or

+y direction at a rate of 0.2 Å/ns. All phosphorous atoms of the other DNA fragment were harmonically

restrained (ks = 13, 900 pN/nm per atom) about their initial coordinates.

Figure 4.4 a depicts a typical MD trajectory resulting from the SMD simulations of transverse shearing.

The work performed during each of the four simulations is shown in Fig. 4.4 b. By the time of rupture,

which is indicated by an open circle, the work reached ∼ 10 kcal/mol. These simulations, which did not

mechanically deform the DNA, confirm the surprisingly high energy required to rupture the assembly during

the SMD simulations of axial stretching.

4.4.3 Rupture of end-to-end assemblies containing complementary ssDNA

overhangs

Five systems containing 20 DNA basepairs were built to determine the effect of complementary overhangs

on the stability of the end-to-end DNA complex. The first system was a continuous 20-basepair (two-turn)

helical dsDNA fragment immersed in 0.1 M aqueous solution of NaCl. The other four systems were built

from the first system by cleaving the dsDNA into a pair of equal-length 5′-phosphorylated dsDNA fragments

containing 0-, 1-, 2- or 4-nucleotide, complementary ssDNA tails, Fig. 4.5 a. Following usual minimization

and equilibration protocols, the DNA assembly was axially stretched using the SMD method described in

Sec. 4.4.1. The force of the virtual spring was applied to the CoM of the DNA fragments.
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Figure 4.4: Transverse shearing of the end-to-end assembly. (a) The rupture process. The phosphorous
atoms of one DNA fragment (top; green) were harmonically restrained about their initial coordinates while
the other DNA fragment (bottom; blue) was pulled along the −x axis. The DNA atoms are depicted as
in Fig. 4.3 a. (b) Work required to shear the DNA ends. Plotted is the work performed by the SMD spring
as a function of the coordinate of the moving end of the spring along the x (black) or y (red) axis. The
spring force was applied to the CoM of the terminal basepair of the moving fragment. The symbols denote
the state of the system at the beginning of the simulations (squares) and at the moment of rupture (circles).
In one simulation, the terminal basepair tethered to the SMD spring ruptured; this moment is indicated by
a diamond. (c) The force of the spring applied to the DNA fragment, averaged in ∼ 1-Å-extension blocks.
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Figure 4.5: Axial stretching of end-to-end assemblies having complementary ssDNA overhangs. (a) Five
DNA systems were explored in this set of simulations. In addition to a continuous 20-basepair dsDNA helix
(closed left-facing blue triangles), the systems contained two disjoint DNA fragments with 0 (black circles), 1
(red squares), 2 (magenta diamonds), or 4 (purple triangles) complementary ssDNA overhangs. The arrows
indicate the positions of nicks in the DNA assemblies. (b) The average work performed by the spring during
axial stretching. For comparison, grey circles reproduce the results of axial stretching shown in Fig. 4.3 b
(grey circles). (c) The force of the spring averaged in 1-Å blocks of spring extension.
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Figure 4.5 b shows the average work performed, estimated for each system from two independent SMD

trajectories. The average work profile in the absence of ssDNA overhangs (black circles) agrees well with the

result of our previous simulation of a similar system (grey circles), which began with a different conformation

of the DNA fragments. The work profiles for stretching two blunt-ended DNA fragments begins to diverge

from that of a continuous dsDNA fragment (closed left-facing blue triangles) as the basepairs forming the

junction in the former begin to shear. Rupturing the end-to-end complex of two DNA fragments having 1-

nucleotide overhangs (red squares) requires ∼ 4.5 kcal/mol more work than rupturing blunt-ended fragments;

the presence of ssDNA overhangs suppresses the shearing of basepairs at the end-to-end junction at low

forces. In the case of the fragments having 2- or 4-nucleotide overhangs, the average work profiles (magenta

diamonds and purple triangles) initially follows that of a continuous dsDNA but diverges from it at larger

extensions once base stacking in the end-to-end assemblies ruptures, leaving stretched ssDNA tails that

maintain contact over the end-to-end junction.

From these simulations, we conclude that the presence of sticky overhangs makes the end-to-end assembly

similar to a continuous duplex DNA at load forces smaller than that required to overstretch a dsDNA helix.

In comparison to a complex of two blunt-ended DNA fragments, rupture of the fragments having ssDNA

overhangs requires additional work, which, in the case of single nucleotide overhangs, we found to be in good

agreement with the free energy required to rupture an isolated AT base [196].

4.5 Potential of mean force of axially aligned DNA duplexes

To improve our estimates of the force and free energy of the end-to-end interaction, 100 variants of the two-

DNA fragment system, Fig. 4.1 a, were simulated at a constant end-to-end distance enforced by a harmonic

spring potential in 100 mM NaCl electrolyte. Each simulation explored a unique combination of the end-to-

end distance and the azimuthal angle and lasted 18 ns (aggregate simulation time was 1.86 µs). The DNA

fragments were kept aligned by weak harmonic restrains (see Sec. 4.9.6) that allowed the terminal basepairs

to shear.

Fig. 4.6 shows the dependence of the effective end-to-end force on the end-to-end distance and the

potential of mean force (PMF) reconstructed from this set of simulations by the weighted histogram analysis

method [141, 144]. The PMF can be thought of as the change of free energy along a chosen coordinate.

The force sharply increases with the end-to-end distance between ∼3.5 Å—the distance between consecutive

basepairs in a DNA helix—and ∼6.5 Å, the separation allowing water molecules to penetrate the volume

between the ends of the fragments. The force rapidly decreases as the end-to-end distance exceeds 6.5 Å
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Figure 4.6: Representative dependence of the effective force (red) and the free energy (black) of two axially
aligned DNA fragments on the end-to-end distance. The data result from 100 independent simulations of
two 5′-phosphorylated fragments, the end-to-end distance of which was maintained at a specified value by
a harmonic spring. Additional restrains were applied to maintain the axial alignment. The strength of the
restraints was found to affect the values but not the general shape of both curves (see text). The image in
the background illustrates the simulation method. The DNA fragments were immersed in 100 mM NaCl
electrolyte, and were free to rotate about their helical axes.

and becomes slightly repulsive after ∼13 Å (2–10 pN). Thus, the end-to-end force has a large but very

short-range attractive component caused by the hydrophobic effect and a much smaller long-range repulsive

component that originates from screened electrostatic interactions between the DNA fragments [49].

A variation of the above protocol (described below in detail) was used to calculate the PMF for DNA

fragments different by their terminal chemistry and relative azimuthal orientation and for several con-

centrations of the surrounding electrolyte. Table 4.1 lists the change in the depth of the PMF minima

(∆(min[PMF] − PMF(∞)) relative to its value for the 5′-phosphorylated fragments at φ = 36◦ orienta-

tion in 100 mM NaCl. These calculations (detailed in Fig. S4 of the Supporting Information of Ref. 175)

demonstrate that increasing the electrolyte concentration from 0.1 to 1 M has negligible effect on the PMF.

Among the three most likely orientations that 5′-phosphorylated fragments form, the φ = −20◦ state has the

lowest free energy, in good agreement with the φ = −22◦ angle frequently observed in the crystal structures

of poly(dA·dT) oligonucleotides [197]. The 5′-phosphorylated fragments exhibit deeper minima than the

blunt-ended fragments. For the latter, the conformation of φ = 180◦ is preferred over φ = 36◦. These varia-

tions in the depth of the PMF are consistent with the occupancy of bound states observed in our simulations

of spontaneous collapse of aligned DNA fragments (see Fig. 4.1 d).
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Table 4.1: Relative free energy change, ∆∆G, upon formation of the end-to-end complex. Here, the free
energy change ∆G is approximated by the minimum of the end-to-end PMF obtained from umbrella sampling
simulations, Fig. S4 d of the Supporting Information of Ref. 175. The values of ∆G are given relative to the
value measured for the system containing 5′-phosphorylated fragments end-joined in the 36◦ orientation at
100 mM NaCl. In each simulation, the relative azimuthal orientation of the DNA fragments was enforced
using harmonic restraints (see Sec. 4.9.6). The application of such restraints introduced a bias to the
estimates of ∆G. As all simulations employed the same restraints, this bias was assumed to cancel out in
the calculation of ∆∆G.

5′ chem. ion conc. (M) φ ∆∆G (kcal/mol)

phos. 0.1 36◦ 0
phos. 1.0 36◦ 0.4
phos. 1.0 −20◦ −1.8
phos. 1.0 180◦ 0.1
hydrox. 1.0 36◦ 2.3
hydrox. 1.0 180◦ 1.2

4.6 Standard binding free energy of end-to-end association

To obtain a robust estimate of the free-energy of end-to-end association, we computed the standard free

energy of binding Gbind using a variation of the method described previously [146]. For a system of two

DNA fragments, Gbind determines the fraction of time the fragments form a bound state, which can be, in

principle, observed directly in an all-atom MD simulation. However, the dissociation rate of the end-to-end

assembly was found to exceed 200 ns (see Fig. 4.2 d) and therefore using such a brute force approach was

not possible. Equivalently, Gbind can be obtained from the logarithm of the equilibrium binding constant,

which is the ratio of the kinetic rates of end joining and rupture (kon and koff , respectively).

For our calculations of Gbind, we considered a process consisting of the following four steps (see Fig. S5

in the Supporting Information of Ref. 175). First, we evaluated the free energy cost of enforcing axial

alignment restraints on a pair infinitely separated DNA fragments. Second, we computed the approximate

cost of bringing a pair of DNA fragments from infinity to the maximum-separation state considered in our

atomic simulations (CoM–CoM distance of 52 Å). Third, we determined the free energy change of bringing

two axially aligned DNA fragments into an end-to-end bound complex. Finally, we evaluated the cost of

releasing the axial alignment restraints from the end-to-end assembly. The sum of these terms yielded the

free energy change upon formation of the end-to-end DNA complex Gbind = −6.3 ± 1 kcal/mol for a DNA

concentration of 1 M in 120 mM NaCl. Since a pair of DNA ends have only 1 binding configuration, we can

express the standard binding free energy in terms of DNA ends, so that Gends
bind = −5.4 kcal/mol. A complete

description of the methods used in this section is provided in Sec. 3.1 of the Supporting Information of

Ref. 175.

The above value for Gbind represents our best effort to quantify the strength of the end-to-end interaction.
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In general, Gbind may depend on the DNA sequence. Although the question of sequence dependence is

enticing, investigations of the sequence dependence of the end-to-end interaction have been deferred to

future studies.

4.6.1 Estimate of rate of end-to-end dissociation

The escape rate for a Brownian particle trapped in a potential well can be estimated by finding the mean

first passage time, τ , from the Smoluchowski equation, which describes the motion of a Brownian particle

in a potential. It can be shown that for a particle with a 1-dimensional diffusion coefficient D [198],

τ =
1
D

∫ rmax

rmin

dy eW (y)/kBT

∫ y

0

dz e−W (z)/kBT , (4.2)

where rmin is the minimum of the PMF, W (r), and rmax is the height of the barrier. Since rmax is an

inflection point, the rate of crossing, koff , is 1/2 the rate of arrival 1/τ . This approach was used previously

to obtain koff from D and W , which in turn were obtained through MD simulations [199].

The value of koff is sensitive to the location of the peak PMF, rmax. Estimating that D ∼ 25 Å2/ns from

trajectories of the end-to-end distance obtained in Sec. 4.2, the range of reasonable choices for the location

of the maximum (10–15 Å) gives k−1
off ∼ 170,000–860,000 ns. We estimate that rmax is at 12 Å, yielding

k−1
off ∼ 480,000 ns. However, the use of axial alignment restraints in our calculations of the PMF may have

affected the above estimates of koff by reducing the pathways available to the DNA fragments for escape.

Thus, we expect the above numbers represent an upper bound estimate for k−1
off .

4.7 Spontaneous assembly of long end-to-end aggregates

Our results until this point described the interaction of two DNA fragments in isolation. To simulate multi-

fragment aggregation, 458 DNA fragments, each 10 bp in length, were placed in a cube of 100 mM NaCl

solution (23.8 nm on each side) making the system shown in Fig. 4.7 a. During a 260-ns MD simulation, the

DNA fragments diffused about their initial positions and interacted with their neighbors to form aggregates

up to 11 DNA fragments (110 basepairs) in length. The DNA fragments that formed the longest 10 aggregates

are shown at the beginning and end of the simulation, Fig. 4.7 b,c. The number of aggregates of a given

length at three different instances of the MD trajectory is shown in Fig. 4.7 d. The plot reveals rapid growth

of end-to-end aggregates and roughly exponential distribution of the lengths of the aggregates. The number

of aggregates did not reach a steady state by the end of the simulation, see Fig. 4.8.

We model the process of end-to-end aggregation using a simplified reversible step-growth polymerization
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Figure 4.7: Spontaneous aggregation of duplex DNA into long rod-like structures. (a) A system containing
458 duplex DNA fragments placed at random. NaCl solution is shown as a semi-transparent molecular
surface. (b-c) Initial (b) and final (c) conformations of the DNA fragments that composed the longest 10
aggregates at the end of a 260 ns MD simulation. DNA fragments forming each aggregate are shown in a
different color. (d) The instantaneous number of aggregates, N(s), formed by s DNA fragments in the MD
simulation. The lines show the equilibrium distribution of the aggregate length according to the reverse
step-growth polymerization model [200] for specified values of Gbind.
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model, which has an analytical time-dependent solution that relates the mean aggregation number, 〈N〉

to Gbind as a function of DNA concentration, c, [200]. Here, we refer to a “monomer” as a single 10 bp

DNA fragment and a “polymer” as a chain of end-to-end bound DNA fragments. For analysis purposes,

a pair of DNA ends were considered bound if atoms from their terminal basepairs were well-formed and

included atoms within 3.75 Å of one another. For a basepair to be considered well-formed we required that

the distance between adenine N1 and thymine N3 atoms was 2.7–3.3 Å, averaged over 1 ns. Additionally,

transient encounters and ruptures were eliminated by requiring DNA ends to be in contact for at least 2 ns

before counting a binding event and by requiring bound DNA ends to be out of contact for at least 3 ns

before counting a rupture. Despite these measures, a handful of false ruptures had to be visually examined

before being disregarded for subsequent analysis.

Under the approximation that polymerization and depolymerization rates are independent of chain

length, the time-dependent concentration of polymers starting from a solution of monomers can be de-

scribed analytically [200]. Following the original derivation but under the simplification that no condensate

product is produced by polymerization, we obtain solutions for the concentration, cn, of polymers of length n:

cn = x(t)yn−1(t), with x(t) = λ2(t)/c0, y(t) = 1−λ(t)/c0, initial concentration of monomers, c0, and the to-

tal concentration of polymers, λ. In turn, λ satisfies the 2nd order rate equation dλ
dt = −konλ

2 + koff(c0−λ).

At equilibrium, λ = 1
2Keq

[√
1 + 4Keqc0 − 1

]
, and, cn can be expressed as an exponential function that

decays with respect to n.

The reversible step-growth polymerization model yields a relation between the mean aggregation number,

〈N〉, and the equilibrium binding constant, Keq, as a function of DNA concentration, c,

〈N〉 =

[
ln

1 + 2Keqc− (1 + 4Keqc)
1
2

2Keqc

]−1

. (4.3)

Using our best estimate of the binding free energy Gbind = −6.3 kcal/mol, we obtain 〈N〉 = 39 for the mean

aggregation number at equilibrium for this system. The longest aggregate observed in the simulation was

11 DNA fragments, indicating that the simulation was still far from equilibrium.

The above simulation partially mimics the experimental assay of the Clark and Bellini groups [185],

which involved very dense fluids of short DNA fragments. A transition from an isotropic phase to a nematic

liquid crystal phase was found for 10 bp DNA fragments at c = 875 mg/ml (∼ 150 mM). Through a

combination of calibration experiments and theory, the authors estimated 〈N〉 = 9 at the isotropic–nematic

phase transition. Under the model of reversible step-growth polymerization, 〈N〉 = 9 at c = 150 mM

corresponds to Gbind = −3.87 kcal/mol. By contrast, using our prediction of Gbind = −6.3 kcal/mol yields
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Figure 4.8: The number of end-to-end aggregates (including monomers) during a simulation starting with
458 DNA monomers in a cube of solvent. The reversible step-growth polymerization model predicts 2nd

order kinetics for the total number of aggregates. We plot the best fit of this data in two regions: during the
first 49.5 ns (red) and after 60.9 ns (blue). The fits provided estimates of kon for the end-to-end association
of two polymers.

〈N〉 = 64 at a DNA concentration of 150 mM.

4.7.1 Estimate of rates of end-to-end association and dissociation

In the reversible step-growth polymerization model, the total number of associated molecules is described

by a second-order kinetic equation. Since unbinding of DNA fragments is negligible in our system, kon

can be extracted by fitting N(t) = N0
1+tc0kon

to the data, where N(t) is the total number of end-to-end

bound DNA fragments at time t, N0 = N(0), and c0 is the initial DNA concentration. In our simulation

of spontaneous aggregation, the association rate reduced from kon = 0.37 (nsM)−1 observed within the first

50 ns to 0.069 (nsM)−1 for the 60–250-ns interval, see Fig. 4.8. The change in association rate occurred as

longer end-to-end aggregates formed (> 3 duplex fragments) and the rotational and translational diffusive

motions of shorter aggregates slowed.

The aggregation simulation provides a lower bound estimate for the dissociation rate koff . During the

course of the simulation, 307 DNA ends were bound for 217 ns on average and unambiguous unbinding was

observed for only one end-to-end associated complex. A few events were observed in which partial unbinding

occurred via rupture of the Watson-Crick basepair of terminal nucleotides, as well as one instance where a

bound DNA fragment was transferred to an unbound fragment; we neglect these events for the subsequent

analysis. A Poisson distribution yields the probability that exactly one end-to-end bound DNA pair would

rupture during the simulation given a value of koff . For koff < 1/596, 000 ns−1, it is likely that more than

one rupture would have occurred. For koff > 1/19, 000 ns−1, it is likely that no rupture would have occurred.

Thus, the probability that exactly 1 rupture occurred is > 10% for k−1
off = 19, 000–596, 000 ns. The greatest
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probability of exactly 1 rupture occurring is 37% and is for k−1
off = 67, 000 ns. The ranges estimated for kon

and koff suggest −Gbind in between 4.4 and 7.6 kcal/mol, with a most probable range of 5.2–6.2 kcal/mol

(kon =0.069–0.37 (nsM)−1 and k−1
off = 67, 000 ns).

The rate of dissociation of an end-to-end assembly, koff , can also be estimated from the PMF and diffusion

coefficient, D, by computing the mean first passage time [198, 199]. From the simulations performed in

Sec. 4.2, we estimate D ∼ 25 Å2/ns. Due to uncertainty in the location of the barrier peak, we obtain the

range k−1
off ∼ 170,000–860,000 ns, with a best estimate of k−1

off ∼ 480,000 ns. The use of axial alignment

restraints in our calculations of the PMF limits pathways ordinarily available to rupturing DNA, so these

values likely represent an upper bound for k−1
off .

The mean first passage time can also be used to estimate kon. Assuming that end-to-end binding is limited

by translational diffusion, the upper bound estimate for kon is 4πDR0 ∼ 7 (ns M)−1, where R0 = 37 Å is the

CoM distance between a pair of DNA fragments at which binding is expected to occur. The true value of kon

should be smaller because the DNA fragments must be axially aligned for binding to occur. Furthermore,

long-range electrostatic repulsion may reduce the value of kon. Our estimates of Gbind and koff suggest a

range for kon of ∼ 0.03–0.16 (ns M)−1.

4.8 Discussion

Stability of a dsDNA molecule can be conveniently described as a sum of base stacking and basepairing

energies contributed by individual nucleotides that comprise the molecule. It is tempting to conceptually

equate the base stacking interactions within a continuous molecule with the base stacking interactions that

drive the assembly of two disjoint DNA duplexes. Thus, the unified nearest neighbor parameters, which can

predict the energy for DNA hybridization based on DNA melting data, suggest Gbind = −16.94 + 2× 6.94 =

−3.06 kcal/mol [93] for the association of two 10 bp poly(dA·dT) DNA fragments into a continuous 20-bp

molecule. Such a simple calculation may be, however, flawed as additional conformational flexibility afforded

by the lack of phosphodiester bonds at the end-to-end interface should allow the base-stacking geometry

to be optimized, magnifying the base-stacking contribution to the free energy. Accordingly, the average

interaction energy between adjacent basepairs with φ = −20◦ was measured to be 2 kcal/mol lower in bases

forming the end-to-end junction than in bases in the middle of one of the DNA fragments (see Fig. 4.9).

This finding is in good agreement with a survey of crystallographic structures that found DNA fragments

terminating with AT basepairs to stack with φ = −20◦ [197]. We note that the stacking geometry may

depend on the sequence of the DNA termini.
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Figure 4.9: Distribution of the van der Waals and Coulomb interaction energy between two adjacent DNA
basepairs forming an end-to-end junction (grey) and buried in the middle of one of the DNA fragments
forming an end-to-end assembly (blue). The distributions were obtained from analysis of a trajectory of
a end-to-end assembly formed from two 5′-phosphorylated 10-bp DNA fragments. The assembly was free
to translate and tumble and had φ = −20◦ at the onset of simulation (red traces in Fig. 4.2 d,e). Only
inter-nucleobase interactions were considered; the deoxyribose and nucleic backbone were excluded.

The base stacking free energy has been experimentally quantified by introducing a dangling nucleotide

or a nick (a cut in the backbone of one strand) to a DNA molecule and observing the change in melting

temperature [201–203], and by observing the mobility of a nicked DNA molecule relative to intact DNA and

DNA with a gap [204, 205]. These experiments provide estimates for the base stacking free energy between

−0.65 and −2.0 kcal/mol for stacks formed by thymine and adenine. However, the extraction of the free

energy values is indirect with these methods.

We provided the first direct estimate of the standard binding free energy of end-to-end association of

DNA fragments, obtaining Gbind = −6.3±1 kcal/mol. The simulations reported here are similar to the liquid

crystal condensation experiments of the Clark and Bellini groups [185], which estimated ∼ −3.8 kcal/mol

for the end-to-end free energy, in reasonable agreement with our estimate. The small-angle x-ray scattering

experiments of the Pollack group demonstrated that the end-to-end interaction dominates over electrostatic

repulsion in a divalent electrolyte [186,187], which, unfortunately, is not sufficient to estimate the standard

free energy of end-to-end binding. We note that the value of Gbind obtained in this study is larger than

values reported in experiments. Having employed multiple methods, we are confident that the range of values

obtained for Gbind accurately reflects the standard binding free energy within the limits of the molecular

force field used in our study. Nevertheless, we cannot rule out the possibility that the present MD force field

somewhat exaggerates the interactions driving end-to-end self-assembly of duplex DNA.

It is interesting to note that hydrophobic interactions between DNA bases and inorganic materials can be

significantly stronger than the stacking energies observed in biochemical assays. AFM experiments indicate
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that single-stranded DNA adheres to graphite with a free energy of −4.9 or −6.8 kcal/mol per nucleotide

for cytosine and guanine, respectively [206]. For comparison, a computational investigation of hydrophobic

interactions revealed a free energy of ∼ −55 kcal/mol for the adhesion of a pair of 11×12 Å2 graphene

sheets, or about 10 times the energy per unit surface area [207]. Interactions of similar strength were found

to promote DNA–fullerene and ssDNA–carbon nanotube association in all-atom MD simulations [208,209].

Given the relatively large free energy of the end-to-end interaction, we pose the following question: why

has end-to-end association only recently been observed? In most biological and nanotechnological settings,

the concentration of DNA ends is too low for end-to-end association to be statistically significant, and the

lifetime of end-to-end interactions (∼ 70 µs) is somewhat shorter than the temporal resolution of many

experimental techniques. To illustrate this point, we plot in Fig. 4.10 the fraction of bound DNA ends

versus the concentration of free DNA ends in chemical equilibrium. The concentration of DNA ends is

relatively high in DNA cyclization assays that measure the fraction of DNA molecules bent into a circle.

The J-factor, which represents the concentration of one end in the proximity of the other, has a maximum

value of ∼ 10−4 mM [210], which two orders of magnitude too small to promote cyclization of a significant

fraction of blunt-ended DNA. The introduction of sticky ends increases the interaction energy by a few

kcal/mol so that the DNA cyclization can be observed.

The large standard binding energy of end-to-end association implies that end-to-end interactions will be

important in systems containing a high concentration of DNA ends. For instance, a remarkable new method

of creating patterned, self-assembled structures out of DNA—termed DNA origami [76]—introduces many

nicks along a path of DNA, which may enhance the stability of the resultant pattern. We speculate that

broadened awareness of end-to-end association will influence the development of nanotechnologies where the

end-to-end interaction can be used advantageously, such as with DNA origami, or can pose a limitation,

such as for DNA microarrays. In cells, double-stranded DNA breakage, which poses a mortal threat, results

in nearby blunt or sticky DNA ends. During non-homologous end-joining—the dominant repair pathway

for such breaks in multicellular eukaryotes [211,212]—the ruptured DNA ends are held together by proteins

such as the Ku heterodimer or DNA-PK, or by nucleosome interactions until damaged DNA can be removed

and ligation of the DNA backbone occurs [211]. Since DNA attracts end-to-end, it is not necessary that

this complex, whose microscopic structure is not yet known, hold the DNA ends in strict alignment. It is

sufficient for the ends to be held proximally so that the effective concentration of DNA ends is large enough

to promote end-to-end association (Fig. 4.10 purple), whereupon ligation may occur. The free energy of

dsDNA end-to-end association found in this study suggests that placing DNA ends in proximity of 3 nm or

less will produce an end-to-end associated state with a probability of ∼ 95%.
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Figure 4.10: The effect of end-to-end attraction in different DNA systems. The binding free energy (black)
and the fraction of bound DNA ends (red) are plotted against the reference concentration of DNA ends.
Background images schematically illustrate four DNA systems in which the end-to-end attraction may or
may not play a role. From top left to bottom right: the maximum local concentration of DNA ends (i.e.
the J-factor [213]) is about two orders of magnitude too low to induce an observable fraction of blunt-ended
DNA circles of any length (orange); translation and rotational confinement of DNA ends at dsDNA breakage
(e.g. by the protein Ku (PDB:1JEY)) will promote binding of the DNA ends, which likely aids repair of
DNA during non-homologous end joining [211] (purple); the structure factor obtained from small-angle x-ray
scattering experiments of short DNA duplexes in a divalent electrolyte reveals end-to-end attraction [186]
(blue); at very high DNA concentrations, long DNA aggregates form and align in liquid crystal phases [185]
(green).

4.9 Simulation methods

All MD simulations were performed using the program NAMD [140], the parmbsc0 refinement of the

AMBER-parm99 force field [136, 169], the TIP3P model of water [170], standard parameters for ions [171],

periodic boundary conditions, particle-mesh Ewald (PME) full electrostatics with a PME grid density of

about 1 Å per grid point. Except where specified, van der Waals and short-range electrostatic energies were

calculated using a smooth (10–12 Å) cutoff, and integration was performed using 1–2–4 fs multiple timestep-

ping [140]. The temperature was held constant using a Langevin thermostat [140] applied to all non-hydrogen

atoms; the Langevin damping constant was set to 0.1 ps−1. For simulations in the NPT ensemble, constant

pressure was maintained at 1 bar using the Nosé-Hoover Langevin piston pressure control [174].

Each simulation reported in this study used one of the following three system types: elongated along the

z-axis to minimize the amount of solvent around 2 DNA fragments (∼ 24,000 atoms, Fig. 4.1 a); isotropic

to allow 2 DNA fragments to tumble freely (∼ 56,000 atoms, Fig. 4.2 a); and large and isotropic to allow

unbiased interaction between 458 DNA fragments (∼ 1.4 M atoms, Fig. 4.7 a). The DNA sequence was

poly(dA·dT) in all systems. Counter-ions were added to each system to neutralize the DNA charge prior to

the addition of a number of ions corresponding to the reported molarity (100 mM, except where specified) of

NaCl electrolyte. Steric clashes that were introduced during the assembly of each system were removed from
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each system through minimization using a conjugate gradient method [214]. Equilibration was performed

in the NPT ensemble, and subsequent production simulations were performed in the NVT ensemble, except

where specified.

4.9.1 Collapse of aligned dsDNA

Systems were built using the anisotropic unit cell. The dimensions of the system were chosen to provide

a minimum of 2 nm distance between the surfaces of the DNA fragments across the periodic boundary,

which should accommodate a majority of screening counterions for NaCl solutions of 100 mM or greater

concentration (Debye length ≤ 1 nm). Steric clashes were removed through 3,000 minimization steps. Each

system was subsequently equilibrated for 65 ps with the DNA backbone atoms harmonically restrained to

their initial positions. Axial alignment of the DNA fragments was enforced by harmonically restraining

each phosphorous atom of the DNA to the surface of an 11-Å-radius cylinder (with spring constants of

139 pN/nm per atom). The DNA fragments could translate along the long axis of the cylinder and rotate

azimuthally. The starting conformation was characterized by a 20.5 Å end-to-end separation, which we

define as the distance between the centers of mass of the nearest terminal basepairs, taking the periodic

boundary condition into account. The end-to-end distance was projected along the common DNA axis,

which we take as the elongated axis of the simulation system. The relative azimuthal angle φ of the terminal

basepairs was defined as the angle between the projections of the vectors connecting the O5′ and O3′ atoms

of the terminal basepairs into the plane normal to the common DNA axis. For two consecutive basepairs in

a B-DNA helix, φ ≈ 36◦, depending on the sequence.

4.9.2 Stability of the end-to-end complex

Systems were built by placing collapsed end-to-end DNA assemblies in an isotropic volume of 100 mM NaCl

electrolyte solvent, Fig. 4.2 a. Steric clashes with the solvent were removed through minimization with the

DNA backbone restrained. Subsequent simulation was performed in the NPT ensemble.

4.9.3 Mechanics of end-to-end dissociation

The coordinates of the system containing 5′-phosphorylated DNA fragments in a 100 mM electrolyte were

taken after 140 ns of simulation in Sec. 4.3 to provide the initial conformation for simulations of rupture

of the DNA fragments. The NVT ensemble was used during these simulations; Langevin thermostat was

applied to water oxygens and ions. A harmonic spring of ks=4000 pN/nm was used to produce the rupture,
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by increasing its rest length at a rate of 0.4 or 0.2 Å/ns. The work performed at both rates were in good

agreement.

4.9.4 Axial stretching of the end-to-end assembly

Force induced dissociation of the end-to-end DNA assembly was simulated using the steered molecular

dynamics (SMD) method [151]. Figure 4.3 a schematically illustrates the process. Each DNA fragment was

attached to one end of a virtual spring. The ends of the spring were anchored to the center of mass (CoM)

of either the phosphorous atoms of the DNA fragments (6 simulations) or the CoM of the closest DNA ends

(4 simulations). The rest length of the spring was increased at a constant rate of 0.4 or 0.2 Å/ns until the

rupture of the assembly occurred. The work performed during each of these simulations was recorded and

combined using the Jarzynski’s equality [157] to estimate the potential of mean force (PMF) for the process

considered:

e−β∆F =
〈
e−βW

〉
(4.4)

The angle brackets denote an ensemble average; β is 1/kBT; ∆F is the change in free energy when the system

is brought from one state to another; W is the work done during the change of state. No clear relationship

between the pulling rate and the work performed was observed. We note that these simulations may not

have sampled rare trajectories required for accurate estimation of the PMF using Jarzynski’s equality [157].

4.9.5 Rupture of end-to-end assemblies containing complementary ssDNA

overhangs

Five systems containing 20 DNA basepairs were built to determine the effect of complementary overhangs

on the stability of the end-to-end DNA complex. The first system was a continuous 20-basepair (two-turn)

helical dsDNA fragment immersed in 0.1 M aqueous solution of NaCl. The other four systems were built

from the first system by cleaving the dsDNA into a pair of equal-length 5′-phosphorylated dsDNA fragments

containing 0-, 1-, 2- or 4-nucleotide, complementary ssDNA tails, Fig. 4.5 a. Following usual minimization

and equilibration protocols, the DNA assembly was axially stretched using the SMD method described in

Sec. 4.4.1. The force of the virtual spring was applied to the CoM of the DNA fragments.

4.9.6 Potential of mean force of axially aligned DNA duplexes

Umbrella sampling simulations were performed using the anisotropic systems (Fig. 4.1 a) and two simulation

protocols different by the method used to set up initial systems and the alignment restraints. Both protocols
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enforced the end-to-end distance r using a harmonic spring of ks=4000 pN/nm for 3.5 < r < 12 Å in

0.5-Å intervals and ks=1000 pN/nm for 13 < r < 19 Å in 1.0-Å intervals. The first protocol was used to

provided the estimate of the PMF plotted in Fig. 4.6. The initial conformation for each simulation was

obtained by placing the DNA fragments a specified distance r apart at one of the four φ = 0, 90, 180,

and 270◦ (four simulations for each r). The systems were equilibrated for 2 ns before data accumulation

during production simulations lasting ∼ 16 ns. In the second protocol, which we used to compute the relative

binding free energies, 4.1, the initial conformations were generated iteratively by shifting the minimum of the

restraining potential in steps and followed by 0.5-ns equilibration, starting from the final frames obtained in

the simulations of Collapse of aligned dsDNA. Subsequently, each system was equilibrated for at least

2.5 ns before accumulation of data during production simulations lasting 7.5–15 ns. Axial alignment was

maintained as described for Collapse of aligned dsDNA, using ks= 13.9 and 139 pN/nm for the first

and second protocol, respectively. In the second protocol, a torque pointing along the common DNA axis

was distributed among the phosphorous atoms of each DNA molecule to restrain φ about -20◦, 36◦, or 180◦,

with a spring constant of 219.4 pN nm/rad2, which roughly corresponds to an 8◦ RMSF.

4.9.7 Spontaneous assembly of long end-to-end aggregates

The system depicted in Fig. 4.7 a was assembled through the sequential placement of 458 DNA fragments

in a cubic volume (250 Å on each side). To place a DNA fragment, trial positions and orientations were

randomly selected until the DNA coordinates did not clash with any previously placed fragments. During

the first 50,000 ps of equilibration, the system shrank to its equilibrium size of 238 Å on each side. To

improve computational efficiency, a 7–8 Å cutoff was used along with 2–2–6 fs time stepping scheme.
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Chapter 5

A coarse-grained model of
unstructured single-stranded DNA
derived from atomistic simulation and
single-molecule experiment
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5.1 Introduction

It has become apparent that physical properties of DNA can play a fundamental role in its biological function

and can determine the utility of DNA for nanotechnological applications [215–217]. Although the genetic

code is stored in double-stranded form, it is the single-stranded form of DNA that plays active roles in central

biological processes such as transcription, replication and DNA repair [218–221]. The emerging field of DNA

nanotechnology exploits self-assembly of single-stranded DNA to create novel nanostructures [76, 222, 223]

that can, for example, programatically transport cargo [224], arrange carbon nanotubes in a transistor-like

device [178] and provide an arena for competition between different motor proteins [225]. Thus, single-

stranded DNA (ssDNA) is ubiquitous in biology and (bio)nanotechnology, yet much less is known about its

properties in comparison to double-stranded DNA (dsDNA).

Computer simulations can provide detailed insights into the structure, dynamics and energetics of a

biological or nanotechnological system [51, 58, 226]. In this regard, all-atom molecular dynamics (MD)

simulations that explicitly represent every atom of the system can offer the most detailed account of the

system’s inner workings [139, 227]. However, all-atom MD simulations are currently limited to timescales

that are short in comparison to the relaxation timescales of even quite small ssDNA molecules [228]. By

describing DNA using a less detailed, “coarse-grained” model the timescale accessible to simulation can

be significantly expanded [79–81]. However, existing coarse-grained models of DNA have been foremost

optimized to reproduce the properties of the double-stranded form [82–92].

5.2 Model architecture and parametrization

We have developed a simple, coarse-grained (CG) model of ssDNA that represents each nucleotide using

two interaction sites, B (base) and P (backbone/phosphate) beads, shown schematically in Fig. 5.1. The

interactions between beads are described through interaction potentials tabulated to accurately reproduce the

conformations of ssDNA observed in all-atom simulations. The bonded potentials, which describe chemical

links between the beads, includes pairwise interaction of each B bead with the two neighboring P beads,

four three-bead angle terms, and three four-bead dihedral angle terms. The three non-bonded potentials

describe interactions between one P and one B bead, two P beads, and two B beads using 1–3 exclusions:

Reproduced with permission in part from Christopher Maffeo, Thuy T. M. Ngo, Taekjip Ha, and Aleksei Aksimentiev. A
coarse-grained model of unstructured single-stranded DNA derived from atomistic simulation and single-molecule experiment.
J. Chem. Theory Comput., 2014. Article ASAP (Copyright c© American Chemical Society).
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Pn+1
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Bn+1
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Bn+3

Figure 5.1: Scheme used to map atoms onto coarse-grained beads. The left panel shows a portion of an
all-atom model of ssDNA. The backbone/phosphate and sugar/base atoms of two nucleotides are enclosed
by green or cyan semitransparent surfaces, respectively. The enclosed groups of atoms are mapped onto the
P (backbone/phosphate) and B (sugar/base) beads, which are shown in the right panel as green and cyan
spheres, respectively.

the non-bonded potential is zero between beads separated by one or two bonds. The solvent surrounding

DNA is modeled implicitly through a Langevin thermostat, see Sec. 2.1.3, and ion concentration-dependent

non-bonded potentials. Figures 5.3, 5.4, 5.5 and 5.6 illustrate the CG potentials of our model.

5.2.1 All-atom simulations of ssDNA

To obtain CG potentials that are consistent with the all-atom model, we performed all-atom MD simulations

of a dT60 strand submerged in a 80×80×80 Å3 volume of 100 and 1000 mM NaCl electrolytes. The reported

molarity was determined by counting the total number of chloride ions and water molecules in the system,

not taking into account 59 cations added to neutralize the charge of the DNA strand. An ensemble of 21

simulations was performed for both 100 and 1000 mM systems, providing an aggregate simulation time of

6.2 and 3.4 µs, respectively. The initial conformations for the ensemble simulations were randomly chosen

from a 1.3-µs trajectory of a dC60 molecule; the cytosine bases were mutated into thymines using the psfgen

package. We chose not to present a CG model derived from the all-atom simulations of dC60 because of the

following possible artifact of the all-atom model. For poly(dC), we observed hydrogen bonds formed by the

amine groups of the cytosine bases and the phosphate groups of the neighboring nucleotides about 5% of the

time. We have recently found that the CHARMM amine–phosphate interaction is overestimated [61]. Such

persistent hydrogen bonding promoted relatively closed Pn–Pn+1–Pn+2 angles (peak around 120◦), which

was not observed in poly(dT).

The resulting all-atom trajectories were converted into our CG representation (P and B beads). For a

given nucleotide, the P bead represented the O5T′, O5′, P, O1P, O2P, and C5′ atoms of that nucleotide

and the C3′ and O3′ atoms of the adjacent nucleotide such that the bead was roughly centered on the

phosphorous group of the DNA backbone. The remaining atoms of the nucleotide were mapped onto the
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Figure 5.2: Pearson correlation for CG-mapped bonds, angles and dihedrals obtained from all-atom simula-
tion. A value of 1 indicates perfect correlation, whereas a value of −1 indicates perfect anti-correlation.

B bead. For both types of beads, the conversion procedure was done by computing the center of mass

of the respective groups of atoms; hydrogen atoms were neglected during the conversion procedure. The

bonds, angles and dihedrals selected for our parameterization were fairly independent from one another

(see Fig. 5.2), suggesting that our all-atom system can be approximated well by a CG model that applies

potentials to these degrees of freedom.

5.2.2 Bonded interactions and potentials

An initial guess for each CG potential was obtained via Boltzmann inversion of the corresponding distri-

bution extracted from the CG-mapped all-atom trajectory. The effect of ion concentration was taken into

account by introducing two sets of CG potentials (for 100 and 1000 mM electrolytes) parametrized using

the corresponding all-atom trajectories. Using a CG system identical in composition and size to the all-

atom one, the bonded—but not non-bonded—potentials were refined by performing thirty iterations of the

iterative Boltzmann inversion (IBI) procedure. In IBI, the CG potentials are iteratively adjusted until the

distributions obtained from CG simulations converge to the target all-atom distributions, see Section 2.2.1.

Upon completion of the IBI refinement of bonded interactions, the distributions of CG beads corre-

sponding to the bonded interactions (i.e., the distribution of bond lengths, angles and dihedrals) were in

excellent agreement with equivalent distributions obtained by CG-mapping the reference all-atom simula-

tions. Fig. 5.3 A-C show the distributions of the distances between P and B beads within the same nucleotide

(Pn– Bn), adjacent P beads (Pn–Pn+1), and the B and P beads of adjacent nucleotides (Bn–Pn+1). The sub-
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Figure 5.3: Parameterization of bonded interactions. (A-C) Distributions of bond lengths in all-atom and
coarse-grained simulations of a dT60 molecule at 0.02 Å resolution. The solid lines depict the distributions
obtained from all-atom simulations in 100 (blue) and 1000 (green) mM NaCl electrolytes. The open circles
connected by dashed lines depict the distributions obtained from CG simulations at the 100 (light-blue)
and 1000 (light-green) mM conditions. (D-F) The final CG bond length potentials corresponding to the
100 (blue) and 1000 (green) mM conditions. The inset of each panel highlights three bonds of the type
characterized in that row of the figure. The image shows a CG representation of ssDNA molecule oriented
to have its 5′-to-3′ direction pointing up in the figure.
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script refers to the nucleotide number that increases in the 5′-to-3′ direction, see Fig. 5.1. The distributions

obtained from the all-atom and CG models are in perfect agreement and are characterized by narrow (∼ 1 Å

width) peaks and a small skew. The distributions of the Pn–Bn and Bn–Pn+1 bonds differ significantly,

suggesting that a structurally precise CG model must apply different potentials to describe these bonds.

In particular, the Bn bead is found, on average, closer to the Pn bead than to the Pn+1 bead; the Pn–Bn

distribution has broader peaks than the Pn+1–Bn one. By preserving the asymmetry of Pn–Bn and Pn+1–

Bn bonds, the 5′-to-3′ directionality of the DNA strand is incorporated in our two-beads-per-nucleotide CG

model.

Fig. 5.4 A-D shows the distributions of the Pn–Pn+1–Pn+2, Bn–Pn+1–Bn+1, Pn–Pn+1–Bn+1, and Bn–

Pn+1–Pn+2 angles considered in our model. The distributions are broad, spanning roughly 120◦, and are

poorly fit by single gaussians. The angle formed by three consecutive backbone beads (Pn–Pn+1–Pn+2) is

likely to be around 140◦ regardless of the ion concentration, but with less likelihood at higher ion concen-

trations (presumably because greater electrostatic screening allows more “closed” conformations). Of the

remaining angle distributions, only the angle between two consecutive bases (Bn–Pn+1–Bn+1) is significantly

affected by the ion concentration. At 1000 mM, the likelihood of the Bn–Pn+1–Bn+1 angle to be between 40

and 60◦ is reduced, compared to the 100 mM case, but enhanced in the 60 to 90◦ interval. The Bn–Pn+1–

Bn+1 angle appears to be anti-correlated with the backbone angle (Pn–Pn+1–Pn+2), Fig. 5.2, suggesting

that the ion concentration dependence of the former could derive from the ion concentration dependence of

the latter.

Finally, the distributions of dihedral angels Pn–Pn+1–Pn+2–Pn+3, Bn–Pn–Pn+1–Bn+1, and Bn–Pn+1–

Pn+2–Bn+2 are shown in Fig. 5.5A-C. In 100 mM solvent, the backbone dihedral (Fig. 5.5A) shows a weak

preference for positive values over negative values, indicating a slight right-handed chirality along the 5′-to-3′

direction. In 1000 mM solvent, this chirality nearly vanishes, and a preference for backbone dihedral angles

around zero appears. The Bn–Pn–Pn+1–Bn+1 dihedral angle has peaks around 0 and 180◦ (Fig. 5.5B),

corresponding to the DNA conformations where neighboring bases are on the same side and on opposite

sides of the DNA backbone. By contrast the Bn–Pn+1–Pn+2–Bn+2 dihedral angle has a single peak around

zero (Fig. 5.5C), indicating a preference for bases that are separated by a single base in between to lie on

the same side of the DNA backbone.

5.2.3 Non-bonded interactions and potentials

The 1–3 excluded radial pair distribution functions (PDFs) describing non-bonded interactions of two P,

two B, and B and P type beads were obtained by first converting the all-atom MD trajectories into CG
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Figure 5.4: The distributions of angles (A-D) in all-atom and coarse-grained simulations of a dT60 molecule
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representations (CG mapping) and computing the unnormalized PDF as g0(r) =
∑
i,j

1
4πr2 〈δ(ri,j − r)〉.

Here, 1–3 excluded means that the sum runs over only pairs of CG beads i, j that are more than two bonds

apart. The angle brackets indicate averaging over MD trajectories. The normalized PDF was then produced

using g(r) = g0(r)∫
g0(r′)dr′

. In practice, the PDF was calculated by binning the inter-bead distances at 0.05 Å

resolution.

Non-bonded interaction potentials were refined through the IBI procedure (see Sec. 2.2.1) applied to

the 1–3 excluded pair distribution functions of the P and B beads; the bonded potentials were kept fixed.

The resulting CG model produced PDFs that were in excellent agreement with equivalent distributions

obtained by CG-mapping the reference all-atom simulations; the agreement between bonded distributions

was maintained. As shown in Fig. 5.6A-C, the PDF density for all bead types is nearly zero at small

distances due to steric repulsion. The B–B bead distribution increases rapidly at around 4-Å separation due

to stacking interactions between non-consecutive bases.

5.2.4 Refinement of non-bonded potentials against experimentally measured

radius of gyration data

Having completed the “bottom-up” stage of parametrization, the radius of gyration—a representation of

the size of a molecule—was determined for a dT60 molecule using the 100 and 1000 mM parametrizations

of the CG model. The radius of gyration was found to be 89% and 75% of the experimentally measured

values Rg,exp (44.6 and 38.2 Å) [229]. The experimentally observed radius of gyration for a DNA molecule

of a given length is taken to be the value given by the power law obtained by Sim et al. that best fits the

experimental data [229]. This disagreement likely originates from the imperfections of the all-atom model

but may also be caused by the finite size of the all-atom reference system.

Thus, we further refined the non-bonded potentials of our CG model until agreement with experimentally

measured radii of gyrations was reached for the 100 mM and 1000 mM models in 25 and 14 steps, respectively.

For this “top-down” refinement, the non-bonded potential describing the interaction of the P beads was

systematically altered by adding or subtracting a Yukawa potential of the appropriate Debye-length value,

see Sec. 1.4.

During each step of refinement, 12 copies of a CG dT60 molecule were each simulated in a cubic box 1000 Å

on a side (preventing all interaction between periodic images) for at least an equivalent (see Sec. 5.3.2) of

∼ 1280 ns. At the end of the simulation, the average radius of gyrationRg,CG was computed. The non-bonded

P–P potential was adjusted by adding a scaled Yukawa potential −kBT
Rg,CG −Rg,exp

Rg,exp

1 nm
r

e−r/λDH , where

r was the distance separating the beads and λDH was the Debye length at the appropriate ion concentration.
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Figure 5.6: The normalized 1–3 excluded radial pair distribution functions (PDFs) (A-C) in all-atom and
CG simulations of a dT60 molecule and the corresponding CG potentials (D-F) at 0.05 Å resolution. The
inset in (C) shows the peaks of the PDFs at close separation for B–B beads. Colors are as in Fig. 5.3.

61



0

20

40

60

0 50 100

ra
d

iu
s
 o

f 
g

y
ra

tio
n

 (
Å

)

number of nucleotides

experiment; 100 mM

experiment; 1000 mM

CG simulation; 100 mM

CG simulation; 1000 mM

A B
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of gyration as a function of the polymer length. Good agreement was obtained between experimental
measurements (open symbols) and coarse-grained simulation (filled symbols) under NaCl concentrations of
100-125 mM (blue squares) and 1000-1025 mM (green triangles). Experimental data was extracted from
Ref 229.

The final potentials are shown in Fig. 5.6D-F. Upon completion of this procedure, the radius of gyration

obtained in CG simulations agreed well with that measured in experiment across a broad range of polymer

lengths and at both ion concentrations, see Fig. 5.7.

5.3 Results

5.3.1 CG simulations of the force-extension dependence

Without any further refinement of the model, the simulated force-extension dependence of a dT200 molecule

was in excellent agreement with the experimentally measured dependence of one strand of λ-phage DNA

(48,500 nts) under high applied force and similar ionic conditions [47], see Fig. 5.8. Similar simulations were

performed using the “top-down” CG models of de Pablo (3SPN.2) [82] and Louis (base-average oxDNA) [230]

groups, see the end of this section for details of these simulations. Our model, which was optimized specif-

ically for ssDNA, performs extremely well for dT200 if compared to the 3SPN.2 model. Comparison with

the oxDNA model isn’t entirely possible because that model was parametrized for 500 mM monovalent elec-

trolyte. In the high force regime (above 20 pN), where electrolyte conditions are not expected to influence

the extension of ssDNA [231], the oxDNA model fits the experimental data well.

At forces below ∼ 10 pN, secondary structures form in λ-phage DNA, reducing its extension if compared

to poly(dT). In one experimental study, glyoxal was used to chemically denature λ-phage DNA, allowing

the authors of that study to probe the low-force extension of ssDNA in the absence of secondary structure

formation [231]. Unfortunately, the denaturation process may have introduced chemical crosslinks so that
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Figure 5.8: Simulated and measured force-extension dependence of ssDNA. (A) Illustration of the experimen-
tal method used to apply the force and measure the extension. Double-stranded λ-phage DNA (48.5 kbp)
was caught between two beads in a dual optical trap. Melting and washing off the complementary DNA
strand allowed the force-extension curve of the remaining strand to be determined. (B) Force-extension
curve of ssDNA obtained through CG simulations and experiment. Data obtained using our CG model
(open symbols) are in good agreement with experiment [47] (filled symbols) at high force and both NaCl
concentrations. Quantitative comparison at low force is not possible because of the secondary structure
of λ-phage DNA that shortens DNA extension in experiment. For comparison, we present force-extension
dependence of dT200 in 100 mM electrolyte obtained using the 3SPN.2 model [82] and of 200 base-average
nucleotides in 500 mM electrolyte obtained using the oxDNA model [230].

the absolute length of the ssDNA molecule was unknown, precluding comparison of absolute extension per

nucleotide. Nevertheless, after dividing the extension values by the extension at 20 pN for each measurement,

the simulated extension of dT200 was in good agreement with the experimentally measured extension across

two orders of magnitude of the applied force, see Fig. 5.9. The 3SPN.2 and oxDNA models also agree well

with the rescaled force-extension curves.

The simulations of 3SPN.2 DNA were performed using LAMMPS [232]. The simulations of oxDNA were

performed using the oxDNA software [230]. One simulation was performed for each data point reported in

Figs. 5.8,5.9. Forces of the same magnitude but opposite directions were applied to the ends of the DNA

molecule, stretching the latter. Projection of the end-to-end distance on the axis defined by the direction of

the applied forces was recorded. The average extension was obtained by discarding the initial 50 ns of the

trajectory required to reach a steady state and averaging over the remaining frames of the trajectory, which

typically covered at least 1,000 ns. For most data points shown in Figs. 5.8,5.9, the error bars are smaller

than the symbols.
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Figure 5.9: Simulated and measured force-extension dependence of ssDNA. (A) Illustration of the exper-
imental method used to apply the force and measure the extension. Chemically denatured λ-phage DNA
was stretched between a glass slide and a magnetic bead. The denaturant, which prevents formation of
secondary structure, also introduced crosslinks between parts of the DNA, which made determination of the
absolute extension not possible. (B) Force-extension curve of ssDNA obtained through CG simulations and
experiment. Good agreement was observed between experimental measurements [231] (filled symbols) and
coarse-grained simulations performed using our model (open symbols), the 3SPN.2 model [82] in 100 mM
electrolyte and the oxDNA model [230] in 500 mM electrolyte.

5.3.2 The time scale of CG simulations

Coarse-graining, in general, involves smoothing out many degrees of freedom. As a result, processes tend to

occur faster in a CG simulation than prescribed by its nominal time steps [233]. In our particular model,

the effect of solvent is represented solely through the Langevin thermostat that adds independent random

forces and viscous drag forces to each CG bead. Hence, the polymers described by our model exhibit Rouse-

like dynamics [234]. For example, the diffusion coefficient of a molecule scales as 1/N , where N is the

number of nucleotides. Experimentally, the diffusion of single-stranded DNA molecules is observed to scale

as 1/
√
N [235], consistent with the Rouse-Zimm polymer model, which considers hydrodynamic interactions

between beads [236]. Unfortunately, hydrodynamic interactions are long-range, and rather expensive to

calculate, even approximately [237]. Support for calculating hydrodynamic interactions is lacking in many

popular molecular dynamics codes. Accordingly, hydrodynamic interactions are not present in our model,

and a chain-length-dependent deviation from experimental timescales can be expected.

Many of the simulations in this study were performed using a dT60 molecule. The most important

timescales with respect to sampling are the internal dynamics of the molecule. Experimentally, the timescale

of end-to-end collisions for a 20 nt DNA fragment was measured to be 800 ns and was found to scale as N3.5

with the length of the fragment [228]. From our simulations, the timescale of end-to-end collision for a dT20
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molecule was estimated to be range between 2 and 20 ns, depending on the definition of what constitutes

a collision event (the end-to-end distance range of 15–25 Å). Furthermore, we found the collision timescale

to scale roughly as N2.8 for molecules ranging from 8 to 100 nt. Thus, for a dT60 molecule, the end-to-end

collision dynamics should be enhanced by a factor of roughly 80. We take this factor into account when we

report the CG simulation times.

5.3.3 Stretching of dT14 using combination of optical tweezers and smFRET

The use of long, mixed-sequence DNA molecules in previous experimental studies of ssDNA elasticity [47,231]

complicates direct comparison with the simulation data. To validate our CG model for very short, chemi-

cally unmodified DNA fragments we turned to advanced single molecule techniques. Specifically, we used

fluorescence resonance energy transfer (FRET) detection to measure the extension of a dT14 molecule under

tension applied by an optical trap [238], see Fig. 5.10A. In this assay, the DNA construct was immobilized

on a polyethylene glycol (PEG) coated glass slide at one end using the biotin–neutravidin interaction. The

other end of the construct was connected to a micron polysterene bead via a λ-phage DNA linker. The

preparation of the DNA construct is described in detail in Section 5.5.5. The bead was optically trapped,

putting the DNA construct under tension. A pair of dyes (Cy3 and Cy5) was attached at the two ends of the

dT14 fragment to provide a FRET signal that effectively allowed the end-to-end distance to be monitored

as a function of the applied force.

Fig. 5.10B shows the FRET vs. force curves obtained at two different salt conditions as described in

Section 5.5.5. As the tension increases, the FRET signal decreases, indicating extension of the dT14 fragment

of the construct. In the low-force regime, the FRET values depend on the ionic conditions but converge in

the high-force regime (> 10 pN). The low-force FRET is larger under high NaCl concentration, implying

greater compaction of ssDNA caused by stronger electrostatic screening. This observation is consistent

with our earlier work [239] and with the observed shrinking of ssDNA under high salt conditions [229]. At

high force, the FRET curves converge as the extension of the polymer approaches its contour length. The

FRET efficiency computed from our CG simulations of dT14 under tension is in good agreement with the

experimental FRET traces at 100 and 1000 mM NaCl, see Fig. 5.10B.

5.3.4 Preliminary dsDNA model

A toy model of double-stranded DNA was constructed from the CG ssDNA model by adding a set of

harmonic potentials between beads involved in base-pairing. Specifically, restrained bonds included the base

paring term Pi–Pj (r0 = 7.8 Å; k = 10 kcal/mol Å
2
), and cross-stacking terms Pi–Pj−1 (r0 = 8.1 Å) and
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Figure 5.10: Force-extension dependence of dT14. (A) Illustration of the experimental method used to
simultaneously stretch DNA and measure the FRET signal. A green laser excites the Cy3 donor dye; some
energy is non-radiatively transferred to the Cy5 acceptor dye. The amount of energy transferred, the FRET
efficiency, is related to the distance between the dyes. An optical trap applies tension. (B) FRET efficiency
vs force observed in experiment (filled symbols) and calculated from the CG simulations of dT14 under
tension (open symbols). The following expression was used to compute FRET based on the distance r
between the terminal P beads: 〈 1/(1 + ( r+δR0

)6) 〉, where R0 = 60 Å is the Förster distance and δ = 22 Å
is a constant factor associated with the physical dimensions of the dyes. The angle brackets represent an
average over the simulation trajectory. The agreement between simulation and experiment was good at 100
(blue squares) and 1000 mM (green triangles).
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Figure 5.11: Custom flexibility CG model of dsDNA. (A) Definition of the persistence length Lp. The
persistence length is a measure of a polymer’s flexibility that can be directly derived from a simulation
trajectory. (B) Representative conformations of a 100-bp dsDNA fragment having different parameterization
of inter-strand interactions (a = 0.4; blue, 1.0; teal and 2.0; green). In our dsDNA model, parameter
a defines the strength of inter-strand interactions. Individual DNA strands are described using our CG
model of ssDNA. (C) Angular correlation of two DNA fragments versus distance between the fragments.
An exponential fit reveals the persistence length. Colors are as in (B). The flexibility of dsDNA can be
controlled by changing the scaling factor a.

Pi–Pj+1 (r0 = 8.0 Å) with k = a kcal/mol Å
2
, where r0 is the rest length, k is the spring constant, a is the

scaling factor used to tune the persistence length of the model, j is taken to be the pair of nucleotide i, and

the subscripts increase along the 5′-to-3′ direction. Restrained angles included backbone restraints Pi–Pi+1–

Pi+2 and Pj–Pj+1–Pj+2 (θ0 = 150◦), additional intra-strand restraints Pi–Pi+1–Bi+1 and Pj–Pj+1–Bj+1

(θ0 = 87◦), and inter-strand restraints Pi–Bi–Bj and Pj–Bj–Bi (θ0 = 162◦), where θ0 is the rest angle

of the restraint and all angle restraints employed the spring constant k = 90a kcal/mol degree2. The rest

lengths of all potentials were obtained from canonical poly(dT)·poly(dA). By changing the scaling factor

a, the double-stranded DNA could be made stiffer or more flexible, see Fig. 5.11. Using a scaling factor of

a = 1 was found to produce dsDNA with approximately the correct persistence length.
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5.4 Conclusion

From a practical perspective, our CG model permits microsecond-per-day simulations of hundreds of nu-

cleotides on a single processor core. One should note that dynamics is usually enhanced in coarse-grained

simulations compared to all-atom, for example, due to smoothing of the free energy landscape [233]. For

dT60 using our model, each CG nanosecond corresponds to ∼ 80 real-world nanoseconds. However, we found

that the enhancement for a DNA molecule depends on its length, see Section 5.3.4 for details. The only

non-standard features of an MD code required to perform CG simulations using our model are tabulated

bonded and non-bonded potentials. It must also be possible to apply bonds by bead index rather than bead

type as the Pn–Bn and Bn–Pn+1 potentials differ.

The most significant limitations of our model are three-fold. First, the model is currently limited to

simulations of poly(dT). Second, the base beads are spheres that lack orientation that may be important

for accurate modeling of base-pairing and base-stacking in duplex DNA. However, anisotropic base–base

interactions require additional computation and reduce portability of the model. Finally, our model lacks

a description of hydrodynamic interactions, which makes interpretation of kinetic information difficult, see

Section 5.3.2 for details.

Despite its simplicity, our CG model provides a structurally accurate portrait of a poly(dT) molecule

across a wide range of polymer lengths, applied tensions and ion concentrations. This makes our model

immediately suitable for CG studies of ssDNA systems where sequence-specific effects, such as strong adeno-

sine stacking [240], can be neglected. For example, we have already used a preliminary version of our model

to study the effect of local heating on the process of ssDNA transport through a solid-state nanopore [241].

With only two-sites per nucleotide, extensions to the model can be easily made. For example, it was

trivial to create a toy model of double-stranded DNA from the CG ssDNA model by adding a set of harmonic

potentials between beads involved in base-pairing, see Section 5.3.4 for details. Other extensions are also

possible, for example by representing proteins using a grid-based potential, one may study the interaction

between a CG DNA molecule and a DNA-binding protein. Our simple, computationally efficient, yet accurate

model of ssDNA is a step toward a complete physical model of the DNA processing machinery of a living

cell.
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5.5 Methods

5.5.1 All atom simulations of ssDNA

Our all-atom MD simulations were performed using the program NAMD [140], the CHARMM36 force

field [137, 242–244] the TIP3P model of water [170], standard parameters for ions [171], with NBFIX cor-

rections applied to ion–nucleic acid interactions [61]. Van der Waals energies and short-range electrostatics

were calculated using a smooth (7–8 Å) cutoff. Periodic boundary conditions were employed and long-range

electrostatics were calculated using the particle-mesh Ewald [245] (PME) method over a 1.2 Å per grid PME

array. Integration was performed using 2–2–6 fs multiple timestepping [172]. To enable 2-fs timestepping for

bonded interactions, water bonds (and angles) and non-water covalent bonds with hydrogens were held rigid

using the SETTLE [246] and RATTLE [247] algorithms, respectively. Steric clashes that were introduced

during the assembly of the systems were removed through minimization using a conjugate gradient method.

Subsequent simulations were performed in the NPT ensemble. A temperature of 291 K was maintained by

applying Langevin forces [173] to all non-hydrogen atoms (1 ps−1 damping coefficient). A pressure of 1 bar

was maintained by Nosé-Hoover Langevin piston pressure control [174].

5.5.2 CG simulations of ssDNA

All CG simulations were carried out using a custom version of the MD program NAMD [140]. The custom

version of the code allowed the use of tabulated potentials for the description of bond, angle, and dihedral in-

teractions (resolutions of 0.02 Å, 1◦, and 2◦, respectively). Piecewise cubic (Catmull-Rom) interpolation was

used to calculate the forces due to such potentials at each timestep. Non-bonded interactions were calculated

using tabulated non-bonded potentials (0.05 Å resolution) and a smooth (34–35 Å) cutoff. Stochastic forces

from the solvent were mimicked via a Langevin thermostat set to a temperature of 291 K and a damping

coefficient of 1.24 ps−1. The mass of each CG bead was set to the mass of the atoms it was designed to

represent (the mapping procedure is described in the main text): 160.1 and 181.1 Da for the P and B beads,

respectively. Integration was performed using a 20-fs timestep.

5.5.3 Refinement of bonded potentials

An initial guess for each CG potential was obtained through Boltzmann inversion of the corresponding

all-atom (target) distribution followed by a triangular smoothing filter that was applied over 25, 11, and 5

points for bonds, angles and dihedrals, respectively, to mitigate the effects of noise.

The target distributions for bonds and angles had regions of zero values. Noise in the distributions
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bordering these empty regions can pose a significant impediment to the convergence of the refinement of the

CG potentials. Therefore, regions where the density fell below 10−3 Å−1 or 10−5 degree−1 were replaced by

a repulsive half-harmonic potential uwall(x) = U0(x− xwall)2 ×mwall(x− xwall) +Uwall, where xwall was the

position where the density fell below the threshold, and the gradient and potential at xwall were given by

mwall and Uwall, respectively. U0 was kBT Å−2 for bonds and kBT
180 degree−2 for angles.

Each IBI iteration was performed as follows. Within each iteration, six CG simulations of dT60 were

performed in parallel to obtain six trajectories of approximately 1600 ns each (taking into account the factor

of 80 speedup described below). Periodic boundary conditions were applied in the CG simulations according

to the dimensions of the all-atom model. While keeping the non-bonded potentials fixed, bonded potentials

were updated as Un+1 = Un − αkBT log(ρcg(x)/ρtarget(x)), using the bonded distributions ρcg(x) extracted

from the latest ensemble of simulations. The scaling factor α was set to 0.25 for angle and 0.5 for bond

and dihedral potentials to ensure gradual convergence. The log(ρcg(x)/ρtarget(x)) term was smoothed before

it was added to the previous-generation potential Un using the same smoothing filters as described above.

The repulsive half-harmonic potentials at the boundaries of zero-density regions were updated. The final

conformations of the dT60 molecules from the ensemble of simulations were used as initial conformations

for the next iteration. After thirty such iterations, the bonded potentials (Figures 5.3D-F, 5.4E-H, 5.5D-F)

produced CG distributions (not depicted) in very close agreement with the all-atom distributions. The CG

distributions shown in Figures 5.3, 5.4, 5.5 were taken from the final model, after refinement of both bonded

and non-bonded potentials.

5.5.4 Refinement of non-bonded potentials against all-atom MD data

The initial non-bonded potentials were taken to be flat except in the regions where the normalized PDF was

below 0.02 Å−1. In these regions, the potential was taken to be uwall(x) = U0(x−xwall)2×mwall(x−xwall)+

Uwall. This approach contrasts with the usual IBI procedure, in which Boltzmann inversion of the radial

distribution function provides the initial potential. We found, however, that using a flat initial potential was

essential to ensure fast convergence of the iterative refinement. The difference in approach likely originates

from the history of IBI that was commonly used as a tool to study polymer melts [248]. Here, we adapt this

approach to obtain potentials for a polymer in a dilute solution regime.

Iterative refinement of non-bonded potentials was performed exactly as in the case of bonded poten-

tials, except that the bonded potentials were held fixed while the non-bonded potentials were varied. The

(intra-chain) 1–3 excluded radial pair distribution functions (PDF), obtained for P–P, B–B, and B–P beads

provided the density needed to update each non-bonded potential according to the IBI formula. Each up-
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date was smoothed by a triangular filter (10 points) before being added to the previous generation potential.

Parameters of the harmonic wall that approximated steric repulsion at small distances were updated in each

iteration.

For IBI refinement of the 100 mM model, all three non-bonded interactions were updated simultaneously.

The scaling factor α was set to 0.3 for the first 44 iterations but was reduced to 0.05 for the final 24 iterations.

Each iteration included 24 replicas; each replica was simulated for an equivalent of 1280 ns.

For the IBI refinement of the 1000 mM model, a slightly different procedure was adopted in an attempt

to hasten convergence. With a value of 0.5 for the scaling factor, the B–B interaction was first refined

for 14 iterations while all other potentials were held fixed. Then the B–P interaction was refined for 15

iterations while all other potentials (including B–B) were held fixed. Next the P–P interaction was refined

for 5 iterations with the scaling factor set to 0.5, and then for 10 iterations with the scaling factor reduced

to 0.1. Finally, all three non-bonded interactions were simultaneously refined for 120 iterations with the

reduced scaling factor. Each iteration included 12 replicas; each replica was simulated for an equivalent of

∼ 2500 ns.

At the end of these simulations, the non-bonded potentials (not depicted) provided CG PDFs (Fig. 5.6A-

C) that agreed well with the all-atom PDFs. Good agreement between all-atom and CG distributions of

bonds, angels and dihedrals was maintained.

5.5.5 Preparation and execution of fleezers measurement

The DNA construct was made from two DNA oligos 5′–/5Phos/GGG CGG CGA CCT T /iAmMC6T/T

TTT TTT TTT TTT GCC TCG CTG CCG TCG CCA and 5′–TGG CGA CGG CAG CGA GGC /3Cy5Sp/

(IDT DNA). The first oligo was labeled with Cy3-NHS (GE Healthcare) according to Roy et al. [249] The

two oligos were annealed by mixing at 1:1 molar ratio of 10 µM in T50 buffer (10 mM Tris-HCl pH 8,

50 mM NaCl) and heating to 90◦ C for 5 min followed by slow cooling over 4 hours. After that, the DNA

construct was annealed to λ-phage DNA (NEB) and an oligonucleotide containing digoxigenin. First, we

added 1 µl of 5 M NaCl and 1 µl of 100 mM MgCl2 electrolytes to 40 µl λ-phage DNA stock of ∼ 16 nM

(NEB) in an Eppendorf tube. The mixture was heated to 80◦ C for 10 min, and then placed on ice for

5 min. The DNA constructs were added to a final concentration of 8 nM and BSA was added to a final

concentration of 0.1 mg/ml. The tube was covered in foil and the mixture was incubated in the dark with

rotation at room temperature for 2-3 hours. DIG oligo 5′–AGG TCG CCG CCC TTT/digoxigenin/ (IDT

DNA) was added to a final concentration of 0.2 µM and then incubated with rotation at room temperature

for 1-2 hours. This sample was stored at −20◦ C until assembly on a microscope slide for single-molecule
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data acquisition.

The DNA sample was assembled on a glass surface coated with polyethyleneglycol (mixture of mPEG-

SVA and Biotin-PEG-SVA, Laysan Bio) according to Roy et al. [249] Before adding the DNA sample, the

surface was incubated with neutravidin at 0.25 mg/ml for 5 minutes and then blocking buffer (10 mM Tris-

HCl pH 8, 50 mM NaCl, 1 mg/ml BSA (New England Biolabs), 1 mg/ml tRNA (Ambion)) for 1 hour. The

DNA construct was then incubated on the surface at the concentration of 20 pM in T50 buffer (10 mM

Tris-HCl pH 8, 50 mM NaCl) for 10 min. Next, anti-dioxigen-coated 1 µm polystyrene beads (Polysciences)

diluted in T50 buffer were added to the imaging chamber for about 30 minutes to allow attachment of beads

to the free end of each tether. Finally, the imaging buffer (20 mM Tris-HCl pH 8, 0.5 mg/ml BSA (NEB),

0.1% v/v Tween-20 (Sigma), 0.5% w/v D-Glucose (Sigma), 165 U/ml glucose oxidase (Sigma), 2170 U/ml

catalase (Roche), 3 mM Trolox (Sigma)) and NaCl electrolyte of 10 mM or 100 mM or 1 M was added for

data acquisition. Single-molecule data acquisition was performed according to Ref. 238. The full description

of the setup can be found in our recent review [250]. The DNA stretching experiment was performed by

moving the stage in steps at the average loading rate of 455 nm/s. The confocal excitation was scanned

following the stage movement. Fluorescence emission was detected for 20 ms after each movement step of

the stage. All experiments were carried at room temperature (22◦ C).
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Chapter 6

A coarse-grained model of
single-stranded DNA binding protein
derived from atomistic simulation and
tempered by experiment
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6.1 Introduction

A complex of proteins is responsible for DNA replication at a site known as the replication fork. In the

replication fork, a protein called DNA helicase separates the DNA duplex into complementary single strands.

A DNA polymerase is associated with each strand, traversing it and synthesizing the complementary daughter

strand. Because DNA synthesis occurs in the 5′-to-3′ direction, one of the polymerase proteins works in the

same direction as the helicase (leading) and the other polymerase works in the opposite direction (lagging),

“back-stitching” about every 100 (eukaryote) or 1000 nts (prokaryote). Thus, a considerable amount of single-

stranded DNA (ssDNA) can be exposed during the replication procedure. This can pose a problem for high-

fidelity DNA replication, as single-stranded DNA is vulnerable to protein degradation [251,252]. Moreover,

processive replication can stall because the single strands emerging from the helicase reaneal [251, 252].

Finally, hairpin structures can form in the self-complementary regions of the lagging strand that will later

cause the polymerase to stall, or worse for the cell, be skipped [251, 252]. To protect against all of these

effects, all cells have proteins that bind and stabilize ssDNA.

In bacteria, these proteins are known as single-stranded DNA binding proteins (SSBs). SSB binds long

ssDNA molecules with such high affinity that it has been difficult to measure the absolute binding affinity

quantitatively [253]. The extremely high affinity of SSB for DNA is at apparent odds with the requirements

of rapid replication; in the model organism, E. coli, a replication fork can proceed at an astonishing rate

(> 500 bp/s) [254]. This information provokes the following questions: how does SSB move out of the way

of other components of the replication machinery, and how is SSB removed from the shrinking ssDNA of a

lagging (Okazaki) fragment?

Recent single-molecule experiments demonstrated the ability for SSB to diffuse along a short stretch

of ssDNA. The step size (3 nt) and step rate (60 s−1 at 37◦ C) were estimated for SSB diffusing along

ssDNA [255]. Thus, a diffusion coefficient of D = 270 nt2/s was estimated [255]. Using the Einstein-

Smoluchowski relation 〈F 〉 = vdkBT
D , this rate of diffusion is slow enough that a large average force 〈F 〉

(∼ 20 pN) for each SSB molecule would need to be supplied to sustain a drift velocity vd of 500 nt/s. Thus,

the displacement of SSB during DNA replication remains an unresolved mystery of the cell.

6.2 Atomic simulations of SSB and ssDNA

An x-ray structure containing two ∼ 30 basepair ssDNA fragments bound to SSB was recently pub-

lished [256]. The structure depicts a homotetramer with four ssDNA binding motifs known as OB-folds

that hold the DNA in place through an apparent mix of base-stacking and electrostatic interactions. The
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a) b)

Figure 6.1: Models of SSB bound to ssDNA. The subscript denotes the number of nucleotides occluded by
the binding mode. In SSB35, the DNA wraps once so that the DNA ends emerge on opposite sides of the
protein. In SSB65, the DNA ends emerge near one another. The DNA is depicted with green van der Waals
spheres. The protein is depicted as a white and blue molecular surface colored by the electrostatic potential
solved by APBS.̧ Blue and white respectively correspond to positive and negative potentials. The black
squares indicate regions that highlight the dynamic character of ssDNA–SSB interactions in the snapshots
of Fig. 6.2.

crystallographers connected and extended the resolved DNA fragments to provide models of SSB35 and

SSB65—the ion-concentration-dependent complexes formed by SSB and a number of nucleotides indicated

by the subscript. These models, shown in Fig. 6.1 a and b, were placed in a cubic 120 mM KCl electrolyte

98 Å on each side to provide. The resulting simulation systems were used to perform equilibrium simulations

of the SSB complex and in simulations where an external force was used to rupture the complex.

6.2.1 DNA is mobile on SSB in solution

Each system was equilibrated in the NPT ensemble for 60 ns using a 1-fs timestep and 10-Å cutoff. The

simulations were continued using a 2-fs timestep with a shorter 8-Å cutoff for an additional 750 and 630 ns

for SSB35 and SSB65, respectively.

The equilibration of both models revealed extensive DNA dynamics on a comparatively static protein

surface. The ends of the DNA were observed to come unbound from the SSB surface before adopting a

new conformation and rebinding, see second row of snapshots in Fig. 6.2. Additionally, lateral translation

of some nucleotides was observed, see first row of snapshots in Fig. 6.2.

To quantify the mobility of the DNA, the root mean square deviation (RMSD) was calculated for the

DNA backbone and for the backbone of the SSB α-helices and β-sheets, Fig. 6.2 B,D. The DNA RMSD was

substantially larger than the protein RMSD, especially for the SSB65 system, where the end of the DNA

peeled away from its initial binding site. We also calculated the root mean square fluctuations (RMSF) of

the center of mass of each DNA nucleotide, Fig. 6.2 A,C. The RMSF was broken into radial and transverse
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Figure 6.2: DNA bound to SSB is dynamic. During unbiased equilibration simulations, nucleotides were
frequently observed performing local rearrangements (first row). Unbinding and subsequent rebinding of the
DNA ends was also observed (second row). Colors are as in Fig. 6.1. (A,C) Per nucleotide root mean square
fluctuation (RMSF) of SSB35 (A) and SSB65 (C). The root mean square fluctuation of each nucleotide was
obtained relative to the protein backbone atoms initially within 10 Å of any of the nucleotide atoms. With
respect to the center of the SSB, the RMSF was broken into radial (closed green squares) and transverse
(open blue circles) components. (B,D) Root mean square deviations (RMSDs) of the DNA (blue) and protein
(green) from their initial coordinates for SSB35 (B) and SSB65 (D). Only atoms in the backbone of the DNA
and the backbone of protein α-helices and β-sheets contributed to the RMSDs.

coordinates with respect to the center of the SSB protein. The RMSF is highest near the DNA ends,

indicating the greatest mobility at these sites.

The extensive DNA dynamics observed on the 100-ns timescale suggests that the majority of DNA bound

to SSB is easily repositioned. This observation is consistent with portraits of SSB that depict a protein that

can diffuse rapidly along ssDNA to allow local redistribution of SSB. Much of the DNA dynamics was

observed in nucleotides that were resolved in the x-ray structure, suggesting that most of the dynamic

character of the SSB–ssDNA interactions is representative of SSB in solution. However, some of the DNA

nucleotides remained in their initial binding pockets for the complete duration of the simulation, and the

timescale for unbinding of such nucleotides remains unclear.
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Figure 6.3: DNA was removed from each ends of SSB until the protein was bound only to a small, linear
stretch of ssDNA. (a,b) Depiction of the rupture protocol. Each end of a DNA strand wrapped around
SSB35 (a) or SSB65 (b) was tethered to one end of a spring. The other end of each spring was pulled
away from SSB along the z-axis at a steady rate of 1 Å/ns. (c,d) Timeseries of the index of the final DNA
nucleotide bound to SSB at each end for SSB35 (c) and SSB65 (d). A nucleotide was assumed bound to
SSB if any of its initial contacts with SSB were present. A contact is taken to be any pair of non-hydrogen
atoms within 3 Å of one another. Colors of each trace correspond to those in Fig. 6.4. The simulations were
performed after roughly 100 (black), 300 (blue) and 500 (red) ns unbiased equilibration. (e,f) Average time
a nucleotide spent as the terminal bound nucleotide prior to rupture for SSB35 (e) and SSB65 (f).

6.2.2 Unwrapping SSB

Rupture of SSB35 and SSB65 was achieved by pulling each end of the DNA in opposite directions. First,

the complex was rotated so that the vector connecting the center of mass (CoM) of the terminal nucleotides

lay along the z-axis. One end of a virtual one-dimensional spring was tethered to the CoM of each terminal

nucleotide, Fig. 6.4 a, b. The free ends of the springs were pulled in opposite directions at a rate of 1 Å/ns.

When a terminal nucleotide fell more than 55 Å away from the center of the SSB along the z-axis, the

simulation was stopped and the nucleotide was removed from the system along with a randomly selected

potassium ion. The spring was reattached to the nascent terminal nucleotide so that the previous tension

was maintained. With the free end of the spring held fixed, the system was equilibrated for 19 ps in the

NPT ensemble while the non-hydrogen protein and DNA atoms were harmonically restrained. Pulling of

the DNA was resumed in the NVT ensemble. The pulling procedure was completed 3 times for each system,

using snapshots of the SSB–ssDNA complex after different amounts of simulation, see Sec. 6.2.1.

Rupture from one side or the other stalled at roughly six distinct locations. Visual examination of

initial binding sites of stalled nucleotides revealed that all stall locations on the protein were arginine rich
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Figure 6.4: Removal of ssDNA from SSB. (a, b) The force was recorded as DNA was removed from SSB35

(a) and SSB65 (b). The three curves correspond to simulations performed after the system was equilibrated
without application of force for different durations. In the background of each panel, the SSB–DNA complex
is shown at uniform intervals of during the rupture process.

and included the OB-folds that are known to bind DNA with high affinity. Although the local arginine

concentration is greatest at the OB-folds, the stalls at other locations were not necessarily shorter in duration.

Since no force was applied directly to SSB, if rupture on one end of the DNA stalled, it could proceed along

the other end until that end also stalled. When both ends stalled, tension in the DNA would build until the

DNA was released from one of the ends.

The force exhibited large peaks in all simulations, Fig. 6.4. These peaks occurred when rupture stalled at

both ends of the DNA. Unlike the distribution of stall sites, the peaks of the force were not distributed with

any discernible pattern or regularity. This is likely because the precise unwrapping path taken by the DNA

varied in each simulation. The force could also depend on the orientation of the SSB. Finally, the variability

of the force could be due to intrinsic differences in the instantaneous conformation of bound DNA. In fact,

the average applied force decreased with increasing duration of the equilibration prior to rupture. Overall,

the average forces are much larger than those observed in experiment [257]

We continued one of our DNA stretching simulations for 150 ns so that the DNA was held extremely

taught. The contacts between the DNA and protein shifted, and the protein rolled slightly but did not

dissociate from the over-stretched DNA. Notably, contact with the OB-fold was rupture for 50 ns, during

which time contact with the loops L45 and L23 was observed. This observation is qualitatively consistent

with a recent result from a fleezers study performed by the Ha group that demonstrated bound ssDNA could

be reversibly removed from SSB at the slight cost of 0.1–0.2 kBT per nucleotide, but complete removal of
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DNA involved an 8 kBT barrier [257].

6.3 Development of a coarse-grained model of SSB

Our atomic simulations demonstrated clearly that access to longer timescales was needed to simulate realistic

removal of DNA from SSB. Thus, we developed a coarse-grained (CG) representation of SSB to interact with

our CG ssDNA model introduced in Chapter 5. This ssDNA model represents each nucleotide with two beads

and was built using the iterative Boltzmann inversion method to match structural distributions from all-

atom simulations before refining the model to reproduce the experimentally measured radius of gyration.

Our model faithfully reproduces the dependence of extension of a DNA molecule on applied tension [47,231],

although it was not specifically parameterized to do so. The success of our CG ssDNA model led us to apply

the same approach to SSB. Thus, we developed a model for the interaction between the CG ssDNA and a

rigid SSB molecule by using the iterative Boltzmann inversion method to match the distribution of short

ssDNA fragments around SSB in an all-atom simulation.

6.3.1 Refinement of CG SSB against all-atom simulation

To parameterize the CG SSB–ssDNA interaction we constructed an atomic model containing thirty-one dT5

fragments distributed around an SSB molecule in a small cubic volume of 100 mM NaCl electrolyte, 10.6 nm

on each side, see Fig. 6.5 A. All-atom molecular dynamics simulations were performed in the NVT (constant

number of particles, volume and temperature) using five replicas of the system for ∼ 300 ns per replica; the

initial coordinates of each replica were obtained by mutating dC5 into dT5 at regular intervals in a previously

performed 700 ns simulation. During the simulations, the backbone atoms of residues forming α-helices and

β-sheets were harmonically restrained about their initial positions (1 kcal/mol Å2 spring constant), as the

DNA fragments were adsorbed onto and desorbed from the SSB surface.

At the end of the simulations, the DNA atoms were mapped into a coarse-grained representation as

described in Section 5.2.1, see Fig. 6.5 B. From the CG representation of the all-atom trajectories, the three-

dimensional, position-dependent density was computed for each type of DNA bead with a grid spacing of

2 Å using VMD [167], see Fig. 6.5 C. We refer to these densities as the “target” densities against which the

CG SSB–ssDNA interaction potentials are optimized. The SSB protein is a homotetramer with invariance

after 180◦ rotations about any of its three principal axes. We averaged the target distributions over these

rotations.

A CG simulation system was built with the same nucleic acid composition as the all-atom system.
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Figure 6.5: Parametrization of SSB–ssDNA potential from all-atom simulation. (A) All-atom MD simula-
tions of SSB surrounded by small ssDNA fragments are performed. The SSB protein was restrained about
its initial coordinates. (B) The DNA fragments in the all-atom trajectory are mapped into a CG represen-
tation. (C) The target density of each CG ssDNA bead type is extracted from the mapped trajectory. (D)
Boltzmann inversion of each target density provides an initial estimate for the CG SSB–ssDNA interaction
potential. (E) Via the iterative Boltzmann inversion method, each CG potential is refined until the resulting
CG density (F) matches the target density. The potentials and densities shown are for the P ssDNA beads.

Boltzmann inversion of one-tenth of the target densities provided an initial estimate of the potential for each

type of bead, see Fig. 6.5 D. The division by 10 roughly accounted for the potential being applied to each

bead of a CG DNA fragment. The average value at the edge of the potential grid was subtracted everywhere

from the potential.

Subsequent CG simulations applied these potentials using the GridForces [258] feature of NAMD [140]

and employed the custom version of NAMD described in Chapter 5. The resulting CG trajectory provided

CG density maps for each DNA bead type, which were computed using the same protocol used to obtain the

all-atom derived target densities. The ratios of the CG densities to the target densities provided corrections

to each SSB potential, according to

∆u = −akBT ln
ρtarget + ρ0

ρCG + ρ0
,

where a = 0.1 was a scaling factor to ensure gradual convergence, and ρ0 = 10−6 beads/Å3 protected against

numerical instability. The correction to the potential was spatially smoothed using a Gaussian filter with

2-Å width. After adding the corresponding correction, each potential was set to 20 kBT at positions where

the corresponding target bead density was less than 10−6 beads/Å3. All software for manipulating the

density and potential grids was developed in-house using C++.

In total, 225 iterations were performed. In a typical iteration, 6 replicas of the system each provided
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a 30-ns trajectory. Note that a coarse-grained nanosecond corresponds to considerably more real-world

nanoseconds due to smoothing of potentials, see Section 5.3.2 for a discussion. By the end of these iterations,

CG potentials, Fig. 6.5 E, were obtained that produced coarse-grained densities, Fig. 6.5 F, that were well

converged to the target densities.

6.3.2 Refinement of model against experimental results

The binding affinity between an SSB and a dT8 molecule has been experimentally determined to be Keq =

kon/koff = 20, 000 M−1 [259], where kon and koff are the kinetic rates of association and dissociation. In

general, the binding affinity can be related to the fraction of molecules that are bound at equilibrium using

the equation. d[SSB·dT8]
dt = kon[SSB][dT8]− koff [SSB · dT8]. At equilibrium, this reduces to

kon[SSB][dT8] = koff [SSB · dT8].

For a system consisting of one dT8 and one SSB molecule in a volume V , the time-averaged value of the two

sides of the above equation must be equal. If the two molecules are bound a fraction f of the time, then we

obtain

kon
1
V

1
V

(1− f) = koff
1
V
f,

which simplifies to

Keq =
f

1− f
V.

It is worth noting that this differs from the expression Keq = f
(1−f)2

1
c that one obtains when considering a

system that has many molecules present with total concentration c of each molecular species. The suitability

of the former expression for describing the present system of one SSB and one dT8 molecule was verified by

performing simulations of a simpler system across a range of volumes.

The experimentally determined value of Keq then corresponds to a cubic volume 32 nm on each side that

contains one SSB and one dT8 molecule that are bound 50% of the time. For comparison to experiment,

we effectively 1 performed 1000 simulations of a dT8 molecule interacting with our SSB potential in such

a volume, see Fig. 6.6 A. The simulations each lasted ∼ 1500 ns. The fraction of bound nucleotides f was

estimated by averaging the fraction of bound DNA fragments at each frame of the trajectory during the last

200 ns of simulation. A DNA fragment was considered bound if any of its beads were within a 4-nm radius

sphere centered on the SSB potential. We found that the SSB potential, refined against all-atom results,

vastly overestimated the affinity of SSB for dT8, see black curve in Fig. 6.6 B. The overestimation of the
1this was accomplished by including multiple non-interacting dT8 molecules in the same simulation
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Figure 6.6: Refinement of all-atom results against experimental measurements. (A) Simulations were per-
formed of 1000 copies of a dT8 fragment interacting with the SSB potentials with the negative portion of
the SSB potentials scaled by αi, see main text for a detailed description. (B) The resulting fraction f of
DNA fragments bound to SSB as a function of time. At a given moment, a DNA fragment was considered
bound if any of its beads were inside the green sphere around the SSB molecule in (A). For this system, the
available experimental data indicates that f should be 0.5.

binding affinity likely arises from errors in the all-atom force field, but could be due to sampling error in the

all-atom simulations.

Accordingly, the scaling factor α1 = α0[1− (f−0.5)] was applied to the negative values of each potential,

reducing the depth of the potential wells. We scaled only negative values of the SSB potentials because the

positive regions of the potentials grid were largely due to steric repulsion. Since, only the negative values

of the noise at the edge of the system were scaled, the average value at the edge of the each potential grid

was subtracted uniformly. Finally, at points where the target density was very low (10−6 beads/Å3), the

potential was set to 20 kBT to ensure that the DNA beads would not be able to enter the core of the SSB

molecule. Simulations were subsequently performed using the new SSB potentials to obtain a new estimate

for f . This process was repeated iteratively with the scaling factor adjusted by αi = αi−1[1 − (f − 0.5)].

After only three iterations, the fraction f of DNA fragments binding to the SSB was well converged to the

experimentally measured value of 0.5, see Fig. 6.6 B.

6.3.3 Motion of the SSB model

Upon completion of the refinement procedure, the potential map was able to faithfully reproduce the ex-

perimental determined binding fraction of dT8 fragments, and therefore the standard binding free energy.

Presuming that this per-nucleotide interaction potential is suitable for longer DNA fragments, it is possible

to simulate interactions between a long ssDNA fragment and SSB. However, in such a simulation, the SSB

would be fixed both rotationally and translationally, providing a poor mimic of a real SSB molecule. There-

fore, we extended the MD simulation package NAMD to allow grids to be associated with a “rigid body”
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having mass and a moment of inertia. At each timestep, the force applied to each ssDNA bead by the grid

is inverted to obtain the force applied by the bead on the SSB; the corresponding torque is also obtained. A

Langevin force and torque [260] are added to the total force and torque to mimic the effect of the solvent.

Finally, these forces and torques are used to perform integration of the rigid body’s equation of motion to

update position and orientation of the SSB molecule using a symplectic algorithm [261]. The mass and the

moments of inertia assigned to the CG SSB molecule were calculated from the all-atom model of SSB.

6.3.4 Kinetics of SSB–ssDNA interactions

When one coarse-grains a system, the interaction potentials are smoothed spatially, resulting in faster

kinetics. The kinetics of ssDNA diffusion and end-to-end collisions and of SSB diffusion were found to

be 5–50 times faster in the coarse-grained simulation than those obtained from experiment. However, the

dissociation rate of an 8-nucleotide ssDNA fragment was 3000 times greater in CG simulations than measured

experimentally [259].

6.4 Extension of dT70·SSB under tension

Our experimental collaborators in the Chemla group have studied the free energy landscape of SSB binding

to DNA using the experimental assay depicted in the inset of Fig. 6.7 [262]. The extension of a DNA

construct under tension is measured before (XssDNA) and after (XSSB) SSB binds. The difference between

these extensions, XssDNA − XSSB, indicates how much the DNA construct shrinks due to SSB binding,

see Fig. 6.7. At low tensions, both extension XssDNA and XSSB approach zero, and the difference is small.

Under a moderate tension (∼ 5 pN), the DNA is stretched against an entropic force. The SSB-bound

DNA molecule exhibits less extension, presumably because some of the DNA is wrapped by the SSB and

is unavailable for stretching. At slightly higher forces, the SSB gradually releases its DNA. At even higher

forces, the SSB molecule dissociates from the DNA and XssDNA −XSSB approaches zero.

Analogous CG simulations were performed using our ssDNA and SSB models. In each simulation a dT70

molecule was stretched by applying opposite constant forces to the P beads at each end of the molecule. The

extension of the molecules in simulations without SSB converged rapidly to a (dynamic) steady state within

about 20 ns. At the onset of simulations containing SSB, the protein was placed proximal to the DNA. The

SSB molecule rapidly bound to the DNA regardless of the applied tension. Dissociation was not observed,

even at the highest applied tension (20 pN). Within 50 ns of the onset of each simulation, the extension of

the DNA qualitatively reached a (dynamic) steady-state. Using the experimentally tempered CG potentials,
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Figure 6.7: Comparison between CG simulation and experiment of the average change in extension upon
SSB dissociation from a dT70 molecule under variable tension. In the experimental assay, schematically
illustrated in the inset, a long double-stranded DNA molecule was stretched between two optically trapped
beads that reported on the extension of the molecule. SSB was captured on the single-stranded DNA at
low applied tension. The force on the DNA was slowly increased as the extension was recorded until the
SSB molecule dissociated. The process was repeated in the absence of DNA molecules. The difference in
the extension of SSB-free and SSB-bound DNA (filled blue squares) was extracted after averaging many
traces. Complementary CG simulations were performed of a dT70 molecule under constant tension in the
presence and absence of SSB. The force was applied in opposite directions along a fixed axis. The extension
of the DNA molecule along the same axis was averaged and the difference between SSB-free and SSB-bound
extensions was obtained at each force (open green circles). Experimental data was provided by the Chemla
group [262]
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we obtained good emergent agreement with the experimental measurements of XssDNA − XSSB across the

full range of forces, see Fig. 6.7.

6.5 Conclusion

We employed a combination of atomically detailed MD simulations and coarse-grained modeling study the

dynamics of complexes formed from SSB and ssDNA. The atomically detailed MD simulations, demonstrated

rearrangements of ssDNA on the SSB surface occurring on the 100-nanosecond timescale. This is, perhaps,

surprising because the timescale of SSB diffusion is closer to seconds [255]. However, for the SSB to diffuse,

the rearrangements observed in our atomic simulations would need to propagate around the SSB surface. The

rupture pathway taken by SSB when both ends were pulled in atomic simulation was apparently stochastic.

Rupture would proceed from one end of the DNA until an arginine-rich “hot spot” was reached, whereupon

rupture would, temporarily stall. The forces obtained atomic simulations were roughly one to two orders

of magnitude larger than the forces obtained in equivalent experiments because the simulations had to be

performed many orders of magnitude more quickly to be computationally tractable.

To obtain an equilibrium measure of the extension of an ssDNA molecule bound to SSB under variable

tension, we developed a coarse-grained model of SSB to interact with the coarse-grained DNA model devel-

oped in Chapter 5. The CG model of SSB was obtained by tuning a grid-based potential for each type of

ssDNA bead until the three-dimensional density of the beads matched equivalent densities obtained from

all-atom simulation. The resulting CG model displayed an exaggerated affinity for short ssDNA fragments

that we suspect derives from errors in the all-atom force field. After refining the CG model against the

experimentally determined binding affinity for dT8, our model was able to accurately replicate the extension

of a dT70 molecule bound to SSB across a range of applied tensions.

6.6 Simulation methods

All MD simulations were performed using the program NAMD [140], the TIP3P model of water [170], stan-

dard parameters for ions [171], periodic boundary conditions, particle-mesh Ewald (PME) full electrostatics

with a PME grid density of about 1 Å per grid point.

The temperature was held constant using a Langevin thermostat [140] applied to all non-hydrogen atoms;

the Langevin damping constant was set to 0.1 ps−1. For simulations in the NPT ensemble, constant pressure

was maintained at 1 bar using the Nosé-Hoover Langevin piston pressure control [174].
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6.6.1 Atomic simulations of SSB and long ssDNA fragments

In the simulations of SSB35 and SSB65, the CHARMM27 force field [243, 244] was employed with van der

Waals and short-range electrostatic energies were calculated using a smooth (10–12 Å) cutoff, and integration

was performed using 1–2–4 fs multiple timestepping [140].

6.6.2 Atomic simulations of SSB in a solution of short DNA fragments

In the simulations of SSB surrounded by a solution of dT5 fragments, the newer CHARMM36 force field [137,

242–244] was employed with NBFIX corrections applied to ion–nucleic acid interactions and to the arginine

and lysine amine–nucleic acid interactions [61]. Van der Waals and short-range electrostatic energies were

calculated using a smooth (7–8 Å) cutoff. Integration was performed using 2–2–6 fs multiple timestep-

ping [172]. To enable 2-fs timestepping for bonded interactions, water bonds (and angles) and non-water

covalent bonds with hydrogens were held rigid using the SETTLE [246] and RATTLE [247] algorithms,

respectively.
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mann, and Ralf Seidel. DNA–DNA interactions in tight supercoils are described by a small effective
charge density. Phys. Rev. Lett., 105(15):158101, 2010.

[50] Mithun Biswas, Karine Voltz, Jeremy C. Smith, and Jörg Langowski. Role of histone tails in structural
stability of the nucleosome. PLoS Comput. Biol., 7(12):e1002279, 12 2011.

[51] Jejoong Yoo and Aleksei Aksimentiev. In situ structure and dynamics of DNA origami determined
through molecular dynamics simulations. Proc. Natl. Acad. Sci. U.S.A., 110(50):20099–20104, 2013.

89



[52] Jonathan P K Doye, Thomas E Ouldridge, Ard a Louis, Flavio Romano, Petr Šulc, Christian Matek,
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