
c© 2014 Taposh Banerjee

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/29175036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DATA-EFFICIENT QUICKEST CHANGE DETECTION

BY

TAPOSH BANERJEE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Doctoral Committee:

Professor Venugopal V. Veeravalli, Chair
Professor Pierre Moulin
Assistant Professor Alejandro Dominguez-Garcia
Assistant Professor Georgios Fellouris

ABSTRACT

In the classical problem of quickest change detection, a decision maker ob-

serves a sequence of random variables. At some point of time, the distribu-

tion of the random variables changes abruptly. The objective is to detect this

change in distribution with minimum possible delay, subject to a constraint

on the false alarm rate. In many applications of quickest change detection,

changes are rare and there is a cost associated with taking observations or

acquiring data. For such applications, the classical quickest change detection

model is no longer applicable. In this dissertation we extend the classical for-

mulations by adding an additional penalty on the cost of observations used

before the change point. The objective is to find a causal on-off observation

control policy and a stopping time, to minimize the detection delay, subject

to constraints on the false alarm rate and the cost of observations used before

the change point. We show that two-threshold generalizations of the classical

single-threshold tests are asymptotically optimal for the proposed formula-

tions. The nature of optimality is strong in the sense that the false alarm

rates of the two-threshold tests are at least as good as the false alarm rates

of their classical counterparts. Also, the delays of the two-threshold tests are

within a constant of the delays of their classical counterparts. These results

indicate that an arbitrary but fixed fraction of observations can be skipped

before change without any loss in asymptotic performance. A detailed per-

formance analysis of these algorithms is provided, and guidelines are given for

the design of the proposed tests, on the basis of the performance analysis. An

important result obtained through this analysis is that the two constraints, on

the false alarm rate and the cost of observations used before the change, can

be met independent of each other. Numerical studies of these two-threshold

algorithms also reveal that they have good trade-off curves, and perform sig-

nificantly better than the approach of fractional sampling, where classical

single threshold tests are used and the constraint on the cost of observations

ii

is met by skipping observations randomly. We first study the problem in

Bayesian and minimax settings and then extend the results to more general

quickest change detection models, namely, model with unknown post-change

distribution, a sensor network model, and a multi-channel model.

iii

To Mummy, Papa, Smruti, Didi, Sonit and Tirumal for their love, support,

and sacrifices. To my grandparents Dida, Nani, Dadu and Nana, for

dedicating their lives toward a better future for their families.

iv

ACKNOWLEDGMENTS

I would first like to thank Prof. Veeravalli for believing in me and giving me

the opportunity to come to Illinois and work with him. I also thank him

for teaching me every possible aspect of graduate level research including

developing a positive attitude toward difficult problems, being enthusiastic

about obtained results, effective way of communicating the research output

to the research community, and the most important, how to do research. I

am grateful to him for giving me the freedom to explore and work on topics

of my interest. I also thank him for being so approachable and caring of all

his students.

I am grateful to my dissertation committee members, Prof. Pierre Moulin,

Prof. Alejandro Dominguez-Garcia and Prof. Georgios Fellouris for taking

the time from their super busy schedules, and agreeing to be on my dis-

sertation committee and providing valuable feedback. I am also grateful to

Prof. Alexander Tartakovsky and Prof. Douglas Jones for agreeing to be on

my prelim committee. I would like to thank Prof. Alexander Tartakovsky

for his help and guidance throughout my Ph.D. studies.

I take this opportunity to thank every member of the Coordinated Science

Laboratory (CSL) for making CSL such an exceptional place to work; so

professional and yet so homely. I would like to express my gratitude to

the entire CSL support staff, especially Ms. Barbara Horner and Ms. Peggy

Wells, for their help and kindness. I admire their time management skills,

professional work ethics and enthusiasm toward their work. I would also like

to thank the support staff in the ECE department, especially Ms. Laurie

Fisher and Ms. Jan Progen, for their help and support. I thank Ms. Laurie

Fisher for patiently answering each and every email that I have sent her in

the last five years, and Ms. Jan Progen for carefully reading my dissertation

and providing invaluable feedback.

I would also like to thank all the people responsible for the funds that I have

v

received in the last five years: my advisor for writing such great proposals,

the National Science Foundation and other funding agencies for accepting the

proposals, and finally, the U.S. tax payers who are indirectly contributing to

the funds.

I have been very fortunate to be a part of the ECE department of the Indian

Institute of Science (IISc), Bangalore. I thank all the faculty members for

creating and maintaining such a great learning environment. I also thank

the Tata group for creating such a great institution and the Government of

India for funding it. I also thank the Government of India and the tax payers

of India for the funds/subsidies because of which I could enjoy affordable yet

quality primary and higher education all these years.

I would like to express my gratitude to Prof. Vinod Sharma and Prof.

Anurag Kumar from IISc for giving me the opportunity to work with them.

I would especially like to thank Prof. Vinod Sharma for being such a great

mentor all these years. I would also like to thank Dr. Arzad Kherani for

guiding me and mentoring me during my initial years in academic life.

I thank all my teachers for teaching me the fundamentals and all the great

authors who wrote insightful books.

No acknowledgment for an achievement in professional life is complete

without acknowledging the contributions of family and friends. And it must

start with my parents. I cannot thank my parents enough for being so loving,

caring, for being so patient with me all these years, and for everything else

they have done for me. They have worked hard all their lives so that I and my

elder sister can lead a happy life. I especially thank my mother for selflessly

dedicating her life for our upbringing.

I could not have finished the dissertation without the love and support of

my wife Smruti. Her love, care, friendship, wisdom, sweetness, innocence,

enthusiasm, and the ability to enjoy every small moment in life has kept me

afloat all these years. I apologize to her for not being able to spend quality

time with her, and thank her for her big-heartedness.

I thank my elder sister Mrini for her love and affection and for all the

wonderful memories from childhood. I thank Sonit for being such a great

and sweet nephew, and Tirumal for being such a loving and caring brother-

in-law. I thank all my relatives for giving me a life full of love and happy

memories: my grandparents, Dida, Nani, Dadu and Nana; my uncles and

aunts, Masi and Uncle, Mama and Maima, Choto Kaka and Kakima, Bodo

vi

Kaka and Kakima, Pisi and Pisomoshai; my cousins, Dada and Mouli, Mitu

Didi and Alok, Babli and Tublu, Shubho and Saurabh, Mithun and Rini, and

Sriti; and last but not the least my nieces Prisha, Piu and Tia. I thank my

in-laws Bou, Nana, Smita Didi, Himanshu Bhaiya and Kutu for their love

and support all these years. I also thank Tirumal’s parents, his sisters, and

the rest of the family for being so loving and caring. I thank Sachin, Amit

and Rakesh for their friendship, love and support all these years, and giving

me the true taste of friendship. I also thank Rahul, Kaushik, and Pradeep

for my memorable days in IISc. Finally, I thank all the people whose names

I could not mention and who have helped me at some point of time.

I have tremendous love and respect for all the people who have helped me

in my quest for a better life. I sincerely apologize to anyone who feels that

my words could not capture their efforts and influence on my academic life.

vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 DATA-EFFICIENT BAYESIAN QUICKEST CHANGE
DETECTION . 9
2.1 Problem Formulation . 10
2.2 Classical Bayes QCD . 13
2.3 The DE-Shiryaev Algorithm 16
2.4 Derivation of the DE-Shiryaev Algorithm 18
2.5 Asymptotic Optimality of the DE-Shiryaev Algorithm 19
2.6 Numerical Results . 33
2.7 Existing Literature . 37

CHAPTER 3 DATA-EFFICIENT MINIMAX QUICKEST CHANGE
DETECTION . 38
3.1 Problem Formulation . 40
3.2 The DE-CuSum Algorithm . 43
3.3 Analysis and Design of the DE-CuSum Algorithm 46
3.4 Numerical Results . 61
3.5 Proofs of Various Results . 64

CHAPTER 4 DATA-EFFICIENT MINIMAX QUICKEST CHANGE
DETECTION WITH COMPOSITE POST-CHANGE HYPOTH-
ESIS . 68
4.1 Problem Formulation . 69
4.2 Classical QCD with Unknown Post-Change Distribution . . . 71
4.3 QCD with Observation Control (β < 1), θ Known 75
4.4 The GDECuSum Algorithm 77
4.5 Asymptotic Optimality of the GDECuSum Algorithm 80
4.6 Numerical Results . 90
4.7 Discussion on the Least Favorable Distribution 91

CHAPTER 5 DATA-EFFICIENT QUICKEST CHANGE DETEC-
TION IN SENSOR NETWORKS 94
5.1 Problem Formulation . 96

viii

5.2 Quickest Change Detection in Sensor Networks: Existing
Literature . 99

5.3 The DE-All Algorithm . 102
5.4 Asymptotic Optimality of the DE-All Algorithm 103
5.5 Data-Efficient Algorithms for Sensor Networks 104
5.6 Numerical Results . 106
5.7 Proofs of Various Results . 107

CHAPTER 6 DATA-EFFICIENT QUICKEST CHANGE DETEC-
TION IN MULTI-CHANNEL SYSTEMS 119
6.1 Problem Formulation . 120
6.2 Data-Efficient Algorithms for Multi-Channel Systems 123
6.3 Asymptotic Optimality of the DE-Censor-Max Algorithm . . . 126
6.4 Numerical Results . 130

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 133

REFERENCES . 137

ix

CHAPTER 1

INTRODUCTION

In many engineering applications it is of interest to detect when a system

being monitored abruptly moves from a normal state to an abnormal one.

Applications include detection of the appearance of a sudden fault/stress in

a system being monitored, e.g., bridges, historical monuments, power grids,

bird/animal habitats, etc. Often in these applications the decision making

has to be done in real time, by taking measurements sequentially. In statistics

this detection problem is formulated within the framework of quickest change

detection (QCD) [1], [2], [3], [4].

In the QCD problem, the objective is to detect an abrupt change in the

distribution of a sequence of random variables. In the simplest of settings, the

QCD problem is described as follows. A decision maker observes a sequence

of random variables {Xn}, independent and identically distributed (i.i.d.)

with a density function f0. At some point of time γ, called the change

point, the distribution of {Xn} changes from f0 to f1, i.e., at and beyond

γ, the random variables {Xn} are i.i.d. with density f1. The objective is to

find a stopping time τ on the sequence {Xn}, i.e., a positive integer valued

random variables such that I{τ=n} is a function of {X1, · · · , Xn}, ∀n. The

stopping time τ is interpreted as the time at which a change is declared

by the decision maker and the observation process {Xn} is stopped and an

alarm is raised. This stopping time has to be selected so as to detect the

change in distribution of {Xn} as quickly as possible, i.e., to minimize some

version of the delay max{0, τ − γ}. The event {τ < γ} is called a false

alarm and is not desirable. Hence, the delay has to be minimized subject to

a constraint on the false alarm rate. The densities f0 and f1 may or may

not be known. In the Bayesian setting of the problem the change point is

modeled as a random variable Γ, and a prior distribution on Γ is assumed

to be known. Otherwise the problem is studied in minimax settings, where

the change point γ is modeled as an unknown constant. The quickest change

1

detection problem is also studied in various other settings: non-i.i.d. settings

where the observations need not be i.i.d. conditioned on the change point,

sensor network settings where the decision making is distributed, and the

multi-channel settings where the change only affects a subset of a vector of

observations, etc.; see [1], [2], and [3] for a review.

To motivate the need for quickest change detection algorithms, in Fig. 1.1a

we plot a sample path of a stochastic sequence whose samples are distributed

as N (0, 1) before the change, and distributed as N (0.1, 1) after the change.

For illustration, we choose time slot 500 as the change point. As is evident

from the figure, the change cannot be detected through visual inspection. In

Fig. 1.1b, we plot the evolution of the Shiryaev statistic (to be discussed in

Chapter 2), computed using the samples of Fig. 1.1a. As seen in Fig. 1.1b,

the value of the Shiryaev statistic stays close to zero before the change point,

and grows up to one after the change point. The change is detected at around

the 1000th time slot by using a threshold of 0.8.

0 200 400 600 800 1000 1200
−4

−3

−2

−1

0

1

2

3

4

f
0
=N(0,1) f

1
=N(0.1,1)

Samples

Time

(a) Stochastic sequence with observa-
tions from f0 ∼ N (0, 1) before the
change (time slot 500), and with samples
from f1 ∼ N (0.1, 1) after the change.

0 200 400 500 600 800 1,000 1,200
0

0.1

0.2

0.3

0.6

0.7

0.8

0.9

Shiryaev’s
Algorithm

Time

Change Point=500

(b) Evolution of the classical Shiryaev
algorithm when applied to the samples
given on the left. We see that the change
is detected approximately at time slot
1000.

Figure 1.1: Detecting a change in the mean of a Gaussian random sequence.

For all the popular QCD formulations in the literature, the optimal stop-

ping rule is similar to the Shiryaev algorithm in Fig. 1.1b. That is, the

optimal stopping rule is a single threshold test, where a sequence of statistics

is computed using the likelihood ratio of the observations, and a change is

declared the first time the sequence of statistics crosses a threshold. The

threshold is chosen to meet the constraint on the false alarm rate.

In this dissertation, we study the classical QCD problem with an addi-

tional constraint on the cost of observations used before the change point.

The motivation for this study comes from the consideration of the following

2

engineering applications.

In many monitoring applications, for example infrastructure monitoring,

environment monitoring, or habitat monitoring, especially of endangered

species, surveillance is only possible through the use of inexpensive battery

operated sensor nodes. This could be due to the high cost of employing a

wired sensor network or a human observer, or the infeasibility of having a

human intervention. For example in habitat monitoring of certain sea-birds

as reported in [5], the very reason the birds chose the habitat was because

of the absence of humans and predators around it. In these applications the

sensors are typically deployed for long durations, possibility over months,

and due to the constraint on energy, the most effective way to save energy

at the sensors is to switch the sensor between on and off states. An energy-

efficient quickest change detection algorithm can be employed here that can

operate over months and trigger other more sophisticated and costly sensors,

which are possibly power hungry, or more generally, trigger a larger part of

the sensor network [6]. This change could be a fault in the structures in

infrastructure monitoring [6], the arrival of the species to the habitat [5], etc.

In industrial quality control, statistical control charts are designed that can

detect a sustained deviation of the industrial process from normal behavior

[7]. Often there is a cost associated with acquiring the statistics for the

control charts and it is of interest to consider designing economic-statistical

control chart schemes [8, 7, 9]. The process control problem is fundamen-

tally a quickest change detection problem, and it is therefore appropriate

that economic-statistical schemes for process control are developed in this

framework.

In most of the above mentioned or similar applications, changes are rare

and quick detection is often required. So, ideally we would like to take as few

observations as possible before change to reduce the observation cost, and

skip as few as possible after change to minimize delay, while maintaining an

acceptable probability of false alarm. In the literature on classical quickest

change detection, only the trade-off between delay and false alarm is studied.

Thus, while the cost of observations used after the change point is penalized,

the cost of observations used before the change point is ignored. The goal

in this dissertation is to develop a deeper understanding of the trade-off

between delay, false alarm rate, and the cost of observation or information

used before the change point, and to identify algorithms that have some

3

optimality property and are easy to design.

The dissertation is divided into five main chapters, Chapters 2-6. In each

of the chapters, we consider a popular quickest change detection formulation

from the literature. We then extend the classical formulation by including an

additional constraint on the cost of observations used before the change point.

We also introduce suitable metric that captures this cost in each setting. We

seek control policies where causal on-off observation control is used in each

time step to meet the constraint on the observation cost before change. The

policy also includes a stopping time at which the change is declared. Since

the policies are designed for efficient use of observations or data, we call this

new problem data-efficient quickest change detection.

As discussed above, a typical algorithm from the classical quickest change

detection literature is a single threshold test. In such a test all the observa-

tions are used for decision making and a sequence of statistics is computed

using the likelihood ratio of the observations. A change is declared when

the sequence of computed statistics is above a threshold. Popular examples

include the Shiryaev algorithm [10] and the CuSum algorithm [11].

In this dissertation we propose two-threshold extensions of these classical

single threshold tests; the DE-Shiryaev algorithm in Chapter 2 and the DE-

CuSum algorithm in Chapter 3. In these two-threshold extensions that we

propose there are two thresholds A and B, with B < A. Again, a sequence

of statistics is computed using the likelihood ratio of the observations. As in

the classical setting, a change is declared if the computed statistic is above

the threshold A. If however the statistic is below A, then the observation in

the next time step is taken only if the computed statistic is above the lower

threshold B. When the statistic is below B, we also provide the recipe to

update the statistic. In the Bayesian setting, it is updated using the prior on

the change point. In non-Bayesian settings, the statistic is updated using a

design parameter. The number of consecutive samples skipped then becomes

a function of the undershoot of the statistics (which is also the likelihood ratio

of the observations taken until that time).

More generally, we propose new data-efficient tests (see Chapters 2-6),

where the feature of observation control is added to the classical tests. We

provide performance analyses of these new tests, and using the performance

analysis the parameters in the data-efficient algorithms can be designed. We

then use the performance analysis to prove some optimality properties of

4

these new tests with respect to the new data-efficient formulations. The

nature of the optimality proved is strong in the sense that the data-efficient

tests have false alarm rates that are as good as the false alarm rates of their

classical counterparts. Moreover, the average delay of these data-efficient

tests is within a constant of the delay of their classical counterparts.

We also provide numerical and simulation results for these tests.

We now discuss the outline of the dissertation. In the classical literature

the Bayesian formulation in the i.i.d. setting has provided valuable insights

into the structure of the problem. These insights have played a key role in the

extension of the results to other settings. Motivated by this in Chapter 2 we

first study data-efficient quickest change detection in the Bayesian setting.

In the rest of the chapters we use the insights obtained from Chapter 2 to

extend the result from the Bayesian setting to other settings. We provide a

brief overview of the context of each chapter.

1. Chapter 2, Bayesian setting: In the Bayesian setting the distribution

of the change point is assumed to be known. In the classical Bayesian

formulation studied in [10], the objective is to minimize the average de-

tection delay subject to a constraint on the probability of false alarm.

The optimal solution is a single threshold test popularly known as

the Shiryaev test. In this chapter we extend the results from [10] by

putting an additional constraint on the average number of observations

used before the change point. We show that a two-threshold general-

ization of the Shiryaev test is asymptotically optimal for the proposed

formulation as the probability of false alarm goes to zero. We call this

two-threshold test the DE-Shiryaev algorithm.

2. Chapter 3, Minimax settings: If the distribution of the change point

is not known then the classical quickest change detection problem is

studied in the minimax settings of [12] and [13]. It is well know that

the CuSum algorithm is asymptotically optimal for these formulations

[11], [12], [14]. In this chapter we extend these minimax formulations by

putting an additional constraint on the fraction of observations used

before the change point. We propose a two-threshold generalization

of the CuSum algorithm, which we term the DE-CuSum algorithm.

We show that the DE-CuSum algorithm is asymptotically optimal for

the extended formulations. The problem formulation, the structure

5

of the DE-CuSum algorithm, and the nature of its optimality, are all

motivated by the Bayesian analysis provided in Chapter 2. The DE-

CuSum algorithm plays a crucial rule in the rest of the dissertation.

3. Chapter 4, Minimax setting with composite post-change hypothesis:

In this chapter we extend the results of Chapter 3 by allowing for the

possibility that the post-change distribution is not known. In the clas-

sical formulations in the literature a generalized likelihood ratio test

(GLRT) is asymptotically optimal under some conditions. We show

that if the post-change family of distributions has a distribution that is

least favorable in some sense, then it is possible to have efficient obser-

vation control in the GLRT test. Specifically, we propose an algorithm

called the GDECuSum algorithm. In this algorithm observation con-

trol is implemented using the DE-CuSum algorithm applied to the least

favorable distribution, and the GLRT statistic is computed using the

available samples. We show that this test is asymptotically optimal.

4. Chapter 5, Sensor network setting: In this chapter we study data-

efficient quickest change detection in a sensor network. Here, multiple

sensors spread out in a geographical area are coordinated through a

fusion center to detect the change. We propose data-efficient formula-

tions for sensor networks and show that an algorithm called the DE-All

algorithm, in which the DE-CuSum algorithm is used at each sensor,

is asymptotically optimal.

5. Chapter 6, Multi-channel setting: In this chapter we consider the prob-

lem where there are multiple independent streams of observations and

the change affects only a subset of streams. We propose two algorithms

the DE-Censor-Max and the DE-Censor-Sum algorithms, and comment

on their optimality properties. In both the algorithms, the DE-CuSum

algorithm is applied to each independent stream.

6. Chapter 7, Conclusions and future work: In this chapter we conclude

the dissertation and comment on future work.

Thus, a common theme in all the chapters is that the data-efficient tests are

obtained by adding observation control to their classical counterparts. We

will show that these data-efficient tests can be designed to meet the given

6

constraints on the false alarm rate and the observation cost, independent of

each other. A rather surprising result in the dissertation is the nature of

optimality of these algorithms. The performance analysis of various data-

efficient algorithms will reveal that the performance of these data-efficient

tests is as good as their classical counterpart. Thus, the optimality indicates

that an arbitrary large but fixed fraction of observations can be skipped

before change, without affecting the asymptotic performance.

In Table 1.1 we provide a glossary of symbols used in this dissertation.

7

Table 1.1: Glossary

Symbol Definition/Interpretation

o(1) x = o(1) as c→ c0, if ∀ε > 0,
∃δ > 0 s.t., |x| ≤ ε if |c− c0| < δ

O(1) x = O(1) as c→ c0, if ∃ε > 0, δ > 0
s.t., |x| ≤ ε if |c− c0| < δ

g(c) ∼ h(c) limc→c0
g(c)
h(c) = 1

as c→ c0 or g(c) = h(c)(1 + o(1)) as c→ c0

Pn (En) Probability measure (expectation)
when the change occurs at time n

P∞ (E∞) Probability measure (expectation)
when the change does not occur

ess sup X inf{K ∈ R : P(X > K) = 0}
L(X) f1(X)

f0(X)

`(X) log f1(X)
f0(X)

D(f1 ‖ f0) K-L Divergence between f1 and f0,

defined as E1

(
log f1(X)

f0(X)

)
D(f0 ‖ f1) K-L Divergence between f0 and f1,

defined as E∞
(

log f1(X)
f0(X)

)
(x)+ max{x, 0}
(x)h+ max{x,−h}
T (x) d(x)h+/µe
Sn Sn = 1 if Xn is used for decision making
Ψ Policy for data-efficient quickest

change detection {τ,M1, · · · ,Mτ}
ADD(Ψ)

∑∞
n=0 P(Γ = n) En [(τ − n)+]

PFA(Ψ)
∑∞

n=0 P(Γ = n) Pn(τ < n)
FAR(Ψ) 1

E∞[τ]

WADD(Ψ) sup
n≥1

ess sup En [(τ − n)+|In−1]

CADD(Ψ) sup
n≥1

En[τ − n|τ ≥ n]

CPDC(Ψ) lim supn
1
nEn

[∑n−1
k=1 Sk

∣∣∣τ ≥ n]
PDC(Ψ) lim supn

1
nEn

[∑n−1
k=1 Sk

]
IA Indicator function for event A
E[X;A] E[XIA]

8

CHAPTER 2

DATA-EFFICIENT BAYESIAN QUICKEST
CHANGE DETECTION

In this chapter we consider the quickest change detection problem in the

Bayesian setting, where the change point is modeled as a random variable

with a known distribution. In the classical Bayesian formulation studied by

Shiryaev in [10], the objective is to detect a sudden change in the distri-

bution of a sequence of random variables. This change has to be detected

with minimum possible delay subject to a constraint on the probability of

false alarm. In this chapter we extend Shiryaev’s formulation by explicitly

accounting for the cost of the observations used in the detection process. We

capture the observation penalty (cost) through the average number of obser-

vations used before the change point, and allow for a dynamic control policy

that determines whether or not a given observation is taken. The objective

is to choose the observation control policy along with the stopping time, so

that the average detection delay is minimized subject to constraints on the

probability of false alarm and the observation cost.

For the classical formulation of Shiryaev, the optimal stopping rule is to

compute the a posteriori probability that the change has already happened

given the past observations, and stop the first time this probability is above a

threshold. We will show in this chapter that a two-threshold generalization of

the Shiryaev’s test is optimal for a data-efficient formulation that we propose

in this chapter. In fact, we will show that the performance of the two tests

are asymptotically the same, as the probability of false alarm goes to zero.

This result implies that one can skip an arbitrary fraction of samples before

change, without sacrificing asymptotic performance.

9

2.1 Problem Formulation

A sequence of random variables {Xn} is being observed. Initially, the random

variables are i.i.d. with p.d.f. f0. At some unknown point of time—denoted

by γ and called the change point in the following—the density of the random

variables changes to f1. We denote by Pγ the underlying probability measure

which governs such a sequence. We use Eγ to denote the expectation with

respect to this probability measure. We use P∞ (E∞) to denote the proba-

bility measure (expectation) when the change never occurs (i.e., the random

variable Xn has p.d.f. f0, ∀n). Both f0 and f1 are known but the change

point γ is unknown. We wish to detect this change in distribution as quickly

as possible subject to a constraint on the false alarm rate.

In this chapter we consider the Bayesian version of the problem where

the change point γ is modeled as a random variable Γ with a known prior

distribution. It is further assumed that the Γ ∼ Geom(ρ), i.e., for 0 < ρ < 1

πn = P{Γ = n} = ρ(1− ρ)n−1 I{n≥1}, π0 = 0, (2.1)

where IF represents the indicator of the event F . We use Pπ to denote for

every event A in the underlying σ-algebra

Pπ(A) =
∞∑
γ=1

πγPγ(A).

We also use Eπ to denote the expectation with respect to Pπ. For brevity of

notation, we will suppress the subscript π when using Pπ and Eπ.

In the classical QCD formulation studied by Shiryaev in [10], the objective

is to find a stopping time τ on the sequence {Xn} (a positive integer valued

random variable such that I{τ=n} is a measurable function of X1, · · · , Xn),

so as to minimize a metric on the average delay, subject to a constraint on a

metric on the false alarm rate. The delay metric used in [10] is the following

average detection delay (ADD) metric:

ADD(τ) = E[(τ − Γ)+]. (2.2)

To capture the false alarm rate the metric used is the probability of false

10

alarm (PFA):

PFA(τ) = P(τ < Γ). (2.3)

Thus, in the Shiryaev’s formulation, the objective is to find a τ so as to

minimize ADD subject to a constraint on the PFA.

In many applications the change occurs rarely, corresponding to a large

γ. As a result, we also wish to control the number of observations used

for decision making before γ. We are interested in control policies involving

causal three-fold decision making at each time step. Specifically, based on

the information available at time n, a decision has to be made whether to

declare a change or to continue taking observations. If the decision is to

continue, then a decision has to be made whether to use or skip the next

observation for decision making.

Mathematically, let Sn denote the indicator random variable which is 1 if

Xn is used for decision making. That is

Sn =

1 if Xn used for decision making

0 otherwise.
(2.4)

The information available at time n is denoted by

In = {X(S1)
1 , · · · , X(Sn)

n },

where X
(Sk)
k = Xk if Sk = 1, else Xk is absent from In, and

Sn = φn(In−1).

Here, φn denotes the control map. Let τ be a stopping time for the sequence

{In}. A control policy is the collection

Ψ = {τ, φ1, · · · , φτ}.

We seek policies of type Ψ to minimize ADD subject to a constraint on

the PFA and a constraint on the average number of observations taken before

change. To capture the latter, we now propose a new metric, the average

11

number of observations (ANO):

ANO(Ψ) = E

τ∧(Γ−1)∑
n=1

Sn

 . (2.5)

Thus, the metric ANO captures the average number of observations used

before the change point Γ. We note that for any Ψ, ANO(Ψ) ≤ E[Γ− 1].

The data-efficient extension of the classical Bayesian problem of Shiryaev

that we study in this chapter is:

Problem 2.1.1.

minimize
Ψ

ADD(Ψ),

subject to PFA(Ψ) ≤ α, (2.6)

and ANO(Ψ) ≤ β.

Here, α and β, with 0 ≤ α ≤ 1 and 0 ≤ β, are given constraints.

When β ≥ E[Γ]−1, Problem 2.1.1 reduces to the classical Bayesian quickest

change detection problem from [10].

In Section 2.2, we review the solution to the classical formulation of Shiryaev,

which in the following we call the Shiryaev’s test/algorithm. We also review

the performance analysis of the Shiryaev’s test as studied in [15]. We will

see that the Shiryaev’s algorithm cannot be a solution to Problem 2.1.1,

especially for small β. Hence, in this chapter we propose a two-threshold

generalization of the Shiryaev algorithm and show that it is asymptotically

optimal for the proposed formulation, for each β, as α→ 0. We call that al-

gorithm the data-efficient Shiryaev (DE-Shiryaev) algorithm. In Section 2.3

we propose the algorithm and discuss its evolution and properties. In Sec-

tion 2.4 we provide a dynamic programming based justification for the al-

gorithm. In Section 2.5 we provide a detailed performance analysis of the

DE-Shiryaev algorithm and prove its asymptotic optimality by relating its

performance to that of the Shiryaev algorithm. In Section 2.6 we compare the

performance of the DE-Shiryaev algorithm with the approach of fractional

sampling, in which the Shiryaev algorithm is used, and the constraint on

the cost of observations used before the change is met by skipping samples

randomly, independent of the observation process. We will show that the

12

DE-Shiryaev algorithm provides significant gain in performance as compared

to the approach of fractional sampling.

We will assume throughout that the moments of log[f1(X)/f0(X)] under

both P1 and P∞, up to the second order, are finite and positive.

2.2 Classical Bayes QCD

The optimal stopping rule for Shiryaev’s problem is

τS = inf{n ≥ 1 : P(Γ ≤ n|X1, · · · , Xn) > A}, (2.7)

where the threshold A < 1, and is chosen to meet the constraint on α with

equality. Let ps
n = P(Γ ≤ n|X1, · · · , Xn). Then the probability ps

n can be

updated using the following recursions:

ps
0 = 0

ps
n =

p̃s
n−1L(Xn)

p̃s
n−1L(Xn) + (1− p̃s

n−1)
,

(2.8)

with p̃s
n = ps

n + (1− ps
n)ρ and L(Xn) = f1(Xn)/f0(Xn).

Thus, in the Shiryaev algorithm, all the samples are taken, i.e., Sn = 1,

∀n, and a change is declared the first time the a posteriori probability that

the change has already happened, given all the observations until that time,

crosses the threshold A.

We now review the performance analysis of the Shiryaev algorithm from

[15]. We first prove a simple but important result that will be used in the

analysis of both the Shiryaev as well as the DE-Shiryaev algorithms.

Lemma 2.2.1. For any policy Ψ such that τ <∞ a.s., we have

P(τ < Γ) = E[1− pτ]. (2.9)

Proof. By the law of iterated expectation and because τ is a stopping time

13

w.r.t. {In}

P(τ < Γ) = E[I{τ<Γ}] =
∞∑
n=1

E[I{τ<Γ} I{τ=n}] =
∞∑
n=1

E[E[I{n<Γ} I{τ=n}|In]]

=
∞∑
n=1

E[I{τ=n}E[I{n<Γ}|In]]

=
∞∑
n=1

E[I{τ=n}(1− pn)] = E[1− pτ].

One way to use (2.9) is to show that E[τ] <∞. This in turn can be shown

by using the following inequality:

E[τ] ≤ E[τ − Γ|τ ≥ Γ] +
1

ρ
. (2.10)

This is true because

E[τ] = E[τ − Γ + Γ] = E[τ − Γ] + E[Γ]

= E[τ − Γ] +
1

ρ

≤ E[τ − Γ|τ ≥ Γ]P(τ ≥ Γ) +
1

ρ

≤ E[τ − Γ|τ ≥ Γ] +
1

ρ
,

(2.11)

where the last two equalities are true because E[τ − Γ|τ < Γ] < 0, and

P(τ ≥ Γ) ≤ 1. Thus, if E[τ−Γ|τ ≥ Γ] <∞, then E[τ] <∞, and Lemma 2.2.1

is applicable. This observation will be used in the following.

We next show that E1[τS] <∞ and provide an asymptotic expression. This

will be used to show that E[τS − Γ|τS ≥ Γ] <∞.

Let

Zs
n = log

ps
n

(1− ps
n) ρ

.

It is easy to see that there is a one-to-one mapping between Zs
n and ps

n.

Hence, if a = log A
(1−A)ρ

, then

τS = inf{n ≥ 1 : Zs
n > a}.

14

Lemma 2.2.2 ([15]). For any a as defined above,

E1[τS] <∞. (2.12)

Further,

E1[τS] ∼
log(a)

D(f1 || f0) + | log(1− ρ)|
(1 + o(1)) as a→∞. (2.13)

Proof. Note that

ps
n =

∑n
k=1(1− ρ)k−1ρ

∏n
i=k L(Xi)∑n

k=1(1− ρ)k−1ρ
∏n

i=k L(Xi) + (1− ρ)n
.

Hence, the statistic Zs
n can be written as

Zs
n = Yn + n| log(1− ρ)|+ log

(
1 +

n−1∑
k=1

(1− ρ)ke−Yk

)
, (2.14)

where Yn =
∑n

k=1 logL(Xk). It is shown in [15] that the rightmost term in

(2.14) is slowly changing (see [16]). Thus the statistic Zs
n can be written as

the sum of a random walk Yn + n| log(1 − ρ)| and a slowly changing term.

Also, the slowly changing term is clearly positive. Hence, by Theorem 4.4 of

[16], we have

E1[τS] ∼
| log(a)|

D(f1 || f0) + | log(1− ρ)|
(1 + o(1)) as a→∞.

This implicitly shows that E1[τS] <∞ for a fixed a = log A
(1−A)ρ

.

We thus have the following result for the Shiryaev algorithm.

Lemma 2.2.3 ([15]). Setting Aα = 1− α ensures that

P(τS < Γ) = E[1− psτS] ≤ 1− Aα ≤ α, (2.15)

and

E1[τS] ∼
| log(α)|

D(f1 || f0) + | log(1− ρ)|
(1 + o(1)) as α→ 0. (2.16)

Proof. By sample-pathwise arguments, it is easy to see that for the Shiryaev

15

algorithm,

E[τS − Γ|τS ≥ Γ] ≤ E1[τS].

Now E1[τS] <∞ from Lemma 2.2.2. It thus follows from (2.11) that E[τS] <

∞. This in turn implies that τS < ∞ a.s. Hence, by Lemma 2.2.1, since

ps
τS
> A by definition, we have

P(τS < Γ) = E[1− ps
τS

] ≤ 1− Aα ≤ α.

The delay result follows by substituting the value of a = log Aα
(1−Aα)ρ

in (2.13).

We note that

ADD(τS) = E[(τS − Γ)+] = E[τS − Γ|τS ≥ Γ]P(τS ≥ Γ) ≤ E1[τS].

Thus, the expression on the right-hand side of (2.16) gives an upper bound

on the asymptotic performance of the Shiryaev algorithm. It is in fact

shown in [15] that | log(α)|
D(f1 || f0)+| log(1−ρ)| is also a lower bound on the ADD(τ)

of any stopping rule τ , satisfying PFA(τ) ≤ α, as α → 0. Thus, ADD(τS) ∼
| log(α)|

D(f1 || f0)+| log(1−ρ)| , as α→ 0. We state this as a theorem.

Theorem 2.2.1 ([15]). As α→ 0,

inf
τ :PFA(τ)≤α

ADD(τ) ∼ ADD(τS) ∼
| log(α)|

D(f1 || f0) + | log(1− ρ)|
(1 + o(1)). (2.17)

But note that when α is small, τS ≥ Γ with high probability, and ANO(τS) ≈
E[Γ] − 1. Hence, the Shiryaev algorithm cannot be a solution to the Prob-

lem 2.1.1 in (2.6), if β is small. We will show in Section 2.5 that
| log(α)|

D(f1 || f0)+| log(1−ρ)| is also the first-order asymptotic ADD of the DE-Shiryaev

algorithm, for any fixed β, as α → 0. Thus, in this sense, the DE-Shiryaev

algorithm is asymptotically optimal, for each fixed β, as α→ 0.

2.3 The DE-Shiryaev Algorithm

We now describe the DE-Shiryaev algorithm. Define,

pn = P (Γ ≤ n | In) .

16

Algorithm 2.3.1 (DE-Shiryaev: ΨD). Start with p0 = 0 and use the follow-

ing control, with 0 ≤ B < A, for n ≥ 1:

Sn = φn(pn−1) =

0 if pn−1 < B

1 if pn−1 ≥ B
,

τD = inf {n ≥ 1 : pn > A} .

(2.18)

The probability pn is updated using the following recursions:

pn =

p̃n−1 if Sn = 0

p̃n−1L(Xn)
p̃n−1L(Xn)+(1−p̃n−1)

if Sn = 1

with p̃n = pn + (1− pn)ρ and L(Xn) = f1(Xn)/f0(Xn).

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6
0.65

0.8

1
f
0
(0,1), f

1
=(0.7,1), ρ=0.01

Shiryaev

DE−Shiryaev Shiryaev’s recursion

Γ

B

A

p
n

p
n+1

=p
n
 + (1−p

n
)ρ

Figure 2.1: Typical evolution of the Shiryaev and the DE-Shiryaev algo-
rithms, applied to the same set of observations, with thresholds A = 0.65
and B = 0.2.

With B = 0 the DE-Shiryaev algorithm reduces to the Shiryaev algorithm.

WhenB > 0, the statistic evolves in a manner similar to the Shiryaev statistic

as long as the statistic is above B. Thus, a change is declared when pn >

A. However, when pn goes below B, pn is updated using the prior on the

change point ρ (pn increases monotonically in this regime), and observations

are skipped as long as pn is below B. Thus, in the DE-Shiryaev algorithm

observations are taken only if the a posteriori probability that the change

has already occurred given the available information In, exceeds a threshold

B. A change is declared only if the probability is above another threshold

17

A > B. Since p0 = 0 < B, few initial observations are skipped even before

the observation process begins. Note that except for these initial skipped

observations, the number of consecutive observations skipped at any time is

a function of the undershoot of the statistic pn (which is a function of the

likelihood ratio of the observations), when it goes below B, and the geometric

parameter ρ. In Fig. 2.1 we have plotted typical evolution of the DE-Shiryaev

algorithm and the Shiryaev algorithm, applied to the same set of samples.

The DE-Shiryaev algorithm has the following interesting interpretation.

Let

t(B) = inf{n ≥ 1 : pn > B}. (2.19)

At and beyond t(B), whenever pn crosses B from below, it does so with an

overshoot that is bounded by ρ. This is because

pn+1 − pn = (1− pn)ρ ≤ ρ.

For small values of ρ, this overshoot is essentially zero, and the evolution of

pn is roughly statistically independent of its past evolution. Thus, beyond

t(B), the evolution of pn can be seen as a sequence of two-sided statistically

independent tests, each two-sided test being a test for sequential hypothesis

testing between “H0 = pre-change”, and “H1 = post-change”. If the decision

in the two-sided test is H0, then observations are skipped depending on the

likelihood ratio of the observations (the undershoot), and the two-sided test

is repeated on the observations taken beyond the skipped observations. The

change is declared the first time the decision in a two-sided test is H1.

2.4 Derivation of the DE-Shiryaev Algorithm

The motivation for this algorithm comes from the fact that pn is a sufficient

statistics for a Lagrangian relaxation of Problem (2.1.1). This relaxed prob-

lem can be studied using dynamic programming, and numerical studies of the

resulting Bellman equation show that the DE-Shiryaev algorithm is optimal

for a wide choice of system parameters; see [17] for details. For an analytical

justification see Section 2.5.

18

2.5 Asymptotic Optimality of the DE-Shiryaev

Algorithm

In this section we prove the asymptotic optimality of the DE-Shiryaev algo-

rithm. We note that from (2.11) we have

E[τD] ≤ E[τD − Γ|τD ≥ Γ] +
1

ρ
. (2.20)

Thus, if we can show that the right-hand side of the previous equation is

finite then we can invoke Lemma 2.2.1 for the PFA result. We now obtain

an upper bound on E[τD − Γ|τD ≥ Γ]. This is, in fact, a major result of this

chapter.

Theorem 2.5.1. For any fixed thresholds A and B,

E[τD − Γ|τD ≥ Γ] ≤ E1[τS] +KDS, (2.21)

where KDS is a constant that is a function of ρ, f0, f1 and B, but is not a

function of the threshold A.

Thus, the conditional delay of the DE-Shiryaev algorithm is within a con-

stant of the delay of the Shiryaev algorithm when the change occurs at time

1. We postpone the proof of Theorem 2.5.1 until the end of this section and

study its implications.

Now, from Theorem 2.5.1 we have

E[τD] ≤ E[τD − Γ|τD ≥ Γ] +
1

ρ

≤ E1[τS] +KDS +
1

ρ

<∞.

(2.22)

Thus, τD <∞ a.s., and the Lemma 2.2.1 is applicable. Combining this with

(2.13) we have the following corollary.

Corollary 2.5.1.1. For any fixed B, if A = 1− α, then

PFA(τD) = E[1− pτD] ≤ 1− A ≤ α. (2.23)

19

Further as α→ 0,

ADD(τD) ≤ E[τD − Γ|τD ≥ Γ] ≤ | log(α)|
D(f1 || f0) + | log(1− ρ)|

(1 + o(1)). (2.24)

We remark that even though the result in (2.24) shows that the perfor-

mance of the DE-Shiryaev algorithm is asymptotically the same as that of

the Shiryaev algorithm, it does not necessarily prove the asymptotic optimal-

ity of the algorithm w.r.t. Problem 2.1.1. This is because unless we choose

the threshold B carefully, the ANO constraint can be violated, as A → 1 or

α → 0. The fact that such a B exists is proved in Lemma 2.5.1. For that

recall from (2.19)

t(B) = inf{n ≥ 1 : pn > B}.

Lemma 2.5.1. There exists a Bβ such that ∀A > Bβ,

ANO(τD) ≤ β.

Proof. We note that

ANO(τD) = E

τ∧(Γ−1)∑
n=1

Sn

 = P(Γ > t(B)) E

τ∧(Γ−1)∑
n=1

Sn
∣∣ Γ > t(B)

≤ P(Γ > t(B)) E

[
Γ∑
n=1

Sn
∣∣ Γ > t(B)

]
≤ P(Γ > t(B)) E

[
Γ
∣∣ Γ > t(B)

]
= E

[
Γ I{Γ>t(B)}

]
.

(2.25)

Thus, by selecting B = Bβ such that E
[
ΓI{Γ>t(B)}

]
< β, we complete the

proof.

We thus have the following optimality result due to Theorem 2.2.1.

Theorem 2.5.2. If B = Bβ and A = Aα = 1− α, then

ANO(τD) ≤ β, for α small enough,

PFA(τD) ≤ α, and

ADD(τD) ∼ | log(α)|
D(f1 || f0) + | log(1− ρ)|

(1 + o(1)), as α→ 0 .

(2.26)

20

Thus, the DE-Shiryaev algorithm is first-order asymptotically optimal for

Problem 2.1.1, for each fixed β, as α → 0. We note that Theorem 2.5.2

implies that for α small enough, the two constraints on the PFA and the

ANO can be met independent of each other.

We now provide the proof of Theorem 2.5.1.

Proof of Theorem 2.5.1. Recall that we wish to prove (see (2.21))

E[τD − Γ|τD ≥ Γ] ≤ E1[τS] +KDS. (2.27)

We first note that

E[τD − Γ|τD ≥ Γ] =
∞∑
n=1

E[(τD − Γ) I{Γ=n}|τD ≥ Γ]

=
∞∑
n=1

E[τD − n|I{Γ=n}I{τD≥Γ}]P(Γ = n|τD ≥ Γ)

=
∞∑
n=1

En[τD − n|τD ≥ n]P(Γ = n|τD ≥ Γ).

(2.28)

Thus, it is enough to get the bound specified in (2.27) on En[τD − n|τD ≥ n].

Toward this end we obtain a bound on En[(τD−n)+|In−1]. That is, we show

that

En[(τD − n)+|In−1] ≤ E1[τS] +KDS, (2.29)

where KDS is a constant not a function of the threshold A, change time n,

and the conditioning In−1.

Let

τD(p) = inf{n ≥ 1 : pn > A; p0 = p}

be the time for the DE-Shiryaev statistic to cross the threshold A starting

at p0 = p. Let In−1 = in−1 be such that pn−1 = p ∈ [B,A). Then,

En[τD − n|In−1 = in−1] = E1[τD(p)]− 1.

Note that the sojourn of the statistic pn to A may include alternate sojourns

of the statistic below and above the threshold B; see Fig. 2.1. And the time

to hit A can be written as the sum of such times. Motivated by this we define

21

a set of new variables. Let

τ1(p) = inf{n ≥ 1 : pn > A or pn < B; with p0 = p}.

This is the first time for the DE-Shiryaev statistic, starting at p0 = p, to

either hit A or go below B. On paths over which pτ1 < B, we know that

a number of consecutive samples are skipped depending on the undershoot

of the observations. Let t1(p) be the number of consecutive samples skipped

after τ1(p) on such paths. On such paths again, let

τ2(p) = inf{n > τ1(p) + t1(p) : pn > A or pn < B}.

Thus, on paths such that pτ1 < B, after the times τ1(p) and the number of

skipped samples t1(p), the statistic pn reaches B from below. The time τ2(p)

is the first time for pn to either cross A or go below B, after time τ1(p)+t1(p).

We define, t2(p), τ3(p), etc. similarly. Next let

N(p) = inf{k ≥ 1 : pτk > A}.

For simplicity we introduce the notion of “cycles”, “success” and “failure”.

With reference to the definitions of τk(p)’s above, we say that a success has

occurred if the statistic pn, starting with p0 = p, crosses A before going below

B. In that case we also say that the number of cycles to A is 1. If on the

other hand, the statistic pn goes below B before it crosses A, we say a failure

has occurred. Once pn cross B from below, we say that a new cycle has

started. The number of cycles is 2, if now the statistic pn crosses A without

ever going below B. Thus, N(p) is the number of cycles to success. With

this terminology in mind we write

P1(N(p) ≥ k) = P1(fail in 1st cycle) P1(fail in 2nd cycle| fail in 1st cycle)

· · ·P1(fail in k − 1st cycle|fail in all previous).

Now,

P1(fail in ith cycle|fail in all previous)

= 1− P1(success in ith cycle|fail in all previous).

22

To obtain a bound on these probabilities, we now define

Rn =
pn

(1− pn)ρ
.

We note that this is the Shiryaev-Roberts statistic [1]. As long as pn ≥ B, the

statistic evolves according to the Shiryaev recursion. As a result Zn = logRn

has the expression

Zn = logRn = Yn+n| log(1−ρ)|+ log

(
1 +R0 +

n−1∑
k=1

(1− ρ)ke−Yi

)
, (2.30)

where Yn =
∑n

i=1 logL(Xi). Thus, in each cycle, when the DE-Shiryaev

statistic is above B, it evolves according to the expression in (2.30) starting

with some non-negative R0. Since R0 ≥ 0, the only way a failure can happen

in a cycle is if the random walk Yn takes negative values. Thus,

P1(success in ith cycle|fail in all previous) ≥ P1(Yn ≥ 0, ∀n).

From Corollary 2.4, on p. 22 of [16], it is well known that P1(Yn ≥ 0, ∀n) > 0.

Also, note that this probability is not a function of the initial point p. Thus,

if

q = P1(Yn ≥ 0, ∀n),

then

P1(N(p) ≥ k) ≤ (1− q)k−1,

and

E1[N(p)] =
∞∑
k=1

P1(N(p) ≥ k) ≤
∞∑
k=1

(1− q)k−1 =
1

q
<∞. (2.31)

The previous equation implies that

N(p) <∞ a.s. under P1. (2.32)

Let λ1(p) = τ1(p), λ2(p) = τ2(p) − τ1(p) − t1(p), etc, be the lengths of the

23

sojourns of the statistic pn above B. Then clearly we have

τD(p) =

N(p)∑
n=1

λk(p) +

N(p)−1∑
n=1

tk(p),

and hence,

E1[τD(p)] = E1

N(p)∑
n=1

λk(p)

+ E1

N(p)−1∑
n=1

tk(p)

≤ E1

N(p)∑
n=1

λk(p)

+
t(B)

q
.

(2.33)

Here, t(B) is as defined in (2.19), and the inequality is true because

tk(p) ≤ t(B), for any k, p,

and because of (2.31).

We now make an important observation. We note that the expression

E1

[∑N(p)
n=1 λk(p)

]
is the time for the Shiryaev statistic ps

n to cross A from

below, starting with ps
0 = p, with the difference that each time the statistic

goes below B, to say x < B, the statistic is reset to a value in [B,A). This

value corresponds to the overshoot of the DE-Shiryaev statistic pn when it

crosses B from below using the recursion pn+1 = pn+(1−pn)ρ, starting with

x. By sample-pathwise arguments, it is easy to see that the latter delay is

upper bounded on an average by the following stopping time,

τ̂(p) = inf{n ≥ 1 : pn > A; p0 = p; each time pn < B, it is reset to B}.

Thus,

E1

N(p)∑
n=1

λk(p)

 ≤ E1[τ̂(p)] ≤ E1[τ̂(B)],

where the last inequality follows again by sample-pathwise arguments. Again

by sample-pathwise arguments it is easy to see that

E1[τ̂(B)] ≤ E1[τS(B)] ≤ E1[τS]. (2.34)

24

In (2.34) τS(B) is the time for the Shiryaev statistic to cross A starting at B

(with no resetting of statistics). Thus, we have

E1

N(p)∑
n=1

λk(p)

 ≤ E1[τS]. (2.35)

We note that the right-hand side of (2.35) is not a function of the initial

value p. But, it does depend on the initial assumption that p ∈ [B,A).

Thus, from (2.33) we have for p ∈ [B,A),

E1[τD(p)] ≤ E1[τS] +
t(B)

q
. (2.36)

Going back to (2.29) we note that if In−1 = in−1 is such that pn−1 = p ∈
[B,A), then

En[τD − n|In−1 = in−1] ≤ E1[τS] +
t(B)

q
. (2.37)

If In−1 = in−1 is such that pn−1 = p < B, then the time to cross A for

the DE-Shiryaev statistic will be equal to the time taken for the statistic to

cross B from below, plus a time which corresponds to the left-hand side of

(2.37) (with initial point p now corresponding to the overshoot of the DE-

Shiryaev statistic when it crosses B from below). This latter time is again

on an average bounded by E1[τS] + t(B)
q

. Thus, we can write,

En[(τD − n)+|In−1] ≤ E1[τS] +
t(B)

q
+ t(B). (2.38)

Note that the right-hand side of (2.38) is no more a function of the condi-

tioning In−1. The proof is complete if we define

KDS =
t(B)

q
+ t(B),

and average the left-hand side of (2.38) over the set τD ≥ n, and then invoke

(2.28).

25

2.5.1 The Nonarithmetic Case

In this section we obtain a stronger result on the PFA of the DE-Shiryaev

algorithm for the case when the logL(X) is nonarithmetic. A random vari-

able is called nonarithmetic if it is not a lattice random variable. A lattice

random variable X is such that there exists d > 0,

P(X ∈ {kd; k integer }) = 1.

We note that in Theorem 2.5.2 it is only guaranteed that setting A = 1 −
α implies PFA(τD) ≤ α. Thus, we can use the same threshold for both

the Shiryaev algorithm and the DE-Shiryaev algorithm to meet the PFA

constraint. However, the actual PFA of the two algorithms can in general

be different, with one being much smaller than α than the other. In this

subsection we show however that if logL(X) is nonarithmetic, then the ratio

of the PFAs of the two algorithms goes to 1. Thus, in the nonarithmetic

case, not only the delays but also the false alarms of the two algorithms are

also asymptotically the same. This result is stronger than mere first-order

asymptotic optimality of the DE-Shiryaev algorithm.

We use the tools from nonlinear renewal theory [16]. The key is the dis-

tribution of the overshoot when the statistic Zn = log pn
(1−pn)

, for a fixed

b = log B
(1−B)

, crosses the threshold a = log A
(1−A)

, for a large a. To establish

the role of the overshoot distribution, we obtain an expression for PFA as a

function of the overshoot when Zk crosses a from below.

Lemma 2.5.2. For any policy Ψ such that

τ = inf{n ≥ 1 : pn > A},

and τ <∞ a.s., we have

PFA = E[1− pτ] = e−aE[e−(Zτ−a)|τ ≥ Γ](1 + o(1)) as a →∞.

Proof. Since, pτ > A implies Zτ > a, we have,

1

1 + e−Zτ
≥ 1

1 + e−a
.

The required result is obtained by obtaining upper and lower bounds on PFA

26

as follows.

PFA = E[1− pτ] = E
[

1

1 + eZτ

]
≤ E

[
e−Zτ

]
.

Also,

PFA = E[1− pτ] = E
[

1

1 + eZτ

]
= E

[
1

eZτ
1

1 + e−Zτ

]
≥ E

[
1

eZτ
1

1 + e−a

]
= E

[
e−Zτ

]
(1 + o(1)) as a→∞.

Thus,

PFA = E[e−Zτ](1 + o(1)) = e−aE[e−(Zτ−a)](1 + o(1)) as a →∞.

Now note that,

E[e−(Zτ−a)] = E[e−(Zτ−a)|τ ≥ Γ](1− P(τ < Γ)) + E[e−(Zτ−a)|τ < Γ]P(τ < Γ)

= E[e−(Zτ−a)|τ ≥ Γ]

+
(
E[e−(Zτ−a)|τ < Γ]− E[e−(Zτ−a)|τ ≥ Γ]

)
P(τ < Γ).

Since, P(τ < Γ) = E[1− pτ] ≤ 1− A ≤ e−a, and e−x is bounded by one, we

can write

E[e−(Zτ−a)] = E[e−(Zτ−a)|τ ≥ Γ] + o(1) as a→∞.

Hence,

PFA = e−aE[e−(Zτ−a)|τ ≥ Γ](1 + o(1)) as a →∞.

This proves the lemma.

From Lemma 2.5.2, it is evident that PFA for the DE-Shiryaev algorithm

depends on the overshoot when Zk crosses a as a → ∞. Before we study

this overshoot distribution we recall that the DE-Shiryaev statistic pn has

the following recursions:

pn = p̃n−1 if Sn = 0, (2.39)

27

and

pn =
p̃n−1L(Xn)

p̃n−1L(Xn) + (1− p̃n−1)
if Sn = 1, (2.40)

with p̃n = pn + (1 − pn)ρ and L(Xn) = f1(Xn)/f0(Xn). We recall that

Zn = log pn
(1−pn)

and write such a recursion for Zn by combining the recursions

in (2.40) and (2.39):

Zn+1 = Zn + I{Sn+1=1} logL(Xn+1) + | log(1− ρ)|+ log
(
1 + e−Znρ

)
= Zn + I{Zn≥b} logL(Xn+1) + | log(1− ρ)|+ log

(
1 + e−Znρ

)
.

(2.41)

In analyzing the trajectory of Zn, it is useful to allow for an arbitrary

random starting point Z0. By defining Yk = logL(Xk) + | log(1 − ρ)| and

expanding the recursion (2.41), we can write an expression for Zn:

Zn =
n∑
k=1

Yk + Z0 +
n−1∑
k=0

log
(
1 + e−Zkρ

)
−

n∑
k=1

I{Zk−1<b} logL(Xk)

=
n∑
k=1

Yk + ηn. (2.42)

Here ηn is used to represent all the terms other than the first term
∑n

k=1 Yk

in (2.42):

ηn = Z0 +
n−1∑
k=0

log
(
1 + e−Zkρ

)
−

n∑
k=1

I{Zk−1<b} logL(Xk). (2.43)

Recall that we are interested in the overshoot distribution when Zn crosses

a large boundary. According to nonlinear renewal theory, this overshoot

distribution is the same as the overshoot distribution of the random walk∑n
k=1 Yk, when the latter crosses a large threshold, provided that the sequence

{ηn} is slowly changing. As defined in [18], ηn is a slowly changing sequence

if

n−1 max{|η1|, . . . , |ηn|}
n→∞−−−→
i.p.

0, (2.44)

and for every ε > 0, there exists n∗ and δ > 0 such that for all n ≥ n∗

P{ max
1≤k≤nδ

|ηn+k − ηn| > ε} < ε. (2.45)

We now show that {ηn} is indeed a slowly changing sequence and hence, the

28

asymptotic overshoot distribution of Zn is the same as that of the random

walk
∑n

k=1 Yk.

Theorem 2.5.3. Let R(x) be the asymptotic distribution of the overshoot

when the random walk
∑n

k=1 Yk crosses a large positive boundary under P1.

Then for fixed ρ, b, we have the following:

1. {ηn} is a slowly changing sequence under P1.

2. Conditioned on Γ = γ and τD ≥ γ, R(x) is the distribution of ZτD − a
as a→∞, i.e.,

lim
a→∞

Pγ [ZτD − a ≤ x|τD ≥ γ] = R(x). (2.46)

3. Also,

lim
a→∞

E[e−(ZτD−a)|τD ≥ Γ] =

∫ ∞
0

e−xdR(x).

Proof. We first show that ηn with b = −∞, and Z0 a random variable, is a

slowly changing sequence.

When b = −∞, the statistic Zn evolves as in the classical Shiryaev algo-

rithm, and it is easy to see that in this case:

ηn =

[
Z0 +

n−1∑
k=0

log
(
1 + e−Zkρ

)]
.

If we start with the Shiryaev-Robert statistic Rn = pn
1−pn and write an expres-

sion for it by expanding its recursion, as we did for Zn above, and then we

take log of that expression (note that Zn is logRn), then we will get another

expression for ηn:

ηn = log

[
eZ0 +

n−1∑
k=0

ρ(1− ρ)k
k∏
i=1

f0(Xi)

f1(Xi)

]
.

Since the two ηns should be the same, we have

ηn =

[
Z0 +

n−1∑
k=0

log
(
1 + e−Zkρ

)]

= log

[
eZ0 +

n−1∑
k=0

ρ(1− ρ)k
k∏
i=1

f0(Xi)

f1(Xi)

]
.

29

Since the terms in the summation are non-negative, we have

ηn −−−→
n→∞

log

[
eZ0 +

∞∑
k=0

ρ(1− ρ)k
k∏
i=1

f0(Xi)

f1(Xi)

]
=

[
Z0 +

∞∑
k=0

log
(
1 + e−Zkρ

)]
.

Define

η(Z0)
4
= log

[
eZ0 +

∞∑
k=0

ρ(1− ρ)k
k∏
i=1

f0(Xi)

f1(Xi)

]
.

Note that η(Z0) as a function of Z0 is well defined and finite under P1. This

is because by Jensen’s inequality, for Z0 = z0,

E[η(z0)] ≤ log

[
ez0 +

∞∑
k=0

ρ(1− ρ)kE1

(
k∏
i=1

f0(Xi)

f1(Xi)

)]

= log

[
ez0 +

∞∑
k=0

ρ(1− ρ)k

]
= log (ez0 + 1) .

Thus

ηn
P1−a.s.−−−−→
b=−∞

η(Z0) = Z0 +
∞∑
k=0

log
(
1 + e−Zkρ

)
. (2.47)

This implies
∑∞

k=0 log
(
1 + e−Zkρ

)
converges a.s. for i.i.d. {Xk} and b = −∞.

This series will also converge with probability 1 if we condition on a set with

positive probability.

Let change happen at Γ = γ. We set Z0 = ZΓ = Zγ and assume that

{Xn}, n ≥ 1 have density f1, which would happen after Γ. We first show

that starting with the above Z0, the sequence ηn generated in (2.43) is slowly

changing.

To verify the first condition (2.44), from (2.43) note that,

n−1 max{|η1|, . . . , |ηn|}

≤ n−1

[
|Z0|+

n−1∑
k=0

log
(
1 + e−Zkρ

)
+

n∑
k=1

(| logL(Xk)|) I{Zk−1<b}

]
.

Since, Zk → ∞ a.s., log
(
1 + e−Zkρ

)
→ 0, also, I{Zk<b} → 0 a.s. Thus

both the sequences {log
(
1 + e−Zkρ

)
} and {(| logL(Xk)|) I{Zk−1<b}} are Ce-

saro summable and have Cesaro sum of zero. Thus the term inside the

square bracket above, when divided by n, goes to zero a.s. and hence also in

probability. Thus the first condition is verified.

30

To verify the second condition (2.45), we first obtain a bound on |ηn+k−ηn|.

|ηn+k − ηn| ≤
n+k−1∑
i=n

log
(
1 + e−Ziρ

)
+

n+k∑
i=n+1

(| logL(Xi)|) I{Zi−1<b}.

Thus,

max
1≤k≤nδ

|ηn+k−ηn| ≤
n+nδ−1∑
i=n

log
(
1 + e−Ziρ

)
+

n+nδ∑
i=n+1

(| logL(Xi)|) I{Zi−1<b}
4
= d1

n+d2
n.

Here, for convenience of computation, we use d1
n and d2

n to represent the first

and second partial sums respectively. Now,

P{ max
1≤k≤nδ

|ηn+k − ηn| > ε} ≤ P(d1
n + d2

n > ε),

and we bound the probability P(d1
n + d2

n > ε) as follows.

On the event that E
4
= {Zk ≥ b,∀k ≥ 0}, d2

n is identically zero, thus for n

large enough,

P(d1
n + d2

n > ε|E) = P(d1
n > ε|E) < ε.

This is because d1
n behaves like a partial sum of a series of type in (2.47).

Since the series in (2.47) converges if random variables are generated i.i.d.

f1, it will also converge if conditioned on the event E. Thus, the partial sum

d1
n converges to 0 almost surely, and hence converges to 0 in probability, i.e.,

P(d1
n > ε|E)→ 0. Select, n = n∗1 such that ∀n > n∗1, P(d1

n > ε|E) < ε.

Define

LZ = sup{k ≥ 1 : Zk−1 < b, Zk ≥ b},

with LZ =∞ if no such k exists. On the event E ′, which is the compliment

of E, LZ is a.s. finite. Then, by noting that d2
n = 0 for LZ < n, we get for n

31

large enough,

P(d1
n + d2

n > ε|E ′) 4= PE′(d1
n + d2

n > ε)

≤ PE′(d1
n + d2

n > ε;LZ ≥ n) + PE′(d1
n + d2

n > ε;LZ < n)

≤ PE′(LZ ≥ n) + PE′(d1
n + d2

n > ε;LZ < n)

= PE′(LZ ≥ n) + PE′(d1
n > ε;LZ < n)

≤ PE′(LZ ≥ n) + PE′(d1
n > ε|LZ < n)

< ε/2 + ε/2 = ε.

Since, LZ is almost surely finite, PE′(LZ ≥ n)→ 0 as n→∞. Thus we can

select n = n∗2 such that ∀n > n∗2, PE′(LZ ≥ n) < ε/2. For the second term,

note that conditioned on LZ < n, d1
n behaves like a partial sum of a series of

type in (2.47), with Z0 replaced by ZLZ . Since the series in (2.47) converges

if random variables are generated i.i.d. f1 beyond LZ , it will also converge if

conditioned on the event {LZ < n}. Thus, the partial sum d1
n converges to 0

almost surely, and hence converges to 0 in probability, i.e., PE′(d1
n > ε|LZ <

n) → 0. Select, n = n∗3 such that ∀n > n∗3, P(d1
n > ε|LZ < n) < ε/2. Then

n∗ = max{n∗1, n∗2, n∗3}, is the desired n∗ and pick any δ > 0. Then for n > n∗,

P(d1
n + d2

n > ε) = P(d1
n + d2

n > ε|E)P(E) + P(d1
n + d2

n > ε|E ′)P(E ′)

< εP(E) + εP(E ′) < ε.

Thus, the sequence {ηn} is slowly changing. Since the sequence ηn is slowly

changing, according to [18], the asymptotic distribution of the overshoot

when Zn crosses a large boundary under f1 is R(x). Thus we have the

following result,

lim
a→∞

Pγ [ZτD − a ≤ x|τD ≥ γ] = R(x).

Since e−(Zτ−a) is a bounded continuous function of the overshoot, we have by

convergence of measure arguments that

lim
a→∞

Eγ[e−(ZτD−a)|τD ≥ γ] =

∫ ∞
0

e−xdR(x).

To prove that the result is true even when averaged over the distribution

32

of Γ, we note that

E[e−(ZτD−a)|τD ≥ Γ] =
∞∑
γ=1

Eγ[e−(ZτD−a)|τD ≥ γ] P(Γ = γ|τD ≥ Γ).

Since, Eγ[e−(ZτD−a)|τD ≥ γ] →
∫∞

0
e−xdR(x) and P(Γ = γ|τD ≥ Γ) → P(Γ =

γ), the result follows by dominated convergence theorem.

Thus, we have the following result.

Theorem 2.5.4. For a fixed b and ρ,

PFA(τD) =

(
e−a

∫ ∞
0

e−xdR(x)

)
(1 + o(1)) as a→∞. (2.48)

We note that the right-hand side in (2.48) is also the PFA of the Shiryaev

algorithm [15]. This proves our claim that the ratio of the PFA of the Shiryaev

algorithm and the DE-Shiryaev algorithm goes to 1.

We thus have the following theorem:

Theorem 2.5.5. If B = Bβ and A = Aα = 1− α, then

ANO(τD) ≤ β, for α small enough,

PFA(τD) ≤ α, and

ADD(τD) ∼ ADD(τS) ∼
| log(α)|

D(f1 || f0) + | log(1− ρ)|
(1 + o(1)), as α→ 0 .

(2.49)

If further logL(X) is non-arithmetic, then for a fixed β,

PFA(τD) ∼ PFA(τS) ∼ α

∫ ∞
0

e−xdR(x) as α→ 0, (2.50)

2.6 Numerical Results

In Section 2.5 we obtained asymptotic expressions for the ADD and the PFA

of the DE-Shiryaev algorithm as a function of the system parameters: the

threshold a, the densities f0 and f1, and the prior ρ. In this section we

provide simulation results to show the accuracy of the asymptotic expressions

for moderate values of the false alarm constraint α. We also compare the

33

performance of the DE-Shiryaev algorithm with other tests. The observations

are assumed to be Gaussian with f0 ∼ N (0, 1), and f1 ∼ N (θ, 1), θ > 0,

for the simulations and analysis. In the simulations, the PFA values are

computed using the expression E[1−pτ]. This guarantees a faster convergence

for small values of PFA.

In Fig. 2.2 we first compare the performance of the Shiryaev algorithm,

the DE-Shiryaev algorithm and the fractional sampling scheme, for β =

50. In the fractional sampling scheme, the Shiryaev algorithm is used and

observations are skipped by tossing a biased coin (with probability of success

50/99), without looking at the state of the system. When an observation is

skipped in the fractional sampling scheme, the Shiryaev statistic is updated

using the prior on change point. In the figure we see a substantial gap in

performance between the DE-Shiryaev algorithm and the fractional sampling

scheme.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
10

15

20

25

30

35

40

45

50

f
0
(0,1), f

1
(0.8,1), ρ=0.01, 50% samples dropped

FractionSample

DE−Shiryaev

Shiryaev

ADD

|log(PFA)|

Figure 2.2: Comparative performance of schemes for f0 ∼ N (0, 1), f1 ∼
N (0.8, 1), and ρ = 0.01.

By Theorem 2.5.4, we have the following approximation for PFA:

PFA ≈ e−a
∫ ∞

0

e−xdR(x).

We note that
∫∞

0
e−xdR(x) can be computed numerically, at least for Gaus-

sian observations [18]. In this section we provide numerical results to show

the accuracy of the above expression for PFA.

In Table 2.1 we compare the analytical approximation with the PFA ob-

tained using simulations of the DE-Shiryaev algorithm for various choices of

34

ρ, thresholds a, and b = log B
(1−B)

, and post change mean θ. From the table

we see that the analytical approximation is quite good.

Table 2.1: PFA: for f0 ∼ N (0, 1), f1 ∼ N (θ, 1)

PFA PFA
θ ρ a b Simulations Analysis
0.4 0.01 3.0 0 3.78×10−2 3.94×10−2

0.4 0.01 6.0 2.0 1.955×10−3 1.96×10−3

0.75 0.01 9.0 -2.0 7.968×10−5 7.964×10−5

2.0 0.01 5.0 -4.0 2.15×10−3 2.155×10−3

0.75 0.005 7.6 3.0 3.231×10−4 3.235×10−4

0.75 0.1 4.0 -3.0 1.143×10−2 1.157×10−2

In Table 2.2, we show that PFA is not a function of b for large values of

a. We fix a = 4.6, and increase b from -2.2 to 0.85. We notice that PFA is

unchanged in simulations when b is changed this way. This is also captured

by the analysis and it is quite accurate.

Table 2.2: PFA for ρ = 0.01, f0 ∼ N (0, 1), f1 ∼ N (0.75, 1)

a b Simulations Analysis
4.6 -2.2 6.44×10−3 6.48×10−3

4.6 -1.5 6.44×10−3 6.48×10−3

4.6 -0.85 6.44×10−3 6.48×10−3

4.6 0 6.44×10−3 6.48×10−3

4.6 0.85 6.44×10−3 6.48×10−3

By Theorem 2.5.4 again a first-order approximation for ADD of the DE-

Shiryaev algorithm is:

ADD ≈
[

a

D(f1, f0) + | log(1− ρ)|

]
. (2.51)

This is also the first-order approximation for the ADD of the Shiryaev algo-

rithm, and gives a good estimate of the delay when PFA is small.

For the Shiryaev algorithm, (2.51) provides a very good estimate of the

delay even for moderate values of PFA; see [15]. In case of the DE-Shiryaev

algorithm, the accuracy of (2.51) depends on the choice of b and hence on the

constraint β, as having b > −∞ increases the delay. Before we demonstrate

this through numerical and simulation results we introduce the following

35

concept:

ANO% = ANO expressed as a percentage of E[Γ]. (2.52)

For example, if ρ = 0.05, and for some choice of system parameters ANO =

15, then ANO% = 15 ∗ 0.05 = 75%. Thus, the concept of ANO% captures

the reduction in the average number of observations used before change by

employing the DE-Shiryaev algorithm.

In Table 2.3 we provide various numerical examples where (2.51) is a

good approximation for ADD. Since (2.51) is a good approximation for the

Shiryaev delay as well, it follows that, for these parameter values, the de-

lay of the DE-Shiryaev algorithm is approximately equal to the delay of the

Shiryaev algorithm. It might be intuitive that if we are aiming for large

ANO% values of say 90%, then the delay of the two algorithms will be close

to each other. But from the values in Table 2.3 we infer that it is possible to

achieve considerably smaller values of ANO% without significantly affecting

the delay.

Table 2.3: f0 ∼ N (0, 1), f1 ∼ N (θ, 1)

ADD PFA ANO%
θ ρ a b Simulations Analysis Simulations Analysis

E[τ − Γ|τ ≥ Γ] (2.51)
0.4 0.01 8.5 -2.2 104.9 111.7 1.608×10−4 1.608×10−4 66%
0.75 0.01 6.467 -2.2 32.3 29.5 1.002×10−3 1.004×10−3 35%
2.0 0.01 7.5 -4.0 6.1 6.23 1.77×10−4 1.768×10−4 43%
0.75 0.005 8.7 -3.0 42.6 40.4 1.076×10−4 1.076×10−4 77%
0.75 0.1 8.5 0.0 23.9 22.18 1.286×10−4 1.285×10−4 26%

However, if the ANO% value is small, then this means that the value of b is

large, and further that the delay is large. In this case, it might happen that

(2.51) is a good approximation only for values of PFA which are very small.

This is demonstrated in Table 2.4. It is clear from the table that, for the

parameter values considered, estimating the delay with less than 10% error

is only possible at PFA values of the order of PFA ≈ 10−22.

This motivates the need for a more accurate estimate of the delay. Please

see [17] for details.

36

Table 2.4: ρ = 0.05, f0 ∼ N (0, 1), f1 ∼ N (0.75, 1)

Simulations Analysis
a b ADD (2.51) ANO% PFA
5.0 1.0 30 13 7.5% 4.3× 10−3

9.0 1.0 42 25 7.5% 7.9× 10−5

13.0 1.0 54 37 7.5% 1.4× 10−6

18.0 1.0 69 52 7.5% 9.7× 10−9

50.0 1.0 165 149 7.5% 1.23× 10−22

2.7 Existing Literature

The problem of quickest change detection with cost considerations is also

studied in the quality control literature in the context of sampling rate control

and sampling size control [19], [9], [7]. However, a systematic study of the

quickest change detection problem with observation control in the framework

of classical quickest change detection is not available in the literature

The problem of controlling the long-term average operational cost of a

machine in the context of destructive testing is studied by Girshik and Rubin

in [19]. In fact, both the Shiryaev and the DE-Shiryaev algorithms were first

proposed in [19], and their optimality proved for different machine repair

problems. However, in the absence of a suitable common problem formulation

and absence of performance analysis of these algorithms, the relationship

between the two algorithms is not obvious from the results in [19].

The problem of quickest change detection with observation control in the

context of sensor networks is studied in [20]. However, the structure of the

optimal observation control is studied only numerically.

37

CHAPTER 3

DATA-EFFICIENT MINIMAX QUICKEST
CHANGE DETECTION

In Chapter 2 we studied data-efficient quickest change detection in the Bayesian

setting. There we modeled the change point as a random variable with

a known distribution, and extended the classical quickest change detection

problem studied by Shiryaev by introducing an additional constraint on the

cost of observations used before the change point. In this chapter we relax

the assumption that the distribution of change point is known and study

data-efficient quickest change detection in non-Bayesian settings.

The classical quickest change detection problem in non-Bayesian settings

(without any data-efficiency or observation control) is studied in [12], [13],

[21], [22], [14], and [23]. In these works, in the absence of the knowledge of

the distribution of the change point, the change point is modeled as an un-

known constant. In this non-Bayesian setting, the quickest change detection

problem is studied in two different minimax settings introduced in [12] and

[13]. The objective in these minimax settings is to minimize some version of

the worst case average delay, subject to a constraint on the mean time to false

alarm. The results from these papers show that, variants of the Shiryaev-

Roberts algorithm [24], the latter being derived from the Shiryaev algorithm

by setting the geometric parameter to zero, and the CuSum algorithm [11],

are asymptotically optimal for both the minimax formulations, as the mean

time to false alarm goes to infinity.

Recall that, for the i.i.d. model, and for geometrically distributed change

point, we showed in Chapter 2 that a two-threshold generalization of the clas-

sical single threshold Shiryaev test is asymptotically optimal, for the data-

efficient formulation we proposed there. We called the two-threshold gen-

eralization, the DE-Shiryaev algorithm. In the DE-Shiryaev algorithm, the

a posteriori probability that the change has already happened conditioned

on available information, is computed at each time step, and the change is

declared the first time this probability crosses a threshold A. When the a

38

posteriori probability is below this threshold A, observations are taken only

when this probability is above another threshold B < A. When an obser-

vation is skipped, the a posteriori probability is updated using the prior on

the change point random variable. We also showed that, for reasonable val-

ues of the false alarm constraint and the observation cost constraint, these

two thresholds can be selected independent of each other: the upper thresh-

old A can be selected directly from the false alarm constraint and the lower

threshold B can be selected directly from the observation cost constraint. Fi-

nally, we showed that the DE-Shiryaev algorithm achieves a significant gain

in performance over the approach of fractional sampling, where the Shiryaev

algorithm is used and an observation is skipped based on the outcome of a

coin toss.

In this chapter we study the data-efficient quickest change detection prob-

lem in a non-Bayesian setting, by introducing an additional constraint on the

cost of observations used in the detection process, in the minimax settings

of [12] and [13]. We first use the insights from the Bayesian analysis from

Chapter 2 to propose a metric for data efficiency in the absence of knowledge

of the distribution on the change point. This metric is the fraction of time

samples are taken before change. We then propose extensions of the mini-

max formulations in [12] and [13] by introducing an additional constraint on

data efficiency in these formulations. The objective in these formulations is

to find a stopping time and an on-off observation control policy to minimize

a version of the worst case average delay, subject to constraints on the mean

time to false alarm and the fraction of time observations are taken before

change. Then, motivated by the structure of the DE-Shiryaev algorithm,

we propose an extension of the CuSum algorithm from [11]. We call this

extension the DE-CuSum algorithm. We show that the DE-CuSum algo-

rithm inherits the good properties of the DE-Shiryaev algorithm. That is,

the DE-CuSum algorithm is asymptotically optimal, is easy to design, and

provides substantial performance improvements over the approach of frac-

tional sampling, where the CuSum algorithm is used and observations are

skipped based on the outcome of a sequence of coin tosses, independent of

the observations process.

39

3.1 Problem Formulation

In the absence of a prior knowledge on the distribution of the change point,

as is standard in classical quickest change detection literature, we model

the change point as an unknown constant γ. As a result, the quantities

ADD,PFA,ANO defined in Chapter 2 are not well defined. Thus, we need

new metrics to capture the false alarm rate, delay and data-efficiency. We

will reuse the notation from Chapter 2. Specifically,

Sn =

1 if Xn used for decision making

0 otherwise.

The information available at time n is denoted by

In = {X(S1)
1 , · · · , X(Sn)

n },

where X
(Sk)
k = Xk if Sk = 1, else Xk is absent from In, and

Sn = φn(In−1).

Here, φn denotes the control map. Let τ be a stopping time for the sequence

{In}. A control policy is the collection

Ψ = {τ, φ1, · · · , φτ}.

For false alarm, we consider the metric used in [12] and [13], the mean

time to false alarm or its reciprocal, the false alarm rate:

FAR(Ψ) =
1

E∞ [τ]
. (3.1)

For delay we consider two possibilities: the minimax setting of Pollak [13],

where the delay metric is the following supremum over time of the conditional

delay1

CADD(Ψ) = sup
γ

Eγ [τ − γ|τ ≥ γ] , (3.2)

or the minimax setting of Lorden [12], where the delay metric is the supre-

1We are only interested in those policies for which the CADD is well defined.

40

mum over time of the essential supremum of the conditional delay2

WADD(Ψ) = sup
γ

ess sup Eγ
[
(τ − γ)+|Iγ−1

]
. (3.3)

Since {τ ≥ γ} belongs to the sigma algebra generated by Iγ−1, we have

CADD(Ψ) ≤ WADD(Ψ).

We next propose a metric for data-efficiency in a non-Bayesian setting.

In Chapter 2, we saw that in the DE-Shiryaev algorithm, observation cost

constraint is met using an initial wait, and by controlling the fraction of

time observations are taken, after the initial wait. In the absence of prior

statistical knowledge on the change point such an initial wait cannot be

justified. This motivates us to seek control policies that can meet a constraint

on the fraction of time observations are taken before change. We propose the

following duty cycle based observation cost metric, Conditional Pre-change

Duty Cycle (CPDC):

CPDC(Ψ) = lim sup
γ→∞

1

γ
Eγ

[
γ−1∑
k=1

Sk

∣∣∣τ ≥ γ

]

= lim sup
γ→∞

1

γ
E∞

[
γ−1∑
k=1

Sk

∣∣∣τ ≥ γ

]
.

(3.4)

Clearly, CPDC ≤ 1.

We now discuss why we use lim sup rather than sup in defining CPDC.

In all reasonable policies Ψ, S1 will typically be set to 1. As mentioned

earlier, this is because an initial wait cannot be justified without a prior

statistical knowledge of the change point. As a result, in (3.4), we cannot

replace the lim sup by sup, because the latter would give us a CPDC value

of 1. Even otherwise, without any prior knowledge on the change point, it

is reasonable to assume that the value of γ is large corresponding to a rare

change, and hence the CPDC metric defined in (3.4) is a reasonable metric

for our problem.

If in a policy all the observations are used for decision making, then the

2The delay metric considered in [12] and [21] is actually
supγ ess sup Eγ [(τ − γ + 1)+|Iγ−1]. However, these two metrics are equivalent as
the WADD goes to infinity.

41

CPDC for that policy is 1. If every alternate observation is used, then the

CPDC = 0.5.

Our first minimax formulation is the following data-efficient extension of

Pollak [13]:

Problem 3.1.1.

minimize
Ψ

CADD(Ψ),

subject to FAR(Ψ) ≤ α, (3.5)

and CPDC(Ψ) ≤ β,

where 0 ≤ α, β ≤ 1 are given constraints.

We are also interested in the data-efficient extension of the minimax for-

mulation of Lorden [12]:

Problem 3.1.2.

minimize
Ψ

WADD(Ψ),

subject to FAR(Ψ) ≤ α, (3.6)

and CPDC(Ψ) ≤ β,

where 0 ≤ α, β ≤ 1 are given constraints.

With β = 1, Problem 3.1.1 reduces to the minimax formulation of Pollak

in [13], and Problem 3.1.2 reduces to the minimax formulation of Lorden in

[12].

In [11], the following algorithm called the CuSum algorithm is proposed:

Algorithm 3.1.1 (CuSum: ΨC). Start with C0 = 0, and update the statistic

Cn as

Cn+1 = (Cn + `(Xn+1))+ ,

where (x)+ = max{0, x} and `(X) = log f1(X)
f0(X)

. Stop at

τC = inf{n ≥ 1 : Cn > A}.

Thus, in the CuSum algorithm, the log likelihood ratio of the observations

is accumulated over time. If the accumulated log likelihood ratio becomes

42

negative, it is reset to zero. The CuSum algorithm can also be seen as

a sequence of two-sided SPRTs; see [18]. It is shown by Lai in [14] that

the CuSum algorithm is asymptotically optimal for both Problem 3.1.1 and

Problem 3.1.2, with β = 1, as α→ 0 (see Section 3.3.2 for precise statements

about the CuSum algorithm).

However, note that the CPDC for the DE-CuSum algorithm is equal to

1. Hence, it cannot be a solution to Problem 3.1.2 and Problem 3.1.1, if

β < 1. In the following we propose the DE-CuSum algorithm, an extension

of the CuSum algorithm for the data-efficient setting, and show that it is

asymptotically optimal, for each fixed β, as α → 0; see Section 3.3.5. The

extension is motivated by the Bayesian analysis from Chapter 2.

3.2 The DE-CuSum Algorithm

We now present the DE-CuSum algorithm.

Algorithm 3.2.1 (DE− CuSum: ΨW(A, µ, h)). Start with W0 = 0 and fix

µ > 0, A > 0 and h ≥ 0. For n ≥ 0 use the following control:

Sn+1 =

0 if Wn < 0

1 if Wn ≥ 0
,

τW = inf {n ≥ 1 : Wn > A} .

The statistic Wn is updated using the following recursions:

Wn+1 =

min{Wn + µ, 0} if Sn+1 = 0

(Wn + `(Xn+1))h+ if Sn+1 = 1,

where (x)h+ = max{x,−h} and `(X) = log f1(X)
f0(X)

.

When h =∞, the DE-CuSum algorithm works as follows. The statistic Wn

starts at 0, and evolves according to the CuSum algorithm until it goes below

0. When Wn goes below 0, it does so with an undershoot. Beyond this, Wn is

incremented deterministically (by using the recursion Wn+1 = Wn + µ), and

observations are skipped until Wn crosses 0 from below. As a consequence,

the number of observations that are skipped is determined by the undershoot

43

(log likelihood ratio of the observations) as well as the parameter µ. When

Wn crosses 0 from below, it is reset to 0 (this is the mathematical version

of the statement that beyond the skipped samples, the DE-CuSum statistic

is computed using fresh samples). Once Wn = 0, the process renews itself

and continues to evolve this way until Wn > A, at which time a change is

declared.

If h < ∞, Wn is truncated to −h when Wn goes below 0 from above. In

other words, the undershoot is reset to −h if its magnitude is larger than h.

A finite value of h guarantees that the number of consecutive samples skipped

is bounded by h
µ

+ 1. The parameter h can be selected based on practical

considerations. This feature will also be crucial to the delay analysis of the

DE-CuSum algorithm in Section 3.3.4.

If h = 0, the DE-CuSum statistic Wn never becomes negative and hence

reduces to the CuSum statistic and evolves as: W0 = 0, and for n ≥ 0,

Wn+1 = max{0,Wn + `(Xn+1)}.

Thus, µ is a substitute for the Bayesian prior ρ that is used in the DE-

Shiryaev algorithm described in Chapter 2. But unlike ρ which represents

a prior statistical knowledge of the change point, µ is a design parameter.

An appropriate value of µ is selected to meet the constraint on CPDC; see

Section 3.3.1 for details.

The evolution of the DE-CuSum algorithm is plotted in Fig. 3.1. In anal-

ogy with the evolution of the DE-Shiryaev algorithm, the DE-CuSum al-

gorithm can also be seen as a sequence of independent two-sided tests. In

each two-sided test a Sequential Probability Ratio Test (SPRT) [25], with

log boundaries A and 0, is used to distinguish between the two hypotheses

“H0 = pre-change” and “H1 = post-change”. If the decision in the SPRT is

in favor of H0, then samples are skipped based on the likelihood ratio of all

the observations taken in the SPRT. A change is declared the first time the

decision in the sequence of SPRTs is in favor of H1. If h = 0, no samples

are skipped and the DE-CuSum reduces to the CuSum algorithm, i.e., to a

sequence of SPRTs (also see [18]).

Unless it is required to have a bound on the maximum number of samples

skipped, the DE-CuSum algorithm can be controlled by just two-parameters:

A and µ. We will show in Section 3.3.1 that these two parameters can be

44

Figure 3.1: Typical evolution of the CuSum and the DE-CuSum algorithms
applied to the same set of samples. Parameters used: f0 ∼ N (0, 1), f1 ∼
N (0.75, 1), γ = 40, A = 7, and µ = 0.05. With h = 0.5, the undershoots are
truncated at −0.5.

selected independent of each other directly from the constraints. That is, the

threshold A can be selected so that FAR ≤ α independent of the value of µ.

Also, it is possible to select a value of µ such that CPDC ≤ β independent of

the choice of A.

Remark 3.2.1. With the way the DE-CuSum algorithm is defined, we will

see in the following that it may not be possible to meet CPDC constraints

that are close to 1, with equality. We ignore this issue in what follows, as

in many practical settings the preferred value of CPDC would be closer to 0

than 1. But, we remark that the DE-CuSum algorithm can be easily modified

to achieve CPDC values that are close to 1 by resetting Wn to zero if the

undershoot is smaller than a pre-designed threshold. See [26].

Remark 3.2.2. One can also modify the Shiryaev-Roberts algorithm [24] and

obtain a two-threshold version of it, with an upper threshold used for stopping

and a lower threshold used for on-off observation control. Also note that

the SPRTs of the two-sides tests in the DE-CuSum algorithm have a lower

threshold of 0. One can also propose variants of the DE-CuSum algorithm

with a negative lower threshold for the SPRTs.

Remark 3.2.3. For the CuSum algorithm, the supremum in (3.2) and (3.3)

is achieved when the change is applied at time γ = 1 (see also (3.19)). This

is useful from the point of view of simulating the test. However, in the data-

efficient setting, since the information vector also contains information about

45

missed samples, the worst case change point in (3.2) would depend on the

observation control and may not be n = 1. But note that in the DE-CuSum

algorithm, the test statistic evolves as a Markov process. As a result, the worst

case usually occurs in the initial slots, before the process hits stationarity.

This is useful from the point of view of simulating the algorithm. In the

analysis of the DE-CuSum algorithm provided in Section 3.3, we will see that

the WADD of the DE-CuSum algorithm is equal to its delay when change

occurs at γ = 1, plus a constant. Similarly, even if computing the CPDC

may be a bit difficult using simulations, we will provide a simple numerically-

computable upper bound on the CPDC of the DE-CuSum algorithm that can

be used to ensure that the CPDC constraint is satisfied. We will also provide

a simple approximation to the CPDC. This approximation can be used to

approximately satisfy the constraint on the CPDC.

3.3 Analysis and Design of the DE-CuSum Algorithm

The identification or intepretation of the DE-CuSum algorithm as a sequence

of two-sided tests will now be used in this section to perform its asymptotic

analysis. In the rest of the chapter, we use L(X) and `(X) to denote f1(X)
f0(X)

and log f1(X)
f0(X)

, respectively.

Recall that the DE-CuSum algorithm can be seen as a sequence of two-

sided tests, each two-sided test contains an SPRT and a possible sojourn

below zero. The length of the latter is dependent on the likelihood ratio of

the observations. To capture these quantities mathematically we now define

some new variables.

Define the stopping time for an SPRT

λA

∆
= inf{n ≥ 1 :

n∑
k=1

`(Xk) /∈ [0, A]}. (3.7)

To capture the sojourn time below 0, define for x < 0

T (x) = d|(x)h+|/µe. (3.8)

46

Note that T (0) = 0. We also define the stopping time for the two-sided test

ΛA = λA + T (WλA) I{WλA
<0}. (3.9)

Let λ∞ and Λ∞ be the variables λA and ΛA, respectively, when the threshold

A =∞.

The variables λA, ΛA and T (x) should be interpreted as follows. The

DE-CuSum algorithm can be seen as a sequence of two-sided tests, with the

stopping time of each two-sided test distributed accordingly to the law of ΛA.

Each of the above two-sided tests consists of an SPRT with stopping time

distributed accordingly to the law of λA, and a sojourn of length T (WλA)

corresponding to the time for which the statistic Wn is below 0, provided

that at the stopping time for the SPRT, the accumulated log likelihood is

negative, i.e., the event {WλA < 0} happens. See Fig. 3.2. In the figure,

Λ1,Λ2, · · · are random variables distributed accordingly to the law of ΛA,

and λ1, λ2, · · · are random variables distributed accordingly to the law of λA.

Figure 3.2: Evolution of Wn for f0 ∼ N (0, 1), f1 ∼ N (0.75, 1), and Γ = 40,
with A = 7, h = ∞, and µ = 0.1. The two-sided tests with distribution of
ΛA are shown in the figure. Also shown are the two components of ΛA: λA

and T (x).

The CuSum algorithm can also be seen as a sequence of SPRTs, with the

stopping time of each SPRT distributed according to the law of λA (see [18]).

We now provide some results on the mean of λA and T (x) that will be used

in the analysis of the DE-CuSum algorithm in Sections 3.3.1, 3.3.3 and 3.3.4.

47

If 0 < D(f0 ‖ f1) <∞, then from Corollary 2.4 in [16],

E∞[λ∞] <∞, (3.10)

and by Wald’s lemma

E∞[|Wλ∞|] = D(f0 ‖ f1) E∞[λ∞] <∞. (3.11)

Also for h ≥ 0

E∞[|W h+
λ∞
|] ≤ E∞[|Wλ∞|] <∞, (3.12)

where the finiteness follows from (3.11).

In the next lemma we show that the quantity E∞[λA|WλA < 0] is finite for

every A and provide a finite upper bound to it that is not a function of the

threshold A. This result will be used in the CPDC analysis in Section 3.3.1.

Lemma 3.3.1. If 0 < D(f0 || f1) <∞, then for any A, E∞[λA|WλA < 0] is

well defined and finite:

E∞[λA|WλA < 0] ≤ E∞[λ∞]

P∞(`(X1) < 0)
<∞.

Proof. The proof of the first inequality is provided in Section 3.5. The second

inequality is true by (3.10) and because P∞(`(X1) < 0) > 0.

In the next lemma we provide upper and lower bounds on

E∞[T (WλA)|WλA < 0] that are not a function of the threshold A. The upper

bound will be useful in the FAR analysis in Section 3.3.3, and the lower bound

will be useful in the CPDC analysis in Section 3.3.1. Define

T
(∞)
L =

E∞[|`(X1)h+| ; {`(X1) < 0}]
µ

, (3.13)

and

T
(∞)
U =

E∞[|W h+
λ∞
|]

µ P∞(`(X1) < 0)
+ 1. (3.14)

Lemma 3.3.2. If 0 < D(f0 ‖ f1) <∞ and µ > 0, then

T
(∞)
L ≤ E∞[T (WλA)

∣∣∣WλA < 0] ≤ T
(∞)
U . (3.15)

48

Moreover, T
(∞)
U <∞, and if h > 0, then T

(∞)
L > 0.

Proof. The proof is provided in the Section 3.5.

3.3.1 Meeting the CPDC Constraint

In this section we show that the CPDC metric is well defined for the DE-

CuSum algorithm. In general CPDC(ΨW) will depend on both A and µ

(apart from the obvious dependence on f0 and f1). But, we show that it

is possible to choose a value of µ that ensures that the CPDC constraint of

β can be met independent of the choice of A. The latter is crucial to the

asymptotic optimality proof of the DE-CuSum algorithm provided later in

Section 3.3.5.

Theorem 3.3.1. For fixed values of A, h, and µ > 0, if 0 < D(f0 || f1) <∞,

then

CPDC(ΨW(A, µ, h)) =

E∞[λA|WλA < 0]

E∞[λA|WλA < 0] + E∞[T (WλA)
∣∣∣ WλA < 0]

.
(3.16)

Proof. Consider an alternating renewal process {Vn, Un}, i.e, a renewal pro-

cess with renewal times {V1, V1 +U1, V1 +U1 +V2, · · · }, with {Vn} i.i.d. with

distribution of λA conditioned on {WλA < 0}, and {Un} i.i.d. with distribu-

tion of T (WλA) conditioned on {WλA < 0}. Thus,

E∞[V1] = E∞[λA|WλA < 0],

and

E∞[U1] = E∞[T (WλA)
∣∣∣ WλA < 0].

Both the means are finite by Lemma 3.3.1 and Lemma 3.3.2.

At time n assign a reward of Rn = 1 if the renewal cycle in progress has

the law of V1, set Rn = 0 otherwise. Then by renewal reward theorem,

1

n
E∞

[
n−1∑
k=1

Rk

]
→ E∞[V1]

E∞[V1] + E∞[U1]
.

49

On {τW ≥ n}, the total number of observations taken until time n − 1 has

the same distribution as the total reward for the alternating renewal process

defined above. Hence, the expected value of the average reward for both the

sequences must have the same limit:

CPDC(ΨW(A, µ, h)) = lim
n→∞

1

n
En

[
n−1∑
k=1

Sk

∣∣∣τW ≥ n

]

=
E∞[λA|WλA < 0]

E∞[λA|WλA < 0] + E∞[T (WλA)|WλA < 0]
.

(3.17)

If h = 0, then E∞[T (WλA)|WλA < 0] = 0 and we get the CPDC of the

CuSum algorithm that is equal to 1.

As can be seen from (3.16), CPDC is a function of A as well as that of h

and µ. We now show that for any A and h > 0, the DE-CuSum algorithm

can be designed to meet any CPDC constraint of β. Moreover, for a given

h > 0, a value of µ can always be selected such that the CPDC constraint of

β is met independent of the choice of A. The latter is convenient not only

from a practical point of view, but will also help in the asymptotic optimality

proof of the DE-CuSum algorithm in Section 3.3.5.

Theorem 3.3.2. For the DE-CuSum algorithm, for any choice of A and

h > 0, if 0 < D(f0 || f1) < ∞, then we can always choose a value of µ

to meet any given CPDC constraint of β. Moreover, for any fixed value of

h > 0, there exists a value of µ say µ∗(h) such that for every A,

CPDC(ΨW(A, µ∗, h)) ≤ β.

In fact any µ that satisfies

µ ≤
E∞[|`(X1)h+|

∣∣∣ `(X1) < 0] P∞(`(X1) < 0)2

E∞[λ∞]

β

1− β
,

can be used as µ∗.

Proof. Note that E∞[λA|WλA < 0] is not affected by the choice of h and µ.

50

Moreover, from Lemma 3.3.2

E∞[T (WλA)
∣∣∣ WλA < 0] ≥ T

(∞)
L .

Thus from (3.13), for a given A and h,

E∞[T (WλA)|WλA < 0]→∞ as µ→ 0.

Therefore, we can always select a µ small enough so that the CPDC is smaller

than the given constraint of β.

Next, our aim is to find a µ∗ such that for every A

E∞[λA|WλA < 0]

E∞[λA|WλA < 0] + E∞[T (WλA))
∣∣∣ WλA < 0]

≤ β.

Since CPDC increases as E∞[λA|WλA < 0] increases and E∞[T (WλA) WλA <

0] decreases, we have from Lemma 3.3.1 and Lemma 3.3.2,

CPDC(ΨW) ≤ E∞[λ∞]

E∞[λ∞] + T
(∞)
L P∞(`(X1) < 0)

. (3.18)

Then, the theorem is proved if we select µ such that the right-hand side of

(3.18) is less than β or using (3.13), a µ that satisfies

µ ≤
E∞[|`(X1)h+|

∣∣∣ `(X1) < 0] P∞(`(X) < 0)2

E∞[λ∞]

β

1− β
.

While the existence of µ∗ proved by Theorem 3.3.2 is critical for asymp-

totic optimality of the DE-CuSum algorithm, the estimate it provides when

substituted for µ in (3.16) may be a bit conservative. In Section 3.3.6 we

provide a good approximation to CPDC that can be used to choose the value

of µ in practice. In Section 3.4 we provide numerical results showing the

accuracy of the approximation.

Remark 3.3.1. By Theorem 3.3.2, for any value of h, we can select a value

of µ small enough, so that any CPDC constraint close to zero can be met

with equality. However, meeting the CPDC constraint with equality may not

51

be possible if β is close to 1. This is because if h 6= 0 then

CPDC(ΨW) ≤ E∞[λ∞]

E∞[λ∞] + P∞(`(X) < 0)
< 1.

However, as mentioned earlier, for most practical applications β will be closer

to zero than 1, and hence this issue will not be encountered. If β closer to

1 is indeed desired then the DE-CuSum algorithm can be easily modified to

address this issue (by skipping samples only when the undershoot is larger

than a pre-designed threshold).

3.3.2 Analysis of the CuSum Algorithm

In the sections to follow, we will express the performance of the DE-CuSum

algorithm in terms of the performance of the CuSum algorithm. Therefore,

in this section we summarize the performance of the CuSum algorithm.

It is easy to show (see [1]) that

CADD(ΨC) = WADD(ΨC) = E1[τC − 1]. (3.19)

From [12], if 0 < D(f1 || f0) <∞, then E1[τC] <∞. Moreover, if {λ1, λ2, · · · }
are i.i.d. random variables each with distribution of λA, then by Wald’s

lemma [18]

E1[τC] = E1

[
N∑
k=1

λk

]
= E1[N] E1[λA], (3.20)

where N is the number of two-sided tests (SPRTs)–each with distribution of

λA–executed before the change is declared.

It is also shown in [12] that 0 < D(f1 || f0) < ∞ is also sufficient to

guarantee E∞[τC] <∞ and FAR(ΨC) > 0. Moreover,

E∞[τC] = E∞

[
N∑
k=1

λk

]
= E∞[N] E∞[λA]. (3.21)

The proof of the following theorem can be found in [12] and [14].

Theorem 3.3.3. If 0 < D(f1 || f0) <∞, then with A = log 1
α

,

FAR(ΨC) ≤ α,

52

and as α→ 0,

CADD(ΨC) = WADD(ΨC) = E1[τC − 1] ∼ | logα|
D(f1 || f0)

.

Thus, the CuSum algorithm is asymptotically optimal for both Problem 3.1.2

and Problem 3.1.1, with β = 1, as α → 0. This is because for any stopping

time τ with FAR(τ) ≤ α,

WADD(τ) ≥ CADD(τ) ≥ | logα|
D(f1 || f0)

(
1 + o(1)

)
, (3.22)

as α→ 0.

3.3.3 FAR for the DE-CuSum Algorithm

In this section we characterize the false alarm rate of the DE-CuSum al-

gorithm. In the next lemma we show that for a fixed A, µ and h, if the

DE-CuSum algorithm and the CuSum algorithm are applied to the same se-

quence of random variables, then sample-pathwise, the DE-CuSum statistic

Wn is always below the CuSum statistic Cn. Thus, the DE-CuSum algorithm

crosses the threshold A only after the CuSum algorithm has crossed it.

Lemma 3.3.3. Under any Pn, n ≥ 1 and under P∞,

Cn ≥ Wn.

Thus

τC ≤ τW.

Proof. Note that initially Cn = Wn until both the statistics become negative.

When Wn goes below zero, it is incremented by µ until it reaches zero from

below, at which time it is reset to zero. Since all the samples are taken in the

CuSum algorithm, the time at which Wn reaches 0 from below, Cn ≥ 0. That

point onward, since the same sequence of observations are used to compute

Cn and Wn, Cn ≥ Wn, until Wn goes below 0. One can now repeat the

arguments provided until now to claim that Cn will continue to stay above

Wn throughout. Thus, if a sequence of samples causes the statistic of the

DE-CuSum algorithm to go above A, then since all the samples are utilized

53

in the CuSum algorithm, the same sequence must also cause the CuSum

statistic to go above A.

It follows as a corollary of Lemma 3.3.3 that

E∞[τC] ≤ E∞[τW].

The following theorem shows that these quantities are finite and also provides

an estimate for FAR(ΨW).

Theorem 3.3.4. For any fixed h (including h =∞) and µ > 0, if

0 < D(f0 || f1) <∞ and 0 < D(f1 || f0) <∞,

then with A = log 1
α

,

FAR(ΨW) ≤ FAR(ΨC) ≤ α.

Moreover, for any A

E∞[τW] = E∞[τC] +
E∞[T (WλA) I{WλA

<0}]

P∞(WλA > 0)
(3.23)

and as A→∞,

FAR(ΨW)

FAR(ΨC)
→ E∞[λ∞]

E∞[λ∞] + E∞[T (Wλ∞)]
, (3.24)

where λ∞ is the variable λA with A =∞. The limit in (3.24) is strictly less

than 1 if h > 0.

Proof. For a fixed A, let NA be the number of two-sided tests of distribu-

tion ΛA executed before the change is declared in the DE-CuSum algorithm.

Then, if {Λ1,Λ2, · · · } is a sequence of random variables each with distribution

of ΛA, then

E∞[τW] = E∞

[
NA∑
k=1

Λk

]
.

Because of the renewal nature of the DE-CuSum algorithm,

E∞[NA] = E∞[N],

54

where N is the number of SPRTs used in the CuSum algorithm. Thus from

(3.21),

E∞[NA] = E∞[N] ≤ E∞[τC] <∞.

Further from (3.9),

E∞[ΛA] = E∞[λA] + E∞[T (WλA) I{WλA
<0}]. (3.25)

From (3.21) again

E∞[λA] ≤ E∞[τC] <∞.

Moreover from Lemma 3.3.2

E∞[T (WλA) I{WλA
<0}] ≤ E∞[T (WλA) | WλA < 0]

≤ T
(∞)
U <∞.

Thus, E∞[ΛA] <∞ and

E∞[τW] = E∞

[
NA∑
k=1

Λk

]
= E∞[NA] E∞[ΛA] <∞.

Hence,

E∞[τW] = E∞[NA] E∞[ΛA]

= E∞[N] E∞[ΛA]

≥ E∞[N] E∞[λA]

= E∞[τC].

We note that the statement also follows as a corollary of Lemma 3.3.3 and

Theorem 3.3.3. And with A = log 1
α

,

FAR(ΨW) ≤ FAR(ΨC) ≤ α.

55

Since, NA is Geom(P∞(WλA > 0)), (3.23) follows from (3.25) and (3.21):

E∞[τW] =
E∞[ΛA]

P∞(WλA > 0)

=
E∞[λA]

P∞(WλA > 0)
+

E∞[T (WλA) I{WλA
<0}]

P∞(WλA > 0)

= E∞[τC] +
E∞[T (WλA) I{WλA

<0}]

P∞(WλA > 0)
.

(3.26)

Further, since E∞[NA] = E∞[N], we have

E∞[τC]

E∞[τW]
=

E∞[N] E∞[λA]

E∞[NA] E∞[ΛA]
=

E∞[λA]

E∞[ΛA]
.

Since, λA ↑ λ∞ and ΛA ↑ Λ∞, we have by monotone convergence theorem, as

A→∞,
E∞[τC]

E∞[τW]
→ E∞[λ∞]

E∞[Λ∞]
=

E∞[λ∞]

E∞[λ∞] + E∞[T (Wλ∞)]
.

The limit is clearly less than 1 if h > 0.

Remark 3.3.2. Thus, unlike the Bayesian setting where the PFA of the DE-

Shiryaev algorithm converges to the PFA of the Shiryaev algorithm (for the

nonarithmetic case), here, the FAR of the DE-CuSum algorithm is strictly

less than the FAR of the CuSum algorithm. Moreover, for large A, the right

side of (3.24) is approximately the CPDC achieved. Thus, (3.24) shows that,

asymptotically as A → ∞, the ratio of the FARs is approximately equal to

the CPDC. This also shows that one can set the threshold in the DE-CuSum

algorithm to a value smaller than A = 1
α

to meet the FAR constraint with

equality. This latter fact will be used in obtaining the numerical results in

Section 3.4.

3.3.4 CADD and WADD of the DE-CuSum Algorithm

We now provide the delay analysis of the DE-CuSum algorithm. The main

content of Theorem 3.3.5 below is, that for each value of A, the WADD of the

DE-CuSum algorithm is within a constant of the corresponding performance

of the CuSum algorithm. This constant is independent of the choice of A,

and as a result the WADD of the two algorithms are asymptotically the same.

56

Because of the virtue of the relation CADD ≤ WADD for any policy, and due

to the fact that CADD(τC) = WADD(τC), even the CADD of the DE-CuSum

algorithm is within a constant of the CADD of the CuSum algorithm. A

critical assumption made in these results is that h < ∞, i.e., the number of

consecutive samples skipped is bounded by dh/µe <∞.

The results provided below depend on the following fundamental lemma.

In the lemma it is shown that when the change happens at γ = 1, then the

average delay of the DE-CuSum algorithm starting with W0 = x > 0, is

upper bounded by the average delay of the algorithm when W0 = 0, plus a

constant which is dh/µe <∞.

Let

τW(x) = inf{n ≥ 1 : Wn > A;W0 = x}. (3.27)

Here, Wn is the DE-CuSum statistic and evolves according the description of

the algorithm in Section 3.2. Thus, τW(x) is the first time for the DE-CuSum

algorithm to cross A, when starting at W0 = x. Clearly, τW(x) = τW if x = 0.

Lemma 3.3.4. Let 0 < D(f1 || f0) < ∞ and 0 ≤ x < A, and moreover

h <∞, then

E1[τW(x)] ≤ E1[τW] + dh/µe.

Proof. The proof is provided in Section 3.5.

We now express the WADD of the DE-CuSum algorithm in terms of the

WADD of the CuSum algorithm.

Theorem 3.3.5. Let

0 < D(f1 || f0) <∞.

Then, for fixed values of µ > 0 and h <∞, and for each A,

WADD(ΨW) ≤ WADD(ΨC) +KDC,

and

CADD(ΨW) ≤ CADD(ΨC) +KDC,

where KDC is a constant not a function of A. Thus, as A→∞,

WADD(ΨW) ≤ WADD(ΨC) +O(1),

57

and

CADD(ΨW) ≤ CADD(ΨC) +O(1).

Proof. From Lemma 3.3.4, it follows that for n > 1

ess sup Eγ
[
(τW − γ)+|Iγ−1

]
≤ dh/µe+ E1[τW]. (3.28)

This is because if Iγ−1 is such that Wγ−1 = x ∈ [0, A), then the inequality

in (3.28) is true for each such x due to Lemma 3.3.4. On the other hand if

Iγ−1 is such that Wγ−1 = x < 0, then the time to hit A is the time spent

by the DE-CuSum statistic to reach 0 from below, plus E1[τW]. The latter is

true because a renewal occurs once the DE-CuSum statistic reaches 0 from

below. Under the assumption that h < ∞, the time to hit 0 starting from

x < 0 is clearly bounded by dh/µe.
Since the right-hand side in (3.28) is not a function of γ and it is greater

than E1[τW − 1] (corresponding to γ = 1), we have

WADD(ΨW) ≤ dh/µe+ E1[τW].

Thus, from the proof of Theorem 3.3.4 (see (3.26)) with E∞ replaced by

E1 we have

E1[τW] = E1[τC] +
E1[T (WλA) I{WλA

<0}]

P1(WλA > 0)
.

But,

E1[T (WλA) I{WλA
<0}] ≤ dh/µe,

and from [16] we have

P1(WλA > 0) ≥ P1(Wλ∞ > 0) > 0.

Thus, from (3.19) we have

E1[τW] ≤ E1[τC] +
dh/µe

P1(Wλ∞ > 0)

= WADD(ΨC) +
dh/µe

P1(Wλ∞ > 0)
+ 1,

58

and we have

WADD(ΨW) ≤ WADD(ΨC) +
dh/µe

P1(Wλ∞ > 0)
+ dh/µe+ 1.

This proves the theorem for the WADD.

For the CADD note that

CADD(ΨW) ≤ WADD(ΨW) ≤ WADD(ΨC) +KDC = CADD(ΨC) +KDC.

The proof of the theorem is complete.

The following corollary follows easily from Theorem 3.3.3 and Theorem 3.3.5.

Corollary 3.3.5.1. If 0 < D(f1 || f0) < ∞, then for fixed values of µ and

h <∞, as A→∞,

CADD(ΨW) ∼ A

D(f1 || f0)
,

and

WADD(ΨW) ∼ A

D(f1 || f0)
.

3.3.5 Asymptotic Optimality of the DE-CuSum Algorithm

We now use the results from the previous sections to show that the DE-

CuSum algorithm is asymptotically optimal.

In the following theorem it is shown that for a given CPDC constraint of β,

the DE-CuSum algorithm is asymptotically optimal for both Problem 3.1.2

and Problem 3.1.1, as α→ 0, for the following reasons:

• The CPDC of the DE-CuSum algorithm can be designed to meet the

constraint independent of the choice of A.

• The CADD and WADD of the DE-CuSum algorithm approaches the

corresponding performances of the CuSum algorithm.

• The FAR of the DE-CuSum algorithm is always better than that of the

CuSum algorithm.

• The CuSum algorithm is asymptotically optimal for both Problem 3.1.2

and Problem 3.1.1, with β = 1, as α→ 0.

59

Theorem 3.3.6. Let 0 < D(f1 || f0) < ∞ and 0 < D(f0 || f1) < ∞. For a

given α, set A = log 1
α

, then for any choice of h and µ,

FAR(ΨW) ≤ FAR(ΨC) ≤ α.

For a given β, and for any given h, it is possible to select µ = µ∗(h) such

that ∀A, and hence even with A = log 1
α

for any value of α > 0,

CPDC(ΨW) ≤ β.

Moreover, for each fixed β, for any h < ∞ and with µ∗(h) selected to meet

this CPDC constraint of β, as α→ 0 (or A→∞ because A = log 1
α

),

CADD(ΨW(log
1

α
, h, µ∗(h))) ∼ CADD(ΨC) ∼ | logα|

D(f1 || f0)
,

and

WADD(ΨW(log
1

α
, h, µ∗(h))) ∼ WADD(ΨC) ∼ | logα|

D(f1 || f0)
.

Proof. The result on FAR follows from Theorem 3.3.4. The fact that one can

select a µ = µ∗(h) to meet the CPDC constraint independent of the choice

of A follows from Theorem 3.3.2. Finally, the delay asymptotics follow from

Theorem 3.3.5 and Corollary 3.3.5.1.

Since, by Theorem 3.3.3, | logα|
D(f1 || f0)

is the best possible asymptotics per-

formance for any given FAR constraint of α, Theorem 3.3.6 establishes the

asymptotic optimality of the DE-CuSum algorithm for both Problem 3.1.1

and Problem 3.1.2, for each fixed β, as α→ 0. We also note that the ability

to set the CPDC independent of the threshold A is critical to the optimality

result. In general, as we vary the FAR for a policy, its CPDC can change and

can even violate the constraint of β.

We also note that the DE-CuSum algorithm is second-order asymptotically

optimal (within a constant of the optimal, see [23]) for the Lorden’s criterion.

This is because the WADD of the DE-CuSum algorithm is within a constant

of the WADD of the CuSum algorithm, and the latter is exactly optimal for

the Lorden’s criterion.

60

3.3.6 Design of the DE-CuSum Algorithm

We now discuss how to set the parameters µ, h and A so as to meet a given

FAR constraint of α and a CPDC constraint of β.

Theorem 3.3.4 provides the guideline for choosing A: for any h, µ,

if A = log
1

α
then FAR(ΨW) ≤ α.

As discussed earlier, the CPDC constraint can be satisfied independent of

the false alarm constraint. However, the estimate provided in Theorem 3.3.2

of the CPDC can be conservative. For practical purposes, we suggest using

the following approximation for CPDC (obtained in the limit as A→∞):

CPDC ≈ E∞[λ∞]

E∞[λ∞] + E∞[T (Wλ∞)]
. (3.29)

For large values of A, (3.29) will indeed provide a good estimate of the CPDC.

We note that E∞[λ∞] can be computed numerically; see Corollary 2.4 in [16].

The quantity E∞[T (Wλ∞)] can be computed using Monte Carlo simulations.

If h = ∞, or for h large, then using (3.11) we can further simplify (3.29)

to

CPDC ≈ E∞[λ∞]

E∞[λ∞] +
E∞[|Wλ∞ |]

µ

=
µ

µ+D(f0 || f1)
. (3.30)

Thus, to ensure CPDC ≤ β, the approximation in (3.30) suggests selecting µ

such that

µ ≤ β

1− β
D(f0 || f1).

In Section 3.4 we provide numerical results in which we show that the ap-

proximation (3.30) indeed provides a good estimate of the CPDC when h is

large.

3.4 Numerical Results

The asymptotic optimality of the DE-CuSum algorithm for all β does not

guarantee good performance for moderate values of FAR. In Fig. 3.3, we plot

the trade-off curves for the CuSum algorithm and the DE-CuSum algorithm,

obtained using simulations. We plot the performance of the DE-CuSum

61

algorithm for two different CPDC constraints: β = 0.5 and β = 0.25. For

simplicity we restrict ourself to the CADD performance for h = ∞ in this

section. Similar performance comparisons can be obtained for both CADD

and WADD with h <∞.

7 7.5 8 8.5 9 9.5 10 10.5
18

20

22

24

26

28

30

32

34

DE−CuSum PDC=0.25
DE−CuSum PDC=0.5
CuSum

CADD

|log(FAR)|

Figure 3.3: Trade-off curves for the DE-CuSum algorithm for CPDC =
0.25, 0.5, with f0 ∼ N (0, 1) and f1 ∼ N (0.75, 1).

Each of the curves for the DE-CuSum algorithm in Fig. 3.3 is obtained

in the following way. Five different threshold values for A were arbitrarily

selected. For each threshold value, a large value of γ was chosen, and the DE-

CuSum algorithm was simulated and the fraction of time the observations

are taken before change was computed. Specifically, γ was increased in the

multiples of 100 and an estimate of the CPDC was obtained by Monte Carlo

simulations. The value of µ was so chosen that the CPDC value obtained in

simulations was slightly below the constraint β = 0.5 or 0.25. For this value

of µ and for the chosen threshold, the FAR was computed by selecting the

change time to be γ = ∞ (generating random numbers from f0 ∼ N (0, 1)).

The CADD was then computed for the above choice of µ and A by varying

the value of γ from 1, 2, . . . and recording the maximum of the conditional

delay. The maximum was achieved in the first five slots.

As can be seen from the figure, a CPDC of 0.5 (using only 50% of the

samples in the long run) can be achieved using the DE-CuSum algorithm

with a small penalty on the delay. If we wish to achieve a CPDC of 0.25, then

we have to incur a significant penalty (of approximately six slots in Fig. 3.3).

But, note that the difference of delay with the CuSum algorithm remains

fixed as FAR → 0. This is due to the result reported in Theorem 3.3.5 and

62

this is precisely the reason the DE-CuSum algorithm is asymptotic optimal.

The trade-off between CADD and FAR is a function of the K-L divergence

between p.d.f. f1 and p.d.f. f0: the larger the K-L divergence the more is the

fraction of samples that can be dropped for a given loss in delay performance.

In Fig. 3.4 we compare the performance of the DE-CuSum algorithm with

the fraction sampling scheme, in which, to achieve a CPDC of β, the CuSum

algorithm is employed, and a sample is chosen with probability β for decision

making. Note that this scheme skips samples without exploiting any knowl-

edge about the state of the system. As seen in Fig. 3.4, the DE-CuSum

algorithm performs considerably better than the fractional sampling scheme.

Thus, the trade-off curves show that the DE-CuSum algorithm has good per-

formance even for moderate FAR, when the CPDC constraint is moderate.

7.5 8 8.5 9 9.5 10
15

20

25

30

35

40

45

50
f
0
 = N(0,1) f

1
 = N(0.75,1)

Fractional Sampling
DE−CuSum
CuSum

CADD

|log(FAR)|

Figure 3.4: Comparative performance of the DE-CuSum algorithm with the
CuSum algorithm and the fractional-sampling scheme: CPDC = 0.5, with
f0 ∼ N (0, 1) and f1 ∼ N (0.75, 1).

We now provide numerical results that show that (3.30) provides a good

estimate for the CPDC. We use the following parameters: f0 ∼ N (0, 1),

f1 ∼ N (0.75, 1) and set h =∞. In Table 3.1a, we fix the value of µ and vary

A and compare the CPDC obtained using simulations and the one obtained

using (3.30), that is using the approximation CPDC ≈ µ
µ+D(f0||f1)

. We see

that the approximation becomes more accurate as A increases. We also note

that the CPDC obtained using simulations does not converge to µ
µ+D(f0||f1)

,

even as A becomes large, because of the effect of the presence of a ceiling

function in the CPDC expression; see (3.8) and (3.16).

63

In Table 3.1b, we next fix a large value of A, specifically A = 6, for

which the CPDC approximation is most accurate in Table 3.1a, and check

the accuracy of the approximation µ
µ+D(f0||f1)

by varying µ. We see in the

table that the approximation is more accurate for small values of µ. This

is due to the fact that the effect of the ceiling function in the CPDC (3.8),

(3.16) is negligible when µ is small.

Table 3.1: Comparison of CPDC obtained using simulations with the approx-
imation (3.30) for f0 ∼ N (0, 1), f1 ∼ N (0.75, 1) and h =∞.

(a) Fixed µ

CPDC
A µ Simulations Approx (3.30)

µ
µ+D(f0||f1)

1 0.1 0.16 0.26
2 0.1 0.20 0.26
3 0.1 0.22 0.26
4 0.1 0.238 0.26
6 0.1 0.248 0.26

(b) Fixed A

CPDC
A µ Simulations Approx (3.30)

µ
µ+D(f0||f1)

6 0.01 0.033 0.034
6 0.05 0.145 0.151
6 0.2 0.37 0.41
6 0.3 0.46 0.51
6 0.4 0.51 0.58
6 0.6 0.58 0.68

3.5 Proofs of Various Results

Proof of Lemma 3.3.1. If 0 < D(f0 || f1) < ∞, then E∞[λ∞] < ∞. Thus,

P∞(λ∞ <∞) = 1. Also,

P∞(WλA < 0) > P∞(`(X1) < 0) > 0.

64

Thus, E∞[λA

∣∣∣WλA < 0] is well defined and

E∞[λ∞] ≥ E∞[λA]

≥ E∞[λA

∣∣∣WλA < 0] P∞(WλA < 0).

≥ E∞[λA

∣∣∣WλA < 0] P∞(`(X1) < 0).

This proves the lemma.

Proof of Lemma 3.3.2. Again note that

P∞(WλA < 0) > P∞(`(X1) < 0) > 0.

Thus, E∞[T (WλA)
∣∣∣WλA < 0] is well defined.

Since T (x) = d|xh+|/µe, we have

|xh+|
µ
≤ T (x) ≤ |x

h+|
µ

+ 1.

We will use this simple inequality to obtain the upper and lower bounds.

We first obtain the upper bound. Clearly,

E∞[T (WλA)
∣∣∣WλA < 0] ≤

E∞[|W h+
λA
|
∣∣∣ WλA < 0]

µ
+ 1.

An upper bound for the right-hand side of the above equation is easily ob-

tained. First note that from (3.12)

E∞[|W h+
λ∞
|] ≤ E∞[|Wλ∞|] < ∞,

and

E∞[|W h+
λ∞
|] ≥ E∞[|W h+

λA
|
∣∣∣ WλA < 0] P∞(WλA < 0).

≥ E∞[|W h+
λA
|
∣∣∣ WλA < 0] P∞(`(X1) < 0).

This completes the proof for the upper bound.

65

For the lower bound we have

E∞[T (WλA)
∣∣∣ WλA < 0]

≥
E∞[|W h+

λA
|
∣∣∣ WλA < 0]

µ

≥
E∞[|W h+

λA
| ; {`(X1) < 0}

∣∣∣ WλA < 0]

µ

=
E∞[|`(X1)h+|

∣∣∣ `(X1) < 0]

µ
P∞(`(X1) < 0).

In the above equation we have used the fact that the unconditional probabil-

ity P∞(`(X1) < 0) is smaller than the conditional one P∞(`(X1) < 0|WλA <

0).

Proof of Lemma 3.3.4. Let

τC(x) = inf{n ≥ 1 : Cn > A;C0 = x}.

Here, Cn is the CuSum statistic and evolves according to the description of

the algorithm in Algorithm 3.1.1. Thus, τC(x) is the first time for the CuSum

algorithm to cross A, when starting at C0 = x. Clearly, τC(x) = τC if x = 0.

It is easy to see by sample-pathwise arguments that

E1[τC(x)] ≤ E1[τC].

The proof depends on the above inequality.

Let Ax be the event that the CuSum statistic, starting with C0 = x,

touches zero before crossing the upper threshold A. Let qx = P1(Ax). Then,

E1[τC(x)] = E1[τC(x);Ax] + E1[τC(x);A′x] ≤ E1[τC].

Note that

E1[τC(x);A′x] = E1[τW(x);A′x].

We call this common constant t1. Also note that on Ax, the average time

taken to reach 0 is the same for both the CuSum and the DE-CuSum algo-

66

rithm. We call this common average conditional delay by t2. Thus,

E1[τC(x)] = (t1)(1− qx) + qx(t2 + E1[τC]) ≤ E1[τC].

The equality in the above equation is true because, once the DE-CuSum

statistic reaches zero, it is reset to zero and the average delay that point

onwards is E1[τC].

Then for any t3 ≥ E1[τC] we have

(t1)(1− qx) + qx(t2 + t3) ≤ t3.

This is because for t3 ≥ E1[τC]

(t1)(1− qx) + qx(t2 + t3)

= (t1)(1− qx) + qx(t2 + E1[τC] + t3 − E1[τC])

≤ E1[τC] + qx(t3 − E1[τC])

≤ t3.

It is easy to see that

E1[τW(x)] ≤ (t1)(1− qx) + qx(t2 + dh/µe+ E1[τW]).

This is because on Ax, the average delay of the DE-CuSum algorithm is the

average time to reach 0, which is t2, plus the average time spent below 0 due

to the undershoot, which is bounded from above by dh/µe, plus the average

delay after the sojourn below 0, which is E1[τW]. The latter is due to the

renewal nature of the DE-CuSum algorithm. Since dh/µe+ E1[τW] ≥ E1[τC],

the lemma is proved if we set t3 = dh/µe+ E1[τW].

67

CHAPTER 4

DATA-EFFICIENT MINIMAX QUICKEST
CHANGE DETECTION WITH
COMPOSITE POST-CHANGE

HYPOTHESIS
In this chapter we extend the results of Chapter 3 to the case when the

post-change distribution is unknown.

The classical problem of detecting a change when the post-change distri-

bution is unknown (and with no observation control) has been well studied in

the literature. In the parametric setting, where the post-change distribution

is assumed to belong to a parametric family, there are three main approaches:

generalized likelihood ratio (GLR) based, mixture based and adaptive esti-

mates based approaches. In the nonparametric setting, one approach has

been to take a robust approach to the QCD problem. See [1], [2] and [3] for

a review.

In this chapter we combine the ideas from Chapter 3 and from the QCD lit-

erature for the case where the post-change distribution is unknown to study

DE-QCD problems when the post-change distribution is unknown. We as-

sume that the post-change family of distributions has a least favorable mem-

ber (see Assumption 4.4.1 for a precise definition). Based on this assump-

tion we propose an algorithm called the generalized data-efficient cumulative

sum (GDECuSum) algorithm. In this algorithm on-off observation control

is performed using the DE-CuSum algorithm designed for the least favor-

able distribution, and the change is detected using a GLRT based CuSum

algorithm [11], [12], [27]. We show that if the post-change family of dis-

tributions is finite or if both the pre- and post-change distributions belong

to a one-parameter exponential family, then the GDECuSum algorithm is

asymptotically optimal for a modified version of the problem formulation

from Chapter 3, uniformly over all possible post-change distributions.

The assumption that the post-change distribution belongs to a finite set

of distributions is satisfied in many practical applications. For example, it is

satisfied in the problem of detecting a power line outage in a power grid [4],

or in a multi-channel scenario where the observations are vector valued and

68

a change affects the distribution of only a subset of the components (each

component for example may correspond to the output of a distinct sensor on

a sensor board) [28], [29]. Also, see [27] for a possible scenario.

4.1 Problem Formulation

A sequence of random variables {Xn} is being observed. Initially, the ran-

dom variables are i.i.d. with p.d.f. f0. At the change point γ the density

of the random variables changes to fθ, θ ∈ Θ. That is, we assume that the

post-change distribution belongs to a parametric family of distributions pa-

rameterized by θ. Both θ and γ are unknown. We assume that f0 6= fθ for all

θ ∈ Θ. We denote by Pθγ the underlying probability measure which governs

such a sequence. We use Eθγ to denote the expectation with respect to this

probability measure. We use P∞ (E∞) to denote the probability measure

(expectation) when the change never occurs (i.e., the random variable Xn

has p.d.f. f0, ∀n). We wish to detect this change in distribution as quickly

as possible subject to a constraint on the false alarm rate.

We will reuse the notation from the previous chapters. Specifically,

Sn =

1 if Xn used for decision making

0 otherwise.

The information available at time n is denote by

In = {X(S1)
1 , · · · , X(Sn)

n },

where X
(Sk)
k = Xk if Sk = 1, else Xk is absent from In, and

Sn = φn(In−1).

Here, φn denotes the control map. Let τ be a stopping time for the sequence

{In}. A control policy is the collection

Ψ = {τ, φ1, · · · , φτ}.

As in Chapter 3, for delay we choose the following conditional average

69

detection delay metric (CADD) of Pollak [13]:

CADDθ(Ψ) := sup
γ≥1

Eθγ[τ − γ|τ ≥ γ]. (4.1)

Note that the CADD is now a function of the post-change parameter θ.

For false alarm we choose the metric of false alarm rate (FAR) [12], [13]:

FAR(Ψ) :=
1

E∞[τ]
. (4.2)

To capture the cost of observations used before γ, we use the following

variation of the duty cycle metric CPDC proposed in Chapter 3, the Pre-

change Duty Cycle (PDC) metric:1

PDC(Ψ) := lim sup
γ→∞

Eθγ

[
1

γ

γ−1∑
n=1

Sn

]

= lim sup
γ→∞

E∞

[
1

γ

γ−1∑
n=1

Sn

]
.

(4.3)

Note that both the FAR and the PDC are not a function of the post-change

parameter θ.

The first problem that we are interested in is the following:

Problem 4.1.1.

min
Ψ

CADDθ(Ψ)

subj. to FAR(Ψ) ≤ α,

and PDC(Ψ) ≤ β,

where, 0 ≤ α, β ≤ 1 are given constraints.

Again, as in Chapter 3, we are also interested in the problem where the

CADD in Problem 4.1.1 is replaced by the following worst case average de-

tection delay (WADD) metric of Lorden [12],

WADDθ(Ψ) := sup
γ≥1

ess supEθγ[(τ − γ)+|Iγ−1], (4.4)

where, x+ := max{0, x}:
1The definition of CPDC used in Chapter 3 had an extra conditioning on {τ ≥ γ}.

70

Problem 4.1.2.

min
Ψ

WADDθ(Ψ)

subj. to FAR(Ψ) ≤ α,

and PDC(Ψ) ≤ β,

where, 0 ≤ α, β ≤ 1 are given constraints.

We recall that for any policy Ψ,

CADDθ(Ψ) ≤ WADDθ(Ψ). (4.5)

Our objective is to find an algorithm that is a solution to both Prob-

lem 4.1.1 and Problem 4.1.2 uniformly for each θ ∈ Θ. However, it is not

clear if such a solution exists, even with β = 1. As a result we seek a solution

that is asymptotically optimal, for a given β, for each θ, as α→ 0.

4.2 Classical QCD with Unknown Post-Change

Distribution

In this section we review the results from [27], [12] that are relevant to this

chapter.

We first review the lower bound on the performance of any test for an FAR

of α. This result was also discussed in (3.22). Let

∆α := {Ψ : FAR(Ψ) ≤ α}.

When the post-change density is fθ, a universal lower bound on the CADD

over the class ∆α is given by [14]

inf
Ψ∈∆α

CADDθ(Ψ) ≥ | logα|
D(fθ || f0)

(1 + o(1)) as α→ 0. (4.6)

By (4.5), this is a lower bound on WADDθ as well.

71

4.2.1 QCD with No Observation Control (β = 1), θ Known

We first consider the case when the post-change distribution is known to be

fθ, i.e., when the post-change parameter θ is known, and when there is no

observation control, i.e., when β = 1, in Problem 4.1.1 and Problem 4.1.2.

Then the lower bound (4.6) is achieved by the cumulative sum (CuSum)

algorithm [11], [12]; also see Algorithm (3.1.1). We note that the CuSum

algorithm can also be defined as follows:

Cn(θ) = max
1≤k≤n+1

n∑
i=k

log
fθ(Xi)

f0(Xi)
for n ≥ 1,

τC(θ) = inf{n ≥ 1 : Cn(θ) ≥ A}.
(4.7)

The statistic Cn(θ) can be computed recursively (see Algorithm 3.1.1):

C0(θ) = 0,

Cn(θ) =

(
Cn−1(θ) + log

fθ(Xn)

f0(Xn)

)+

for n ≥ 1.
(4.8)

We also note that the CuSum algorithm can also be written as

Ĉn(θ) = max
1≤k≤n

n∑
i=k

log
fθ(Xi)

f0(Xi)
for n ≥ 1,

τC(θ) = inf{n ≥ 1 : Ĉn(θ) ≥ A}.
(4.9)

The difference between the statistics Ĉn and Cn is that the former can take

negative values.

As we saw in Chapter 3 in Theorem 3.3.3, the CuSum algorithm is asymp-

totically optimal for both Problem 4.1.1 and Problem 4.1.2 (with θ known and

β = 1) due to (4.5) and because of the following result: setting A = log 1/α

in (4.7) ensures that [12]

FAR(τC(θ)) ≤ α,

WADDθ(θ)(τC) ≤ | logα|
D(fθ || f0)

(1 + o(1)) as α→ 0.
(4.10)

We note that the PDC of the CuSum algorithm is equal to 1.

72

4.2.2 QCD with No Observation Control (β = 1), θ Unknown

We next consider the case when the post-change distribution is unknown,

i.e., when the post-change parameter θ is unknown, and again there is no

observation control, i.e., β = 1 in Problem 4.1.1 and Problem 4.1.2. A

natural extension of the CuSum algorithm for this case is the generalized

likelihood ratio based CuSum algorithm. We refer to the algorithm as the

GCuSum algorithm and it is defined as follows:

Gn = max
1≤k≤n

sup
θ∈Θ′(α)

n∑
i=k

log
fθ(Xi)

f0(Xi)
for n ≥ 1,

τGC = inf{n ≥ 1 : Gn(θ) ≥ A},
(4.11)

where, Θ′(α) ⊂ Θ can be a function of α, and is either equal to Θ, or

is allowed to be arbitrarily close and grow to Θ as α → 0. The GCuSum

algorithm has the following interpretation. To detect a change when the post-

change parameter is unknown, a family of CuSum algorithms are executed

in parallel, one for each post-change parameter. A change is declared the

first time a change is detected in any one of the CuSum algorithms. It can

be shown that

WADDθ(τGC) = CADDθ(τGC) = Eθ1[τGC − 1]. (4.12)

We also note that the PDC of the GCuSum algorithm is equal to 1.

The asymptotic optimality of the GCuSum algorithm is known for exam-

ple in the following two cases: when the post-change family is finite [27],

and when the pre- and post-change distributions belong to a one-parameter

exponential family [12].

When the post-change set Θ is finite, i.e,

Θ = {θ1, · · · , θM},

the GCuSum algorithm with Θ′(α) = Θ reduces to the following algorithm

τGC = inf

{
n ≥ 1 : max

1≤k≤M
Cn(θk) ≥ A

}
, (4.13)

where Cn(θk) is the CuSum statistic (4.8) evaluated for θ = θk. Equation

73

(4.13) can also be written as

τGC = min
1≤k≤M

τC(θk). (4.14)

In the following we refer to the GCuSum algorithm with Θ finite as the

MCuSum algorithm. Thus, the GCuSum algorithm (4.11) has a recursive

implementation in this case.2 The asymptotic optimality of the GCuSum

algorithm, with Θ finite, is proved in [27]. Specifically, setting A = logM/α

in (4.13) ensures that

FAR(τGC) ≤ α,

WADDθk(τGC) ≤ | logα|
D(fθk || f0)

(1 + o(1)) as α→ 0, for 1 ≤ k ≤M.
(4.15)

Thus, due to (4.15) and (4.6), the GCuSum algorithm is asymptotically

optimal for both Problem 4.1.1 and Problem 4.1.2, with β = 1, as α → 0,

uniformly over θk, 1 ≤ k ≤M .

Now consider the case when the pre- and post-change distributions belong

to an exponential family such that

fθ(x) = exp(θx− b(θ))f0(x), θ ∈ Θ, (4.16)

where, Θ is an interval on the real line not containing 0, i.e., Θ = [θ`, θu]\{0},
and b(0) = 0. As claimed in [12], this model can be used to represent a much

broader class of one-parameter exponential family. For this case, the asymp-

totic optimality of the GCuSum algorithm is studied in [12]. Specifically,

with ε > 0, Θ′(α) = {θ ∈ [θ`, θu] : |θ| > ε} and setting A = Aα ' log 1/α

ensures

FAR(τGC) ≤ α(1 + o(1)), as α→ 0

WADDθ(τGC) ≤ | logα|
D(fθ || f0)

(1 + o(1)) as α→ 0, for all θ ∈ Θ′(α).
(4.17)

Here, ε is allowed to decrease to zero as α → 0. As a result, each θ ∈ Θ is

covered eventually. Thus, to detect a change with θ very close to 0, we must

operate at low false alarm rates.

2We note however that while Cn is a non-negative statistic, the statistic Gn can take
negative values.

74

We remark on the differences between the results in (4.15) and (4.17).

While (4.15) is valid only with Θ finite, the pre- and post-change distributions

are allowed to be arbitrary, and the FAR result is non-asymptotic. On the

other hand, in (4.17), the distributions are restricted to an exponential family,

and the FAR result is asymptotic, but the parameter set Θ is allowed to be

uncountably infinite.

4.3 QCD with Observation Control (β < 1), θ Known

For the case when θ is known and β < 1, in Chapter 3, we proposed the

DE-CuSum algorithm which is a two-threshold modification of the CuSum

algorithm (4.8) and showed that it is asymptotically optimal for a variation of

both Problem 4.1.1 and Problem 4.1.2 (with CPDC as the duty cycle metric),

for each β, as α → 0. Since the duty cycle metric PDC is different here, in

this section we prove the asymptotic optimality of the DE-CuSum algorithm

with this new definition of the duty cycle metric.

We first write the DE-CuSum algorithm in a different form (see Algo-

rithm 3.2.1). This will be useful in the Section 4.4.

If Wn−1(θ) ≥ 0,

Sn = 1

Wn(θ) = max

{
−h, max

1≤k≤n

n∑
i=k

log
fθ(X

(Si)
i)

f0(X
(Si)
i)

}
.

If Wn−1(θ) < 0,

Sn = 0,

Wn(θ) = min{0,Wn−1(θ) + µ}.

Stop at

τW(θ) = inf{n ≥ 1 : Wn(θ) ≥ A}.

(4.18)

where
fθ(X

(Si)
i)

f0(X
(Si)
i)

= 1 if Si = 0. Note that this way of writing the DE-CuSum al-

gorithm is similar to the description of the CuSum algorithm in (4.9), whereas

the description of the DE-CuSum algorithm provided in Algorithm 3.2.1 is

closer to the recursive description of the CuSum algorithm in (4.8).

75

For the theorem below, we need the following definition. We define the

ladder variable [16]

τ−(θ) = inf

{
n ≥ 1 :

n∑
k=1

log
fθ(Xk)

f0(Xk)
< 0

}
.

Then note that Wτ−(θ) is the ladder height. Recall that (x)h+ = max{x,−h}.

Theorem 4.3.1. When the post-change density fθ is fixed and known, and

µ > 0, h <∞, and A = | logα|, we have

FAR(τW(θ)) ≤ FAR(τC(θ)) ≤ α,

PDC(τW(θ)) =
E∞[τ−(θ)]

E∞[τ−(θ)] + E∞[d|Wτ−(θ)h+|/µe]
,

WADDθ(τW(θ)) ∼ WADDθ(τC(θ)) ∼ | logα|
D(fθ || f0)

(1 + o(1)) as α→ 0.

(4.19)

If h =∞, then

PDC(τW(θ)) ≤ µ

µ+D(f0 || fθ)
. (4.20)

Proof. The proofs for the FAR and WADD analysis are identical to that pro-

vided in [30]. For the PDC we have the following proof. If Sn is treated

as a reward for an on-off renewal process with the on time distributed ac-

cording to the law of τ−, and the off time distributed according to the law

of d|Wτ−|/µe (with truncation taken into account if h < ∞). Then, by the

renewal reward theorem we have

PDC(τW) =
E∞[τ−]

E∞[τ−] + E∞[d|W h+
τ− /µ|e]

.

This proves (4.19).

If h = ∞, then (4.20) follows from the above equation because x ≤ dxe,
and from the Wald’s lemma: E∞[|Wτ− |] = E∞[τ−] D(f0 || fθ) [16].

We note that the expression for the PDC is not a function of the threshold

A. Also, for any given h > 0, the smaller the value of the parameter µ, the

smaller the PDC.

With A = | logα| and µ and h set to achieve the PDC constraint of β

(independent of the choice of A), the WADD of the DECuSum algorithm

achieves the lower bound (4.6). Hence, we have from (4.5) that the algorithm

76

is asymptotically optimal for both Problem 4.1.1 and Problem 4.1.2, for the

given β, as α→ 0. Thus, the pre-change observation control can be executed,

i.e., any arbitrary but fixed fraction of samples can be dropped before change,

without any loss in the asymptotic performance.

4.4 The GDECuSum Algorithm

In this section we propose the main algorithm of this chapter, the GDE-

CuSum algorithm. This algorithm can be used for the case when the post-

change distribution is not known, and there is a need to perform on-off obser-

vation control, which is the object of study in this chapter. Mathematically,

β < 1 in Problem 4.1.1 and Problem 4.1.2, and θ is unknown.

We now make the important assumption that there exists θ∗ ∈ Θ such

that fθ∗ is the least favorable distribution among the family {fθ}, in a sense

defined by the following assumption:

Assumption 4.4.1. For each θ ∈ Θ,

Eθ1
[
log

fθ∗(X1)

f0(X1)

]
= D(fθ || f0)−D(fθ || fθ∗) > 0.

The assumption is satisfied for example when the law of log fθ∗ (X1)
f0(X1)

under

{fθ} is stochastically bounded by its law under fθ∗ (see Definition 1 in [31]),

i.e.,

Pθ1
(

log
fθ∗(X1)

f0(X1)
> x

)
≥ Pθ∗1

(
log

fθ∗(X1)

f0(X1)
> x

)
, ∀θ ∈ Θ.

The latter condition is satisfied for example in the following cases:

1. Θ is finite, Θ = {θ1, · · · , θM}, f0 = N (0, 1), fθk = N (θk, 1), with

0 < θ1 < θ2 < · · · < θM , and θ∗ = θ1.

2. {fθ} and f0 belong to an exponential family such that f0 = N (0, 1),

fθ = N (θ, 1), with θ ∈ [0.2, 1], and θ∗ = 0.2.

We now propose the GDECuSum algorithm. In the GDECuSum algorithm

also, just like the GCuSum algorithm (4.11), a family of algorithms are ex-

ecuted in parallel, one for each post-change parameter, with the difference

that the CuSum algorithm corresponding to the parameter θ = θ∗ is replaced

77

by the DECuSum algorithm. Also, the CuSum algorithms corresponding to

θ 6= θ∗ are updated only when samples are taken. Essentially, the post-

change density that is least favorable is used for observation control—which

by Assumption 4.4.1 is fθ∗—while all the fθs are used for change detection.

The GDECuSum algorithm is described as follows.

Algorithm 4.4.1. Fix µ > 0 and h ≥ 0,

Compute for each n ≥ 1,

Ḡn = max
1≤k≤n

sup
θ∈Θ

n∑
i=k

log
fθ(X

(Si)
i)

f0(X
(Si)
i)

.

If Wn−1(θ∗) ≥ 0,

Sn = 1

Wn(θ∗) = max

{
−h, max

1≤k≤n

n∑
i=k

log
fθ∗(X

(Si)
i)

f0(X
(Si)
i)

}
.

If Wn−1(θ∗) < 0,

Sn = 0

Wn(θ∗) = min{0,Wn−1(θ∗) + µ}.

Stop at

τGD = inf{n ≥ 1 : Ḡn ≥ A}.

(4.21)

The evolution of the GDECuSum algorithm can be described as follows. In

this algorithm two statistics Ḡn and Wn(θ∗) are computed in parallel. While

the statistic Ḡn is used to detect the change, the statistic Wn(θ∗) is used for

observation control. Specifically, the statistic Wn(θ∗) is updated using the

DECuSum algorithm (4.18). The statistic Ḡn is updated using the GCuSum

algorithm (4.11) with the difference that when Wn(θ∗) < 0, the statistic Ḡn

is not updated and set to its value on the previous time instant. This is

because when Wn(θ∗) < 0, it is incremented by µ at each time instant, and

observations are skipped until Wn(θ∗) reaches 0 from below. In the absence

of any new observation, the GCuSum statistic Ḡn cannot be updated. In

this algorithm, by design, while Wn(θ∗) < 0, the GCuSum statistic Ḡn is

set to its value in the last time instant. This is ensured by the definition
fθ(X

(Si)
i)

f0(X
(Si)
i)

= 1 if Si = 0.

Assumption 4.4.1 is critical to the working of this algorithm. By this

78

assumption the mean of the log likelihood ratio between fθ∗ and f0 is positive

for every possible post-change distribution. This is because for θ ∈ Θ,

Eθ1
[
log

fθ∗(X1)

f0(X1)

]
= D(fθ || f0)−D(fθ || fθ∗).

This ensures that after the change occurs, and after a finite number of sam-

ples (irrespective of the threshold A), the DECuSum statistic Wn(θ∗) always

remains positive and no more observations are skipped. This allows the

statistic Ḡn to grow with the right “slope”. If the Assumption 4.4.1 is vio-

lated, and the post-change parameter is θ 6= θ∗, then the statistic Wn(θ∗) will

be below zero for a longer duration of time, and this time grows to infinity as

the threshold A→∞. Thus, essentially, the growth of the GCuSum statistic

will be intercepted by multiple sojourns of the statistic Wn(θ∗) below zero.

As a result, the change will still be detected, but with a delay larger than

the lower bound (4.6).

For Θ = {θ1, · · · , θM} with θ∗ = θ1, the GDECuSum algorithm has a

recursive implementation 3

If Wn−1(θ1) ≥ 0,

Sn = 1,

Wn(θ1) =

(
Wn−1(θ1) + log

fθ1(Xn)

f0(Xn)

)h+

.

If Wn−1(θ1) < 0,

Sn = 0,

Wn(θ1) = min{0,Wn−1(θ1) + µ}.

For k ≥ 2,

C̄0(θk) = 0,

C̄n(θk) =

(
C̄n−1(θk) + log

fθk(X
(Sn)
n)

f0(X
(Sn)
n)

)+

.

Stop at,

τGD = inf{n ≥ 1 : max{Wn(θ1), max
2≤k≤M

C̄n(θk)} ≥ A}.

(4.22)

3Again note that the statistics {C̄k}Mk=2 here are non-negative while Ḡn is allowed to
take negative values.

79

Thus, for Θ finite, the GDECuSum algorithm is equivalent to executing M

recursive algorithms in parallel. One is the DE-CuSum algorithm using the

least favorable distribution, and the rest M − 1 algorithms are the CuSum

algorithms. Note that when the DE-CuSum statistic Wn(θ1) < 0, the CuSum

statistics {C̄n(θk)}Mk=2 are set to their values in the last time instant. For the

case of finite Θ, we refer to the GDECuSum algorithm by the MDECuSum

algorithm. In Fig. 4.1 we plot the evolution of the GDECuSum algorithm

(or the MDECuSum algorithm) for f0 = N (0, 1), fθ1 = N (0.4, 1), fθ2 =

N (0.6, 1), fθ3 = N (0.8, 1), fθ4 = N (1, 1), µ = 0.18, and h = 10. The

post-change parameter is θ = θ2 = 0.6.

Figure 4.1: Evolution of the GDECuSum algorithm for f0 = N (0, 1), fθ1 =
N (0.4, 1), fθ2 = N (0.6, 1), fθ3 = N (0.8, 1), fθ4 = N (1, 1), µ = 0.18, and
h = 10. The post-change parameter is θ = θ2 = 0.6.

4.5 Asymptotic Optimality of the GDECuSum

Algorithm

The evolution of the GDECuSum algorithm is statistically identical to that

of the GCuSum algorithm, except of the possible sojourns of the statistic

Wn(θ∗) below 0. Also, the sojourn time of Wn(θ∗) below zero is completely

specified by the DECuSum algorithm. These two facts will now be used

to express the performance of the GDECuSum algorithm in terms of the

performance of the GCuSum algorithm and the DECuSum algorithm.

80

Let

τW(θ∗) = inf{n ≥ 1 : Wn(θ∗) ≥ A},

the first time the statistic Wn(θ∗) crosses the threshold A.

Theorem 4.5.1. Under the Assumption 4.4.1, for any fixed µ > 0 and h ≥ 0

and A we have

FAR(τGD) ≤ FAR(τGC),

PDC(τGD) = PDC(τW(θ∗)),
(4.23)

and for any µ > 0 and h <∞, and any A ≥ 0,

WADDθ(τGD) ≤ WADDθ(τGC) +KGD, (4.24)

where KGD is a constant that is a function of µ and h, but is not a function

of A. As a result, for any µ > 0 and h <∞, we have

WADDθ(τGD) ∼ WADDθ(τGC) ∼ A

D(fθ || f0)
(1 + o(1))

as A→∞, for each θ ∈ Θ.

(4.25)

We will provide the proof of the theorem at the end of this section. But,

before that we will discuss its implications. From the theorem we see that,

the GDECuSum algorithm can be designed to satisfy any arbitrary PDC con-

straint of β, independent of the choice of A. Also, the FAR of the GDECuSum

algorithm is at least as good as that of the GCuSum algorithm. Finally, the

WADD of the GDECuSum algorithm is within a constant of the WADD of

the GCuSum algorithm. From (4.5) and (4.12) we have

CADDθ(τGD) ≤ WADDθ(τGD) ≤ WADDθ(τGC) +KGD = CADDθ(τGC) +KGD.

Thus, the GDECuSum algorithm will be asymptotically optimal if the

GCuSum algorithm is asymptotically optimal. This is formally stated in the

next corollary.

Corollary 4.5.1.1. If the GCuSum algorithm is uniformly asymptotic opti-

mal for a parametric family, then under the conditions of the theorem and if

h <∞, the GDECuSum algorithm is also uniformly asymptotically optimal,

81

for each β, as α→ 0.

Since the GCuSum algorithm is asymptotically optimal (with β = 1) for

the two special classes of {fθ}: finite and exponential, the GDECuSum al-

gorithm is also asymptotically optimal (for each fixed β) in these two cases.

These are stated as corollaries below.

For a finite family we have the following result.

Corollary 4.5.1.2. If Θ if finite, Θ = {θ1, · · · , θM}, and Assumption 4.4.1

is satisfied for some θ∗ ∈ Θ. Then, for any fixed µ > 0 and h ≥ 0 and

A = logM/α we have

FAR(τGD) ≤ FAR(τGC) ≤ α,

PDC(τGD) = PDC(τW(θ∗)).
(4.26)

Also, if µ > 0 and h <∞, then

WADDθ(τGD) ∼ WADDθ(τGC) ∼ | logα|
D(fθk || f0)

(1 + o(1))

as α→ 0, for each θk, k = 1, · · · ,M.

(4.27)

Proof. The result follows from (4.15) and Theorem 4.5.1.

For an exponential family, we have the following result.

Corollary 4.5.1.3. If {fθ}, f0 belong to a one-parameter exponential family,

i.e., if the following is satisfied,

fθ(x) = exp(θx− b(θ))f0(x), for θ ∈ Θ,

where, Θ = [θ`, θu], with 0 < θ` < θu, and b(0) = 0. Also, Assumption 4.4.1

is satisfied for some θ∗ ∈ Θ. Then, for any fixed µ > 0, h ≥ 0 and A = Aα '
log 1/α we have

FAR(τGD) ≤ FAR(τGC) ≤ α(1 + o(1)), as α→ 0

PDC(τGD) = PDC(τW(θ∗)).
(4.28)

82

And if h <∞, then

WADDθ(τGD) ∼ WADDθ(τGC) ∼ | logα|
D(fθ || f0)

(1 + o(1))

as α→ 0, for each θ ∈ [θ`, θu].

(4.29)

Proof. The result follows from (4.17) and Theorem 4.5.1.

Since, the GDECuSum algorithm achieves the lower bound (4.6), the algo-

rithm is asymptotically optimal for the two cases specified in the corollaries

above, for a given β, uniformly over θ ∈ Θ, as α→ 0.

Proof of Theorem 4.5.1. We recall that the GCuSum algorithm is the GLRT

based test discussed in (4.11), and the GDECuSum algorithm is its data-

efficient modification discussed in (4.21), where the observation control is

executed based on the least favorable distribution fθ∗ .

We wish to prove (4.23) and (4.24), i.e., for any µ > 0, h ≥ 0, and A,

FAR(τGD) ≤ FAR(τGC),

PDC(τGD) = PDC(τW(θ∗)),

and for any µ > 0 and h <∞, and any A,

WADDθ(τGD) ≤ WADDθ(τGC) +KGD,

where KGD is a constant that is a function of µ and h, but is not a function

of A.

The PDC result follows from the PDC result proved in Theorem 4.3.1 be-

cause the observation control is governed by the statistic Wn(θ∗). We now

prove the FAR and the WADD results. Both the results are based on the idea

that the evolution of the GDECuSum algorithm is statistically identical to

that of the GCuSum algorithm τGC, except of the possible sojourns of the

statistic Wn(θ∗) below 0. Under P∞, the sojourns of the statistic Wn(θ∗)

below 0 only lead to larger mean time to false alarm for the GDECuSum

algorithm. On the other hand, under each Pθ1, the average number of times

the statistic Wn(θ∗) goes below 0 is bounded by a constant, not a function

of A. This is due to the fact that fθ∗ is the least favorable distribution,

and as a result the drift of Wn(θ∗) is positive. Since h < ∞, the mean time

83

spent by the statistic Wn(θ∗) each time it goes below 0, it bounded by dh/µe.
Thus, the total average mean time spent by the statistic Wn(θ∗) below 0 is

bounded above by a constant. This in turn guarantees that the delay of the

GDECuSum algorithm is within a constant of the GCuSum algorithm. The

rest of the proof below formalizes these arguments.

We start by writing the stopping time τGC as a sum of a random number

of stopping times. Such a representation is critical to this proof. Toward this

end we define a set of new stopping variables. Similar variables were defined

in the proof of Theorem 2.5.1 as well. Let w ∈ [0, A), and define

τ1(w) = inf

{
n ≥ 1 : Gn > A or w +

n∑
k=1

log
fθ∗(Xk)

f0(Xk)
< 0

}
.

This is the first time for either the GCuSum statistic Gn to hit A or the

random walk
∑n

k=1 log fθ∗ (Xk)
f0(Xk)

to go below −w.

On paths over which Gτ1(w) < A, let

τ2(w) = inf

n > τ1(w) : Gn > A or
n∑

k=τ1(w)+1

log
fθ∗(Xk)

f0(Xk)
< 0

 .

Thus, on paths such that Gτ1(w) < A, after the time τ1(w), the time τ2(w) is

the first time forGn to either crossA or the random walk
∑n

k=τ1(w)+1 log fθ∗ (Xk)
f0(Xk)

to go below 0. We define, τ3(w), etc. similarly. Next let,

N(w) = inf{k ≥ 1 : Gτk > A}.

For simplicity we introduce the notion of “cycles”, “success” and “failure”.

With reference to the definitions of τk(w)’s above, we say that a success has

occurred if the statistic Gn crosses A before the random walk
∑n

k=1 log fθ∗ (Xk)
f0(Xk)

goes below −w. In that case we also say that the number of cycles to A is 1.

If on the other hand, the random walk
∑n

k=1 log fθ∗ (Xk)
f0(Xk)

goes below −w before

Gn crosses A, we say a failure has occurred. The number of cycles is 2, if

now the statistic Gn crosses A before the random walk
∑n

k=τ1(w)+1 log fθ∗ (Xk)
f0(Xk)

goes below 0. Thus, N(w) is the number of cycles to success.

We note that for any given θ,

N(w) ≤ τGC ≤ τC(θ).

84

This is because each cycle has length at least 1, and τC(θ) is nothing but the

τGC without the sup over Θ. Since, τC(θ) is finite a.s. under both P∞ and Pθ1,

for each θ ∈ Θ (see Lorden [12]), even N(w) < ∞ a.s. under both P∞ and

Pθ1, for any θ ∈ Θ.

Define λ1(w) = τ1(w), λ2(w) = τ2(w)− τ1(w), etc. Then we in fact have

τGC =

N(w)∑
k=1

λk(w). (4.30)

An important point to observe here is that while the terms on the right-hand

side depend on w, their sum does not and equals τGC.

We now bound the mean of N(w) under Pθ1 by a number that is not a

function of w and threshold A. With the identity

Eθ1[N(w)] =
∞∑
k=1

Pθ1(N(w) ≥ k)

in mind, and using the terminology of cycles, success and failure just defined,

we write

Pθ1(N(w) ≥ k) = Pθ1(fail in 1st cycle)

· · ·Pθ1(fail in k − 1st cycle|fail in all previous).

Now,

Pθ1(fail in ith cycle|fail in all previous)

= 1− Pθ1(success in ith cycle|fail in all previous).

We claim that

Pθ1(success in ith cycle|fail in all previous) ≥ Pθ1

(
n∑
k=1

log
fθ∗(Xk)

f0(Xk)
≥ 0, ∀n

)
.

(4.31)

From [16] it is well known that Pθ1(
∑n

k=1 log fθ∗ (Xk)
f0(Xk)

≥ 0, ∀n) > 0. This

is because under θ, by the Assumption 4.4.1, the drift of the random walk

85

∑n
k=1 log fθ∗ (Xk)

f0(Xk)
is positive. Thus, if

qθ = Pθ1

(
n∑
k=1

log
fθ∗(Xk)

f0(Xk)
≥ 0, ∀n

)
,

then,

Pθ1(N(w) ≥ k) ≤ (1− qθ)k−1.

Note that the right-hand side is not a function of the initial point w, nor is

a function of the threshold A. Hence,

Eθ1[N(w)] =
∞∑
k=1

Pθ1(N(w) ≥ k) ≤
∞∑
k=1

(1− qθ)k−1 =
1

qθ
<∞. (4.32)

To prove the above claim (4.31) we note that

Pθ1(success in 1st cycle) = Pθ1(Gτ1(w) > A)

= Pθ1(Statistic Gn reaches A before
∑n

k=1 log fθ∗ (Xk)
f0(Xk)

goes below −w)

= Pθ1
(

max1≤k≤n supθ∈Θ

∑n
i=k log fθ(Xi)

f0(Xi)
reaches A

before
∑n

k=1 log fθ∗ (Xk)
f0(Xk)

goes below −w
)

≥ Pθ1
(

max1≤k≤n
∑n

i=k log fθ∗ (Xi)
f0(Xi)

reaches A

before
∑n

k=1 log fθ∗ (Xk)
f0(Xk)

goes below −w
)

≥ Pθ1
(∑n

k=1 log fθ∗ (Xk)
f0(Xk)

reaches A

before
∑n

k=1 log fθ∗ (Xk)
f0(Xk)

goes below −w
)

≥ Pθ1

(
n∑
k=1

log
fθ∗(Xk)

f0(Xk)
≥ 0, ∀n

)
= qθ.

(4.33)

Here, the first inequality follows because θ∗ ∈ Θ over which the supremum is

being taken. The last inequality follows because
∑n

k=1 log fθ∗ (Xk)
f0(Xk)

→ ∞ a.s.

under Pθ1 since θ∗ is least favorable.

86

For the second cycle note that

Pθ1(success in 2nd cycle|failure in first) = Pθ1
(
Gτ2(w) > A|Gτ1(w) < A)

)
= Pθ1 (Statistic Gn, n > τ1(w), reaches A

before
∑n

k=τ1(w)+1 log fθ∗ (Xk)
f0(Xk)

goes below 0
∣∣ Gτ1(w) < A

)
= Pθ1

(
max1≤k≤n supθ∈Θ

∑n
i=k log fθ(Xi)

f0(Xi)
, n > τ1(w), reaches A

before
∑n

k=τ1(w)+1 log fθ∗ (Xk)
f0(Xk)

goes below 0
∣∣ Gτ1(w) < A

)
≥ Pθ1

(
maxτ1(w)<k≤n

∑n
i=k log fθ∗ (Xi)

f0(Xi)
, for n > τ1(w), reaches A

before
∑n

k=τ1(w)+1 log fθ∗ (Xk)
f0(Xk)

goes below 0|Gτ1(w) < A
)

≥ Pθ1
(∑n

k=τ1(w)+1 log fθ∗ (Xk)
f0(Xk)

, for n > τ1(w), reaches A

before
∑n

k=τ1(w)+1 log fθ∗ (Xk)
f0(Xk)

goes below 0|Gτ1(w) < A
)

= Pθ1
(∑n

k=1 log fθ∗ (Xk)
f0(Xk)

reaches A

before
∑n

k=1 log fθ∗ (Xk)
f0(Xk)

goes below 0
)

≥ Pθ1

(
n∑
k=1

log
fθ∗(Xk)

f0(Xk)
≥ 0, ∀n

)
= qθ.

Almost identical arguments for the other cycles proves the claim that

Pθ1(success in ith cycle|fail in all previous) ≥ Pθ1

(
n∑
k=1

log
fθ∗(Xk)

f0(Xk)
≥ 0, ∀n

)
,

and hence it follows that

Eθ1[N(w)] ≤ 1

qθ
<∞.

Let

τGD(w) = inf{n ≥ 1 : Ḡn > A, with W0(θ∗) = w}.

Clearly, τGD = τGD(0).

Just like we did for τGC, we now write the time τGD(w) as a sum of stopping

times. We will then draw parallels between representation of this type for

τGC and τGD(w) to prove the theorem.

Note that the sojourn of the statistic Ḡn to A may include alternate so-

87

journs of the statistic Wn(θ∗) above and below 0. Motivated by this we define

a set of new variables. Let w ∈ [0, A), and define

τ̄1(w) = inf
{
n ≥ 1 : Ḡn > A or Wn(θ∗) < 0; starting with W0(θ∗) = w

}
.

This is the first time for either the GDECuSum statistic Ḡn to hit A or the

DE-CuSum statistic Wn(θ∗) to go below 0, starting with W0(θ∗) = w. On

paths over which Ḡτ̄1(w) < A, let t1(w) be the number of consecutive samples

skipped after τ̄1(w) using the DE-CuSum statistic. On such paths again, let

τ̄2(w) = inf
{
n > τ̄1(w) + t1(w) : Ḡn > A or Wn(θ∗) < 0

}
.

Thus, on paths such that Ḡτ̄1(w) < A, after the time τ̄1(w) + t1(w), the time

τ̄2(w) is the first time for Ḡn to either cross A or the DE-CuSum statistic

Wn(θ∗) to go below 0. We define, t2(w), τ̄3(w), etc. similarly. Next let

N̄(w) = inf{n ≥ 1 : Ḡτ̄n > A}.

We also define λ̄1(w) = τ̄1(w), λ̄2(w) = τ̄2(w)− τ̄1(w)− t1(w), etc. We now

make an important observation. We observe that

N̄(w)
d
= N(w)

λ̄k(w)
d
= λk(w), ∀k.

(4.34)

Then we have

N̄(w) <∞ a.s. under both P∞ and Pθ1 for each θ ∈ Θ,

and

τGD(w) =

N̄(w)∑
k=1

λ̄k(w) +

N̄(w)−1∑
k=1

tk(w).

We are now ready to prove the FAR result. Using (4.34) and (4.30), and

88

the observation following (4.30), we have

E∞[τGD] = E∞[τGD(0)] = E∞

N̄(0)∑
n=1

λ̄k(0)

+ E∞

N̄(0)−1∑
n=1

tk(0)

= E∞

N(0)∑
n=1

λk(0)

+ E∞

N(0)−1∑
n=1

tk(0)

= E∞ [τGC] + E∞

N(0)−1∑
n=1

tk(0)

≥ E∞ [τGC] .

(4.35)

For the WADD we have for each θ ∈ Θ,

Eθ1[τGD(w)] = Eθ1

N̄(w)∑
n=1

λ̄k(w)

+ Eθ1

N̄(w)−1∑
n=1

tk(w)

= Eθ1

N(w)∑
n=1

λk(w)

+ Eθ1

N̄(w)−1∑
n=1

tk(w)

= Eθ1 [τGC] + Eθ1

N̄(w)−1∑
n=1

tk(w)

≤ Eθ1 [τGC] + Eθ1

[
N̄(w)− 1

]
dh/µe

= Eθ1 [τGC] + Eθ1 [N(w)− 1] dh/µe

≤ Eθ1[τGC] +
1

qθ
dh/µe.

(4.36)

In (4.36) we have used the fact that

tk(w) ≤ dh/µe, ∀w ∈ [0, A),∀k,

and the upper bound obtained on Eθ1[N(w)]. Also note that the right-hand

side is not a function of w, but does depend on the assumption that w ∈
[0, A). We now obtain an upper bound on Eθγ[(τGD − γ)+|Iγ−1].

If Iγ−1 = iγ−1 is such that Wγ−1 = w ∈ [0, A), then

Eθγ[(τGD − γ)+|Iγ−1 = iγ−1] ≤ E1[τGD(w)].

89

This is because for n ≥ γ

max
1≤k≤n

sup
θ∈Θ

n∑
i=k

log
fθ(X

(Si)
i)

f0(X
(Si)
i)

≥ max
γ≤k≤n

sup
θ∈Θ

n∑
i=k

log
fθ(X

(Si)
i)

f0(X
(Si)
i)

. (4.37)

Thus, if Iγ−1 = iγ−1 is such that Wγ−1 = w ∈ [0, A), then using (4.36) we

have

Eθγ[(τGD − γ)+|Iγ−1 = iγ−1] ≤ E1[τGD(w)] ≤ Eθ1[τGC] +
1

qθ
dh/µe. (4.38)

On the other hand, if Iγ−1 = iγ−1 is such that Wγ−1 = w < 0, then the

time to cross A for the GDECuSum statistic will be equal to the time taken

for the statistic to cross 0 from below, plus a time bounded by E1[τGD(0)],

where again we have used (4.37). Thus, we can write,

Eθγ[(τGD − γ)+|Iγ−1 = iγ−1] ≤ dh/µe+ E1[τGD(0)]

≤ Eθ1[τGC] + (
1

qθ
+ 1)dh/µe.

(4.39)

Thus, we can write

Eθγ[(τGD − γ)+|Iγ−1] ≤ Eθ1[τGC] + (
1

qθ
+ 1)dh/µe

= WADDθ(τGC) + (
1

qθ
+ 1)dh/µe+ 1.

(4.40)

Note that the right-hand side is no more a function of the conditioning Iγ−1.

The proof is complete if we define

KGD = (
1

qθ
+ 1)dh/µe+ 1,

and take the essential supremum on the left-hand side.

4.6 Numerical Results

In Fig. 4.2 we plot the CADD–FAR trade-off curves obtained using simula-

tions for the GDECuSum algorithm (4.21), the GCuSum algorithm (4.11),

and the fractional sampling scheme. In the latter, the GCuSum algorithm is

90

used and observations are skipped randomly, independent of the observation

process. The simulation set used is: M = 4, f0 = N (0, 1), fθ1 = N (0.4, 1),

fθ2 = N (0.6, 1), fθ3 = N (0.8, 1), fθ4 = N (1, 1), µ = 0.08 and h = ∞. The

post-change parameter is θ = θ2 = 0.6, and the value of µ is chosen using

(4.20) and (4.23) to achieve a PDC = 0.5 (skipping/saving 50% of the sam-

ples). To achieve a PDC of 0.5 through the fractional sampling scheme, every

alternate sample is skipped in the GCuSum algorithm. In the figure we see

that skipping samples randomly results in a twofold increase in delay as com-

pared to that of the GCuSum algorithm. However, if we use the GDECuSum

algorithm and use the state of the system to skip observations, then there is

a small and constant penalty on the delay, as compared to the performance

of the GCuSum algorithm. Thus, the GDECuSum algorithm provides a sig-

nificant gain in performance as compared to the fractional sampling scheme.

Figure 4.2: Comparative performance of the GDECuSum algorithm, the
GCuSum algorithm, and the fractional sampling scheme. The post-change
parameter is θ = θ2 = 0.6.

4.7 Discussion on the Least Favorable Distribution

In this chapter we modified the GLRT based GCuSum algorithm by intro-

duced observation control based on the DE-CuSum algorithm. We showed

that the new data-efficient algorithm, the GDECuSum algorithm, is asymp-

totically optimal for the proposed data-efficient quickest change detection

formulations, Problem 4.1.1 and Problem 4.1.2. See Theorem 4.5.1.

91

In the proof of Theorem 4.5.1 we used the main assumption of this chap-

ter, that there is a distribution fθ∗ that is least favorable in the sense of

Assumption 4.4.1. That is, for each θ ∈ Θ,

Eθ1
[
log

fθ∗(X1)

f0(X1)

]
> 0.

The positive mean of the log likelihood ratio log fθ∗ (X1)
f0(X1)

under each θ ensures

that after a finite number of time slots, no observations are skipped using

the DE-CuSum algorithm, and the change is detected efficiently.

However, for a given parametric family, there may not be a distribution

that satisfies Assumption 4.4.1. In such a case, the results of this chapter are

also valid for any distribution g that satisfies this assumption, 4 i.e.,

Eθ1
[
log

g(X1)

f0(X1)

]
> 0.

Thus, as long as such a distribution exists, we can design the DE-CuSum

algorithm using the distribution g and the positive drift in the last equation

will ensure that the GDECuSum with this new modification is still asymp-

totically optimal. We however note that in the proof of Theorem 4.5.1 we

used the fact that θ∗ ∈ Θ. Since g may not be in the parametric family,

the proof needs to be modified. This can be accomplished by replacing the

arguments in (4.33) with

Pθ1(success in 1st cycle) = Pθ1(Gτ1(w) > A)

= Pθ1(Statistic Gn reaches A before
∑n

k=1 log g(Xk)
f0(Xk)

goes below −w)

= Pθ1
(

max1≤k≤n supθ∈Θ

∑n
i=k log fθ(Xi)

f0(Xi)
reaches A

before
∑n

k=1 log g(Xk)
f0(Xk)

goes below −w
)

≥ Pθ1

(
n∑
k=1

log
g(Xk)

f0(Xk)
≥ 0, ∀n

)
.

(4.41)

The last quantity is positive because Eθ1
[
log g(X1)

f0(X1)

]
> 0 [16].

We note that in (4.41), we can also replace the GLRT statistic Gn by

4We thank Dr. Sirin Nitinawarat for bringing this point to our attention.

92

a mixture based statistic. And if the mixture distribution is chosen in an

optimal way, then data-efficient extension of mixture based tests can also be

shown to have asymptotic optimality properties.

Finally, recall that unless the post-change distribution belongs to a finite

family, the GDECuSum algorithm does not have a recursive implementation.

In the classical QCD literature, this problem is addressed by proposing win-

dow based tests; see Lai [14]. One can also study data-efficient extensions of

such window based GLRT and mixture based tests.

93

CHAPTER 5

DATA-EFFICIENT QUICKEST CHANGE
DETECTION IN SENSOR NETWORKS

In Chapters 2-4 we introduced the concept of data-efficiency via observation

control in the classical problem of quickest change detection. We studied

the problem in Bayesian (Chapter 2) and minimax settings (Chapters 3 and

4). In the latter case, we even allowed the post-change distribution to be

unknown (Chapter 4). However, in all the results in the previous chap-

ters, we assumed that we have a single observation sequence and a single

decision maker. In many engineering applications of change detection, e.g.,

surveillance/monitoring of infrastructure (bridges, historic buildings, etc) or

animal/bird habitat using sensor networks, the decision making is often im-

plemented in a distributed fashion. Motivated by such applications, in this

chapter we study data-efficient quickest change detection in sensor networks.

In a typical application of change detection involving a sensor network,

multiple geographically distributed sensors are deployed to observe a phe-

nomenon. At the sensors observations/measurements are taken periodically.

At some point of time some property of the observations at the sensors

changes. The objective is to detect this change as quickly as possible.

In this chapter, we study the above detection problem in the framework of

decentralized quickest change detection introduced in [32] and further studied

in [33] and [34]. In the model studied in [32], [33] and [34], the observations at

the sensors are modeled as random variables. At each time step a processed

version of the observations is transmitted from the sensors to a common

decision node, called the fusion center. At some point of time, called the

change point, the distribution of the random variables observed at all the

sensors changes. The objective is to find a stopping time on the information

received at the fusion center, so as to detect the change in distribution as

quickly as possible (with minimum possible delay), subject to a constraint

on the false alarm rate. The observations are independent across the sensors,

and independent before and after the change point, conditioned on the change

94

point. The pre- and post-change distributions are assumed to be known.

In many applications of quickest change detection, including those men-

tioned above, changes are rare and acquiring data or taking observations is

costly, e.g., the cost of batteries in sensor networks or the cost of commu-

nication between the sensors and the fusion center. In [32], [33] and [34],

the cost of communication is controlled by quantizing or censoring observa-

tions/statistic at the sensors. However, the cost of taking observations at

the sensors is not taken into account. Motivated by this, we study quickest

change detection in sensor networks with an additional constraint on the cost

of observations used at each sensor.

One way to detect a change in the sensor network model discussed above

is to use the Centralized CuSum algorithm. In this algorithm, all the obser-

vations are taken at each sensor, raw observations are transmitted from each

sensor to the fusion center. At the fusion center a CuSum is applied to all the

received observations. The Centralized CuSum algorithm is clearly globally

asymptotically optimal since the problem is simply of detecting a change in

a vector sequence of observations (and hence reduces to the classical QCD

problem). The problem is more interesting when sending raw observations

from the sensors to the fusion center is not permitted, and at each sensor

quantization of observations is enforced. A major result in this case is due to

Mei in [33]. In [33], the following ALL scheme is proposed. In this scheme, a

CuSum is applied locally at each sensor. A “1” is transmitted from a sensor

to a fusion center each time the local CuSum statistic is above a threshold.

A change is declared at the fusion center when a “1” is received from all

the sensors at the same time. It is shown in [33] that the delay of the ALL

scheme is asymptotically of the same order good as the delay of the Central-

ized CuSum scheme (for the same false alarm rate constraint, the ratio of

their delay goes to 1), as the false alarm rate goes to zero.

In this chapter we introduce observation control in the ALL scheme of Mei

by replacing the CuSum algorithm at each sensor by the DE-CuSum algo-

rithm. We call the scheme the DE-All algorithm. We propose extensions

of data-efficient formulations, Problem 4.1.2 and Problem 4.1.1, to sensor

networks, and show that the DE-All scheme is globally asymptotically opti-

mal for these formulations. By global asymptotic optimality we mean that

the ratio of the delay the DE-All scheme and the Centralized CuSum scheme

goes to 1 as the false alarm rate goes to zero. Thus, one can skip an arbitrary

95

but fixed fraction of samples before change, and transmit very rarely to the

fusion center (just send an occasional “1”), thus conserving significantly the

cost of battery, and yet perform as well (asymptotically up to first order) as

the Centralized CuSum algorithm.

We also propose two additional algorithms for sensor networks, one dis-

tributed and one centralized, and compare the performances of all the three

algorithms.

5.1 Problem Formulation

The sensor network is assumed to consist of L sensors and a central decision

maker called the fusion center. The sensors are indexed by the index ` ∈
{1, · · · , L}. In the following we say sensor ` to refer to the sensor indexed by

`. At sensor ` the sequence {Xn,`}n≥1 is observed, where n is the time index.

At some unknown time γ, the distribution of {Xn,`} changes from f0,` to say

f1,`, ∀`. The random variables {Xn,`} are independent across indices n and

` conditioned on γ. The distributions f0,` and f1,` are assumed to be known.

We now discuss the type of policies considered in this chapter. The policies

are similar to the one considered for data-efficient settings in the previous

chapters, but extended to the sensor network setting. In the quickest change

detection models studied in [32], [33] and [34], observations are taken at each

sensor at all times. Here we consider policies in which on-off observation

control is employed at each sensor. At sensor `, at each time n, n ≥ 0, a

decision is made as to whether to take or skip the observation at time n+ 1

at that sensor. Let Sn,` be the indicator random variable such that

Sn,` =

1 if Xn,` is used for decision making at sensor `

0 otherwise.

Let φn,` be the observation control law at sensor `, i.e.,

Sn+1,` = φn,`(In,`),

where In,` =
[
S1,`, . . . , Sn,`, X

(S1,`)

1,` , . . . , X
(Sn,`)

n,`

]
. Here, X

(Sn,`)

n,` = X1,` if

S1,` = 1, otherwise X1,` is absent from the information vector In,`. Thus,

96

the decision to take or skip a sample at sensor ` is based on its past infor-

mation. Let

Yn,` = gn,`(In,`)

be the information transmitted from sensor ` to the fusion center. If no

information is transmitted to the fusion center, then Yn,` = NULL, which is

treated as zero at the fusion center. Here, gn,` is the transmission control law

at sensor `. Let

Y n = {Yn,1, · · · , Yn,L}

be the information received at the fusion center at time n, and let τ be a

stopping time on the sequence {Y n}.
Let

φn = {φn,1, · · · , φn,L},

denote the observation control law at time n, and let

gn = {gn,1, · · · , gn,L},

denote the transmission control law at time n. For data-efficient quickest

change detection in sensor networks we consider the policy of type Π defined

as

Π = {τ, {φ0, · · · ,φτ−1}, {g1, · · · , gτ}}.

To capture the cost of observations used at each sensor before change, we

use the Pre-Change Duty Cycle (PDC) metric introduced in Chapter 4. The

PDC`, the PDC for sensor ` is defined as

PDC`(Π) = lim sup
γ→∞

1

γ
E∞

[
γ−1∑
k=1

Sk,`

]
. (5.1)

Thus, PDC` is the fraction of time observations are taken before change at

sensor `. If all the observations are used at sensor `, then PDC` = 1. If every

second sample is skipped at sensor `, then PDC` = 0.5.

We now propose data-efficient extensions of Problem 4.1.2 and Problem 4.1.1

for sensor networks. Let

In = {In,1, · · · , In,L},

97

be the information available at time n across the sensor network. For exten-

sion of Problem 4.1.2, we consider the delay and false alarm metrics used in

[12]: the Worst case Average Detection Delay (WADD)

WADD(Π) = sup
γ

ess sup Eγ
[
(τ − γ)+|Iγ−1

]
, (5.2)

and the False Alarm Rate (FAR)

FAR(Π) = 1/E∞ [τ] . (5.3)

The extension of Problem 4.1.2 to sensor networks is

Problem 5.1.1.

minimize
Π

WADD(Π),

subject to FAR(Π) ≤ α, (5.4)

PDC`(Π) ≤ β`, for ` = 1, · · · , L.

Here, 0 ≤ α, β` ≤ 1, for ` = 1, · · · , L, are given constraints.

We also consider the extension of Problem 4.1.1, where instead of WADD,

the CADD metric

CADD(Π) = sup
γ

Eγ [τ − γ|τ ≥ γ] (5.5)

is used:

Problem 5.1.2.

minimize
Π

CADD(Π),

subject to FAR(Π) ≤ α, (5.6)

PDC`(Π) ≤ β`, for ` = 1, · · · , L.

Here, 0 ≤ α, β` ≤ 1, for ` = 1, · · · , L, are given constraints.

The lower bound developed in [14] can be specialized to sensor networks.

Let

∆α = {Π : FAR(Π) ≤ α}.

98

Theorem 5.1.1 ([14]). As α→ 0,

inf
Π∈∆α

CADD(Π) ≥ | logα|∑L
`=1 D(f1,` || f0,`)

(1 + o(1)). (5.7)

Since WADD(Π) ≥ CADD(Π), we also have as α→ 0,

inf
Π∈∆α

WADD(Π) ≥ | logα|∑L
`=1 D(f1,` || f0,`)

(1 + o(1)). (5.8)

We note that the lower bound on the WADD was first obtained in [12].

We will be particularly interested in policies such that the information

transmitted from the sensors to the fusion center at any time is a binary

digit. That is we are primarily interested in policies in the class

∆
{0,1}
(α,β) = {Π : FAR(Π) ≤ α; PDC` ≤ β` and Yn,` ∈ {0, 1}, ∀n, `}. (5.9)

The interest in the policies in the set ∆
{0,1}
(α,β), where only a binary number

is sent to the fusion center, stems from the fact that in these policies the

information transmitted to the fusion center is the minimal. Thus, it repre-

sents in some sense the maximum possible compression of the transmitted

information. The main objective of this chapter is to show that an algorithm

from this class can be globally asymptotically optimal.

Specifically, we will propose an algorithm, called the DE-All algorithm,

from the class ∆
{0,1}
(α,β), and show that it is asymptotically optimal for both

Problem 5.1.1 and Problem 5.1.2, i.e., the performance of the DE-All algo-

rithm achieves the lower bound of [14] given in Theorem 5.1.1, for each fixed

set of {β`}, as α→ 0.

5.2 Quickest Change Detection in Sensor Networks:

Existing Literature

In this section we provide a brief overview of the existing literature relevant

to this chapter.

We first describe the Centralized CuSum algorithm in a mathematically

precise way.

99

Algorithm 5.2.1 (Centralized CuSum). Fix a threshold A ≥ 0.

1. Use all the observations at the sensors, i.e.,

Sn,` = 1, ∀n, `.

2. Raw observations are transmitted from the sensors to the fusion center

at each time step, i.e.,

Yn,` = Xn,` ∀n, `.

3. The CuSum algorithm (see Algorithm (3.1.1)) is applied to the vector of

observations received at the fusion center. That is, at the fusion center,

the sequence {Vn} is computed according to the following recursion:

V0 = 0, and for n ≥ 0,

Vn+1 = max

{
0, Vn +

L∑
`=1

log
f1,`(Xn+1,`)

f0,`(Xn+1,`)

}
. (5.10)

A change is declared the first time Vn is above a threshold A > 0:

τCC = inf {n ≥ 1 : Vn > A} .

It is well known [12] that the performance of the Centralized CuSum algo-

rithm is asymptotically equal to the lower bound provided in Theorem 5.1.1;

see Theorem 3.3.3.

We now describe the ALL algorithm from [33]. Let

d` =
D(f1,` || f0,`)∑L
k=1 D(f1,k || f0,k)

.

Algorithm 5.2.2 (ALL). Start with C0,` = 0, ∀`, and fix A ≥ 0.

1. At each sensor ` the CuSum statistic is computed over time:

Cn+1,` = max

{
0, Cn,` + log

f1,`(Xn+1,`)

f0,`(Xn+1,`)

}
.

Thus Sn,` = 1 ∀n, `.

100

2. A “1” is transmitted from sensor ` to the fusion center if the CuSum

statistic is above a threshold d`A, i.e,

Yn,` = I{Cn,`>d`A}.

3. A change is declared when a “1” is transmitted from all the sensors at

the same time, i.e.,

τAll = inf{n ≥ 1 : Yn,` = 1 ∀`}.

The ALL algorithm has a surprising optimality property proved in [33].

Theorem 5.2.1 ([33]). If the absolute moments up to the third order of

logL(X) are finite and positive, then with A = | logα|, we have α→ 0.

FAR(τAll) ≤ α(1 + o(1)),

WADD(τAll) ≤
| logα|∑L

`=1D(f1,` || f0,`)
(1 + o(1)).

(5.11)

Thus, the ALL scheme achieves the asymptotic lower bound in Theo-

rem 5.1.1, which is also the performance of the Centralized CuSum algorithm.

In this sense, the ALL scheme is globally asymptotically optimal as the false

alarm rate goes to zero. It is important to note that such an optimality is

obtained by sending such a minimal amount of information (binary digits)

from the sensors to the fusion center.

However, we note that PDC` = 1, ∀`, for both the Centralized CuSum

algorithm and the ALL algorithm. Hence, neither the Centralized CuSum al-

gorithm nor the ALL algorithm are asymptotically optimal for Problem 5.1.1

and Problem 5.1.2, when β` < 1, for any `.

Consider a policy in which, at each sensor every nth sample is used, and

raw observations are transmitted from each sensor to the fusion center, each

time an observation is taken. At the fusion center, the CuSum algorithm, as

defined above, is applied to the received samples. In this policy, the PDC`

achieved is equal to 1/n, ∀`. Using this scheme, any given constraints on the

PDC` can be achieved by using every nth sample, and by choosing a suitably

large n. However, the detection delay for this scheme would be approximately

n times that of the delay for the Centralized CuSum algorithm, for the same

101

false alarm rate.

Motivated by the results on the DE-CuSum algorithm from the previous

chapters it is interesting to ask if the global asymptotic optimality of the ALL

scheme can be retained if we replace the CuSum algorithm at each sensor

by the DE-CuSum algorithm. We will show below that such an optimality

result is indeed true. Specifically, we will propose an algorithm called the

DE-All based on the DE-CuSum algorithm (see Algorithm 3.2.1) and show

that the proposed algorithm can be designed to satisfy any FAR constraint of

α, and PDC` constraints of {β`}. The DE-All algorithm belong to the class

∆
{0,1}
(α,β). Also, the WADD, and hence the CADD, of these algorithms equals

the lower bound in Theorem 5.1.1, as α→ 0.

5.3 The DE-All Algorithm

In the DE-All algorithm, the DE-CuSum algorithm (see Algorithm 3.2.1)

is used at each sensor, and a “1” is transmitted each time the DE-CuSum

statistic at any sensor is above a threshold. A change is declared the first

time a “1” is received at the fusion center from all the sensors at the same

time.

We use Wn,` to denote the DE-CuSum statistic at sensor `. Recall that

d` =
D(f1,` || f0,`)∑L
k=1 D(f1,k || f0,k)

.

Algorithm 5.3.1 (DE− All). Start with W0,` = 0 ∀`. Fix µ` > 0, h` ≥ 0,

and A ≥ 0. For n ≥ 0 use the following control:

1. Use the DE-CuSum algorithm at each sensor `, i.e., update the statistics

{Wn,`}L`=1 for n ≥ 1 using

Sn+1,` = 1 only if Wn,` ≥ 0

Wn+1,` = min{Wn,` + µ`, 0} if Sn+1,` = 0

=

(
Wn,` + log

f1,`(Xn+1,`)

f0,`(Xn+1,`)

)h+

if Sn+1 = 1

where (x)h+ = max{x,−h}.

102

2. Transmit

Yn,` = I{Wn,`>d`A}.

3. At the fusion center stop at

τDE−All = inf{n ≥ 1 : Yn,` = 1 for all ` ∈ {1, · · · , L}}.

If h` = 0 ∀` then the DE-CuSum algorithm used at each sensor reduces

to the CuSum algorithm. Hence, the DE-All algorithm reduces to the ALL

algorithm; see Algorithm 5.2.2.

5.4 Asymptotic Optimality of the DE-All Algorithm

In this section we prove the asymptotic optimality of the DE-All algorithm

proposed in Section 5.3.

We define the ladder variable [16] corresponding to sensor `:

τ`− = inf

{
n ≥ 1 :

n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
< 0

}
.

Then note that Wτ`− is the ladder height.

Theorem 5.4.1. Let moments of up to third order for the K-L divergences at

each sensor be finite and positive. Let µ` > 0, h` <∞, ∀`, and A = | logα|.
Then we have

FAR(ΠDE−All) ≤ FAR(ΠAll) = α(1 + o(1)), as α→ 0,

PDC`(ΠDE−All) =
E∞[τ`−]

E∞[τ`−] + E∞[d|W h`+
τ`− |/µ`e]

,

WADD(ΠDE−All) =
| logα|∑L

`=1D(f1,` || f0,`)
(1 + o(1)) as α→ 0.

(5.12)

If h` =∞, ∀`, then

PDC`(ΠDE−All) ≤
µ`

µ` +D(f0,` || f1,`)
. (5.13)

Proof. The FAR result follows from Lemma 3.3.3 and the FAR result of ΠAll

from Theorem 5.2.1. The results on PDC follows from Theorem 4.3.1. The

103

proof of the WADD is based on the techniques used in [33] and the properties

of the DE-CuSum algorithm. The details are provided in Section 5.7.

Since CADD ≤ WADD, we also have under the same assumptions as in

Theorem 5.4.1

CADD(ΠDE−All) ≤
| logα|∑L

`=1 D(f1,` || f0,`)
(1 + o(1)) as α→ 0. (5.14)

The statements in Theorem 5.4.1 prove that the DE− All algorithm is

asymptotically optimal for both Problem 5.1.1 and Problem 5.1.2, for each

given {β`}, as α→ 0. This is because the WADD of ΠDE−All is asymptotically

equal to the lower bound provided in From Theorem 5.1.1, as α → 0, and

the PDC` is not a function of threshold A. Hence, the PDC` constraints can

be satisfied independent of the FAR constraint α.

5.5 Data-Efficient Algorithms for Sensor Networks

In this section we propose two more algorithms that can be used to detect the

change in a data-efficient way in a sensor network. The first one, the DE-Dist

algorithm is a distributed algorithm, in the sense that the observation control

is executed locally at each sensor. The second one, called the Serialized-

DE-CuSum algorithm is a centralized control based algorithm in which the

observations from all the sensors are combined to execute the observation

control.

5.5.1 The DE-Dist Algorithm

In the DE-All algorithm information is transmitted very rarely to the fusion

center and that too in the form of “1”s and “0”s. This essentially means that

the decision on the change is effectively taken at the sensors, since the change

is declared at the fusion center the first time the change is “sensed” by all

the sensors simultaneously. Although the DE-All algorithm is asymptotically

optimal, the optimality is of the first order. A careful look at the proof of

Theorem 5.4.1 and the proof of Theorem 5.2.1 in [33] also reveals that the

WADD(ΠDE−All) has a
√
| logα| term in addition to the | logα| term. This

104

results in poor performance for moderate values of FAR. In applications

where the cost of communication is not severe, transmission can be allowed

to happen more frequently. Also, since in modern communication networks

information is sent in packets, instead of sending just binary digits, there is

a possibility of sending more information per packet from the sensors to the

fusion center. In this case, a different fusion technique can also be employed

to improve on the performance. Motivated by these observations we propose

the DE-Dist algorithm.

In the DE-Dist algorithm, the DE-CuSum algorithm is used at each sensor

for observation control. If an observation is taken at a sensor, then the

observation is transmitted to the fusion center. At the fusion center, the

CuSum algorithm is applied to the information received from the sensors to

detect the change. For a similar algorithm technique see [35] and [36].

Mathematically, the DE-Dist algorithm can be written as follows.

Algorithm 5.5.1 (DE-Dist). Start with W0,` = 0 ∀`. Fix µ` > 0, h` ≥ 0

and A ≥ 0. For n ≥ 0:

1. Use the DE-CuSum algorithm at each sensor `, i.e., update the statistics

{Wn,`}L`=1 for n ≥ 1 using

Sn+1,` = 1 only if Wn,` ≥ 0

Wn+1,` = min{Wn,` + µ`, 0} if Sn+1,` = 0

=

(
Wn,` + log

f1,`(Xn+1,`)

f0,`(Xn+1,`)

)h+

if Sn+1 = 1

where (x)h+ = max{x,−h}.

2. Transmit Yn,` = log
f1,`(Xn,`)

f0,`(Xn,`)
if Sn,` = 1.

3. At the fusion center compute the statistics {Fn} using the CuSum re-

cursion: F0 = 0 and for n ≥ 0,

Fn+1 = max{0, Fn +
L∑
`=1

Yn,`}. (5.15)

Stop and declare change at

τDE−Dist = inf{n ≥ 1 : Fn > A}. (5.16)

105

We will see in Section 5.6 that the DE-Dist algorithm significantly outper-

forms the DE-All algorithm. Since, the DE-All is asymptotically optimal, we

conjecture that the DE-Dist algorithm is asymptotically optimal as well.

5.5.2 The Serialized-DE-CuSum Algorithm

We now propose an algorithm called the Serialized-DE-CuSum algorithm. It

is a centralized control based algorithm in which the fusion center executes

both the observation control and also makes the decision on stopping.

In the Serialized-DE-CuSum algorithm, the observation control is imple-

mented by serializing the observations from the sensors. That is the se-

quence {X1,1, X1,2, · · · , X1,L, X2,1, X2,2, · · · , X2,L, . . .} is considered, and the

DE-CuSum algorithm (with a fixed µ and h) is applied to this serialized

sequence. If Ŵn,` is the DE-CuSum statistic computed using the above seri-

alized observations sequence, then a change is declared at

τSD = inf{n ≥ 1 : Ŵn,L > D}.

If f0,` = f0 and f1,` = f1, i.e., the pre- and post-change distributions are

the same for all the sensors, then it can be shown that setting A = log L
α

ensures that FAR(τS) ≤ α. Also the delay is equal to the lower bound of

Theorem 5.1.1. Moreover, it can also be shown that a PDC constraint if

suitably defined can be satisfied independent of the FAR constraint. How-

ever, note that since the observation control is executed by the fusion center,

this algorithm is not a policy of type Π considered in Problem 5.1.1 and

Problem 5.1.2. Thus, we cannot claim asymptotic optimality with respect to

these formulations. This algorithm will be essentially used as a benchmark

for performance obtained in a data-efficient setting.

5.6 Numerical Results

In Fig. 5.1 we compare the CADD performance as a function of the FAR, of

the DE-All algorithm with that of the DE-Dist algorithm and the Serialized-

DE-CuSum algorithm. The parameters used in the simulations are: L = 10,

f0,` = N (0, 1), ∀`, and f1,` = N (0.2, 1), ∀`. We see that the DE-Dist algo-

106

rithm performs better than the DE-All algorithm, by virtue of transmitting

more information and using better fusion technique. Also, the Serialized-

DE-CuSum algorithm performs better than both the DE-All algorithm and

the DE-Dist algorithm. This is expected as in the Serialized-DE-CuSum the

observation control is executed by the fusion center.

6.5 7 7.5 8 8.5 9
20

30

40

50

60

70

80

90

100

DE−All
DE−Dist
Serialized−DE−CuSum
Centralized−CuSum

CADD

|log FAR|

Figure 5.1: Trade-off curves for the algorithms studied: h` = 10, and µ` is
selected to satisfy the PDC constraint of 0.5.

In Fig. 5.2 we compare the CADD performance as a function of the FAR, of

the ALL scheme, the DE-All algorithm, and the fractional sampling scheme.

In the fractional sampling scheme, the ALL scheme is used and to meet the

constraint on PDC`, samples are skipped randomly locally at each sensor.

The parameters used in the simulations are: L = 10, f0 = f0,` = N (0, 1),

∀`, and f1 = f1,` = N (0.4, 1), ∀`. The values of µ = µ` = 0.2, and h = h` =

20 are used to satisfy a PDC` constraint of 0.65 for each `.

As shown in the figure the DE-All algorithm provides significant gain as

compared to the fractional sampling scheme. In general, the gap in per-

formance between the DE-All scheme and the fractional sampling scheme

increases as a function of the Kullback-Leibler divergence between the pre-

and post-change distributions.

5.7 Proofs of Various Results

We first define some quantities and set the notation to be used in the proof of

Theorem 5.4.1. Let τW,`(x, y) be the time taken for the DE-CuSum statistic

107

Figure 5.2: Trade-off curves for the algorithms studied: L = 10, f0 = f0,` =
N (0, 1), ∀`, and f1 = f1,` = N (0.4, 1), ∀`. The values of µ = µ` = 0.2, and
h = h` = 20 are used to satisfy a PDC` constraint of 0.65 for each `.

at sensor ` to reach y, starting at W0,` = x. Formally, for x < y let

τW,`(x, y) = inf{n ≥ 1 : Wn,` > y;W0,` = x}.

If x ≥ y, then τW,`(x, y) = 0. Similarly define

τC,`(x, y) = inf{n ≥ 1 : Cn,` > y;C0,` = x},

where Cn,` is the CuSum statistic at sensor ` when a CuSum algorithm is

employed at sensor `. Also define the corresponding time for a random walk

to move from x to y:

τR,`(x, y) = inf{n ≥ 1 : x+
n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
> y}.

Let νW,`(y) be the last time below y for the DE-CuSum statistic, i.e., for

y ≥ 0,

νW,`(y) = sup{n ≥ 1 : Wn,` ≤ y;W0,` = y}. (5.17)

Similarly define the last exit times for the CuSum algorithm

νC,`(y) = sup{n ≥ 1 : Cn,` ≤ y;C0,` = y},

108

and for the random walk

νR,` = sup{n ≥ 1 :
n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
≤ 0}.

For simplicity we refer to the stopping for the DE-All algorithm simply by

τa.

Proofs of Various Results. Our proof follows the outline of the proof of The-

orem 3 in [33], but the details here are slightly more involved.

We obtain an upper bound on Eγ [(τa − γ)+|Iγ−1] that is not a function

of γ and the conditioning Iγ−1, and that scales as the lower bound in The-

orem 5.1.1. The theorem is then established if we then take the essential

supremum and then the supremum over γ.

Let Iγ−1 = iγ−1 be such that Wγ−1,` = w`, w` ∈ [−h`,∞), ∀`. We first

note that

Eγ
[
(τa − γ)+|Iγ−1 = iγ−1

]
≤ E1

[
max

1≤`≤L
{τW,`(w`, d`A) + νW,`(WτW,`(w`,d`A))}

]
.

(5.18)

By definition WτW,`(w`,d`A) ≥ d`A. See Fig. 5.3 for a typical evolution of the

DE-CuSum statistic at a sensor `, showing the first passage time τW,`(w`, d`D),

and the last exit time νW,`(y`), where y` := WτW,`(w`,d`A) for simplicity of rep-

resentation.

Figure 5.3: Typical evolution of the DE-CuSum algorithm showing the first
passage time τW,`, and the last exit time νW,` with w` = 0.01, d`A = 0.5.

109

It is easy to see that

Eγ
[
(τa − γ)+|Iγ−1 = iγ−1

]
≤ E1

[
max

1≤`≤L
{τW,`(w`, d`A)}

]
+ E1

[
max

1≤`≤L
{νW,`(WτW,`(w`,d`A))}

]
.

(5.19)

We now show that the second term on the right-hand side of (5.19) is

bounded by a constant, and the first term on the right-hand side of (5.19) is
A∑L

`=1D(f1,` || f0,`)
+O(

√
A).

For the second term, from Lemma 5.7.1 below, we have

E1

[
max

1≤`≤L
{νW,`(WτW,`(w`,d`A))}

]
≤

L∑
`=1

E1

[
νW,`(WτW,`(w`,d`A))

]
≤ LK3,

(5.20)

where K3 is a constant, not a function of the conditioning w`, d`, ∀`, and the

threshold A. Thus (5.19) can be written as

Eγ
[
(τa − γ)+|Iγ−1 = iγ−1

]
≤ E1

[
max

1≤`≤L
{τW,`(w`, d`A)}

]
+ LK3. (5.21)

For the first term on the right, we write the random variable τW,`(w`, d`A)

in terms of τC,`(w`, d`A). We first assume that 0 ≤ w` ≤ d`A. Note that

τW,`(w`, d`A) is the time for the DE-CuSum statistic Wn,` to reach d`A start-

ing with W0,` = w`. And this time to hit d`A may have multiple sojourns of

the statistic Wn,` below 0. Thus, the time τW,`(w`, d`A) can be written as the

sum of random times. Motivated by this we define a set of new variables. In

the following, we often suppress the dependence on the index ` for simplicity.

Let

τ1(w`) = inf{n ≥ 1 : Wn,` 6∈ [0, d`A] with W0,` = w`}.

This is the first time for the DE-CuSum statistic, starting at W0,` = w`, to

either hit d`A or go below 0. On paths over which Wτ1,` < 0, we know that a

number of consecutive samples are skipped depending on the undershoot of

the observations. Let t1(w`) be the number of consecutive samples skipped

after τ1(w`) on such paths. On such paths again, let

τ2(w`) = inf{n > τ1(w`) + t1(w`) : Wn,` 6∈ [0, d`A]}.

110

Thus, on paths such that Wτ1,` < 0, after the times τ1(w`) and the number

of skipped samples t1(w`), the statistic Wn,` reaches 0 from below. The time

τ2(w`) is the first time for Wn,` to either cross A or go below 0, after time

τ1(w`) + t1(w`). We define, t2(w`), τ3(w`), etc. similarly. Next let

N`(w`) = inf{k ≥ 1 : Wτk,` > d`A}.

For simplicity we introduce the notion of “cycles”, “success” and “failure”.

With reference to the definitions of τk(w`)’s above, we say that a success has

occurred if the statistic Wn,`, starting with W0,` = w`, crosses d`A before it

goes below 0. In that case we also say that the number of cycles to d`A is 1.

If on the other hand, the statistic Wn,` goes below 0 before it crosses d`A, we

say a failure has occurred. On paths such that Wτ1,` < 0, and after the times

τ1(w`) and the number of skipped samples t1(w`), the statistic Wn,` reaches

0 from below. We say that the number of cycles is 2, if now the statistic Wn,`

crosses d`A before it goes below 0. Thus, N`(w`) is the number of cycles to

success at sensor `.

Let

q` = P1

(
n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
≥ 0, ∀n

)
.

From [16] it is well known that q` > 0. We claim that

E1[N`(w`)] ≤
1

q`
. (5.22)

Thus, N`(w`) <∞, a.s. P1.

If (5.22) is indeed true then we can define λ1(w`) = τ1(w`), λ2(w`) =

τ2(w`)−τ1(w`)− t1(w`), etc., to be the lengths of the sojourns of the statistic

Wn,` above 0. Then clearly we have

τW,`(w`, d`A) =

N`(w`)∑
k=1

λk(w`) +

N`(w`)−1∑
k=1

tk(w`).

If w` < 0, then note that there will be an additional initial sojourn of the

statistic Wn,` below 0, equal to d|wh`+` |/µ`e. This is followed by a delay term

111

which corresponds to w` = 0. Thus, in this case we can write

τW,`(w`, d`A) =

N`(w`)∑
k=1

λk(w`) +

N`(w`)∑
k=1

tk(w`).

Such a statement is also valid even if w` > A because the right-hand side of

the above equation is positive.

Substituting this in (5.21) we have

Eγ
[
(τa − γ)+|Iγ−1 = iγ−1

]
≤ E1

[
max

1≤`≤L
{τW,`(w`, d`A)}

]
+ LK3

≤ E1

max
1≤`≤L

N`(w`)∑
k=1

λk(w`) +

N`(w`)∑
k=1

tk(w`)

+ LK3

≤ E1

max
1≤`≤L

N`(w`)∑
k=1

λk(w`)

+ E1

max
1≤`≤L

N`(w`)∑
k=1

tk(w`)

+ LK3

≤ E1

max
1≤`≤L

N`(w`)∑
k=1

λk(w`)

+

L∑
`=1

dh`/µ`e
q`

+ LK3.

(5.23)

The last inequality is true because

tk(w`) ≤ dh`/µ`e, ∀w`, k, `

and because of (5.22).

We now make an important observation. We observe that because of the

i.i.d. nature of the observations

τC,`(w`, d`A)
d
=

N`(w`)∑
k=1

λk(w`),

where we have used the symbol
d
= to denote equality in distribution. Thus,

E1

max
1≤`≤L

N`(w`)∑
k=1

λk(w`)

 = E1

[
max

1≤`≤L
τC,`(w`, d`A)

]
.

112

But, by sample-pathwise arguments it follows that

E1

[
max

1≤`≤L
τC,`(w`, d`A)

]
≤ E1

[
max

1≤`≤L
τC,`(0, d`A)

]
.

This gives us

Eγ
[
(τa − γ)+|Iγ−1 = iγ−1

]
≤ E1

max
1≤`≤L

N`(w`)∑
k=1

λk(w`)

+

L∑
`=1

dh`/µ`e
q`

+ LK3

= E1

[
max

1≤`≤L
τC,`(w`, d`A)

]
+

L∑
`=1

dh`/µ`e
q`

+ LK3

≤ E1

[
max

1≤`≤L
τC,`(0, d`A)

]
+

L∑
`=1

dh`/µ`e
q`

+ LK3

≤ E1

[
max

1≤`≤L
τR,`(0, d`A)

]
+

L∑
`=1

dh`/µ`e
q`

+ LK3.

(5.24)

We note that the right-hand side of (5.24) is not a function of γ and the

conditioning Iγ−1 = iγ−1 anymore. The theorem thus follows by taking

ess sup on the left-hand side followed by a sup over time index γ, and recalling

the result from the proof of Theorem 3 of [33] that E1 [max1≤`≤L τR,`(0, d`A)]

is of the order of A∑L
`=1D(f1,` || f0,`)

+O(
√
A).

The proof of the theorem will be complete if we prove the claim (5.22).

With the identity

E1[N`(w`)] =
∞∑
k=1

P1(N`(w`) ≥ k)

in mind, and using the terminology of cycles, success and failure defined

earlier, we write

P1(N`(w`) ≥ k) = P1(fail in 1st cycle) P1(fail in 2nd cycle|fail in first cycle)

· · ·P1(fail in k − 1st cycle|fail in all previous).

113

Now,

P1(fail in ith cycle|fail in all previous)

= 1− P1(success in ith cycle|fail in all previous).

We note that

P1(success in 1st cycle) = P1(Wτ1,` > A)

= P1 (Statistic Wn,` starting with W0,` = w`

reaches d`A before it goes below 0)

≥ P1

(
n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
≥ 0, ∀n

)
= q`.

(5.25)

Here, the last inequality follows because
∑n

k=1 log
f1,`(Xk,`)

f0,`(Xk,`)
→ ∞ a.s. under

P1, and hence the statistic Wn,` reaches d`A before actually never coming

below w`, and hence reaches d`A before going below 0. Note that the lower

bound is not a function of the starting point w`.

Similarly, for the second cycle

P1(success in 2nd cycle|failure in first) = P1 (Wτ2,` > A|Wτ1,` < 0))

= P1 (Statistic Wn,`, for n > τ1(w`) + t1(w`)

reaches d`A before it goes below 0)

= P1 (Statistic Wn,` starting with W0,` = 0

reaches d`A before it goes below 0)

≥ P1

(
n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
≥ 0, ∀n

)
= q`.

Almost identical arguments for the other cycles proves that

P1(success in ith cycle|fail in all previous) ≥ q`, ∀i.

As a result we get

P1(N`(w`) ≥ k) ≤ (1− q`)k−1.

Note that the right-hand side is not a function of the initial point w`, nor is

114

a function of the threshold A. Hence,

E1[N`(w`)] =
∞∑
k=1

P1(N`(w`) ≥ k) ≤
∞∑
k=1

(1− q`)k−1 =
1

q`
<∞. (5.26)

This proves the claim in (5.22) and proves the theorem.

Lemma 5.7.1. Let νW,`(w`) as defined in (5.17) be the last exit time of

the DE-CuSum statistic at sensor ` of the interval (−∞, w`]. Then if the

variance of the log likelihood ratio at sensor ` is finite, then for all w` ≥ 0,

and every `,

E1[νW,`(w`)] ≤ E1[νC,`(w`)] +K1

≤ E1[νR,`(w`)] +K1 = K3 <∞,
(5.27)

where K1 and K3 are finite positive constants.

Proof. Throughout the proof, we often suppress the dependence on the sensor

index `. The evolution of the DE-CuSum statistic from n = 1 until νW,`(w`)

can be described as follows. The DE-CuSum starts at w`, and initially evolves

like the CuSum algorithm, until either it goes below 0, or grows to∞ without

ever coming back to 0. Let A1 be the set of paths such that the DE-CuSum

statistic grows to infinity without ever touching 0. In Fig. 5.3 consider the

evolution of the DE-CuSum statistic by considering the time τW,`(w`, d`A) as

the origin or time n = 0. Then the sample shown in Fig. 5.3 is a path from

the set Ac1, which is the complement of the set A1. We define

ν1(w`) = sup{n ≥ 1 : Wn,` ≤ w`;W0,` = w`} on A1

= inf{n ≥ 1 : Wn,` < 0; } on Ac1.
(5.28)

Thus, on the set A1, ν1(w`) is the last exit time for the level w`, and on the

set Ac1, ν1(w`) is the first time to hit 0. We note that ν1(w`) is not a stopping

time.

On the set Ac1, the DE-CuSum statistic goes below 0. Let t1(w`) be the

time taken for the DE-CuSum statistic to grow up to 0, once it goes below 0

at ν1(w`). Beyond ν1(w`) + t1(w`), the evolution of the DE-CuSum statistic

is similar. Either it grows up to∞ (say on set of paths A2), or it goes below

115

0 (say on set of paths Ac2). Thus, we define the variable

ν2(w`) = sup{n > ν1(w`) + t1(w`) : Wn,` ≤ w`} on A2

= inf{n > ν1(w`) + t1(w`) : Wn,` < 0; } on Ac2
(5.29)

The variables t3(w`) and ν3(w`), etc., can be similarly defined. We note that

the variables here are similar to that used in the proof of Theorem 5.4.1, but

the variables νk(w`)s here are not stopping times.

Also, let

Nν
` (w`) = inf{k ≥ 1 : Wνk(w`),` ≥ 0}.

As done in the proof of Theorem 5.4.1, we define the notion of “cycles”,

“success” and “failure”. With reference to the definitions of νk(w`)’s above,

we say that a success has occurred if the statistic Wn,`, starting with W0,` =

w`, grows to infinity before it goes below 0. In that case we also say that

the number of cycles to the last exit time is 1. If on the other hand, the

statistic Wn,` goes below 0, we say a failure has occurred. On paths such

that Wτ1,` < 0, and after the times τ1(w`) and the number of skipped samples

t1(w`), the statistic Wn,` reaches 0 from below. We say that the number of

cycles is 2, if now the statistic Wn,` grows to infinity before it goes below 0.

Thus, N`(w`) is the number of cycles to success at sensor `. See Fig. 5.3,

where in the figure N ν
` = 7.

Let

q` = P1

(
n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
≥ 0, ∀n

)
.

We now show that

E1[Nν
` (w)] ≤ 1

q`
<∞.

The last strict inequality is true because q` > 0; see [16].

With the identity

E1[N ν
` (w`)] =

∞∑
k=1

P1(Nν
` (w`) ≥ k)

in mind, and using the terminology of cycles, success and failure defined above

(and which are different from those used in the proof of Theorem 5.4.1), we

116

write

P1(Nν
` (w`) ≥ k) = P1(fail in 1st cycle) P1(fail in 2nd cycle|fail in 1st cycle)

· · ·P1(fail in k − 1st cycle|fail in all previous).

Now,

P1(fail in ith cycle|fail in all previous)

= 1− P1(success in ith cycle|fail in all previous).

We note that

P1(success in 1st cycle) = P1(Wν1,` > 0)

= P1 (Statistic Wn,` starting with W0,` = w`

grows to ∞ before it goes below 0)

≥ P1

(
n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
≥ 0, ∀n

)
= q`.

(5.30)

Here, the last inequality follows because
∑n

k=1 log
f1,`(Xk,`)

f0,`(Xk,`)
→ ∞ a.s. under

P1, and hence the statistic Wn,` grows to infinity before never coming below

w` ≥ 0. Note that the lower bound is not a function of the starting point w`.

Similarly, for the second cycle

P1(success in 2nd cycle|failure in first) = P1 (Wν2,` > 0|Wν1,` < 0))

= P1 (Statistic Wn,`, for n > ν1(w`) + t1(w`),

grows to ∞ before it goes below 0)

= P1 (Statistic Wn,` starting with W0,` = 0

grows to ∞ before it goes below 0)

= P1

(
n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
≥ 0, ∀n

)
= q`.

Almost identical arguments for the other cycles proves that

P1(success in ith cycle|fail in all previous) ≥ q`, ∀i.

As a result we get

P1(N ν
` (w`) ≥ k) ≤ (1− q`)k−1.

117

Note that the right-hand side is not a function of the initial point w`, nor is

a function of the threshold A. Hence,

E1[N ν
` (w`)] =

∞∑
k=1

P1(N`(w`) ≥ k) ≤
∞∑
k=1

(1− q`)k−1 =
1

q`
<∞. (5.31)

Thus, Nν
` (w`) <∞, a.s. under P1 and we can define the following random

variables: λν1(w`) = ν1(w`), λ
ν
2(w`) = ν2(w`)− ν1(w`)− t1(w`), etc, to be the

lengths of the sojourns of the statistic Wn,` above 0. Then, νW,`(w`) can be

written as

E1[νW,`(w`)] = E1

Nν
` (w)∑
k=1

λν1(w`)

+ E1

Nν
` (w)−1∑
k=1

tk(w)

 . (5.32)

We observe that because of the i.i.d. nature of the observations

E1[νC,`(w`)] = E1

Nν
` (w)∑
k=1

λν1(w`)

 .
As a result,

E1[νW,`(w)] = E1[νC,`(w`)] + E1

Nν
` (w)−1∑
k=1

tk(w)

 . (5.33)

Now, tk(w) ≤ dh`/µ`e, for any k, w`, and every `. Thus, we have

E1[νW,`(w)] ≤ E1[νC,`(w`)] + E1[N ν
` (w)]dh`/µ`e

≤ E1[νC,`(w`)] +
dh`/µ`e
q`

.
(5.34)

The first inequality of the lemma follows from by setting K1 = dh`/µ`e
q`

. The

rest of the lemma follows by noting that by definition of the CuSum algorithm

E1[νC,`(w`)] ≤ E1[νR,`(w`)],

and the latter is finite, and not a function of w`, provided the variance of the

log likelihood ratio is finite; see [33].

118

CHAPTER 6

DATA-EFFICIENT QUICKEST CHANGE
DETECTION IN MULTI-CHANNEL

SYSTEMS

In this chapter we study data-efficient quickest change detection in a multi-

channel system. In a multi-channel system, a decision maker observes multi-

ple independent streams of observations simultaneously. At the change point,

the distribution of observations in an unknown subset of streams changes.

The objective is to detect this change as quickly as possible without the

knowledge of the affected subset. This problem is encountered for example

in sensor networks, where either a change affects an unknown subset of sen-

sors onboard a sensor node, or affects an unknown subset of sensor nodes

in the network. We study the problem in the more general setup of sensor

networks. For the special case when the problem does not involve a sensor

network, the communication between the sensors and the fusion center can

be ignored.

We propose extensions of the minimax problem formulations from Chap-

ter 5 by now explicitly considering the cost of communication between the

sensors and the fusion center, before the change point. The QCD prob-

lem in a multi-channel setting is studied in [28], [29] and [37]. However, in

these papers neither the cost of observations at the sensors, nor the cost of

communication between the sensor nodes and the fusion center is taken into

account. We note that the papers [32], [33], [34], and [37] did consider the

communication constraint by restricting the amount of transmitted informa-

tion to either one bit or few bits, but the constraint on communication was

not part of the problem formulation itself. The quickest change detection

problem where the cost of communication is considered explicitly is studied

in [38] and [36]. However, in these papers, the cost of observations at the

sensors is not taken into account. Also, the problems were not considered in

a multi-channel setting, i.e., in these papers the change affects all the sensors

at the time of change.

For the sensor networks multi-channel problem we propose two algorithms:

119

the DE-Censor-Max algorithm and the DE-Censor-Sum algorithm. In both

the algorithms the DE-CuSum algorithm (Algorithm 3.2) is applied to each

stream in parallel, or used at each sensor; thus ensuring data-efficiency at

the sensors. Again, in both the algorithms, the local DE-CuSum statistics

is transmitted from the sensors to the fusion center, if the local DE-CuSum

statistic is above a certain threshold; this is censoring. In the DE-Censor-Max

algorithm, a change is declared at the fusion center when the maximum of

the transmitted DE-CuSum statistics across the streams is above a threshold.

In the DE-Censor-Sum algorithm, a change is declared at the fusion center

when the sum of the transmitted DE-CuSum statistics across the streams is

above a threshold. We will provide detailed performance analysis of these

algorithms. The analysis will reveal that the DE-Censor-Max algorithm is

asymptotically optimal for the problems proposed (for each possible post-

change scenario), when the change affects exactly one stream, as the false

alarm rate goes to zero. Also, under an assumption on a result in [29],

the DE-Censor-Sum algorithm is asymptotically optimal for the problems

proposed (for each possible post-change scenario), as the false alarm rate

goes to zero.

We note that the multi-channel problem is similar to the problem stud-

ied in Chapter 4 on the composite post-change hypothesis. The difference

here is that there are multiple independent streams of observations and the

observation control can be implemented at each stream independently.

6.1 Problem Formulation

For the sensor network multi-channel problem we consider the same type of

policies that we considered for sensor networks in Chapter 5. We also con-

sider the same metrics for delay, false alarm and the cost of observation at

sensors. We will however introduce a new metric for the cost of communica-

tion between the sensors and the fusion center. We reproduce the definitions

of policy and metrics of Chapter 5 here for completeness.

The sensor network is assumed to consist of L sensors and a central

decision maker called the fusion center. The sensors are indexed by the

index ` ∈ {1, · · · , L}. At sensor ` the sequence {Xn,`}n≥1 is observed,

where n is the time index. At γ, the distribution of {Xn,`} in a subset

120

κ = {k1, k2, · · · , km} ⊂ {1, 2, · · · , L} of the streams changes, from f0,` to say

f1,`. The random variables {Xn,`} are independent across indices n and `

conditioned on γ and the affected subset κ. The distributions f0,` and f1,`

are assumed to be known, but neither the affected subset κ nor its size m is

known.

Let Sn,` be the indicator random variable such that

Sn,` =

1 if Xn,` is used for decision making at sensor `

0 otherwise.

Let φn,` be the observation control law at sensor `, i.e.,

Sn+1,` = φn,`(In,`),

where In,` =
[
S1,`, . . . , Sn,`, X

(S1,`)

1,` , . . . , X
(Sn,`)

n,`

]
. Here, X

(Sn,`)

n,` = X1,` if

S1,` = 1, otherwise X1,` is absent from the information vector In,`. Thus,

the decision to take or skip a sample at sensor ` is based on its past infor-

mation. Let

In = {In,1, · · · , In,L}

be the information available at time n across the sensor network.

Also let

Yn,` = gn,`(In,`)

be the information transmitted from sensor ` to the fusion center. If no

information is transmitted to the fusion center, then Yn,` = NULL, which is

treated as zero at the fusion center. Here, gn,` is the transmission control law

at sensor `. Let

Y n = {Yn,1, · · · , Yn,L}

be the information received at the fusion center at time n, and let τ be a

stopping time on the sequence {Y n}.
Let

φn = {φn,1, · · · , φn,L}

denote the observation control law at time n, and let

gn = {gn,1, · · · , gn,L}

121

denote the transmission control law at time n. For data-efficient quickest

change detection in sensor networks we consider the policy of type Π defined

as

Π = {τ, {φ0, · · · ,φτ−1}, {g1, · · · , gτ}}.

The PDC`, the PDC for sensor `, is defined as

PDC`(Π) = lim sup
γ→∞

1

γ
E∞

[
γ−1∑
k=1

Sk,`

]
. (6.1)

Thus, PDC` is the fraction of time observations are taken before change at

sensor `.

To capture the cost of communication between each sensor and the fusion

center before change, we propose the Pre-Change Transmission Cost (PTC)

metric. For the definition we define

Tn,` =

1 if Yn,` 6= NULL, i.e, some information

is transmitted to the fusion center

0 otherwise.

The Pre-change Transmission Cost at sensor ` (PTC`) is defined as

PTC`(Π) = lim sup
γ→∞

1

γ
E∞

[
γ−1∑
k=1

Tk,`

]
. (6.2)

If in a policy every sample is taken and some information is transmitted at

every time slot at all the sensors, then for that policy PDC` = PTC` = 1, ∀`.
If transmissions happen from the sensors only in every alternate time slots,

then PTC` = 0.5, ∀`.
The objective here is to solve the following extensions of Problem 5.1.1

and Problem 5.1.2:

Problem 6.1.1.

minimize
Π

WADD(Π),

subject to FAR(Π) ≤ α, (6.3)

PDC`(Π) ≤ β`, for ` = 1, · · · , L,

and PTC`(Π) ≤ σ`, for ` = 1, · · · , L,

122

where 0 ≤ α, β`, σ` ≤ 1, for ` = 1, · · · , L, are given constraints, and

Problem 6.1.2.

minimize
Π

CADD(Π),

subject to FAR(Π) ≤ α, (6.4)

PDC`(Π) ≤ β`, for ` = 1, · · · , L,

and PTC`(Π) ≤ σ`, for ` = 1, · · · , L,

where 0 ≤ α, β`, σ` ≤ 1, for ` = 1, · · · , L, are given constraints.

The asymptotic lower bound developed in [14] can be specialized to the

multi-channel setting. Let

∆α = {Π : FAR(Π) ≤ α}.

Theorem 6.1.1 ([14]). If the affected subset post-change is κ = {k1, k2, · · · , km},
then as α→ 0,

inf
Π∈∆α

CADD(Π) ≥ | logα|∑m
i=1 D(f1,ki || f0,ki)

(1 + o(1)). (6.5)

Since WADD(Π) ≥ CADD(Π), we also have as α→ 0,

inf
Π∈∆α

WADD(Π) ≥ | logα|∑m
i=1 D(f1,ki || f0,ki)

(1 + o(1)). (6.6)

6.2 Data-Efficient Algorithms for Multi-Channel

Systems

In this section we propose two algorithms that can be used to detect the

change in a data-efficient way in a multi-channel system. In both the al-

gorithms the DE-CuSum algorithm (Algorithm 3.2) is used locally at each

sensor. In the rest of the chapter we use Wn,` to denote the DE-CuSum

statistic at sensor ` at time n.

123

6.2.1 The DE-Censor-Max Algorithm

In the DE-Censor-Max algorithm, the DE-CuSum algorithm is used at each

sensor `. If the DE-CuSum statistic Wn,` at a sensor is above a threshold D`,

then the statistic is transmitted to the fusion center. A change is declared at

the fusion center, if the maximum of the transmitted statistics from all the

sensors is larger than another threshold A. Mathematically, the DE-Censor-

Max algorithm is described as follows.

Algorithm 6.2.1 (DE-Censor-Max: ΠDCM). Start with W0,` = 0 ∀`. Fix

µ` > 0, h` ≥ 0, D` ≥ 0 and A ≥ 0. For n ≥ 0 use the following control:

1. Use the DE-CuSum algorithm at each sensor `, i.e., update the statistics

{Wn,`}L`=1 for n ≥ 1 using

Sn+1,` = 1 only if Wn,` ≥ 0

Wn+1,` = min{Wn,` + µ`, 0} if Sn+1,` = 0

=

(
Wn,` + log

f1,`(Xn+1,`)

f0,`(Xn+1,`)

)h+

if Sn+1 = 1,

where (x)h+ = max{x,−h}.

2. Transmit

Yn,` = Wn,`I{Wn,`>D`}, ∀`.

3. At the fusion center stop at

τDCM = inf{n ≥ 1 : max
`∈{1,··· ,L}

Yn,` > A}.

With D` = 0 and h` = 0, ∀`, the DE-CuSum algorithm at each sensor

reduces to the CuSum algorithm, and Yn,` = Wn,` ∀n, `. In this case, the

DE-Censor-Max algorithm reduces to the MAX algorithm proposed in [28].

We will show in the Section 6.3 that when exactly one of the L sensor is

affected post-change, then this algorithm is uniformly asymptotically optimal

for both Problem 6.1.1 and Problem 6.1.2 (achieves the lower bound provided

in Theorem 6.1.1 for each κ), for each fixed {β`} and {σ`}, as α→ 0.

124

6.2.2 The DE-Censor-Sum Algorithm

Although the DE-Censor-Max algorithm is asymptotically optimal, we will

show in Section 6.4 that it performs poorly when the size of the affected

subset is large. To detect the change efficiently when the size of affected

susbet is large, we propose the DE-Censor-Sum algorithm.

In the DE-Censor-Sum algorithm, the DE-CuSum algorithm is used at each

sensor. If the DE-CuSum statistic at a sensor is above a threshold, then the

statistic is transmitted to the fusion center. A change is declared at the fusion

center, if the sum of the transmitted statistics from all the sensors is larger

than another threshold. Mathematically, the DE-Censor-Sum algorithm is

described as follows.

Algorithm 6.2.2 (DE− Censor− Sum: ΠDCS). Start with W0,` = 0 ∀`. Fix

µ` > 0, h` ≥ 0, D` ≥ 0 and A ≥ 0. For n ≥ 0 use the following control:

1. Use the DE-CuSum algorithm at each sensor `, i.e., update the statistics

{Wn,`}L`=1 for n ≥ 1 using

Sn+1,` = 1 only if Wn,` ≥ 0

Wn+1,` = min{Wn,` + µ`, 0} if Sn+1,` = 0

=

(
Wn,` + log

f1,`(Xn+1,`)

f0,`(Xn+1,`)

)h+

if Sn+1 = 1,

where (x)h+ = max{x,−h}.

2. Transmit

Yn,` = Wn,`I{Wn,`>D`}, ∀`.

3. At the fusion center stop at

τDCS = inf{n ≥ 1 :
∑

`∈{1,··· ,L}

Yn,` > A}.

With D` = 0 and h` = 0, ∀`, the DE-CuSum algorithm at each sensor

reduces to the CuSum algorithm, and Yn,` = Wn,` ∀n, `. In this case, the

DE-Censor-Sum algorithm reduces to the Nsum algorithm proposed in [29].

If h` = 0 ∀` and D > 0, the DE-Censor-Sum algorithm reduces to the Nhard

algorithm proposed in [37]. The DE-Censor-Sum algorithm can easily be

125

modified to obtain data-efficient extensions of other algorithms proposed in

[37].

We will provide a detailed performance analysis of the DE-Censor-Sum

algorithm using which the threshold A and the parameter h` and µ` can

be selected. We will use the performance analysis to show that, under an

additional assumption on a result in [29], the DE-Censor-Sum algorithm is

uniformly asymptotically optimal for both Problem 6.1.1 and Problem 6.1.2

(achieves the lower bound provided in Theorem 6.1.1 for each κ), for each

fixed {β`} and {σ`}, as α→ 0.

6.3 Asymptotic Optimality of the DE-Censor-Max

Algorithm

We now show that when exactly one of the sensor is affected post-change,

then the DE-Censor-Max algorithm is asymptotically optimal for Problems 6.1.1

and Problem 6.1.2, for each fixed {β`}, {σ`}, as α→ 0.

As in Section 5.4 we define the ladder variable [16] corresponding to sensor

`:

τ`− = inf

{
n ≥ 1 :

n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
< 0

}
,

and note that Wτ`− is the ladder height. Also, let

UD` =

{
times :

n∑
k=1

log
f1,`(Xk,`)

f0,`(Xk,`)
> D` before it is < 0

}
.

Thus, UD` is the number of times the random walk
∑n

k=1 log
f1,`(Xk,`)

f0,`(Xk,`)
is above

D` before hitting 0. We note that UD` = 0 with a positive probability. We

note that UD` is also the number of times the DE-CuSum statistic Wn,` is

above D` before hitting 0.

Theorem 6.3.1. Let

0 < D(f1,` || f0,`) <∞ and 0 < D(f0,` || f1,`) <∞ ∀`.

Let µ` > 0, h` <∞, ∀`, D` ≥ 0, and A = log L
α

. If the change occurs in the

126

stream `∗, then we have

FAR(ΠDCM) ≤ α,

PDC`(ΠDCM) =
E∞[τ`−]

E∞[τ`−] + E∞[d|W h`+
τ`− |/µ`e]

, ∀`,

PTC`(ΠDCM) =
E∞[UD`]

E∞[τ`−] + E∞[d|W h`+
τ`− |/µ`e]

, ∀`,

WADD(ΠDCM) ≤ | logα|
D(f1,`∗ || f0,`∗)

(1 + o(1)) as α→ 0.

(6.7)

If h` =∞, ∀`, then

PDC`(ΠDCM) ≤ µ`
µ` +D(f0,` || f1,`)

, ∀`. (6.8)

Proof. The FAR result follows from Lemma 3.3.3 and Theorem 1 of [28]. The

results on PDC` follows from Theorem 4.3.1. The results on PTC` follows also

from the renewal reward theorem and the arguments are almost identical to

those provide for PDC in Theorem 4.3.1. The delay proof is true because

after change the max of statistics is greater than the statistics in which the

change has taken place. Thus, the delay of the DE-Censor-Max algorithm is

bounded from above by the delay of the DE-CuSum algorithm when applied

to the affected sensor. Mathematically, the arguments is as follows.

We obtain an upper bound on Eγ [(τDCM − γ)+|Iγ−1] that is not a func-

tion of γ and the conditioning Iγ−1, and that scales as the lower bound in

Theorem 6.1.1. The theorem is then established if we then take the essential

supremum and then the supremum over γ.

Let Iγ−1 = iγ−1 be such that Wγ−1,` = x`, x` ∈ [−h`,∞). We first note

that for A > max`D`,

Eγ
[
(τDCM − γ)+|Iγ−1 = iγ−1

]
≤ E1 [τW,`∗(x`∗)] , (6.9)

where τW,`(x`) is the time for the DE-CuSum statistic Wn,` to reach A starting

with W0,` = x`; see (3.27). Then from Lemma 3.3.4 we have

Eγ
[
(τDCM − γ)+|Iγ−1 = iγ−1

]
≤ E1 [τW,`∗(x`∗)] ≤ E1[τW,`∗] + dh`∗/µ`∗e.

(6.10)

127

The result now follows from the proof of Theorem 3.3.5 on the DE-CuSum

algorithm.

Since CADD ≤ WADD, we also have under the same assumptions as in

Theorem 6.3.1

CADD(ΠDCM) ≤ | logα|
D(f1,`∗ || f0,`∗)

(1 + o(1)) as α→ 0. (6.11)

From Theorem 6.1.1, the WADD, and hence the CADD performance of the

DE-Censor-Max algorithm is the best one can do when the change affects

the stream `∗, for given {β`} and {σ`}, as α → 0. Also, the PDC` and the

PTC` performances do not depend on the threshold A, thus the constraints

{β`} and {σ`} can be satisfied independent of the FAR constraint α. Hence,

the DE-Censor-Max algorithm is asymptotically optimal when the change

affects exactly one stream, for both Problem 6.1.1 and Problem 6.1.2, for

each given {β`} and {σ`}, as α→ 0.

6.3.1 Performance Analysis of the DE-Censor-Sum Algorithm

In this section we provide the performance analysis of the DE-Censor-Sum

algorithm and then comment on its asymptotic optimality.

Theorem 6.3.2. Let

0 < D(f1,` || f0,`) <∞ and 0 < D(f0,` || f1,`) <∞ ∀`.

Let µ` > 0, h` < ∞, ∀`, D` ≥ 0, and A = L log L
α

. If the change affects the

subset κ of streams, then we have

FAR(ΠDCS) ≤ α,

PDC`(ΠDCS) =
E∞[τ`−]

E∞[τ`−] + E∞[d|W h`+
τ`− |/µ`e]

, ∀`,

PTC`(ΠDCS) =
E∞[UD`]

E∞[τ`−] + E∞[d|W h`+
τ`− |/µ`e]

, ∀`,

WADD(ΠDCS) ≤
A∑m

i=1D(f1,ki || f0,ki)
(1 + o(1)) as A→∞.

(6.12)

128

If h` =∞, ∀`, then

PDC`(ΠDCS) ≤
µ`

µ` +D(f0,` || f1,`)
, ∀`. (6.13)

Proof. The proofs on PDC` and PTC` are identical to that provided in the

Theorem 6.3.1.

For the FAR note that{
L∑
`=1

Wn,` > A

}
⊂
{

max
`∈{1,··· ,L}

Wn,` >
A

L

}
.

For simplicity we write ΠDCS(A) to represent DE-Censor-Sum algorithm when

the threshold used at the fusion center is A. Similarly we use ΠDCM(A/L) to

represent DE-Censor-Max algorithm when the threshold used at the fusion

center is A/L. Then the above subset relation implies

FAR(ΠDCS(A)) ≤ FAR(ΠDCM(A/L)).

The FAR result follows because from Theorem 6.3.1 we have that

FAR(ΠDCM(A/L)) ≤ α if A/L = logL/α.

For the WADD analysis, let τDCS(κ) denote the DE-Censor-Sum algorithm

applied to only the streams in the affected subset κ. Further let Iγ−1(κ)

denote the information in the affected streams. Then

Eγ
[
(τDCS − γ)+|Iγ−1 = iγ−1

]
≤ Eγ

[
(τDCS(κ)− γ)+|Iγ−1 = iγ−1

]
= Eγ

[
(τDCS(κ)− γ)+|Iγ−1(κ) = iγ−1(κ)

]
.

(6.14)

Because of the above inequality, we can assume that the change affects all

the subsets at the same time, i.e., κ = {1, · · · , L}.
Now note that any A (see Algorithm 5.3.1)

{Wn,` > d`A, ∀`} ⊂

{∑
`

Wn,` >
∑
`

d`A = A

}
.

129

Hence, for A sufficiently large and from the proof of Theorem 5.4.1, we have

Eγ
[
(τDCS − γ)+|Iγ−1 = iγ−1

]
≤ Eγ

[
(τDE−All − γ)+|Iγ−1 = iγ−1

]
≤ E1

[
max

1≤`≤L
τC,`

]
+ constant.

(6.15)

The proof of the theorem is now complete because we can now take ess sup

and then sup over γ on the left-hand side. Then, from [33] it follows that

E1 [max1≤`≤L τC,`] grows in the order A∑L
`=1D(f1,` || f0,`)

. This when applied to

the affected subset κ gives us the desired result on the WADD from (6.14).

Note that the above theorem does not imply the asymptotic optimality

of the DE-Censor-Sum algorithm, mainly due to the fact that the choice of

the threshold is conservative. It only gives a delay bound of L times that

of the lower bound in Theorem 6.1.1. However, if the threshold can be set

to be of the order log 1/α to satisfy the FAR constraint, then the above

theorem establishes the uniform asymptotic optimality of the DE-Censor-

Sum algorithm for each possible post-change distribution. It is claimed in

[29] that such a result is indeed true. We thus have the following corollary.1

Corollary 6.3.2.1. If Theorem 1 in [29] is indeed true, then under the con-

ditions of Theorem 6.3.2 above, the DE-Censor-Sum algorithm is uniformly

asymptotically optimal, for each possible κ, for each fixed {β`} and {σ`}, as

α→ 0.

6.4 Numerical Results

We first compare the performance of the DE-Censor-Sum algorithm, the DE-

Censor-Max algorithm and the Centralized CuSum algorithm as a function of

the number of affected stream. The Centralized CuSum scheme is designed

by assuming that the affected subset post-change is known. We plot the

CADD versus the number of affected stream comparison in Fig. 6.1 for the

parameters: FAR = 10−3, L = 100, f0,` = f0 = N (0, 1), ∀`, f1,` = f1 =

N (0.5, 1), ∀`, and for the {PDC`} and {PTC`} constraints of β` = σ` =

0.5, ∀`. We also set the local thresholds D` = 0, ∀`. In the figure we see

1There is a gap in the proof of Theorem 1 in [29]. The result however is believed to be
true.

130

Figure 6.1: Comparison of DE-Censor-Sum algorithm, the DE-Censor-Max
algorithm and the Centralized CuSum algorithm as a function of the number
of affected stream.

that the DE-Censor-Max scheme outperforms the DE-Censor-Sum scheme

when the number of affected streams is small. This is because the former

is optimal when the number of affected stream is exactly one. However,

when the number of affected streams is large, the DE-Censor-Sum algorithm

outperforms the DE-Censor-Max algorithm. We note that this observation

is consistent with the observations made in [29] regarding the comparison

between the MAX and SUM algorithms.

In Fig. 6.2 we compare the CADD vs FAR performance of the DE-Censor-

Sum algorithm with the fractional sampling scheme for L = 10, f0,` =

N (0, 1), ∀`, f1,` = N (0.2, 1), ∀`, and for the {PDC`} and {PTC`} constraints

of β` = σ` = 0.5 ∀`. We consider the post-change scenario when m = 7. We

restrict our numerical study to the comparison of the CADD performance.

Similar comparison can be obtained for the WADD as well.

In the fractional sampling scheme, the CuSum algorithm is used at each

sensor, and samples are skipped based on the outcome of a sequence of fair

coin tosses, independent of the observation process. If an observation is taken

at a sensor, the CuSum statistic is transmitted to the fusion center. Thus,

achieving the constraints on the {PDC`} and {PTC`}. At the fusion center

a change is declared the first time the sum of the CuSum statistics from all

the sensors crosses a threshold. At the fusion center, in the absence of any

transmission from a sensor, its CuSum statistics from the last time instant is

used to compute the sum. For the DE-Censor-Sum algorithm, we set D` = 0,

131

{h` = h = 10}, ∀`, and use the approximation (6.8) to select µ`. This ensures

that the {PDC`} and {PTC`} constraints are satisfied for the DE-Censor-Sum

algorithm. In the figure we see that the DE-Censor-Sum algorithm provides

a significant gain in performance as compared to the approach of fractional

sampling.

6.5 7 7.5 8 8.5 9
20

40

60

80

100

120

140

L=10, m=7, f
0
=N(0,1), f

1
=N(0.2,1), D

l
=0, PDC

l
=PTC

l
=0.5

FractionalSample
DE−Censor−Sum
CentralizedCuSum

CADD

|log(FAR)|

Figure 6.2: Comparison of the DE-Censor-Sum algorithm with the fractional
sampling scheme.

132

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation we studied data-efficient quickest change detection. The

classical quickest change detection formulations are not suitable for applica-

tions where the change occurs rarely, and where taking observations before

the change is costly. Thus, new formulations were needed where additional

penalty is applied on the cost of observations used before the change point.

We modified various classical quickest change detection formulations in the

literature by adding such a penalty to the formulations.

We showed that on-off observation control can be introduced in the clas-

sical tests to make them data-efficient. In these new data-efficient tests, the

likelihood ratio of the observations taken is used not only to detect change,

but to also skip observations, if the observations provide a strong indication

of no change. We showed that these new tests have the same asymptotic

performance as the classical tests where all the observations are used for de-

cision making. Thus, data-efficiency can be introduced without any loss in

asymptotic performance, as the false alarm rate goes to zero. We now discuss

possible future directions in which the theory discussed in this dissertation

can be extended.

1. Non-i.i.d. settings: A major assumption throughout this dissertation

has been the i.i.d. assumption, i.e., the observations are independent

conditioned on the change point. In [15] and [14] the quickest change

detection problem is studied in non-i.i.d. settings. In these works,

conditions are identified under which generalizations of the Shiryaev

and the CuSum algorithms are optimal in some non-i.i.d. settings. It

would be interesting to check if some conditions can be identified under

which the extension of the data-efficient algorithms studied here retain

there optimality property in those non-i.i.d. settings.

2. Sensor networks: In Chapter 5, we studied the sensor network problem.

133

We proposed the DE-Dist algorithm that performs significantly better

than the DE-All algorithm. There we conjectured that the DE-Dist

algorithm is also asymptotically optimal given the fact that the DE-All

is asymptotically optimal. An interesting problem for future work is to

prove that this conjecture is indeed true. More generally, sensor net-

work has a rich and complex literature where various different inference

models are studied. It would be interesting to investigate the effect of

observation control in such complex models.

3. Multi-channel setting: In Chapter 6 we studied the multi-channel prob-

lem. In this setting we only proved the asymptotic optimality of the

DE-Censor-Max algorithm. It would be interesting to prove the opti-

mality of the DE-Censor-Sum algorithm as well. In fact, it is still not

known if there exists efficient and optimal algorithms in multi-channel

setting, even in the classical setup.

4. Unknown post-change distribution: In Chapter 4 we studied the prob-

lem with unknown post-change distribution. We extended the GLRT

based test to the data-efficient setting and proved its optimality under

certain conditions. It would be interesting to prove optimality of the

equivalent extension of mixture based tests. See the discussion at the

end of Chapter 4. Also, we only concentrated on parametric setting

and with unknown post-change distribution. It would be interesting to

study data-efficiency when both the pre- and post-change distributions

are not known, and/or the distributions do not belong to any paramet-

ric class. It is worth noting that one can design a DE-CuSum based

test in one such scenario; see Fig. 7.1. Let {Xn} be a sequence of ran-

dom variable such that some function g(.) of the observations changes

in mean from µ0 to say µ1. If both the means are known then a CuSum

algorithm to detect such a change would be

Wn =

(
Wn−1 + g(Xn)− µ0 + µ1

2

)+

.

A DE-CuSum algorithm can be designed using this CuSum algorithm;

see Fig. 7.1 with g(x) = x, µ0 = 0, and µ1 = 0.7.

5. Experiment design: The problem of on-off observation control belongs

134

Figure 7.1: Nonparametric DECuSum.

to the more general problem of experiment design. It would be inter-

esting to obtain lower bounds on the performance of any algorithm in

this setting. Also, it would be interesting to identify algorithms that

can achieve this lower bound. We note that the concept of DE-CuSum

algorithm can be extended to design a test with experiment design; see

Fig. 7.2. Consider a problem where there are four possible experiments

to choose from. The experiments fetch observations with KL diver-

gences decreasing in value, with the last experiment corresponds to no

observation. A multi-threshold extension of the DE-CuSum algorithm

can be used to choose the experiments. The evolution of such a test is

shown in Fig. 7.2.

0 20 40 80 100 120
−5
−4

−2.5

0

5

7

10

Multi−threshold DE−CuSum

Γ

W
n

θ
0
=0.2, θ

1
=1.5

θ
0
=0.1, θ

1
=0.8

θ
0
=0, θ

1
=0.4

f
0
(θ

0
, 1), f

1
(θ

1
, 1), μ=0.05

KLI=0.845

KLI=0.245

KLI=0.08

KLI=0

Figure 7.2: DECuSum with experiment design.

135

6. Continuous time: All the problems studied in the dissertation are dis-

crete time problems, where the observations are collected in discrete

time indices and the stopping variable is only allowed to stop at those

times. There is a rich literature on quickest change detection in con-

tinuous time [2]. It would be interesting to investigate data-efficiency

in a continuous time setting.

7. Fault isolation: The quickest change detection problem is also studied

in combination with fault isolation in the literature; see [39], [4] and

the references therein. In this problem the post-change hypothesis is

composite, and the objective for the decision maker is not only to detect

the change, but also to isolate the possible post-change distribution at

the time of stopping. It would be interesting to investigate the effect

of data-efficiency on the rate of false isolation.

136

REFERENCES

[1] V. V. Veeravalli and T. Banerjee, Quickest Change Detection. Elsevier:
E-reference Signal Processing, 2013, http://arxiv.org/abs/1210.5552.

[2] H. V. Poor and O. Hadjiliadis, Quickest Detection. Cambridge Univer-
sity Press, 2009.

[3] A. G. Tartakovsky, I. V. Nikiforov, and M. Basseville, Sequential Anal-
ysis: Hypothesis Testing and Change-Point Detection, ser. Statistics.
CRC Press, 2014.

[4] T. Banerjee, Y. C. Chen, A. D. Dominguez-Garcia, and V. V. Veeravalli,
“Power system line outage detection and identification – A quickest
change detection approach,” in IEEE Conference on Acoustics, Speech,
and Signal Processing (ICASSP), May 2014.

[5] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Proceedings of
the 1st ACM International Workshop on Wireless Sensor Networks and
Applications, ser. WSNA ’02. New York, NY, USA: ACM, Sep. 2002,
pp. 88–97.

[6] J. A. Rice, K. Mechitov, S. Sim, T. Nagayama, S. Jang, R. Kim, B. F.
Spencer, G. Agha, and Y. Fujino, “Flexible smart sensor framework
for autonomous structural health monitoring,” Smart Structures and
Systems, vol. 6, no. 5-6, pp. 423–438, 2010.

[7] Z. G. Stoumbos, M. R. Reynolds, T. P. Ryan, and W. H. Woodall, “The
state of statistical process control as we proceed into the 21st century,”
J. Amer. Statist. Assoc., vol. 95, no. 451, pp. 992–998, Sep. 2000.

[8] V. Makis, “Multivariate Bayesian control chart,” Operations Research,
vol. 56, no. 2, pp. 487–496, Mar. 2008.

[9] G. Tagaras, “A survey of recent developments in the design of adaptive
control charts,” Journal of Quality Technology, vol. 30, no. 3, pp. 212–
231, July 1998.

137

[10] A. N. Shiryaev, “On optimum methods in quickest detection problems,”
Theory of Prob and App., vol. 8, pp. 22–46, 1963.

[11] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no.
1/2, pp. 100–115, June 1954.

[12] G. Lorden, “Procedures for reacting to a change in distribution,” Ann.
Math. Statist., vol. 42, no. 6, pp. 1897–1908, Dec. 1971.

[13] M. Pollak, “Optimal detection of a change in distribution,” Ann.
Statist., vol. 13, no. 1, pp. 206–227, Mar. 1985.

[14] T. L. Lai, “Information bounds and quick detection of parameter
changes in stochastic systems,” IEEE Trans. Inf. Theory, vol. 44, no. 7,
pp. 2917–2929, Nov. 1998.

[15] A. G. Tartakovsky and V. V. Veeravalli, “General asymptotic Bayesian
theory of quickest change detection,” SIAM Theory of Prob. and App.,
vol. 49, no. 3, pp. 458–497, Sep. 2005.

[16] M. Woodroofe, Nonlinear Renewal Theory in Sequential Analysis,
ser. CBMS-NSF Regional Conference Series in Applied Mathematics.
SIAM, 1982.

[17] T. Banerjee and V. V. Veeravalli, “Data-efficient quickest change detec-
tion with on-off observation control,” Sequential Analysis, vol. 31, no. 1,
pp. 40–77, Feb. 2012.

[18] D. Siegmund, Sequential Analysis: Tests and Confidence Intervals, ser.
Springer series in statistics. Springer-Verlag, 1985.

[19] M. A. Girshick and H. Rubin, “A Bayes approach to a quality control
model,” Ann. Math. Statist., vol. 23, no. 1, pp. 114–125, 1952.

[20] K. Premkumar and A. Kumar, “Optimal sleep-wake scheduling for
quickest intrusion detection using wireless sensor networks,” in IEEE
Conference on Computer Communications (INFOCOM), Apr. 2008, pp.
1400–1408.

[21] G. V. Moustakides, “Optimal stopping times for detecting changes in
distributions,” Ann. Statist., vol. 14, no. 4, pp. 1379–1387, Dec. 1986.

[22] Y. Ritov, “Decision theoretic optimality of the CUSUM procedure,”
Ann. Statist., vol. 18, no. 3, pp. 1464–1469, Nov. 1990.

[23] A. G. Tartakovsky, M. Pollak, and A. Polunchenko, “Third-order asymp-
totic optimality of the generalized Shiryaev-Roberts changepoint detec-
tion procedures,” ArXiv e-prints, May 2010.

138

[24] S. W. Roberts, “A comparison of some control chart procedures,” Tech-
nometrics, vol. 8, no. 3, pp. 411–430, Aug. 1966.

[25] A. Wald and J. Wolfowitz, “Optimum character of the sequential prob-
ability ratio test,” Ann. Math. Statist., vol. 19, no. 3, pp. pp. 326–339,
1948.

[26] T. Banerjee and V. V. Veeravalli, “Data-efficient minimax quickest
change detection,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Mar. 2012.

[27] A. G. Tartakovsky and A. S. Polunchenko, “Quickest changepoint detec-
tion in distributed multisensor systems under unknown parameters,” in
Proc. of the 11th IEEE International Conference on Information Fusion,
July 2008.

[28] A. G. Tartakovsky and V. V. Veeravalli, “An efficient sequential proce-
dure for detecting changes in multichannel and distributed systems,” in
IEEE International Conference on Information Fusion, vol. 1, Annapo-
lis, MD, July 2002, pp. 41–48.

[29] Y. Mei, “Efficient scalable schemes for monitoring a large number of
data streams,” Biometrika, vol. 97, no. 2, pp. 419–433, Apr. 2010.

[30] T. Banerjee and V. V. Veeravalli, “Data-efficient quickest change detec-
tion in minimax settings,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp.
6917–6931, Oct. 2013.

[31] J. Unnikrishnan, V. V. Veeravalli, and S. P. Meyn, “Minimax robust
quickest change detection,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp.
1604 –1614, Mar. 2011.

[32] V. V. Veeravalli, “Decentralized quickest change detection,” IEEE
Trans. Inf. Theory, vol. 47, no. 4, pp. 1657–1665, May 2001.

[33] Y. Mei, “Information bounds and quickest change detection in decen-
tralized decision systems,” IEEE Trans. Inf. Theory, vol. 51, no. 7, pp.
2669–2681, July 2005.

[34] A. G. Tartakovsky and V. V. Veeravalli, “Asymptotically optimal quick-
est change detection in distributed sensor systems,” Sequential Analysis,
vol. 27, no. 4, pp. 441–475, Oct. 2008.

[35] T. Banerjee, V. Kavitha, and V. Sharma, “Energy efficient change detec-
tion over a mac using physical layer fusion,” in IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), 2008, pp.
2501–2504.

139

[36] T. Banerjee, V. Sharma, V. Kavitha, and A. K. Jayaprakasam, “Gen-
eralized analysis of a distributed energy efficient algorithm for change
detection,” IEEE Trans. Wireless Commun., vol. 10, no. 1, pp. 91–101,
Jan. 2011.

[37] Y. Mei, “Quickest detection in censoring sensor networks,” in IEEE
International Symposium on Information Theory (ISIT), Aug. 2011, pp.
2148–2152.

[38] L. Zacharias and R. Sundaresan, “Decentralized sequential change de-
tection using physical layer fusion,” IEEE Trans. Wireless Commun.,
vol. 7, no. 12, pp. 4999–5008, Dec. 2008.

[39] A. G. Tartakovsky, “Multidecision quickest change-point detection: Pre-
vious achievements and open problems,” Sequential Analysis, vol. 27,
no. 2, pp. 201–231, Apr. 2008.

140

