
©2014 Guilherme Amadio



PARTICLE PACKINGS AND MICROSTRUCTURE MODELING OF ENERGETIC MATERIALS

BY

GUILHERME AMADIO

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Doctoral Committee:

Professor Philippe Geubelle, Chair
Professor omas L. Jackson, Director of Research
Professor Michael Heath
Professor Jonathan Freund



Abstract

is dissertation explores the use of packings of frictionless hard particles as models of the mi-
crostructure of particulate heterogeneous materials.

In the first part of this dissertation, we present the current mathematical framework used for
understanding the properties of particle packings, as well as the methods and algorithms we have
developed to generate packings of frictionless hard particles with a computer. We develop two algo-
rithms tomodel hard-particle systems: a collision-drivenmolecular dynamics algorithm for the sim-
ulation of packings of spheres, and a novel hybrid algorithm employing both molecular dynamics
and Monte Carlo techniques for the simulation of packings of particles with general convex shapes,
such as spheres, cylinders, ellipsoids, polyhedra, etc. We focus heavily on performance in order to
enable the simulation of large systems containing 106–107 particles, previously too computationally
expensive to simulate. We use performance benchmarks to demonstrate that our implementations
of these algorithms scale roughly linearly with the number N of particles in the system, and show
the impact that polydispersivity has on performance.

In the second part of this dissertation we explore the properties of disordered and ordered hard-
particle packings. We reproduce key results found in the literature for packings of spheres and
polyhedra, and discuss some of their statistical properties. We then follow the discussion with ap-
plications of particle packings as models of the microstructure of particulate materials obtained via
computed tomography. We find that the shape of the particles and their size distribution both play
a crucial role in the determination of the statistical properties of heterogeneous materials.
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Chapter 1

Introduction

is dissertation focuses on the generation of realistic computer models of the microstructure of
energetic heterogeneous materials relevant to the space industry, such as solid rocket motor pro-
pellants and explosives. Accurate prediction of the macroscopic properties of these materials is
crucial for the development of the next generation of space exploration missions that can improve
our knowledge of the universe. Nonetheless, the methods presented here have a wide range of ap-
plications in materials science, engineering, classical geometry, and other areas of research.

1.1 Characteristics of Energetic HeterogeneousMaterials

Heterogeneous materials have inhomogeneities that are in general much larger than the molecular
scale of its constituents, albeit much smaller than typical macroscopic length scales. ese inhomo-
geneities are commonly referred to as the microscopic structure or microstructure of the material.
e length scale of the microstructure varies greatly depending on the material, ranging from a few
nanometers for some gels and fine powders to several meters in geological formations. In solid pro-
pellants and explosives, this length scale lies somewhere in between—in the range of a few to a few
hundred micrometers.

e solid propellants and explosives we intend to model are particulate composites—they typ-
ically comprise a mix of oxidizer particles embedded in a polymerized binding matrix. Oxidizer
particles are oen small crystals, hence their shapes most closely resemble polyhedra. Some com-
mon oxidizer materials found in solid propellants are ammonium perchlorate (AP), ammonium
dinitramide (ADN), and ammoniumnitrate (AN). In explosives, crystallinematerials such asHMX,
RDX, PETN, and CL–20 are used more oen. In some cases, energetic crystals usually found in ex-
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plosives are utilized in solid propellants to enhance their burning rate. Among binding materials,
hydroxyl-terminated polybutadiene (HTPB), dicyclopentadiene (DCPD), and polybutadiene acry-
lonitrile (PBAN) are all very common. Many solid propellants also contain additives to tune burn-
ing characteristics and reduce smoke—and, consequently, environmental impact—, among other
things. An extensive discussion of solid rocket propellants can be found in [1].

Although the determination of the macroscopic properties of heterogeneous materials has re-
ceived a lot of attention in recent years [2–8], most studies have employed rudimentary models that
represent their microstructure using disks and spheres (e.g. [5–7]). e microstructural informa-
tion canplay a crucial role in determining the behavior of amaterial under certain physical processes.
To illustrate this fact, consider the propagation of mechanical waves inside a heterogeneous explo-
sive material. is physical process is highly dependent on the geometric shapes of the oxidizer
particles in the material, since the interface between fuel and oxidizer is a source of reflected shock
waves that can drive the local temperature up until detonation is triggered. Micropores within crys-
talline particles of the oxidizer can also become hot spots when hit by shock waves. e transition
from shock waves to detonation is therefore an important phenomenon for designers of explosives,
making realistic models of materials containing crystalline particles an immediate need. Particle
shape is also important in modeling the combustion of solid rocket propellants [9–11], as well as in
the determination of effective properties of heterogeneous materials, such as permeability [12] and
stress [13].

On the other hand, fine aluminum powder is a com-

Figure 1.1: Fine aluminum powder.

mon additive incorporated into many solid rocket motor
propellants—e.g., in the solid boosters of the now retired
space shuttle—to increase specific impulse [1]. A typi-
cal composition of such a propellant might be, by weight,
70% AP, 18% aluminum, and 12% binder. e increase
in specific impulse provided by the addition of aluminum
comes from the exothermic reactions with water and car-
bon dioxide—both of them products of combustion—,
and can reach about 10%. e addition of aluminum has
other desirable effects as well, such as damping some combustion chamber instabilities. However,
the introduction of small aluminum particles also makes modeling propellants more complicated
[10], since near the burning surface the binding matrix melts, enabling aluminum particles to mi-
grate and agglomerate into larger particles that contribute significantly to nozzle erosion. e key
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parameters affecting agglomeration are the size of the aluminum particles and the average size of
the fuel rich pockets between the larger AP particles. Due to nozzle erosion, models of aluminum
agglomeration [11, 14, 15] are essential to rocket designers concerned with safety. A failed launch
can cost millions of dollars or even worse, lives. Although spheres can be used to model aluminum
powder, the challenge in this case is the large number of particles needed—from 105 to 106—and
the high polydispersivity of aluminized propellant materials, since aluminum particles tend to be
much smaller than oxidizer particles.

In some cases, physical quantities of interest are measured on a variety of propellants and curve-
fitting methods are then employed to obtain empirical formulas to describe how they vary with the
composition of the material. However, not only are these methods susceptible to large potential
errors when extrapolated to untested regions, but the experiments can be both time-consuming
and very expensive. erefore, it would be helpful to be able to substitute the experiments with
a physics-based computer model to predict the macroscopic properties of heterogeneous materials
from the properties of their constituents and their microstructure. e first step in the development
of such a model is to produce a realistic representation of the microstructure of the materials, and
that is the motivation for our research.

In the next section, we provide some brief historical remarks beforewe proceedwith a discussion
of the methods and algorithms we use to simulate the microstructure of heterogeneous materials
with packings of convex hard particles.

1.2 Historical Remarks

Heterogeneous materials are an essential element of modern technology. Even so, their utility
is known since ancient times. Perhaps the best example of an ancient heterogeneous material is Ro-
man concrete [17]. In ancient Rome, hot lime was mixed with a volcanic sand—called pozzolana—
and pomice to produce a primitive version of concrete. e Romans used this mixture extensively
to build their cities, roads, bridges and aqueducts. e high compressive strength of concrete, com-
bined with architectural novelties of the time such as arches, vaults, and domes, allowed the Romans
to revolutionize the ancient world [18]. Masterpieces such as the Colosseum, Pont du Gard, and the
Pantheon—which remained as the largest dome in the world for over a thousand years—were all
built with concrete. ese ancient buildings became icons of the durability of Roman concrete, the
secrets of which are still the topic of modern research [16, 19]. e Romans even used additives
to enhance their concrete. Volcanic ash, for example, was used to produce hydraulic cements that
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could set underwater, while horse hair prevented shrinkage, making concrete less susceptible to
cracks while hardening. Unfortunately, the secrets of Roman concrete were lost with the fall of the
Roman empire. Concrete’s resurgence would only happen 18 centuries later, when it allowed for a
second revolution in architecture that led to the skyscrapers of today.

Althoughheterogeneousmaterialswere already known

Figure 1.2: Microstructure of Roman con-

crete, from [16].

to the Romans and even earlier civilizations [17], the the-
oretical framework that allowed us to begin understand-
ing the connection between their microscopic structure
and their macroscopic properties came only much later,
in the early 19th century. In 1821, Cauchy and Navier
laid down the foundations of continuum mechanics us-
ing a Newtonian picture of matter as an assemblage of
“material molecules” interacting via central forces. e
continuous model arising from this discrete description
of matter is commonly referred to as a homogenization of
the problem, in the sense that the macroscopic behavior
of matter can be derived from its underlying “molecular” behavior. e idea of homogenization
problems would later reappear in other fields of research as well. In 1824, Poisson presented his
first Mémoire [20] on the theory of magnetism to the French Academy. In it, Poisson had a model
for induced magnetism in which he considered an insulating material embedded with an isotropic
distribution of small conducting spheres. In his secondMémoire [21], Poisson generalized his idea,
substituting the spheres with aligned conducting ellipsoids to treat anisotropic magnetic materials.
Later, in 1838, Faraday applied Poisson’s ideas to dielectrics [22], using a similar model of conduct-
ing spheres embedded in an insulating material. Maxwell, in his famous Treatise on Electricity and
Magnetism [23], summarized the work of Faraday [22, 24] and others. He unified the theories of
electricity and magnetism, and derived an exact expression for the electric conductivity of a dilute
emulsion of spheres. Mosotti and Clausius—for which the formula would later come to be known—
derived the formula independently, although the explicit formula appeared only in Clausius’ work.
Later, in 1905, Einstein determined the effective viscosity of a suspension of spheres in a liquid as
part of his PhD work [25]. ese and other problems were important precursors that helped us bet-
ter understand heterogeneous materials—which now go much beyond Roman concrete and have a
vast range of applications in diverse fields of science and engineering.

Many heterogeneous materials are synthetic: gels, foams, fiber composites, particulate compos-
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ites, powders, emulsions, phase separated metallic alloys, etc; others are natural: wood, bone, soils,
minerals, polycrystals, etc. e remarkably broad range of rich and complex microstructures exhib-
ited by these materials means that the basic ideas introduced in years past are simply not enough
for one to study them in detail. Neither is it possible to design new, even more complex materials
without a more powerful engineering framework to guide us.

Random packings of particles are a natural step forward from the single inclusion models they
supplanted. Packings of particles can providemany insights into the structure and bulk properties of
many materials, including glasses, crystals, granular media, etc. For this and other reasons, packing
problems have a history as long as that of heterogeneous materials. As remarked by Bernal in [26],
“heaps (close-packed arrangements of particles) were the first things that were ever measured in the
form of basketfuls of grain for the purpose of trading or the collection of taxes.” e study of the
mathematical properties of sphere packings—in particular, the face-centered cubic packing—can
be traced as far back as 499CE, to a work composed in Sanskrit [27].

In more modern times, late in the 16th century, Hariot—who at the time was Raleigh’s mathe-
matical assistant—became interested in close packings of spheres aer Raleigh assigned him the task
of determining formulas for the number of cannonballs in regularly stacked piles. Hariot was the
first to distinguish between the face-centered cubic (fcc) and hexagonal close packing (hcp) config-
urations (shown in figure 1.3). He also connected sphere packings to Pascal’s triangle—which was
only introduced by Pascal himself much later.

A A A A

A A A A A

A A A A

B B B

B B B B

B B B B B

C C C C C

C C C C

(a) single layer

A A A A

A A A A A

A A A A

B B B

B B B B

B B B B B

C C C C C

C C C C

(b) two layers

A A A A

A A A A A

A A A A

B B B

B B B B

B B B B B

A

A A

C C C C C

C C C C

hcp fcc

(c) three layers

Figure 1.3: Difference between face-centered cubic (fcc) and hexagonal close packing (hcp).

At the turn of the century, Kepler also became involved with packings of spheres through his
correspondence with Hariot. In 1611, Kepler described the face-centered cubic packing in an es-
say exploring a theory of matter composed by small spherical particles. He conjectured that in this
configuration (fcc) “the packing will be the tightest possible, so that in no other arrangement could
more pellets be stuffed into the same container.” Later, in 1831, Gauss proved [28] that this was the
densest possible Bravais lattice packing of spheres. However, the formal proof by Hales [29] that no
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configuration could exceed the density of face-centered cubic packing (ϕ = π/3
√
2 ≈ 0.74048 . . .)

would only emerge another two centuries later, in 2005. In fact, Hales published an entire series
on sphere packings [27], beginning with an overview of the problem and culminating with a rigor-
ous proof of Kepler’s conjecture. For the interested reader, Hales’s series has a much more detailed
account of the history of sphere packings.

More recently, the attention has shied towards packings of more complex objects, such as poly-
hedra. ere has also been a dramatic increase in the number of studies that explore applications
of disordered packings in many fields of research. In the next section, we discuss some of these ap-
plications and provide a brief overview of the methods available to generate particle packings with
a computer.

1.3 Introduction to Particle Packings and Applications

Packings of disks and spheres have played an important role in the modeling of liquids [26, 30–
32], glasses [33, 34], colloids [35, 36], granular media [37, 38], heterogeneous materials [39–42],
as well as in the simulation of physical processes such as fluid flow through packed beds [43–45],
among other things. However, packings of disks and spheres have hitherto been used mostly due
to their simplicity. In reality, most materials have particles with irregular shapes and continuous
size distributions, as is the case of the solid propellants and explosives we would like to model. Re-
cently, with the advent of powerful computers and nondestructive X–ray imaging techniques, the
level of sophistication with which we can study complex heterogeneous materials has improved sig-
nificantly. e need to refine rudimentary sphere models has also led to an increasing number of
studies exploring the properties of packings of nonspherical hard particles such as ellipsoids [46, 47],
superellipsoids [48], superballs [49], and polyhedra [50–57]. A few studies also explore packings of
polyhedra experimentally with plastic and ceramic dice [58, 59], as well as synthetic nanocrystals
[60]. In [60], Henzie et al. report that the packing structure of silver nanocrystals depends on the
packingmethod—their results differ if they either dry a droplet containing a suspension of particles,
or let particles suspended in a liquid settle to the bottom due to gravity. Packing densities and order
metrics of packings generated experimentally are not necessarily the same as those obtained with
a computer. Nevertheless, computer models can provide invaluable insights in the design of new
materials. For example, another recent study [57] investigates computationally the self-assembly
of polyhedra into crystals, glasses, and disordered structures, depending on their shape. However,
despite the growing number of studies in this area, there are still many open questions concerning
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packings of nonspherical particles. e determination of the densest packing of tetrahedra, for ex-
ample, is a notoriously difficult problem to solve. It is part of the 18th problem in Hilbert’s famous
set of problems. For some time, the densest known packings of tetrahedra reported in the literature
were quasi-crystals with density ϕ > 0.8. Torquato and Jiao [51, 52], and Haji-Akbari et al. [50]
took turns for who held the record density until Kallus [61] identified dense packings of tetrahe-
dra analytically. e dense packings identified by Kallus were based on a two-particle fundamental
cell. Torquato and Jiao [62, 63], and Chen [64] later improved the results of Kallus by eliminating
some unnecessary constraints in his work, obtaining slightly denser packings. e current densest
known packing of tetrahedra obtained aer the improvements has a density of ϕ ≈ 0.856347. Is
it possible to pack tetrahedra even further? at remains an open question. We need to build new
methods and tools that will allow us to tackle this and other particle packing problems, that still
remain relatively unexplored.

1.4 Survey of Packing Algorithms

Before we describe our own approach to generating disordered packings of convex particles, we
thought it would be useful to provide a brief discussion of other methods found in the literature,
most of them for generating packings of disks and spheres.

Perhaps the simplest packing protocol is the random sequential addition method [65–67]. In
this method, particles are added to the simulation region one by one, while ensuring that they do
not intersect any of the previously added particles. Although this method is quite limited, it is exten-
sively used to provide initial configurations for more sophisticated methods. Packings of monodis-
perse spheres generated by this method can only reach packing fractions up to about ϕ ≤ 0.4 [66].
is algorithm has also been used to find the saturation densities of packings of hyperspheres in
higher dimensions [65, 68]. An example of how this algorithm could proceed is shown in figure 1.4.

Another class of sequential packing algorithms consists of sedimentation methods [69–72], in
which particles are placed in a linear gravitational field and fall onto an initially disordered sub-
strate. Each subsequent sphere then rolls on top of the others until it forms three contacts and its
configuration becomes stable. is kind of algorithm is thought to generate “random loose pack-
ings” representative of granular materials when gravity dominates interparticle forces—i.e., when
there is no mechanical shaking. However, packings generated with this method form layers, hence
they show strong vertical anisotropy. In order to cope with this problem, some variations of sed-
imentation algorithms employ a centrally symmetric gravitational field and let particles fall from
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Figure 1.4: Random sequential addition algorithm.

random directions on top of an initial seed [69]. Some other groups combine sedimentation meth-
ods with particle rearrangements to mitigate anisotropy and obtain more closely packed structures
at the same time.

In the Zinchenko packing algorithm [73], sticky spheres are placed randomly in space and form
a contact network as they grow with a uniform rate. When contacts are formed, a self-stress is com-
puted to resist further particle growth. When all contact forces are negative, meaning that no con-
tact can be broken, the simulation stops. is algorithm produces isostatic packings with uniform
packing density around ϕ ≈ 0.637. It is a quite unique algorithm, but it is difficult to implement
efficiently, so it has not been used in many studies.

Force-based algorithms, such as the one by Jodrey and Tory (JT) [74] are more common. In this
algorithm, spheres have an impenetrable inner diameter din and a so outer diameter dout. At each
step of the simulation, outer overlaps are eliminated by displacing the spheres according to a central
repulsive force given by

Fij = dioutd
j
out

[
4r2ij

(diout + djout)
2
− 1

]
.

e outer diameter is then gradually reduced during the simulation until it reaches the inner diam-
eter. is algorithm can be seen as an energy minimization procedure in which any so overlap
acts to increase the energy. It has been generalized to packings of spherocylinders in [75]. Other
groups have also used force-based and overlap elimination algorithms with different potentials to
study packings of hard particles [76–78] and random porous materials [79].

eTorquato–Jiao (TJ) algorithm [80, 81] is a linear programmingmethod to efficiently produce
strictly jammed sphere and hypersphere packings. is method can create packings of spheres with
densities varying continuously from the so called “random close packing” density of ϕ ≈ 0.64 to
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the maximum packing density of spheres ϕ = π/3
√
2. In this method, the packing problem is cast as

an optimization problemwhere the design variables are the position of the spheres and the function
to be minimized is the negative of the packing fraction. e adaptive shrinking cell algorithm we
will describe later is based on the same principles as this method, but is used to produce packings
of polyhedra instead.

Another class of algorithms we would like to discuss are those based on molecular dynamics.
Lubachevsky and Stillinger (LS) were the first to introduce the idea of applying molecular dynamics
techniques to packing problems [82–84]. e basic idea of the LS packing algorithm is to start the
simulation with a set of infinitesimally small disks or spheres, and allow them to grow over time
while they undergo elastic collisions that act to prevent intersections. Since collisions are the only
form of interaction between the particles, instead of using a fixed time step, the simulation can
evolve from event to event, where an event is anything that changes the motion state of a particle.
For this reason, this algorithm is said to be collision-driven or event-driven. Event-driven molecular
dynamics (EDMD) packing algorithms have a strong appeal, since they have a direct connection
with the underlying physical processes of liquids, glasses and crystals. EDMD algorithms are in
general very computationally efficient for packing spheres and other smooth convex shapes, such
as ellipsoids, and appear in numerous studies [47, 85–88].

Figure 1.5: Packing of disks generated with the Lubachevsky-Stillinger packing algorithm.

e algorithms we described so far have only been used for packing spheres and other sim-
ple smooth shapes. ese shapes are less difficult to pack than polyhedra because there are readily
available algebraic methods to determine particle intersections. Algebraic methods, if implemented
correctly, can be very numerically robust. For polyhedral particles, no such methods exist. Algo-
rithms for computing intersections of polyhedra can suffer from numerical errors that negatively
affect the performance of the packing algorithm. For that reason, when packing particles with sharp
edges such as polyhedra, collision-driven algorithms can be less efficient than the alternatives. e
collision response between two expanding polyhedra may fail to prevent future intersections due to
numerical errors, getting the simulation locked into low density states. In order to overcome this
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limitation, algorithms for packing polyhedra usually abandon the model of particle growth used in
many of the methods for packing smooth shapes in favor of Monte Carlo techniques. at is the
case of the adaptive shrinking cell (ASC) scheme by Torquato and Jiao [51, 52]. In the ASC method,
particles are placed randomly inside a periodic, deformable fundamental cell at the beginning of
the simulation. en, random displacements and rotations are performed. Trial deformations are
also performed on the fundamental cell. If the fundamental cell can shrink aer a trial move, it is
accepted, otherwise it is rejected. is is an optimization procedure similar to the one described in
the TJ algorithm, but the design variables must now also include particle orientations. As the size
of the fundamental cell decreases during the simulation, the packing density of the particles inside
increases. When no particle can be moved while keeping the others fixed and the fundamental cell
cannot be shrunk any further, the packing is considered jammed and the simulation stops.

Whilst Monte Carlo methods such as the ASC are the ones most commonly found in the liter-
ature [50–52, 57, 60], they are by no means the only ones. An interesting algorithm based on the
erosion of tetrahedral elements in a tessellation of space has been proposed in [56]. ey seemmost
interested in simulating the structure of granular media. In [89], a force-based algorithm is used
to simulate a packing of irregular polyhedra. We see the development of novel algorithms as being
very important for the field, since each one can access different configurations and let us explore
different aspects of particle packings.

Our own method to generate packings of convex hard particles is a hybrid between molecular
dynamics andMonte Carlomethods. For this research project, we first implemented an extension of
the molecular dynamics packing algorithm of Lubachevsky and Stillinger [82] for packing spheres
into several boundary geometries. is code was designed to scale well when packing the large
number of spheres (N ≥ 106) necessary in aluminum agglomeration models. It was meant to
pack both spheres and polyhedra, but since it did not perform well in the latter case, we decided
to implement a new method specific for polyhedra, which we will describe in the first part of this
thesis, aer introducing some basic concepts about particle packings and related topics.
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Part I

Theory and Algorithms
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Chapter 2

Basic Concepts

In this chapter we summarize some of the basic concepts and definitions concerning particle pack-
ings. A packing is simply a collection of nonintersecting solid objects or particles in d-dimensional
Euclidean space Rd or in a subset of it, such as the interior of a box with solid walls or the interior
of a sphere. Packings can also be defined in compact and curved spaces, such as on the surface of
a sphere. However, our primary focus is the generation of packings of convex hard particles in R3.
e packing fraction or packing density—here denoted by the Greek letter ϕ—is simply the fraction
of space covered by the particles.

A saturated packing is one inwhich there is no available space to add another particle of the same
kind. Most interestingmonodisperse packings of particles are at least nearly saturated. However, the
notion of saturation in a polydisperse packing becomes more vague, since it may always be possible
to add smaller and smaller particles to it. If no particle in a saturated packing is able to move while
keeping all of the other particles fixed, then the packing is considered to be jammed. e different
classes of jamming will be discussed in more detail later.

A lattice Λ in Rd is a subgroup of the integer linear combinations of vectors that constitute a
basis forRd. It is also generally referred to as a Bravais lattice in the physical sciences and engineer-
ing. A lattice packing is one in which all particles have a common orientation and their centroids
are located at the points of Λ. Lattice packings are a subset of the possible packings for a given par-
ticle shape in Rd. Lattice systems are classified according to the axial distances and angles of the
lattice vectors. ere are five different Bravais lattice systems in two dimensions: square, rectangu-
lar, rhombic (centered rectangular), oblique, and hexagonal. In three dimensions, there seven lat-
tice systems: cubic, hexagonal, tetragonal, orthorhombic, rhombohedral, monoclinic, and triclinic.
ese lattice systems are shown in figures 2.1 and 2.2, respectively.
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(a) Square (b) Rectangular (c) Oblique (d) Rhombic (e) Hexagonal

Figure 2.1: Bravais lattice systems in two dimensions.
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Figure 2.2: Bravais lattice systems in three dimensions.

Torquato and Jiao [51, 52] recently conjectured that, for centrally symmetric particles, Bravais
lattice packings are the densest possible packings. However, that is not true for particles that are not
centrally symmetric, such as the tetrahedron, as its densest Bravais lattice packing has a relatively low
packing density ϕ = 18

49
≈ 0.367, while dense disordered packings with ϕ > 0.8 have been reported

in the literature [50–52]. No proof exists that this conjecture is true, although both computational
[51, 52] and experimental [60] data indicate that it holds. If the four centuries it took between
Kepler’s conjecture and its formal proof are any indication, we might still be a long way away from
coming to a rigorous conclusion on the validity of this conjecture.

e concept of a lattice packing can be generalized to that of a periodic packing, by allowing the
particles to have arbitrary orientations and filling the lattice cell with not one but N ≥ 1 nonover-
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lapping particles. e packing is still periodic under translations by Λ, but particles can now occur
anywhere within the periodic cell. Lattice packings have a high degree of order, while periodic (and
nonperiodic) packings are in general highly disordered. We aremuchmore interested in disordered
packings, sincemost of the heterogeneousmaterials we intend tomodel consist of random packings
of small crystalline particles.

2.1 Jamming in Hard-Particle Packings

Jamming is a subject of considerable interest in packings of hard particles of various shapes. We have
an intuitive notion for what jamming means, but a precise mathematical definition is necessary
to describe the several types of packings that can be idealized or generated in simulations. Early
studies found in the literature had only a vague notion of jamming based on the idea that when it
was no longer possible to increase the volume fraction of the particles in a packing simulation, the
packing was considered to be jammed. However, there are important distinctions that need to be
made between different types of jammed states. Torquato and Stillinger were the first to make such
distinctions [90]; they classified jammed states into three hierarchical categories that we describe
later in this chapter.

2.1.1 Mathematical Definition of Jamming

In the mathematics literature [91], jammed packings are commonly referred to as stable or rigid
packings, as they aremechanically rigid against applied external loads. e definition of jamming in
this context is in terms of the available configuration space of the particles. Consider, for instance, a
hard-particle packingP in a finite region of Euclidean spaceR3. Its configuration is characterized by
the positions and orientations of all particles, that is,P = P(r⃗1, q1, . . . , r⃗n, qn)where r⃗1, . . . , r⃗n are
the positions of each particle and q1, . . . , qn are their orientations, represented here as quaternions
(see e.g., [92, Chapter 10] for more information).

Naturally, not all configurations are accessible to the system of particles—configurations where
any pair of particles overlap are discarded by requiring the packing to satisfy nonpenetration con-
straints. Additionally, there may be boundary conditions that need to be satisfied—e.g., the par-
ticles may be confined to a box with either solid or periodic boundaries, or into a finite region of
a different shape, such as a cylinder or a sphere, for example. erefore, while at low density any
two configurations can be reached via continuous transformations (displacements and rotations
of the particles) between them, as the density increases, the volume of the available configuration
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space decreases, reflecting the increasing lack of mobility of the particles. When the packing is
near saturation, this leads to isolated regions in the configuration space—it is no longer possible to
continuously transform a given state into another, as the interstices between particles is too small,
preventing them from moving freely to another part of the packing. is isolated region is called
a jammed basin in the configuration space. e packing becomes jammed when the volume in the
configuration space near the jammed basin approaches zero—i.e., no particle can move without vi-
olating the nonpenetration constraints. To avoid ambiguity, when two configurations differ only
by a global rigid-body motion of the particles—i.e., when all interparticle distances are the same
between both configurations—they are considered to be equivalent to each other.

jammed basins

Figure 2.3: Jamming as isolation in configuration space.

2.1.2 Jamming Categories

Consider a packing of N particles in d-dimensional Euclidean space. Additionally, consider that
the particles are confined to a convex region whose boundary can be considered smooth on the
scale of the particle diameters. e boundary can either have solid walls or be periodic, and it may
also be deformable. An individual particle in the system is considered to be jammed if it cannot be
translated or rotatedwhilemaintaining all otherN-1 particles fixed in place. For the entire system to
be jammed, it is necessary that each of theN particles be individually jammed. ismeans that there
can be no “rattlers” in the system. In computer generated packings, however, that can be guaranteed
only to a certain degree, as the configuration of the system is limited to the finite machine precision.
Nevertheless, the concentration of rattler particles is usually small, and they can be simply removed
from the system if jamming is the main subject to be studied. Let us then move on to describe each
of the jamming categories as proposed by Torquato and Stillinger [90].
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(a) Locally jammed (b) Collectively jammed (c) Strictly jammed

Figure 2.4: Jamming categories.

A packing is considered to be locally jammed if the system boundary is not deformable and the
conditions we described so far are met, that is, if each particle in the system is individually jammed.
If a packing is locally jammed, it may be possible to unjam it via a collective motion of the particles,
as shown in figure 2.4(a).

A packing is considered to be collectively jammed if the system boundary is not deformable and
it is a locally jammed configuration in which there is no collective motion of any contacting subset
of particles that would cause the packing to become unjammed. Figure 2.4(b) shows an example of
a collectively jammed packing of disks on a non-deformable square boundary.

Finally, a packing is considered to be strictly jammed if, in addition to being collectively jammed,
its configuration remains fixed under infinitesimal global boundary deformations. In other words,
any global boundary deformation, accompanied or not by an individual or collective motion of
the particles, would cause particles to intersect each other. Figure 2.4(c) shows a strictly jammed
packing obtained by shearing the boundary of the packing in figure 2.4(b).

It is important to note that these definitions can and do depend on the type of boundary condi-
tions imposed. For example, the Kagomé lattice in two dimensions is not even locally jammed on a
system with a rectangular solid wall boundary, but can be strictly jammed within a suitable hexago-
nal boundary. Similarly, a packing may fall under a different jamming category if its boundary has
solid or periodic walls.
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2.2 TheMaximally Random Jammed State

Geometric and statistical properties, and jamming characteristics of hard-sphere packings have
been a persistent theme of studies found in the literature. Early on, beginning with the pioneer-
ing works of Bernal [26, 30] and others [93, 94], emerged the concept of a uniquely defined state—
namely, the random close packed (RCP) state—at which the packing density of random congruent
spheres was believed to be at its maximum. is traditional view dominated the literature until
the turn of the millennium, when Torquato et al. [95] argued that the mathematical definition of
this state was not sufficiently precise to be useful and should therefore be abandoned. e problem
with the RCP state, as pointed out by Torquato [95], is that the terms random and close are at odds
with each other. As a matter of fact, packings of spheres at the so called RCP state (with ϕ ≈ 0.64)
are not at the highest possible packing fraction that spheres can attain (ϕmax = π/3

√
2 ≈ 0.74048).

erefore, it is always possible to find a configuration with a marginally larger packing fraction at
the expense of some of the randomness in the system, which means that the proportion between
densification and randomness is arbitrary in the RCP state, invalidating the assumption that it is
well-defined. Evidence of this abounds in the literature, since different packing protocols produce
packings with variable final densities [70, 73, 74, 77, 80, 95]. In particular, experiments in which
ball bearings were poured into large vibrating containers have demonstrated that the final density
can vary with the amplitude, frequency, and duration of the vibrations, as well as with the pouring
rate and the smoothness and shape of the containers [96]. To address the shortcomings of the RCP
state, Truskett et al. introduced the notion of an order metric [97] to quantify the degree of order
of a given packing configuration. e introduction of the order metrics by Truskett [97] allowed
for the definition of a state with more precise properties than the RCP state: the maximally ran-
dom jammed (MRJ) state. e MRJ state is the strictly jammed state that minimizes one or more
of the order metrics. e diagram in figure 2.5 shows a possible set of jammed states according to
some metric, and the MRJ state according to the same metric. Nevertheless, several studies in the
literature still use the old terminology [98–101].

e concept of the “random close packing” state became popular because many algorithms for
producing disordered packings of spheres in three dimensions could not proceed any further aer
reaching ϕ ≈ 0.64. However, Torquato et al. later demonstrated [95] that it was possible to produce
packings with final densities varying continuously in the range 0.64 ≲ ϕ ≲ 0.74 by changing the
growth rate of the particles in their packing algorithm. Packings with faster growth rates became
jammedmore quickly and had a higher degree of disorder than packings in which the particles grew
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Figure 2.5: Maximally random jammed (MRJ) state, defined as the jammed state that minimizes
the order metrics ψ. e area shaded in gray represents unreachable states.

more slowly. Torquato and Jiao [80] later described an improved, deterministic algorithm based on
linear programming that could consistently produce states with a high degree of order with packing
fractions in the range 0.64 ≲ ϕ ≲ 0.74. From the point of view of thermodynamics, congruent
spheres undergo a first-order disordered–ordered phase transition near the packing fraction of the
so called RCP state. Molecular dynamics simulations can reproduce this phase transition, although
the freezing transition into a highly ordered state only occurs with a small probability. Decreasing
the growth rate of the spheres can increase the probability of highly ordered final states, but sev-
eral runs may need to be attempted before a lattice configuration is achieved. e most common
outcome is that the simulation will proceed from the freezing point into a strictly jammed disor-
dered state. A phase diagram for congruent spheres is sketched in figure 2.6, along with the possible
paths that a simulation might take during densification. In molecular dynamics packing algorithms
the collision frequency between particles diverges as the packing approaches a jammed state, so al-
though theoretically possible, it would take an infinite time to generate a perfect lattice packing of
spheres with hcp or fcc structure. It is also possible that the two types of lattice coexist in a packing,
preventing the simulation from reaching ϕ = π/3

√
2, but coming close to it. e case in which a

single crystal with either hcp or fcc structure naturally forms during the simulation is indeed quite
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Figure 2.6: Phase diagram for a system of monodisperse identical spheres.

2.2.1 Order Metrics

Characterizing large particle packings according to the jamming categories introduced by Torquato
and Stillinger [90] can be a challenge. e intention of the order metrics proposed by Truskett et al.
[97] was to provide an intensive parameter by which to characterize particle packings, much like the
temperature and pressure can be used to characterize gases. We have seen in the preceding sections
that one of the problems with the RCP state is its ambiguity, since there is no quantification of
randomness in its definition. e order metric solves this problem. Ideally, the order metric should
provide a local measurement of randomness, such that it can be used to quantify randomness on
individual jammed configurations. e reason to prefer a local metric rather than a global entropic
metric is that the latter faces several practical hurdles to its implementation, since it requires the
generation of all possible jammed states or, at least, a representative subset of them. Moreover, even
if all states were given, the task of assigning weights to each of them is not a trivial one.

For a packingP with a configuration that can be fully described by the positions and orientations
of its particles, i.e., P = P(r⃗1, q1, . . . , r⃗n, qn), the order metric function is constructed to possess
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the following three basic properties: (i) It is awell-defined scalar function of a packing configuration;
(ii) It is normalized such that 0 ≤ ψ ≤ 1; (iii) It provides a measure of order, such that for two
packings PA(r⃗A1, qA1, . . . , r⃗An, qAn), and PB(r⃗B1, qB1, . . . , r⃗Bn, qBn), ψ(PA) > ψ(PB) implies
that the packing PA is to be considered more ordered than PB .

ere are many possible order metrics, according to which specific parameters one wishes to
choose to characterize a particle packing. For packings of congruent spheres, two order metrics are
quite common: the bond-orientational, and the translational order metrics.

Bond-Orientational Order Metrics

e bond-orientational order Qℓ [102] is defined in terms of the spherical harmonics Yℓm(θi, ϕi)

in three dimensions, where θi and ϕi are the polar and azimuthal angles of the bond between a
particle centered at the origin and its i-th near-neighbor particle. e coordinate system for the
angles θi and ϕi can be either fixed by the boundary of the packing, or it can be carefully chosen to
try to follow preferred directions in particle clusters (more information in section II of [102]). A
particle is usually considered to be a near-neighbor if it falls under some pre-determined distance
from the central particle, or if their Voronoi polyhedra share a common face. e value of ℓ to be
used depends on the particular type of structure formed by the particles. For spheres, ℓ = 6 is of
particular interest, sinceQ6 is maximum for hcp and fcc structures, as each layer of spheres in those
structures is packed on a hexagonal lattice. e expression forQ6 is then

Q6 =

(
4π

13

6∑
m=−6

∣∣∣∣∣ 1Nb

Nb∑
i=1

Y6m(θi, ϕi)

∣∣∣∣∣
2)1/2

,

whereNb is the number of (near-neighbor) bonds for each particle. AveragingQ6 over all particles
in a packing provides a global measure of order for that packing. Since this average is maximum
for spheres packed into a face-centered cubic configuration, the order metric ψB can be defined as
ψB ≡ Q6/Q

fcc
6 .

Translational Order Metrics

e translational order metric [95, 97] is defined using the radial coordination structure of the fcc
structure for spheres, by computing the mean occupation number of thin concentric shells around
a central particle. Comparing the mean occupation numbers of the particles with both the fcc struc-
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ture and an ideal gas at the same packing fraction, it is possible to define the function

T =

∣∣∣∣∣
∑Nshells

i=1 (ni − nideal
i )∑Nshells

i=1 (nfcc
i − nideal

i )

∣∣∣∣∣ ,
where ni are the occupation numbers of each thin shell around the central particle, and Nshells is
the number of shells. Averaging this function over all particles then gives a different—but equally
reasonable—global measure of order than the bond-orientational metrics.
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Chapter 3

Characterization of Heterogeneous

Materials

Each heterogeneous material has its distinctive microscopic structure with a characteristic length
scale that is much larger than the molecular dimensions of the constituent materials, albeit much
smaller than the typical length scale of a macroscopic sample. In the case of gels and fine powders,
the characteristic length scale is on the order of a few nanometers, while in geological rock forma-
tions it can reach several meters. For solid propellants—the class of materials that we are interested
in studying—the length scale of the microstructure is usually within a few hundred micrometers.

Heterogeneous materials can oen be designed to have desirable physical and chemical proper-
ties. For example, a rocket designer can tune the proportions of fuel and oxidizer in a propellant
to optimize the amount of thrust a rocket can produce. e mechanical properties of concrete can
also be modified by the size distribution of rocks and sands in its composition. However, finding
the right proportions of each component that optimizes a given physical or mechanical property of
a heterogeneous material can be difficult. Oen the only method available is to perform a series
of experiments and to derive empirical formulas from the results. Alternatively, it may be possible
to substitute experiments for simulations of the same physical and chemical processes on a virtual
sample of material. at, in turn, leads to a different challenge—how to decide if a given model
is a realistic representation of a certain material? e answer naturally depends on what material
properties need to be predicted from the simulations. Several statistical descriptors are available
[39] to quantitatively study different aspects of the microstructures of heterogeneous materials. In
aluminum agglomeration in solid propellants, the size of fuel-rich pockets in between oxidizer parti-
cles is thought to play amajor role in determining the final size of agglomerated particles [11, 14, 15].
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erefore, functions that can estimate pore-size between particles are crucial in order to study this
phenomenon. On the other hand, in other processes the important characteristic of the material
could be the shape and size distribution of the particles, the surface area between the phases, etc. In
the following sections, we describe a small selection of the statistical descriptors used to characterize
heterogeneous materials. A more detailed treatment of the subject can be found in [39], and [41].

3.1 n-Point Probability Functions

In our work, we make extensive use of n-point probability functions to quantify the statistics of mi-
crostructures. e n-point probability functions give the probability of simultaneously locating n
randomly chosen points each in a given material phase of the sample. Consider, for instance, the
phase indicator function Ii(x⃗, n) defined as

Ii(x⃗, n) =

{
1 if x⃗ ∈ Vi(n)

0 otherwise,

where x⃗ is a random point in the medium, i is the label of one of the phases, and Vi(n) is the
domain occupied by that phase in a given ensemble member n. e phases can be void space (i =
0), or a solid material (i > 0). Multiple particle sizes of a same material can also be subdivided
and considered as different phases. is definition of Ii(x⃗, n) allows for the formulation of the
n-point probability function Si1,i2,...,in(x⃗1, x⃗2, . . . , x⃗n), which gives the probability that the points
x⃗1, x⃗2, . . . , x⃗n be found respectively in phases i1, i2, . . . , in as

Si1,i2,...,in(x⃗1, x⃗2, . . . , x⃗n) = Ii1(x⃗1)Ii2(x⃗2) . . . Iin(x⃗n),

where the bar denotes the ensemble average:

Ii(x⃗) =

∫
S

Ii(x⃗, n) p(n) dn.

Here, p(n) is the probability density of n in the ensemble space S. e ensemble space represents
a collection of a large number of tomographic scans and/or computer generated samples. In our
work, we use one-, two- and three-point probability functions to describe material samples. e
probability functions for a heterogeneous medium are spatially complex, but if the medium satisfies
ergodicity, statistical isotropy, and statistical homogeneity, then the ensemble average can be re-
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placed by the volume average and the determination of the statistics is significantly simplified. For
example, the first-order or one-point probability function reduces to the volume fraction, while the
higher-order probability functions depend only on the distance between the points and their angles.

3.1.1 Representative Volume Element (RVE)

Examining the two-point probability function is a convenient way for determining the size of a rep-
resentative volume element (RVE) of a given material. When considering a random heterogeneous
material, one would like to generate a model of the medium that is statistically equivalent to the
physical medium, but with suitable dimensions as not to make simulations overly costly computa-
tionally. For instance, simulating a 1 cm3 sample that contains 106 particles will certainly require
a lot of computational resources, while using only 102 particles to represent the medium is clearly
insufficient.
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Figure 3.1: Representative volume element of a material sample: (a) polydisperse packing contain-
ing 2 × 104 spheres; (b) two-point probability functions Sij for two packings: 103 particles (solid),
and 2 × 104 particles (dash). Index 0 in Sij corresponds to the void region and index 1 corresponds
to the solid region; (c) histogram of particle size distributions for both packings.

As an example, consider a polydisperse packing of spheres with diameters Di = 63.4, 53.0,
49.5, 47.0, 44.0, 41.0, 38.0, 30.5, and 16.0 μm. is packing has a narrow distribution with a size
ratio between the largest and the smallest particles that is close to 4. We consider two different
packings, one with 2 × 104, and one with 103 particles. Figure 3.1 shows: (a) the 2 × 104 particle
packing; (b) the two-point probability functions for both packings; and (c) the size distribution of
the particles. From 3.1(b) and 3.1(c) it can be seen that the two packings are statistically equivalent,
at least for the one- and two-point probability functions. If one were to consider, say, a packing
with 102 particles, both the histogram and the two-point probability functions would be different.
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us one can conclude that, in order to calculate the macroscopic properties of a material with this
particle distribution, a packing with 103 particles is sufficient. is way the computational burden
can be reduced.

3.1.2 Ensemble Averaging

Ensemble averaging is necessary to account for the effect of orientations, spacing, etc., on themacro-
scopic properties. e ensemble average of a physical propertyK and its standard deviation σK are
defined as

⟨K⟩ = 1

N

N∑
n=1

Kn, σK =

(
1

N

N∑
n=1

(Kn − ⟨K⟩)2
)1/2

=
√

⟨K2⟩ − ⟨K⟩2,

whereN is the ensemble size. As pointed out in [103], when the RVE is sufficiently large, or—under
the assumption of ergodicity—when a sufficiently large ensemble size is used for relatively smaller
RVEs, the mean for the full ensemble should converge. us, in addition to matching higher order
statistics between a much larger pack and a smaller RVE, matching the ensemble averages should
also be a requirement.

3.2 Two-Point Cluster Function

e two-point cluster function C(i)
2 (x⃗1, x⃗2) is somewhat similar to the two-point probability func-

tion S(i)
2 (x⃗1, x⃗2), but it contains topological information about the connectedness of the material. It

was introduced by Torquato, Beasley and Chiew [104], and it is defined as the probability that two
points x⃗1 and x⃗2 both lie in the same cluster of phase i of the material. A cluster is defined as any
contiguous region of a given phase, i.e., a region in which any given point can be reached without
passing through other phases. It can also be defined as a set of contacting particles in a particulate
material.

Unlike the two-point probability function, which is usually short-ranged, the two-point cluster
function becomes long-ranged when the percolation threshold is reached. erefore, the two-point
cluster function provides better information about the microstructural information of heteroge-
neous media. In general, for statistically inhomogeneous media, the standard two-point probability
function can be decomposed into its connected and disconnected parts:

S
(i)
2 (x1, x2) = C

(i)
2 (x⃗1, x⃗2) + E

(i)
2 (x⃗1, x⃗2),
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whereE(i)
2 (x⃗1, x⃗2) is defined as the probability that the two points x⃗1 and x⃗2 lie in different clusters

of phase i and is called the two-point blocking function.
e two-point cluster function provides important information about percolation effects in a

material. When clusters that span the entire material sample first appear, the percolation threshold
is reached and can cause interesting phenomena to happen. For example, the breakdown voltage of
a heterogeneous material can strongly depend on the percolation threshold of the most conductive
phase of the material [105].

3.3 Lineal-Path Function

e lineal-path function L(i)(z) [106] is defined as the probability that a line segment of length z
lies entirely within the material phase i when placed at random into the sample. Since the proba-
bility that the segment will intersect a different phase increases with the length of the line segment,
the lineal-path function is a monotonically decreasing function of z. For statistically homogeneous
and isotropic media, the lineal-path function depends solely on z; for statistically homogeneous but
anisotropic media, it is also a function of the orientation of the line segment z⃗; and for inhomoge-
neous media it depends on the absolute positions x⃗1 and x⃗2 of the end points of the segment as well,
i.e. L(i)(z) = L(i)(x⃗1, x⃗2), where z⃗ = x⃗2 − x⃗1.

If we define L(12)(z) in a two-phase material as being the probability that the line segment in-
tersects the interface between the two phases at any point, then

L(1)(z) + L(2)(z) + L(12)(z) = 1,

since the line segment will either lie entirely on phase 1, entirely on phase 2, or will intersect the
interface between the two phases. Moreover, if we shrink the segment z to zero length, we can
conclude that L(i)(0) = φi, where φi is the volume fraction of phase i. Using a similar argument,
we can also conclude that if we stretch the line segment into infinity, the probability that it will
lie entirely on a single phase will become very small, so L(i)(∞) = 0. Nevertheless, this second
argument is only true for random materials that are also statistically homogeneous and isotropic.
For a layered material, for example, L(1)(z) = φ1 and L(2)(z) = φ2 when z is parallel to the layers,
while when z is perpendicular to the layers they will be proportional to the average layer thicknesses
of each phase. us, lineal-path function provides a rough measure of the connectedness of the
phases in a material. Analytic expressions for the lineal-path function for hard spheres are given
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in [106], but for non-trivial microstructures exact expressions for it become nearly intractable. e
best approach in this case is to use Monte Carlo simulations.

3.4 Pair Correlation Function

e pair correlation function g2(r⃗12, q1, q2) is proportional to the probability of finding the center
of a particle with orientation q2 at position r⃗12 relative to a reference particle with orientation q1.
For simplicity, consider spherical particles in a statistically isotropic medium. In this case, the pair
correlation function depends only on the magnitude of r⃗12, that is,

g2(r⃗12, q1, q2) = g2(r12),

and it is usually referred to as the radial distribution function.
More generally, for a system of N spheres confined to a finite region of volume V in R3, it is

possible to define an n-particle correlation function as

gn(r⃗
n) =

ρn(r⃗
n)

ρn
,

where ρn(r⃗n) is the generic n-particle probability density function given by

ρn(r⃗
n) =

N !

(N − n)!

∫
PN(r⃗

n)dr⃗N−n,

and ρ is simply the particle number density

ρ ≡ lim
N,V→∞

N

V
.

e function PN(r⃗
n) above is the specific particle probability density function and is defined such

that PN(r⃗
N)dr⃗N gives the probability of finding the center of particle 1 inside the volume element

dr⃗1 about r⃗1, the center of particle 2 inside the volume element dr⃗2 about r⃗2, and so on. e volume
element dr⃗N is dr⃗N = dr⃗1dr⃗2 . . . dr⃗N . Being a probability density function, PN(r⃗

N) is normalized
to unity, that is ∫

PN(r⃗
N)dr⃗N = 1.

If the system is not in thermal equilibrium, PN(r⃗
N) may also depend on time. e generic proba-
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bility density function, despite its name, is not normalized to unity,∫
ρn(r⃗

n) dr⃗n =
N !

(N − n)!
.

It keeps this name because it can be trivially renormalized.
In disordered systems, ρn(r⃗n) → ρn at large distances, thus gn(r⃗n) → 1 as well. erefore,

gn(r⃗
n)− 1 provides a measure of spatial correlation between the particles, with zero corresponding

to no correlation.

3.5 Pore Size Distribution Function

e pore-size distribution function P (δ)was first defined in order to characterize the void or “pore”
space in porous media [107]. Usually, P1(δ) dδ gives the probability that a randomly chosen point
inside phase 1 of a two-phase material lies at a distance in between δ and δ + dδ from the nearest
point in the interface between the two phases. Similarly, P2(δ) dδ would give the probability that
randomly chosen points inside phase 2 lie at a distance in between δ and δ+dδ from the nearest point
in the interface. However, since we are interested in using this function to characterize solid rocket
propellants, we shall provide a definition of P (δ) that is more suitable for multi-phase materials.
Consider, for example, a solid propellant that comprises three phases: ammonium perchlorate (AP),
aluminum, and a polymer binder. We would like to know the size distribution of the fuel-rich
pockets in between the large AP particles, since that is a key ingredient in models of aluminum
agglomeration. erefore, we can define PAP (δ) dδ as the probability that a randomly chosen point
that lies outside the AP particles lies at a distance in between δ and δ+ dδ of the nearest AP particle.

e pore-size distribution function has dimensions of inverse length and satisfies∫ ∞

0

P (δ) dδ = 1,

since it is a probability density function. It is always positive and at its extremes, P (δ) takes the
values

P (0) =
s

φ1

and P (∞) = 0,

where s
φ1

is the interfacial area per unit pore volume.
In three dimensions, one can think about P (δ) intuitively as the probability that a sphere of ra-

dius δ fits entirely within the pore space without overlapping with the material phase when placed
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at random. e pore-size distribution function also contains vague information about the connect-
edness of the material phase, since the pore size is also an estimate of the maximum distance that a
random point can be from the material phase.

3.6 Computer Codes for Calculating Statistical Properties

e ability to analyze statistical properties of materials we simulate is crucial to understand the
connection between their microstructure and their macroscopic properties. erefore, as part of
this research project, we developed a few auxiliary tools that currently cover a subset of the statistical
descriptors discussed in the previous sections. efile formatwe have adopted for statistical analysis
is the format produced by the tomography machines on which we have scanned samples of solid
propellants. Samples produced by our packing code are converted to a binary mesh in this file
format to allow a single statistical analysis tool to be used to process data from tomographic scans
and simulations in the same way, regardless of their origin. is same tool can be used to create
two-dimensional image slices of packings generated with the packing code.

(a) Spheres (b) Ellipsoids (c) Cylinders (d) Disks (e) Cubes

Figure 3.2: Cross-section images of packings of different convex objects, at ϕ = 0.5.

Figure 3.2 shows a few examples of two-dimensional slices through packings of particles with
different shapes, at a packing fraction of ϕ = 0.5. Each shape can be easily recognized through its
cross-sectional images. e slices allow a qualitative comparison with similar cuts through samples
of real particulate materials; they roughly indicate how well the particle shapes used in the simula-
tion reflect those of the particles in the real material.

Once packings have been converted to the binary mesh format, statistical descriptors can be
computed using other auxiliary tools. Figure 3.3 shows the two-point probability function for each
of the examples in figure 3.2. Note that, at the same volume fraction, the scale of the particles does
not quite match. e domain size in each case is a cubic periodic box of side 1. e distance r
between points is shown in absolute terms, and spans about a third of the domain. At this scale, the
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packings become statistically homogeneous—i.e., the 2-point probability becomes constant. Since
packing fraction is about half of the total volume in all cases, all functions approach 0.25 when they
become constant.
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Figure 3.3: Two-point probability functions for packings of different convex objects at ϕ = 0.5.

We also have tools to compute other statistical functions from simulated samples, such as the
radial distribution function, etc. More examples of statistical descriptors will be shown in later
chapters.
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Chapter 4

Rigid-Body Dynamics

4.1 Introduction

In this chapter we review some of the basic concepts of physics that are relevant in the analysis of
the motion and interaction of rigid bodies. For the interested reader, the classical treatment of rigid
body dynamics is the one given by Goldstein [108]. However, that text is somewhat on the heavy
side in mathematics. Here, we will present a rather light discussion of the subject.

Newton’s laws of motion are the foundation of classical mechanics. e three famous laws were
first compiled by him in his Philosophiæ Naturalis Principia Mathematica (Mathematical Principles
of Natural Philosophy), published in 1687 [109]. ey are

First Law A body in an inertial reference frame is either at rest or moves at constant velocity, unless
acted upon by an external force.

Second Law e acceleration of a body is directly proportional to, and in the same direction as
the sum of the external forces acting upon it, and inversely proportional to its mass—that is,
F⃗ = ma⃗.

ird Law For every force exerted by a body upon a second body, there is a force, equal in mag-
nitude and opposite in direction, that is felt by the first body as being exerted by the second
body. is law is commonly known as the law of action and reaction.

In slightly more formal terms, the second law can be stated as

F⃗ (t) =
∂p⃗

∂t
=
∂(mv⃗)

∂t
.
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Wekept the time dependence of F⃗ intentionally as a reminder that the force can change dynamically,
but we will drop the time dependence of F⃗ and other physical quantities to avoid cluttering the
notation. When a force F⃗ acts upon a body over a finite time interval∆t, the change in momentum
due to its action is called an impulse, and it is given by

J⃗ = ∆p⃗ =

∫
∆t

F⃗ dt.

Impulses are used extensively in dynamic simulations of rigid bodies to prevent objects from inter-
penetrating.

Newton’s laws of motion only describe the movement of point masses. In order to describe the
movement of finite rigid bodies, we need to also take into account the orientation and rotational
motion of the objects. One way of representing the orientation of an object is through an orienta-
tion matrix or rotation matrix R(t). e relationship between the rotation matrix and the angular
velocity ω⃗(t) of the particle is the equation

∂R(t)
∂t

= Skew(ω⃗(t))R(t),

where

Skew(ω⃗) =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


is a skew-symmetric matrix derived from the angular velocity vector ω⃗. e relationship between
the angular velocity and the angular momentum L⃗(t) is

L⃗(t) = I(t) ω⃗(t),

where I(t) is a tensor describing themoment of inertia of the particle, which is the angular analogue
ofmass. e inertia tensor is always constructed relative to a certain coordinate system. e angular
analogue to Newton’s second law of motion is the equation

∂L⃗(t)

∂t
= τ⃗(t),

where τ⃗(t) is the torque applied to the particle—it is the angular analogue of force. Since the particles
can be moving and rotating, the inertia tensor does vary with time. However, instead of computing
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the inertia tensor and its inverse at each time step in a simulation, which could become very expen-
sive depending on the shape of the object, it is usually constructed on the local coordinate system
of the particle and a coordinate transformation is used to convert it into world coordinates. e
transformation to convert the local inertia tensor into world coordinates is

I(t) = R(t) Ibody R(t)T ,

where I(t) is the time-dependent inertia tensor in world coordinates and Ibody is the local inertia
tensor—which is constant, since the body is rigid.

4.2 Equations of Motion

e equation of motion for a particle—that is, a point mass—of mass m, with world position x⃗,
world velocity v⃗ = ˙⃗x, and world acceleration a⃗ = ˙⃗v = ¨⃗x is simply given by Newton’s second law:

F⃗ (t) = ma⃗ = m ˙⃗v = m¨⃗x.

If no external forces are present, i.e. F⃗ = 0, then a⃗ = 0 and this equation integrates to v⃗(t) = v⃗0,
a constant. e position of the particle then evolves as r⃗(t) = r⃗0 + tv⃗0, where r⃗0 is the initial
position of the particle. For a system of perfectly rigid bodies that interact only via penetration
constraints, this equation is sufficient to describe the motion of their center of mass. e external
forces are different than zero only when two objects collide. However, the constraint forces are not
known a priori and must be calculated by the collision detection system at the time of each collision.
e angular equations of motion for a rigid body without any external torques can be integrated
in a similar manner. When implementing a system to simulate the dynamics of rigid bodies, all
variables are usually grouped into a state vector

S⃗(t) =


x⃗(t)

q⃗(t)

p⃗(t)

L⃗(t)

 ,
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and the total equations of motion become

∂S⃗(t)

∂t
=

∂

∂t


x⃗

q⃗

p⃗

L⃗

 =


˙⃗x

˙⃗q

˙⃗p
˙⃗
L

 =


p⃗
m

ω⃗q
2

F⃗

τ⃗

 .

e integration of the angular equations of motion should be carried out carefully, since over
many time steps the numerical errors can accumulate and make the orientation matrix R(t) no
longer orthonormal. One solution is to renormalize the matrix in regular intervals to avoid numer-
ical problems, but the most common way to cope with errors is to represent rotations in a more
numerically robust way, using quaternions. e angular equations of motion in terms of the unit-
length quaternion q⃗(t) corresponding to the orientation matrix R(t) is

∂⃗q(t)

∂t
=

1

2
ω⃗(t)q⃗(t),

where ω⃗(t) is now also a (not necessarily unit-length) quaternion that corresponds to the angular
velocity.

4.3 Impulse-Based Collision Response

e constraints due to contact forces between perfectly rigid bodies are very simple. ey are used
to ensure that rigid bodies never interpenetrate. For a long time, the standard way of dealing with
contact forces was to cast the nonpenetration constraints as a linear complementarity problem:

a⃗ = Af⃗ − b⃗ ≥ 0

f⃗ ≥ 0

f⃗ · a⃗ = 0

In the equations above, a⃗ represents the relative normal acceleration at the contact point, and f⃗ is the
normal component of the force at the point of contact. e matrix A and the vector b⃗ are constants
which can be determined from the configuration of the system at the time of each collision. e
constraint a⃗ ≥ 0 means that the two objects must either be moving apart or not moving, for if
a⃗ < 0 the objects are getting closer to each other and will penetrate if they are already in contact
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with each other. e constraint f⃗ ≥ 0 represents the fact that contact forces can only push objects
apart, not pull them together. Finally, f⃗ · a⃗ = 0 means that either the two objects are in contact
(in which case a⃗ = 0) and there is a force acting upon them to prevent penetration, or that they
are moving apart with positive acceleration and the contact force between them is equal to zero. (It
does not mean that the force and acceleration are perpendicular, since only one of them is nonzero
at any given time.)

For frictionless systems, the linear complementarity problem always possesses a unique solution,
given that certain nondegeneracy constraints are satisfied. When friction is added, the solution is
not unique anymore, or may not exist altogether. A better model to satisfy the nonpenetration
constraints is to apply instantaneous impulses to the particles at the time of collision. is approach
became popular aer the PhD works of David Baraff [110] and Brian Mirtich [111].

Let us then formulate how to resolve a colliding contact between two rigid bodies A and B by
applying an impulse as done by Baraff and Mirtich. Let t0 be the time of first impact between the
rigid bodies A and B and P0 be the point of contact. For concave bodies it may not be possible
to reduce the contact to a single point, but in our simulations only convex particles are involved
in collisions so this assumption is reasonable. We will treat two types of contacts: vertex–face and
edge–edge. Vertex–vertex contacts are very rare and can be ignored, and face–face contacts can be
treated as one of the above. Whenever we have a vertex-face contact, we will adopt the convention
that a vertex of body A collides with a face of bodyB. Let N⃗0 be the outward pointing unit normal
perpendicular to the face of body B. If the contact type is edge–edge, let N⃗0 be the normalized
cross product between the colliding edges of A and B instead. In this case, we also choose N⃗0 to
point outside of body B. For a brief period of time that foregoes the collision, we can consider the
trajectories of the points PA(t) belonging to body A and PB(t) belonging to body B for t ≤ t0,
such that PA(t0) = PB(t0) = P0 at the time of collision. e normal vector of body B at PB(t)

during this time interval is then N⃗(t) and N⃗(t0) = N⃗0 according to our convention. e signed
distance between the bodies, measured along the normal direction, is

D(t) = N⃗(t) · (PA(t)− PB(t) ) .

e time derivative of this equation gives the relative velocity between the bodies in the normal
direction

Ḋ(t) =
˙⃗
N(t) · (PA(t)−PB(t) ) + N⃗(t) ·

(
ṖA(t)− ṖB(t)

)
.

is equation is oen (but not always) used to compute the time of impact between the two bodies.
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At the time of impact t0, we have

D(t0) = 0, Ḋ(t0) = N⃗0 ·
(
ṖA(t0)− ṖB(t0)

)
,

where
ṖA = v⃗A + w⃗A × r⃗A and ṖB = v⃗B + w⃗B × r⃗B,

since A and B are both rigid bodies. In the equation above, v⃗A and v⃗B are the center of mass
velocities of bodiesA andB, and w⃗A and w⃗B are their angular velocities with respect to their center
of mass. e vectors r⃗A and r⃗B are simply r⃗A = PA −CA and r⃗B = PB −CB , where CA and CB are
the positions of the center of mass of each body. erefore, at the time of collision, we have

Ḋ(t0) = N⃗0 · ((v⃗A(t0) + w⃗A(t0)× r⃗A(t0))− (v⃗B(t0) + w⃗B(t0)× r⃗B(t0))) .

To prevent interpenetration of the pair of solid bodies for t ≥ t0 when Ḋ(t0) < 0, we must then
apply a discontinuous change of velocity to them—in other words, an instantaneous impulse—that
ensures that Ḋ(t0) > 0 aerwards. If v⃗− is the relative velocity before the impulse, then

v⃗− = v⃗⊥ + (N⃗ · v⃗−)N⃗ ,

where we have dropped the index for the outer pointing normal N⃗0, and v⃗⊥ is the component of v⃗−

that is perpendicular to N⃗ . e post-impulse velocity v⃗+ is then selected to be

v⃗+ = v⃗⊥ − (N⃗ · v⃗−)N⃗ ,

which is simply a reflection of the normal component of the relative velocity, meaning that there is
no loss of kinetic energy during the collision. A coefficient of restitution ε such that

v⃗+ = v⃗⊥ − ε(N⃗ · v⃗−)N⃗

can be introduced to generate collision responses in which part of the kinetic energy is lost. at
can be useful to keep the temperature of the particle system down during a molecular dynamics
simulation. Let then Ṗ±

A and Ṗ±
B be the preimpulse and postimpulse local velocities of the points

in A and B that come into contact at t0, respectively. en we have

Ṗ±
A = v⃗±A + w⃗±

A × r⃗A and Ṗ±
B = v⃗±B + w⃗±

B × r⃗B.
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Now we need to find out the impulse magnitude such that v⃗+ = v⃗⊥ − ε(N⃗ · v⃗−)N⃗ aer the
impulse is applied. Since the impulsive force is only in the normal direction in our case (i.e. no
friction), F⃗ = fN⃗ , where f is the magnitude we need to determine. e changes in linear and
angular momentum are then given by

p⃗+A = p⃗−A + fN⃗ p⃗+B = p⃗−B − fN⃗

L⃗+
A = L⃗−

A + r⃗A × fN⃗ L⃗+
B = L⃗−

B − r⃗B × fN⃗

and the respective changes in the linear and angular velocities are

v⃗+A = v⃗−A +
fN⃗

mA

v⃗+B = v⃗−B − fN⃗

mB

ω⃗+
A = ω⃗−

A + I−1
A (r⃗A × fN⃗) ω⃗+

B = ω⃗−
B − I−1

B (r⃗B × fN⃗)

where IA and IB are the moments of inertia of body A and B, respectively.
e post impulse local velocities of body A and B at the point of contact are then

Ṗ+
A = Ṗ−

A + f

(
N⃗

mA

+ I−1
A (r⃗A × N⃗)× r⃗A

)

Ṗ+
B = Ṗ−

B − f

(
N⃗

mB

+ I−1
B (r⃗B × N⃗)× r⃗B

)

Note that the sign is different for body B because the impulse on B is −F⃗ . Aer some algebra, we
obtain the following expression for the impulse magnitude:

f =
−(1 + ε)

(
N⃗ · (v⃗−A − v⃗−B) + w⃗−

A · (r⃗A × N⃗)− w⃗−
B · (r⃗B × N⃗)

)
m−1

A +m−1
B + (r⃗A × N⃗)T I−1

A (r⃗A × N⃗) + (r⃗B × N⃗)T I−1
B (r⃗B × N⃗)

.

e right-hand side of the equation depends only on the configuration of the bodiesA andB at the
time of collision, their moments of inertia, and the restitution coefficient ε—all known quantities.
e impulse magnitude f is always positive: the denominator is positive because the mass of each
body is positive and the inverse of the moments of inertia are positive definite; the numerator is
positive because the negative term −(1 + ε) is multiplying the local relative velocity at the point of
contact, which is also negative since the objects are moving towards each other.
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4.4 Moments of Inertia of Solid Polyhedra

e moment of inertia of a solid body is a measure of the rotational inertia of the body about an
axis. When two bodies collide, the moment of inertia is necessary to calculate the magnitude of the
impulse needed in the collision response. As described earlier, the moment of inertia depends on
the coordinate system adopted. Nevertheless, it is possible to compute the moment of inertia once
in the local coordinates of the solid body and transform it into global coordinates when needed. For
a continuum of mass in three dimensions, the inertia tensor is a matrix given by

I =


Ixx −Ixy −Ixz

−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 ,
where

Ixx =

∫
V

y2 + z2 dm, Iyy =

∫
V

x2 + z2 dm, Izz =

∫
V

x2 + y2 dm

and
Ixy =

∫
V

xy dm, Ixz =

∫
V

xz dm, Iyz =

∫
V

yz dm,

where V denotes the volume of the solid body.
In our code, we need to compute themoments of inertia of general polyhedra defined by the user

in the input and configuration files. If the density is constant inside the polyhedron—an assumption
we make in our code—it is possible to reduce the volume integrals to surface integrals using the
divergence theorem and then further reduce those integrals to line integrals using Green’s theorem.
e result is that the moments of inertia of the polyhedron become much easier to evaluate. is
method was first described by Mirtich [111] in his PhD thesis, but can also be found on textbooks
[92]. In order to compute the moment of inertia of the polyhedron, many integrals of the form∫

V

p(x, y, z) dV

need to be evaluated, where p(x, y, z) is one of the following polynomials: 1, x, y, z, x2, y2, z2, xy,
xz, and yz. For each of these polynomials, we then choose a function F⃗ from table 4.1 such that
∇ · F⃗ = p(x, y, z) so that∫

V

p(x, y, z) dV =

∫
V

∇ · F⃗ dV =

∫
S

N⃗ · F⃗ dS,
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Table 4.1: Vector fields F⃗ such that p = ∇ · F⃗ .

p(x, y, z) F⃗ (x, y, z)
1 (x, 0, 0)
x (x2/2, 0, 0)
y (0, y2/2, 0)
z (0, 0, z2/2)
x2 (x3/3, 0, 0)
y2 (0, y3/3, 0)
z2 (0, 0, z3/3)
xy (x2y/2, 0, 0)
xz (0, 0, z2x/2)
yz (0, y2z/2, 0)

whereS is the surface of the polyhedron, and N⃗ is the outward unit-length normal. Considering that
the surface of the polyhedron can be decomposed into n facesF1, . . . ,Fn, the integral of F⃗ (x, y, z)
over S becomes ∫

S

N⃗ · F⃗ dS =
n∑

i=1

∫
Fi

N⃗Fi
· F⃗ dS,

where N⃗Fi
= (ηx, ηy, ηz) is the constant outward normal of face Fi.

We are then le with the following integrals to compute:

∫
V

1 dV =
n∑

i=1

ηx

∫
Fi

x dS
∫
V

xy dV =
1

2

n∑
i=1

ηx

∫
Fi

x2y dS

∫
V

xz dV =
1

2

n∑
i=1

ηz

∫
Fi

z2x dS
∫
V

yz dV =
1

2

n∑
i=1

ηy

∫
Fi

y2z dS

∫
V

x dV =
1

2

n∑
i=1

ηx

∫
Fi

x2 dS
∫
V

x2 dV =
1

3

n∑
i=1

ηx

∫
Fi

x3 dS

∫
V

y dV =
1

2

n∑
i=1

ηy

∫
Fi

y2 dS
∫
V

y2 dV =
1

3

n∑
i=1

ηy

∫
Fi

y3 dS

∫
V

z dV =
1

2

n∑
i=1

ηz

∫
Fi

z2 dS
∫
V

z2 dV =
1

3

n∑
i=1

ηz

∫
Fi

z3 dS.

ese integrals all assume the form

ηℓ

∫
Fi

f(x, y, z) dS,

39



where ℓ is either x, y, or z, and f(x, y, z) is a polynomial, as given above. It is possible to con-
vert these integrals into line integrals on the boundary of each face of the polyhedron, as is done
by Mirtich [111], but the most convenient way of calculating these integrals is to break up each
polygonal face into triangles. e integrals can then be evaluated by direct parametrization of the
triangles. For instance, consider a triangular face with vertices Vi = (xi, yi, zi), 0 ≤ i ≤ 2, ordered
counterclockwise. Also, consider the edges E1 and E2 given by

E⃗i = Vi − V0 = (xi − x0, yi − y0, zi − z0) ≡ (αi, βi, γi).

at gives the following parametrization for the triangular face

P(u, v) = V0 + uE⃗1 + vE⃗2

= (x0 + α1u+ α2v, y0 + β1u+ β2v, z0 + γ1u+ γ2v)

= (x(u, v), y(u, v), z(u, v))

where u and v satisfy 0 ≤ u, v and u+ v ≤ 1.
e outward normal of the triangular face can be simply given by the cross product of the two

edges

N⃗F =
E⃗1 × E⃗2

|E⃗1 × E⃗2|
=

(β1γ2 − β2γ1, α2γ1 − α1γ2, α1β2 − α2β1)

|E⃗1 × E⃗2|
≡ (δ0, δ1, δ2)

|E⃗1 × E⃗2|
.

Now, the integrals are reduced to the following form

(
N⃗F · ℓ⃗

)∫
F
f(x, y, z) dS =

((
E⃗1 × E⃗2

)
· ℓ⃗
)∫ 1

0

∫ 1−v

0

f (x(u, v), y(u, v), z(u, v)) dudv,

where dS = |E⃗1 × E⃗2| dudv.
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e final results are then

(
N⃗F · i⃗

) ∫
F
x dS =

δ0
6
f1(x)(

N⃗F · i⃗
) ∫

F
x2 dS =

δ0
12
f2(x)(

N⃗F · i⃗
) ∫

F
x3 dS =

δ0
20
f3(x)(

N⃗F · j⃗
) ∫

F
y2 dS =

δ1
12
f2(y)(

N⃗F · j⃗
) ∫

F
y3 dS =

δ1
20
f3(y)(

N⃗F · k⃗
) ∫

F
z2 dS =

δ2
12
f2(z)(

N⃗F · k⃗
) ∫

F
z3 dS =

δ2
20
f3(z)(

N⃗F · i⃗
) ∫

F
x2y dS =

δ0
60

(y0g0(x) + y1g1(x) + y2g2(x))(
N⃗F · j⃗

) ∫
F
y2z dS =

δ1
60

(z0g0(y) + z1g1(y) + z2g2(y))(
N⃗F · k⃗

) ∫
F
z2x dS =

δ2
60

(x0g0(z) + x1g1(z) + x2g2(z))

where fi(λ) and gi(λ) are

f1(λ) = λ0 + λ1 + λ2

f2(λ) = λ20 + λ0λ1 + λ21 + λ2f1(λ)

f3(λ) = λ30 + λ20λ1 + λ0λ
2
1 + λ31 + λ2f2(λ)

gi(λ) = f2(λ) + λif1(λ) + λi.

In fi(λ) and gi(λ), λ is just an alias for either x, y, or z and the indexed quantities correspond to
the vertex coordinates of the triangular faces.
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Chapter 5

Collision Detection

Collision detection is a vast subject withmany applications in various areas, such as robotics, virtual
reality, computer games and animation [92, 112–114], and physics-based simulations in engineer-
ing [115], to name a few. In computer games, collision detection is used, for example, to determine
which objects need to be drawn on screen, to perform line-of-sight and intersection queries be-
tween virtual world objects and to prevent players from walking through walls, other players, etc.
In robotics, collision detection helps robots steer away from obstacles that lie along their trajectories.
In engineering, collision detection is used in simulations of car crashes to aid in the development of
better structural components without the need to destroy real (and expensive) cars in the process.
In movies, clothing is simulated as a large mesh with many triangles and collision detection is used
to ensure that there are no self-intersections and that the clothes behave in a life-like manner.

eperformance requirements of a collision detection systemdepends on the type of application
for which it is built. In computer animation (movies), the performance of the collision detection
system is not critical, since the time spent in collision detection is but a fraction of the time spent
rendering each frame. In games, however, the need to be interactive and run in real-time imposes
rather tight restrictions on the time that can be spent detecting collisions. To put this into perspec-
tive, we can consider that, to run smoothly, a game must run at least at 60 fps (frames per second).
At this frame rate, each frame must be ready for display in 16.66 ms—not that much time. Collision
detection can usually only account for about 20% to 30% of each frame in order to leave enough
time for game logic, input, network communication, rendering, etc. at leaves roughly 3–5 ms
for collision detection. Moreover, each frame can contain hundreds of objects, of which at least
a dozen will need to be tested for collisions aer a collision culling phase. is means that in the
end there may be only 30 to 200 μs available for collision detection per object pair—very little time
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indeed. e collision detection system in a packing code does not have such tight restrictions on
time, since it does not need to run interactively. Nevertheless, performance is still critical to keep
overall packing time reasonably low, since packings may contain many thousands of particles.

Robustness requirements also vary, and there is naturally a trade off between robustness and
performance in every collision detection system. In computer games, the severe restrictions on
time make it necessary to favor performance over everything else. However, there are no major
drawbacks in doing this—in a game, it is more than enough for things to just look right, so small
intersections between world objects can be tolerated. Most games employ simplified geometrical
models for collision detection—e.g. by substituting a player with a cylinder or a box—and reserve
themore sophisticatedmodels for rendering only. In a packing code, correctness is very important—
penetration between particles is oen unacceptable. erefore, in this context, it is preferable to use
continuous rather than discrete algorithms for collision detection, even though it means that some
performance must be sacrificed in the process.

Collision detection queries can be broadly categorized into three different types, concerning the
problems of if,when, andwhere two objects come into contact. e first type of query is the simplest
and cheapest in terms of computational cost—it consists in determining a Boolean result indicating
whether or not two objects intersect. is is a static query, since both objects are immobile. Deter-
miningwhen two objects collide based on their movement is a dynamic query. It can be determined
by interval bisection if the two objects intersect at the end of the interval but not at the beginning,
but in general more sophisticated algorithms are necessary in order to ensure that no collisions are
missed. Establishing where two objects come into contact is the most complex query, and also the
hardest to make numerically robust. A related problem to finding where two objects intersect is
the problem of finding their penetration depth once it is established that they intersect by a finite
amount—that is, finding the smallest translation vector that would eliminate the intersection. In
our packing code, however, penetration between particles is not allowed.

Our choice of collision detection algorithm is based on the characteristics of the particulate
materials that we intend to model with our packing code. In general, the particles are convex, and
their shape is either spherical or polyhedral (for the explosive crystals). Most explosives used in solid
rocket propellants are ground and milled, so elongated particles are uncommon. Hence, oxidizer
particles are represented in our code with either spheres, ellipsoids, or convex polyhedra defined
in external files. Many algorithms exist for detecting collisions between convex solid objects. In
summary, we need to use algorithms that work in general for any convex shape, and are both robust
and as fast as possible. We have not found the algorithms in the particle packing literature to be
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particularly appealing in terms of performance. Torquato et al. [51, 52] use an algorithm based
on the separating axis theorem. ey state that “the [separating] axis is either perpendicular to
one of the faces or perpendicular to a pair of edges, one from each polyhedron. is reduces the
number of axes that need to be checked from infinity to [E(E−1)/2 + 2F ], where E and F are the
number of edges and faces of the polyhedron, respectively.” However, testing all of these possibilities
can become very expensive as the number of vertices of the polyhedra increases. On the other
hand, in a previous code developed for our own group by D. S. Stafford [53, 116], the algorithm for
computing particle intersections was based on the minimization of a level set function representing
the particle shapes. In addition to the difficulties in minimizing functions with sharp features, that
method ran very slowly due to the iterative nature of the algorithmand the large number of iterations
needed to converge to the minimum with confidence. We wanted to address the shortcomings
of the level set algorithm in our new code in order to enable us to simulate larger systems, so we
turned our attention to algorithms used in computer games, where performance is one of the most
important aspects. We decided to use the Gilbert–Johnson–Keerthi (GJK) algorithm for polyhedra
and specialized algorithms for other shapes. ese algorithms will be described in the next sections.

5.1 Bounding Volumes

e computational cost of collision queries of any type is naturally proportional to the complexity
of the objects being tested. erefore, bounding volumes are used to speed up the process. e
simplest and most convenient type of bounding volume is a sphere. Since oxidizer particles in most
solid propellants are roughly spherical, this is a suitable choice of bounding volume for our code.
Elongated particles are still supported, albeit with a performance penalty if compared to particles
that are close to being spherical. Other obvious choices for bounding volumeswould be axis-aligned
bounding boxes (AABBs) and object-aligned or oriented bounding boxes (OBBs). We provide an
implementation of AABBs with our code, even though only spherical bounding volumes are cur-
rently used. Spheres have the added convenience of being rotationally invariant while AABBs must
be recomputed at every collision check. e implementation of AABBs may be used at a later time
for other applications if necessary. Figure 5.1 shows a list of bounding volumes from the simplest
(le) to most complex (right). An in-depth discussion of bounding volumes is out of the scope of
this work. For the interested reader, we recommend the texts by Ericson [114] and Eberly [92, 113].
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Sphere AABB OBB 8-DOP Convex Hull

Figure 5.1: Types of bounding volumes: sphere, axis-aligned bounding box (AABB), oriented
bounding box (OBB), eight-direction discrete orientation polytope (8-DOP), and convex hull.

5.1.1 Computing a Bounding Sphere

e bounding sphere of a given set of points can be calculated in various ways. One of the simplest
methods is to use the average of all points as the center of the sphere and use the furthest point
from this center to compute the radius of the bounding sphere. is is a very fast method, but it can
create spheres that are larger than needed for particles with asymmetrical shapes, like a diamond
or a pyramid. In our code, we use the center of mass of the polyhedron instead of the average of
the vertices. e bounding radius is then computed from the vertex that is furthest away from the
center of mass. is is better than using a simple average, but it is by no means the best method of
computing the bounding sphere. Nevertheless, ourmethod has important advantages overmethods
that provide tighter bounding spheres: the center of mass is shared with the polyhedron, so it saves
some memory that would be needed to store the center of the bounding sphere, and the bounding
sphere does not need to be adjusted as the particle rotates, which also helps to simplify bounding
volume intersection tests. A possible alternative would be to use the OBB of the particle shape and
take its midpoint in each direction as the center of the sphere and calculate the radius from the
furthest point. Methods also exist for computing a tight bounding sphere of a set of points using
the direction of maximum spread, and for computing an optimal bounding sphere using a brute
force method [114]. However, the improvements offered by these methods if applied to our code
are only marginal, since in the vast majority of cases the particles we use are either symmetric or
roughly spherical, and our method produces tight bounding spheres in those cases.

5.1.2 Collision Detection for Growing Spheres

Whenever a particle in the system undergoes a collision, it is necessary to update its state and sched-
ule a new event for it in the event queue. Aer the collision impulse is applied, the particle is then

45



tested against all of its neighbors—as determined by the spatial partitioning scheme—to decide
which of them has the earliest collision time. However, in order to save time, the full collision test is
only performed if their bounding spheres are predicted to intersect in the future. Since the particles
grow linearly with time, we need a method for testing whether two moving and growing spheres
will intersect.

Let C1 and C2 be the centers of spheres 1 and 2 at t = 0, and v⃗1 and v⃗2 be their velocities,
respectively. Additionally, let r1(t) = g1t and r2(t) = g2t be the time-dependent radii of the two
spheres, where g1 and g2 are their growth rates. en, at a given time t, the spheres intersect if

|(C1 + v⃗1t)− (C2 + v⃗2t)| < r1(t) + r2(t).

erefore, if two moving particles whose bounding spheres are spheres 1 and 2 will collide in the
future, the collision must happen within the time interval given by the roots of the quadratic equa-
tion

|(C1 + v⃗1t)− (C2 + v⃗2t)|2 = (r1(t) + r2(t))
2.

If no roots are found, the particle pair can be safely discarded as not colliding. Otherwise, a full
collision test must be performed within the interval to determine if there is indeed a collision.

e method above may seem simple, but a lot of care is needed in order to avoid catastrophic
errors caused by floating point arithmetic, among other things. e first thing we should notice
is that when the two particles are actually spheres, the test above is the only test we perform to
determine if they will collide (andwhen) or not. If there are large numerical errors in the calculation
of their collision time, the codemay get stuck on an infinite loop by predicting that the same collision
will happen over and over again. erefore, we cannot simply apply the quadratic formula x =
−b±

√
b2−4ac
2a

to solve the equation ax2 + bx+ c = 0 with the appropriate coefficients. e reason is
simple—when two spheres are close, c is small, which leads to large numerical cancellation errors
when subtracting b from the other term in the numerator, since

√
b2 − 4ac ≈ b. In addition, if the

sum of the growth rates of the spheres is close to their separating velocity, i.e. g1 + g2 ≈ |v1 − v2|,
then a ≈ 0 and the division by 2a can significantly amplify any numerical errors in the numerator
as well as errors in a itself. erefore, it is important to treat the case when a is small in a special
way, and to use alternative formulas to solve the quadratic equation for t to prevent these problems.

Another important consideration we have to make is that if the bounding spheres grow faster
than they are moving apart, then they will start overlapping at some time t, but will never break
apart, which means that one of the roots to the equation above should be infinity. However, if
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a = 0, both roots given by the quadratic formula will be infinite, and if a ̸= 0 then both roots
will be finite. How can we solve this problem? e answer is to look at a again. In our quadratic
equation, a = |v⃗1 − v⃗2|2 − (g1 + g2)

2. When a ≤ 0 it means that the particles are not moving away
with enough speed to increase the distance between them. In that case, only one of the roots found
with the quadratic formula will be valid, and we should manually assign infinity to the other root.

A few last things are worth our consideration as well. When two spheres have just collided, they
are very close to each other—down to machine precision. e update from their previous position
(from a past event) to the current position (where they are colliding) can introduce small numerical
errors such that if the collision prediction is applied again, it will return an immediate collision for
the two particles. erefore, in addition to the tests above and all special cases, it is necessary to
check the relative velocity of the particles at the time of impact to make sure a collision will happen
before returning two particles as colliding. However, this test must be performed only when the
particles are themselves spheres, since particles with other shapes can have their bounding spheres
intersecting at any time.

When the tests above are performed for bounding spheres of other objects, the full interval must
be always returned, with care to return the infinite roots correctly. Also, contrary to when testing
for solid spheres, intersection intervals for bounding spheres of other particles starting in the past
relative to current simulation time should be allowed, since the bounding spheres may already be
intersecting at the current simulation time. Only the collision time for the actual particle shapes
must be in the future relative to current simulation time. e collision time between the two actual
particle shapes can then be determined through interval bisection if they intersect at the end of the
interval. Otherwise, the whole interval must be searched for intersections. erefore, in order to
reduce the amount of expensive intersection tests between the actual particle shapes, the bounding
sphere overlapping interval is confined to the simulation time. at is, if the bounding spheres began
to overlap in the past relative to simulation time, the beginning of the testing interval can be safely
modified to be the current simulation time, and if the bounding spheres never stop overlapping,
the test interval can end at the end of simulation time (when the desired packing fraction would be
reached or when packing density would be equal to 1).

5.2 The Gilbert–Johnson–Keerthi Algorithm

e Gilbert-Johnson-Keerthi (GJK) algorithm is an iterative method for computing the distance
between two convex objects [117, 118]. In this algorithm, the distance between two convex sets
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AB
A⊕B

Figure 5.2: e Minkowski sum of a square (A) and a triangle (B).

of points is obtained from the distance between their Minkowski difference and the origin. is
reduces the problem of finding the distance between two convex set of points to finding the distance
between a single convex set of points and the origin. eGJK algorithm can be applied to any convex
set that possesses a support mapping function. e major advantage of using this algorithm over
level sets is that it performs very well for polyhedra, for which it always converges in a small number
of steps.

5.2.1 Minkowski Sum and Difference

Let us now describe the concepts ofMinkowski sum and difference, and support mapping functions
before proceeding to the description of the algorithm itself. Let A and B be two point sets and let
A and B be elements of A and B, respectively. e Minkowski sum A⊕B is then defined as

A⊕B = {A+ B | A ∈ A,B ∈ B}

whereA+B is the vector sum of the two pointsA and B. Visually, the Minkowski sum can be seen
as the region swept by A translated to every point in B. An illustration of the Minkowski sum of
two sets is given in Figure 5.2.1.

e Minkowski difference of two point sets is defined analogously as

A⊖B = {A − B | A ∈ A,B ∈ B}.

Geometrically, this is equivalent to defineA⊖B asA⊖B ≡ A⊕(−B), as illustrated in Figure 5.2.1.
e Minkowski difference of two convex polyhedra is also a convex polyhedron, and contains

the origin if and only if the polyhedra intersect. In fact, ifC is the Minkowski difference betweenA
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A

B A⊖B

Figure 5.3: e Minkowski difference of a square (A) and a triangle (B). Since they intersect, their
Minkowski difference contains the origin.

d⃗

C C

P = SC(d⃗)

P = SC(d⃗)

Figure 5.4: A supporting vertex on a polygon with respect to direction d⃗ (le), and a supporting
point on a circle with respect to the same direction (right).

and B, we can establish the following result

distance(A,B) = min{∥A − B∥ | A ∈ A,B ∈ B} = min{∥C∥ | C ∈ C = A⊖B}.

erefore, to calculate the minimum distance between the two setsA andB is the same as to calcu-
late the minimum distance between C and the origin.

5.2.2 Supporting Points and Support Mappings

For a general convex set of points C , not necessarily a convex polyhedron, a point from this set
most distant along a certain direction d⃗ is called a supporting point of C . In other words, it holds
that d⃗ · P = max{d⃗ · V , ∀ V ∈ C}, i.e., P is a point for which d⃗ · P is maximal. Figure 5.2.2
illustrates supporting points for two different convex sets. For a polytope, one of its vertices can
always be selected as a supporting point for a given direction.

A supportmapping is a functionSC(d⃗) that, given a direction d⃗, maps it into a supporting point of
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A

B

A⊕ (−B)

Figure 5.5: e distance between A and B is equivalent to the distance between their Minkowski
difference and the origin.

C . Supportmappings exist in closed form for simple convex shapes such as spheres, cylinders, boxes
and cones. For a sphere, for example, the support mapping function is simply given by SC(d⃗) =

O + rd⃗/∥d⃗∥, where O is the center of the sphere and r its radius. For a polytope of n vertices, a
supporting vertex can be calculated in O(n) time by checking all vertices. If vertices are kept in
a data structure with a list of neighbors, and with the application of a few enhancements, this can
be reduced to O(log(n)) time. erefore, even for complicated polyhedral shapes, this algorithm
should be very fast.

5.2.3 Algorithm for Computing the Distance

At a first glance, using the Minkowski difference of two objects does not seem to simplify the
problem of computing the distance between them, since the Minkowski difference is not trivial
to compute. However, the cleverness of the GJK algorithm lies in not having to explicitly com-
pute the Minkowski difference, but instead sample it through the support mappings for each of
the convex shapes. e key concept is that the support mapping for C = A ⊖ B can be ex-
pressed in terms of the support mappings of A and B. In fact, SC(d⃗) = SA⊖B(d⃗) can be written
as SA⊖B(d⃗) = SA(d⃗) − SB(−d⃗). erefore, points of the Minkowski difference A ⊖ B can be
computed from supporting points of the individual sets A and B.

To search for the minimum distance point in C , the GJK algorithm uses a result from convex
analysis known as Carathéodory’s eorem. is theorem states that for a convex body H of Rd,
each point of H can be expressed by a convex combination of no more than d + 1 points from H .
is means that the algorithm can search the volume of the Minkowski difference C = A ⊖ B by
keeping a set of pointsQ containing up to d+1 points from C at each iteration. e convex hull of
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Q forms a simplex inside C , and if the origin is contained in this simplex, the polyhedra intersect
and the algorithm stops. If not,Q is updated to a simplex guaranteed to contain points closer to the
origin, by choosing a new supporting point of C . Eventually, the algorithm terminates when the
simplex Q contains the closest point to the origin. In the case that A and B do not intersect, the
smallest distance betweenA andB is given by the point of minimum norm in the convex hull ofQ.
e step-by-step algorithm is as follows:

1. Initialize the simplexQ to contain up to d+ 1 points from A⊖B.

2. Compute the point of minimum norm in the convex hull ofQ.

3. If P is the origin, return the polyhedra as intersecting.

4. Reduce Q to the smallest subset Q′ that still contains P , i.e. remove all points from Q not
determining the subsimplex that contains P .

5. Let V = SA⊖B(−P) = SA(−P)− SB(P) be a supporting point in the direction −P .

6. IfV is nomore extremal thanP in the direction−P , then returnA andB as non-intersecting,
the distance between them being ∥P∥.

7. Add V toQ and go back to 2.

Figure 5.2.3 shows an example of how the GJK algorithm works in two dimensions. Here, Q
is initialized to Q = {A}. For a single-vertex simplex, the vertex itself is the point of minimum
norm. e supporting point in the direction −A is B. erefore, now Q = {A,B}. e point of
minimum norm in Q is C, a convex combination of A and B. No points can be eliminated from
Q at this time. en, the supporting point in direction −C is D, leading to Q = {A,B,D}. e
point of minimum norm in Q is now E . Since only B and D are needed to express E as a convex
combination of vertices, Q is updated to Q = {B,D}. e next supporting vertex in the direction
−E isF , so it is added toQ. e closest point to the origin in the convex hull ofQ is now G. At this
point, since no point is more extremal than G in the−G direction, G itself must be the closest point
to the origin, and the algorithm terminates.

Although presented here as amethod for polyhedra, this algorithmworks for any kind of convex
set of points, given that it has a support mapping function. e algorithm always terminates in a
finite number of steps for polyhedra. However, it only converges asymptotically to the separation
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Figure 5.6: e Gilbert–Johnson–Keerthi algorithm finding closest point to the origin in a polygon.
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distance of arbitrary shapes. It is therefore necessary to have stop criteria that allow the algorithm
to terminate correctly in such cases without taking too many steps.

It is possible for this algorithm to additionally calculate the closest points inA andB in the non-
intersecting case, and by caching Q between calls, the algorithm can terminate in O(1) time when
predicting collisions of moving objects, by exploiting the fact that the closest feature will not change
between small time steps. For concave polyhedra, this same algorithm can be applied by calculating
convex decompositions. Alternatively, there are other algorithms that can be used [119–121] to
support concave shapes.
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Chapter 6

Spatial Partitioning

In the previous chapter, we described the algorithms we use to perform intersection tests between
a pair of particles. In a large system containing up to hundreds of thousands of particles, however,
pairwise tests for all particle pairs is impractical. e idea is then to have some broad-phase process-
ing to restrict the number of pairwise tests to the particles that are already close enough that they
could possibly intersect. is is usually accomplished through spatial partitioning—the simulation
domain is divided into several regions and only objects located in the same region are tested against
each other. Spatial partitioning techniques drastically reduce the number of pairwise tests needed,
allowing the code to scale linearly with the number of particles, instead of quadratically. Due to
their importance to the industry of 3D games, collision detection and spatial partitioning are both
topics of extensive discussion in textbooks [92, 112–114].

6.1 Uniform Grids

A simple—yet effective—partitioning scheme is to overlay space with a regular grid of cells, dividing
space into a number of regions of equal size. Each particle can then be assigned to a cell according
to where its centroid is located. Since only particles that overlap a common cell can be in contact
with each other, pairwise tests need only be performed for particles that belong to the same cell as
the particle being tested or to one of its adjacent cells. Uniform grids are quite convenient, since
the transformation between world coordinates and cell coordinates is very simple, and obtaining
a list of the neighboring cells is trivial. erefore, uniform grids are a popular choice for spatial
partitioning.

e key parameter that affects the performance of a uniform grid is the size of its cells. As a
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general rule, the cells should be adjusted to be large enough to fit the largest particle at any orien-
tation. is guarantees that a particle will overlap no more than eight cells for a 3D grid, and that
only particles belonging to the same cell or adjacent cells need to be tested for intersection. Having
particles overlap a minimum amount of cells is also important to limit the amount of work neces-
sary to insert and update particles in the grid. A common method to determine the dimensions of
a cell is the n1/3 rule: given n particles, divide space into a k× k× k grid, with k = n1/3. e ratio
between the number of particles and cells, i.e., the average number of particles per cell, is called the
grid density. If the grid density is far from its optimal value, it can have great impact in terms of per-
formance, or—for statically allocated structures—make the grid prohibitively expensive in terms of
memory. e optimal grid density will balance the amount of particle transfers needed to keep the
grid updated and the number of pairwise intersections that need to be performed for each particle.
If the grid density is too high, then many particles share each cell, making the number of necessary
pairwise computations too high. On the other hand, if the grid density is too low, the number of
particle transfer events relative to the number of pairwise intersection tests will become too high,
partially destroying the performance gains provided by the grid.

e most natural way to implement a uniform grid is to allocate an n-dimensional array with
the same dimensions as the number of cells. at way, there is a one-to-one mapping between grid
cells and array elements. In order to handle the case in which multiple particles belong to the same
cell, each array element becomes a pointer to the head of a linked list of particles. Using double-
linked lists, it is possible to make insertions and deletions both O(1). However, a drawback of this
approach is that the number of linked lists for large grids can require a large amount of memory.
Increasing the cell size of the grid may not be the best solution, since that will disrupt the balance
between transfers and intersection tests as mentioned earlier, merely degrading the performance
in a different way. We will discuss our solution to this problem in the next section, in which we
describe the spatial partitioning scheme we use in our codes.

As the reader can probably conclude, the main disadvantage in using a uniform grid is that
it becomes problematic when particles are either too large or too small compared to the cell size.
erefore, if all particles in a given simulation are equally sized—arguably the most common case—
then a uniform grid is a perfectly adequate choice, offering both efficiency and simplicity. However,
inmaterialmodeling, particles usually have a distribution of sizes, andparticles of differentmaterials
can greatly vary in size. is means that using a uniform grid will come at a great cost in terms of
performance. For example, in highly polydisperse packings it is possible that a grid becomes both
too coarse and too fine at the same time, as shown in figure 6.1. Moreover, uniform grids are a
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(a) (b) (c)

Figure 6.1: Issues related to cell size: (a) grid is too fine, (b) grid is too coarse, (c) grid is both too
coarse and too fine.

suboptimal solution for packings of very elongated particles.
One possible approach to cope with this problem is to use neighbor lists to avoid dividing space

into regions of a given size. However, pure neighbor list-based methods have been demonstrated
to perform much worse than cell-based methods [122]. What we need is a grid that can adapt to
particles of varying sizes—that is, a hierarchical grid of cells with an appropriate number of levels
to keep particles of different sizes in optimally sized cells, as shown in figure 6.2.

6.2 Hierarchical Grids

A hierarchical grid is very much like a uniform grid in the sense that in it space is divided into a
collection of regions and each particle belongs to only a single region at a time. However, in a hier-
archical grid there are many levels, each of which is a uniform grid. Particles are then distributed
according to their size as well as their position in space. Everything we discussed so far about uni-
formgrids applies equallywell to hierarchical grids. Since each level is a uniformgrid, it is important
to ensure that no level is either too coarse or too fine to hold particles at that level. e strategy is
to make the cell size of finer levels be an integer fraction of the coarser level above it so that when
a particle grows and becomes too big for a given level it is not too small for the next level. Another
point is to not create extra levels that are much larger than the largest particles or smaller than the
smallest particles, since every level must be checked when a particle is tested for collisions. At the
highest level, the size of the cells is automatically adjusted to fit the largest particles at the end of the
simulation (particles move up in the hierarchy of levels as they grow during the simulation). e
number of levels needed is also automatically determined from the ratio between the largest and
smallest particles such that cells at the lowest level can still contain the smallest particles through-
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Figure 6.2: Hierarchical cell grid. Larger particles are kept in larger grid cells (level 0), medium
sized particles are kept on medium sized cells (level 1), and so on.

out the simulation. at way, no empty levels remain at the bottom at any time. Intermediate levels
are created as needed—if a whole level is empty, it is skipped entirely.

6.3 Hierarchical Grid Using Hash Tables and Linked Lists

e spatial partitioning scheme in our code went through several phases of development before
being ready for large simulations. In the initial stages, we tested our code with only a few parti-
cles without using any spatial partitioning scheme. When collisions were implemented properly for
spheres, a partitioning scheme was needed to run larger simulations. At this time, the code was
being tested with up to a thousand spheres at a time. A run without the partitioning scheme would
take several minutes for a thousand particles and a packing fraction of 0.5. Our early implementa-
tions of a partitioning scheme dropped it to about 10 seconds of running time, while in the latest
code the same test finishes in about 0.2 seconds. e performance gains are enormous.

e first partitioning schemes we used were based on trees. Trees were appealing because they
are well structured and the implementation of several functions, such as cell assignment, could be
simplified with the use of recursion. However, trees also have many drawbacks. Trees are usually
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Figure 6.3: Demonstration of the hierarchical cell grid, as implemented in our packing code. Each
particle is kept in a cell of the appropriate size. Only active cells are shown.

built to conform to the geometry of the container (in our case, a box), so the cells become elongated
along with the box, which is not something particularly desirable. It was also difficult to adapt a
tree to boundaries of complex geometries, such as a torus. e reason for this is that the top level
of the tree must be large enough to contain the whole boundary, so many levels at the top would
remain unused. is problem was exacerbated in simulations with many particles, since even at the
end of the simulation the particles would still be quite small compared with the top level of the tree.
Particles much smaller than the top level cell make traversing the tree hierarchy to find neighbors
very inefficient, since no levels can be skipped. Moreover, we found that both dynamically allocated
and statically allocated trees did not perform well. A dynamically allocated tree depends on many
slow system calls to create and destroy cells by allocating and freeing memory. Since particles are
constantly moving, the frequency of system calls becomes high enough to significantly degrade
performance. On the other hand, a statically allocated tree, although free from slow system calls,
simply occupies too much memory for the lower levels since each cell must have a pointer to its
parent and a pointer to each child cell. e high amount ofmemory needed then causesmany cache
misses, also leading to weak performance. We tested various ratios between cells of consecutive
levels trying to mitigate these problems, but, dissatisfied with the performance, decided to abandon
the idea altogether.

Since a hierarchical grid is only a collection of uniform grids, the largest cells do not need to
enclose the whole boundary, but only need to be large enough to accommodate the largest particles
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Figure 6.4: Bitfield description of the hash values assigned to particles.

at the end of the simulation. is means that even when there are many particles, there is no extra
levels at the top to traverse in the search of neighbor particles for collision tests. Another benefit
of this approach is that the complexity of the simulation boundary does not matter if the cells are
dynamically allocated—the smaller the cells at the top level, the better the grid will conform to the
boundary. Since each level is a uniform grid, transformations between simulation coordinates and
cells is simple. Traversing the hierarchy to search for neighbors is also much simpler and more ef-
ficient, since only occupied levels need to be checked. However, some caution is needed in order
to maximize performance. Similarly to what happens with trees, if cells are maintained as separate
structures that are dynamically allocated, the same slow system calls will be necessary and perfor-
mance will suffer. e first hierarchical grid we implemented that was not based on a tree still used
these dynamic memory allocation system calls. Even if the performance was significantly improved
compared with hierarchical grids based on trees, there was still a feeling of insatisfaction aer we
discovered that a large portion of running time (up to 80% in some cases) was spent on the hier-
archical grid during profiling tests. e insight that illuminated the path to a reasonable solution
was to realize that each particle can only occupy one cell at a time. en, instead of allocating and
destroying cells as needed, the particles themselves were adapted to contain part of the structure for
the hierarchical grid. In the final implementation, each particle is assigned an integer hash value
corresponding to its cell that describes both its position and at which level it is in the hierarchy. Each
particle also contains two pointers that are used by the hierarchical grid to build the doubly linked
lists for each cell. If a particle is the first to appear inside a cell, it becomes the head pointer for the
linked list of particles in that cell. A pointer to the particle is then stored on a hash table that contains
all cells in the hierarchy. When a second particle enters the same cell, the head of the list is fetched
from the hash table, and the second particle is inserted into the list. When no particles belong to
a cell anymore, the entry on the main hash table is cleared. Since each particle can only occupy a
single cell at a time, the main hash table contains at most the same number of entries as there are
particles, so it can be allocated in advance. Also, since all remaining pointers for the grid are kept
inside the particle structure, no further dynamic allocation is needed, despite the fact that cells are
created and destroyed as needed. erefore, the performance in this implementation is a few orders
of magnitude higher than previous codes developed at University of Illinois [53, 116, 123, 124].
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Aer we were satisfied with the performance of our hierarchical grid, we moved on to automat-
ically tune the cell sizes and number of levels for the particular size distribution in each run. To
simplify level transfers, at each level the size of the cells is divided by two, effectively creating a hi-
erarchy similar to an octree. e hierarchical grid provides a function call for the prediction of the
next cell transfer for a moving particle and another function call to construct a list of neighbors that
need to be checked when a particle collides with another. A bit mask of occupied levels is kept in
order to skip intermediate unoccupied levels during collision checks. Each particle is stored in the
grid according to its centroid position and bounding radius.

is hierarchical grid implementation is shared with our implementation of the LS packing al-
gorithm, so it needed to retain the ability to treat moving particles. See [114] for more details on
how to implement a similar structure. Yao et al. [122] reported some performance improvements
by sorting particles in memory by a hash value based on Morton code, but we do not perform such
optimizations in our code yet.

60



Chapter 7

Packing Algorithms for Convex Hard

Particles

7.1 Introduction

In this chapterwe present a detailed description of two collision-drivenmolecular dynamics packing
algorithms for systems of nonspherical convex hard particles. One of the algorithms is an extension
of previous event-drivenmolecular dynamics algorithms based on the original work of Lubachevsky
and Stillinger [82]. is algorithm is most efficient for spheres and other smooth convex particle
shapes, but it also supports polyhedral shapes. Since the performance of this algorithm for poly-
hedral shapes was not satisfactory, we developed a modification of it in which elastic collisions are
replaced with a stochastic procedure for trial particle displacements to avoid particle intersections.
Even though this novel algorithm partially eliminates the connection to thermodynamic systems
that packing algorithms based on molecular dynamics usually have, it leads to several simplifica-
tions in the collision detection between particles, hence it is much more efficient. Nevertheless, due
to the high computational cost of polyhedral intersections, packings of polyhedra take longer to
generate if compared to packings of spheres.

e earliest studies employing molecular dynamics simulations used a simple model consisting
of hard spheres [93]. Later, other methods were implemented for systems of spherical particles sub-
ject to a central, short range interaction potential. ere is a fundamental difference between these
two approaches: while so particles interacting via a short range potential may overlap each other
depending on the shape of the potential, the potential for hard particles is singular, thus implying
that no particle intersections may occur. is requirement of no overlaps has a strong influence on
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the methods used to simulate each type of system. Systems of so particles are relatively straight-
forward to simulate, since one can simply integrate a system of differential equations representing
Newton’s laws of motion. Many techniques exist to efficiently compute the force generated on each
particle by their interaction with all the others, or with neighbors inside some cutoff distance for
short range potentials, but these techniques do not alter the core of the algorithm, which is to pro-
ceed with the simulation by integrating the equations of motion on fixed time steps. In contrast,
systems of hard particles cannot tolerate particle intersections, so instead of integrating a system of
differential equations, one needs to predict a sequence of collision events and process them accord-
ingly, by applying instantaneous impulse forces to prevent intersections between particles. For this
reason, algorithms for hard particles are referred to as event-driven or collision-drivenmolecular dy-
namics (EDMD), as opposed to the time-driven molecular dynamics (TDMD) algorithms for so
particles.

Event-driven algorithms depend on continuous collision detection to predict and schedule a
sequence of events that will happen in the future. en, the simulation is advanced to the time
of the earliest scheduled event and that event is processed. e list of scheduled events is updated
if necessary and this process is repeated. is approach was used in the first molecular dynamics
simulation of a system of hard disks [93]. Lubachevsky and Stillinger turned it into a packing al-
gorithm [82] by starting with small disks and letting them grow over time. Later, these algorithms
were improved and extended in a variety of ways. Perhaps the two most substantial improvements
were the introduction of event priority queues and spatial partitioning methods. Early algorithms
stored collision times for all particles on a triangular matrix. Besides the large amount of memory
that this approach demanded, the triangular matrix needed to be searched in order to determine
the earliest event, wasting a lot of resources. In modern implementations, only one event is kept per
particle, and events are stored in a priority queue structure usually based on a heap. When a col-
lision happened, early algorithms predicted new collisions against all of the other particles, which
scaled asO(n2) with the number of particles n. However, in a simulation with many particles, only
a few of them will be actually close enough to a given particle to be able to collide with it. Spatial
partitioning methods, such as uniform grids and other cell-based methods, as well as neighbor list
methods, allow collision checks to be performed only against particles that are sufficiently close,
thereby greatly increasing the performance of the algorithm—i.e. making it scale as O(n), as we
will demonstrate later.

Most event-driven packing algorithms have been developed only for spheres, the primary reason
being that collision detection for other particle shapes can be quite difficult to implement correctly,
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and the reason for that is the finite precision of floating point arithmetic and all of the problems that
it can cause. As David Goldberg puts it well [125], despite being ubiquitous, “floating point arith-
metic is considered an esoteric subject bymany people.” In fact, floating point representation errors,
rounding errors, numerical cancellation, overflow and underflow, etc, can oen catch us by surprise
andmake seemingly simple and naive algorithms behave in unexpected ways. is is especially true
in computational geometry and computer graphics algorithms, which are in general very hard to
implement in a numerically robust way. Nevertheless, molecular dynamics algorithms have been
used for packing nonspherical particles such as ellipsoids, superellipsoids [86, 87], spherocylinders
and polyhedra [53]. Molecular dynamics can be the only solution that will yield correct results in
some cases, such as in the simulation of packings of needles, for example [126]. Our own packing
algorithms support any convex shape that has a support mapping, and can be extended to support
other shapes by individually providing intersection algorithms for each one.

One of themain objectives of our algorithms is to improve on the performance of previous codes
to allow the simulation of packings with a larger number of particles in the same running time. In
order to accomplish this goal, we utilize the Gilbert–Johnson–Keerthi (GJK) algorithm [117] in a
packing algorithm for the first time. eGJK algorithm is used extensively in the 3D games industry,
where performance is critical, but has apparently not been noticed by scientists working to develop
particle packing codes. We also borrowed some ideas from techniques used in 3D games to develop
our spatial partitioning scheme that we described in the previous chapter. Next, we discuss how to
combine all these algorithms together to build our particle packing codes. First, however, we give a
high-level overview of both time-driven and event-driven molecular dynamics algorithms.

7.1.1 Time-DrivenMolecular Dynamics

In time-driven molecular dynamics algorithms, the equations of motion for all particles are inte-
grated directly. All particles thus move synchronously in small time steps∆t. Particles are tested for
overlap at the end of each time step. If any intersections are found, the simulation must be rolled
back to the initial time of overlap to process the collisions between particles. Depending on the size
of the time step, the whole time step can be rolled back, or an approximate collision time can be com-
puted that lies in between the previous and current time steps. Aer all collisions are processed, the
simulation proceeds as usual. is approach has some advantages: it is easier to parallelize, collision
detection can oen be implemented using only static tests (i.e. for particles that are notmoving), the
integration of equations of motion with external forces is easy to implement, etc. However, there are
big disadvantages with this approach too. Since the integration of the equations of motion proceeds
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in fixed time steps, sometimes the collisions between particles may be missed, or the correct order
in which collisions happen may be wrongly predicted. Small overlaps between particles are almost
inevitable too, so this approach does not provide a rigorous solution when packing hard particles.
Small overlaps can be mitigated by making the time step smaller, but in most cases the time step
needs to be excessively small, making the code become very inefficient. is situation may change
in the future if time-driven algorithms are ported to use the graphics processing unit (GPU). GPUs
are highly parallel and can make even very small time steps feasible. Nonetheless, porting any al-
gorithm to run on a modern GPU is nontrivial and requires a lot of effort and technical expertise.
Even though molecular dynamics algorithms used to simulate protein folding, for example, have
used GPUs for some time [127], we are not aware of any packing algorithms that use GPUs.

7.1.2 Event-DrivenMolecular Dynamics

In event-drivenmolecular dynamics, the simulation proceeds in variable time steps that correspond
to the times when particle collisions and other events occur. An event is defined as anything that
changes a particle’s state. Binary collisions are the most common type of event, hence event-driven
algorithms are also referred to as being collision-driven. Other events can be collisions against hard
walls, transfer between grid cells, neighbor list updates, collision checks, etc. Since each particle is
only updated when it is part of an event, the simulation is asynchronous. Particles only need to be
synchronized at the end of the simulation. Aer each event is processed, the new impending event
for each of the particles involved is predicted. An event priority queue is maintained to keep track
of predicted events in the order that they will happen. Occasionally, events may be mispredicted, or
they can become invalid if the collision partner suffers an earlier collision against another (different)
particle. In those cases, instead of applying an impulse to the particle, a new prediction of its next
event ismade (i.e., the event becomes a check event), and the simulation continues as usual. However,
a mechanism must be in place to detect when an event becomes invalid. e two most common
solutions are to keep a record of either the latest timestamp of the particles in the event, or to keep
the number of collisions that each particle has gone through. If there is a mismatch, one of the
particles must have been part of an event and the current event should be considered invalid. e
sequential processing of events means that parallelizing this algorithm, although not impossible
[128], is quite difficult. Most implementations of event-driven molecular dynamics algorithms are
serial, including ours. Nevertheless, event-driven algorithms significantly outperform time-driven
algorithms for packing spheres and other simple smooth shapes, and have the major advantage of
being rigorous (to machine precision, at least).
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At this point, one might be wondering about events in which more than two particles are in-
volved in a collision at the same time, since these types of events are not treated in event-driven
molecular dynamics simulations. Although in principle three-way or n-way collisions are possi-
ble, the probability for that to happen is small, so these events are safe to ignore in event-driven
algorithms. What will happen is that a three-way or n-way collision will just be processed sequen-
tially instead, with time steps of ∆t = 0, since ∆t is variable. In time-driven algorithms, however,
impulse-based methods for collision resolution may fail spectacularly, leading to large intersections
between particles. erefore, in time-driven algorithms, it is oen necessary to consider collisions
with more than two particles explicitly. is is especially true in simulations in which there are
resting contacts between particles due to gravity, for example. Even in event-driven algorithms
impulse-based methods of collision response can become unreliable. Using the GJK algorithm to
compute intersections between polyhedra, we found out that the collision response becomes un-
reliable when particles are very close to each other due to floating point arithmetic problems, the
reason being that the sub-simplex of the Minkowski difference between the polyhedra becomes
degenerate—i.e., it might be a very flat tetrahedron or a triangle with nearly collinear points—and
the resulting normals to the collision are not accurate enough to solve for an impulse that will move
both particles apart. at is why we needed to modify our packing algorithm for polyhedra to use
a stochastic procedure to move particles apart instead of applying impulses to resolve collisions.

7.2 The Lubachevsky–Stillinger Packing Algorithm

e first algorithm we have developed, for packing spheres, is based on the Lubachevsky–Stillinger
packing algorithm [82]. In this algorithm, particles begin as infinitesimal points and grow over
time until the packing becomes jammed or the desired packing fraction is achieved. Our imple-
mentation of this algorithm can generate packings of spheres inside a periodic box, or inside solid
containers of various shapes, including a box, a sphere, a cylinder, an annulus (including wedges
with 0 < θ < π), and a torus, as shown in figure 7.1. New container types can be easily added to the
code since their implementation is decoupled from the rest of the system. e interface that a bound-
ary needs to implement is shown in listing 1. e function operator()(const Vector& x)

gives the distance to the boundary; it is negative inside the boundary and positive outside. e
gradient()(const Vector& x) function is the gradient of the distance. e other functions
are self-explanatory. For periodic boundaries, an additional function called reposition() is used
to fix the position of a particle that currently lies outside the boundary (usually an image that was
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(a) Periodic Box (b) Cylinder (c) Annulus

(d) Sphere (e) Torus

Figure 7.1: Packings of spheres confined to different boundaries.

part of a collision). e code has been implemented in C++ in order to make use of object ori-
entation techniques to improve readability, since the concepts of boundaries, particles, shapes, etc,

1 class Boundary {
2 public:
3 virtual ~Boundary() {}
4

5 virtual float operator()(const Vector& x) const = 0;
6

7 virtual Vector gradient(const Vector& x) const;
8

9 virtual float predict_collision(const Particle& p) const;
10 virtual void collision_response(Particle& p) const;
11 virtual Point get_random_position() const;
12

13 virtual bool is_periodic() const { return false; }
14 virtual Vector dimensions() const = 0;
15

16 virtual float volume() const = 0;
17 };

Listing 1: Boundary class definition.
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make perfect sense to be abstracted away as classes. Using polymorphism, different boundaries and
particle shapes can be implemented separately, while the parts of the code that make use of them
remain generic and need not change when new boundary or particle shapes are introduced. e
code also offers the user the possibility to change the growth rate of the particles, thus enabling
some limited control on the type of final state that will be generated. In general, slow growth rates
have a higher chance of producing packings with higher degrees of order, while fast growth rates
will almost inevitably lead to jammed packings near the MRJ packing fraction of 64%.

1 while (t_curr < t_stop) {
2 event_queue->next_event()->process();
3

4 event_queue->update();
5

6 t_next = event_queue->next_event()->time();
7 t_prev = t_curr;
8 t_curr = t_next < t_stop ? t_next : t_stop;
9 }

Listing 2: Main loop.

e main loop of the code is shown in listing 2—code for printing progress information and
drawing particles on the screen was removed for clarity. e logic is very simple: at each step, we
check for the ending condition, then proceed by processing one event and updating the event queue.
e stopping time t_stop is computed ahead of time at the beginning of the simulation, using the
sumof the volumes of all particles as a function of time. Aer the event is processed, the event queue
is updated by computing new events for each particle involved in the current event, e current
time t_curr and stopping time t_stop are also used to bracket the time interval that needs to
be checked when predicting particle collisions. which is a single particle in the case of a collision
with the boundary or a cell transfer, or two particles in the case of a binary collision. Most of the
complexity of the code is in predicting and processing the events. e biggest improvement of the
current implementation relative to old codes is in performance. Choosing the right algorithms for
collision detection and spatial partitioning has allowed the new code to perform large simulations
in a reasonable amount of time. Simulations that used to take several days to run with the old code
[53] now finish in less than an hour with the new code. Even large simulations of polydisperse
packings containing up to a million particles—previously unfeasible—now take only a few hours to
run.
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7.3 Event Processing

In the original LS algorithm, there was no structure to keep track of which particles would be first
to collide, i.e. which event was going to happen next. Instead, a triangular matrix containing the
collision times of all particle pairs was used. More recent algorithms use priority queues to store
events. Priority queues allow the earliest event to be determined in constant time, while also only
requiring a single event to be kept for each particle, thus eliminating the need for a triangular ma-
trix of collision times. e event priority queue used in our code is based on a complete binary tree
[129]. In this implementation, each leaf of the tree is associated with a particle event, and each in-
ternal node of the tree has the label of the earliest event between its two children. No deletions need
to be performed on the tree since when an event happens, a new prediction is made for that parti-
cle and the tree is updated accordingly. is avoids using slow system calls for memory allocation,
which would make the priority queue perform much worse, as the survey in [129] demonstrates.
More sophisticated algorithms for priority queues that scale better with the number of particles do
exist [130], but the complexity to implement them is much higher. We believe that the complete bi-
nary tree algorithm provides a good trade off between performance and complexity. Since standard
implementations of heaps can be found in textbooks [131], we do not show our implementation
here.

e structure of an event is shown in listing 3. We use four types of events: collisions, boundary
collisions, transfers and invalid events. An event holds its own type, which is determined and set
at each time predict() is called. It also holds the time at which it will happen, which is always
larger than the current simulation time; the numbers of collisions that particles A and B have under-
gone before its prediction; a displacement vector m_shift to allow particles to collide with images
across periodic boundaries; and a pointer to one or two particles, the first of which is permanently
bound to the event when it is created, hence the lack of arguments in the functions predict() and
process().

One could separate each collision type into a different class via polymorphism, but we have
found that this approach is vastly inferior in performance since the type of the next event of a particle
changes very frequently, and each type change requires a new memory allocation (as well as freeing
the memory of the previous object, of course, to avoid memory leaks). erefore, although not as
elegant, the current implementation is much faster.

e function to process an event is also fairly simple. It is shown in listing 4. Events are pro-
cessed according to their validity and their type. e function collision_response(*A, *B)
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1 class Particle;
2

3 enum EventType { INVALID, COLLISION, BOUNDARY_COLLISION, TRANSFER };
4

5 class Event {
6 public:
7 Event(unsigned int id, Particle* A);
8

9 int type() const { return m_type; }
10 float time() const { return m_time; }
11 unsigned int id() const { return m_id; }
12 unsigned int secondary_id() const;
13

14 void print();
15 void process();
16 void predict();
17

18 private:
19 float m_time;
20 unsigned int m_id;
21 Particle *A, *B;
22 unsigned int cA, cB;
23 Vector m_shift;
24 EventType m_type;
25 };

Listing 3: Event class definition.

is responsible for computing and applying an impulse that will ensure that particles A and B move
away from each other aerwards. e function sync() integrates the trajectory of a particle to syn-
chronize it with the current event time. In chapters 4 and 5 we have discussed how to integrate the
equations of motion of a particle and the topics of collision detection and collision response. ere-
fore, we do not show the implementations of the functions collision_response(*A, *B) and
boundary->collision_response(*A) here. ese functions also depend on particle shapes
and boundary types, so listing them here would be impractical.

e function to predict an event, shown in listing 5, is somewhat more complicated. Since a
particle always will escape the boundary if le alone (it will either move out or grow enough to
touch it), we predict this event type first. en, if a transfer or a binary collision happen earlier than
the boundary collision, the event is changed accordingly. We do not show here the implementation
of the function time_of_impact(), where collision predictions are actually performed. As is the
case with collision detection, collision prediction also varies with particle shapes (and with packing
algorithm, as will be discussed later).
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1 void Event::process()
2 {
3 bool validA = A->collisions() == cA;
4 bool validB = B && B->collisions() == cB;
5

6 switch (m_type) {
7 case COLLISION: {
8 A->sync(m_time);
9 B->sync(m_time);

10

11 if (validA && validB) {
12 if (boundary->is_periodic())
13 A->translate(m_shift);
14

15 A->collided();
16 B->collided();
17

18 collision_response(*A, *B);
19

20 if (boundary->is_periodic()) {
21 ((PeriodicBoundary*)(boundary))->reposition(*A);
22 }
23

24 }
25 break;
26 }
27

28 case BOUNDARY_COLLISION: {
29 A->sync(m_time);
30 if (validA) {
31 boundary->collision_response(*A);
32 A->collided();
33 }
34 break;
35 }
36

37 case TRANSFER: {
38 A->sync(m_time);
39 hgrid->rehash(A);
40 break;
41 }
42

43 default:
44 /* nothing is done for an invalid event,
45 * event queue will update it accordingly */
46 return;
47 }
48 }

Listing 4: Function to process an event.
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1 void Event::predict()
2 {
3 unsigned int i, j, k, n;
4 static std::vector<Particle*> neighbors;
5
6 /* particle A and id never change */
7 cA = A->collisions(); B = NULL; cB = 0; m_shift = Vector(0.0, 0.0, 0.0);
8
9 /* check collision with boundary */

10 m_type = BOUNDARY_COLLISION;
11 m_time = boundary->predict_collision(*A);
12
13 /* check cell transfer time */
14 float t_transfer = hgrid->next_rehash_time(A);
15

16 if (t_transfer < m_time) {
17 m_type = TRANSFER;
18 m_time = t_transfer;
19 }
20
21 /* check collision for particle and its images if periodic */
22 if (!boundary->is_periodic()) {
23 neighbors.clear();
24 hgrid->find_neighbors(A, neighbors);
25
26 for (n = 0; n < neighbors.size(); i++) {
27 float t_collision = time_of_impact(*A, *neighbors[n], t_curr, m_time);
28

29 if (t_collision < m_time) {
30 m_time = t_collision; B = neighbors[n];
31 }
32 }
33 } else {
34 Point x = A->position();
35 Vector period = boundary->dimensions();
36

37 for (int i = -1; i <= 1; i++) {
38 for (int j = -1; j <= 1; j++) {
39 for (int k = -1; k <= 1; k++) {
40 Vector shift(i*period[0], j*period[1], k*period[2]);
41
42 neighbors.clear();
43 A->set_position(x + shift);
44 hgrid->find_neighbors(A, neighbors);
45
46 for (n = 0; n < neighbors.size(); n++) {
47 float t_collision =
48 time_of_impact(*A, *neighbors[n], t_curr, m_time);
49

50 if (t_collision < m_time) {
51 m_time = t_collision; B = neighbors[n]; m_shift = shift;
52 }
53 }
54 }
55 }
56 }
57
58 A->set_position(x); /* return particle to initial position */
59 }
60

61 if (B != NULL) { m_type = COLLISION; cB = B->collisions(); }
62 }

Listing 5: Function to predict the next event of a particle.
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7.4 Jamming Criterion

In chapter 2, we discussed some jamming properties of packings of spheres. In computer models, it
is impossible to reach an idealized state in which all of the particles are exactly touching each other.
ere will always be a small finite gap between particles that is limited by the machine precision. A
packing can then be considered jammed when the volume of the configuration space becomes suf-
ficiently small. However, measuring this volume is not easy. Oen, computer codes use heuristic
criteria to determine when a packing is jammed. In packings of hard-spheres generated with the
Lubachevsky–Stillinger algorithm, for example, the collision frequency between the particles rela-
tive to simulation time diverges as the packing approaches jamming. In Monte Carlo simulations
of hard-particle packings, the packing is considered jammed if a high number of trial moves fail
to increase the density of the packing. In our code, there are two possibilities to determine when
to stop the simulation. One is to simply tell the code to stop aer a certain amount of time that is
usually larger than necessary for the packing to reach jamming. Another alternative is to stop the
simulation when progress becomes very slow, i.e., when the increase in packing density per unit
time (wall clock time) falls below a given threshold. However, these stopping criteria are optional.
When they are not in use, the code will run indefinitely until the user decides to stop it manually,
which is the only other alternative to stop the simulation.

It is important to note, however, that none of the artificial criteria to stop the simulation imply
that any packings are indeed jammed. Donev, in his PhD thesis [132], demonstrated that if the sim-
ulation is allowed to continue, the interparticle distances gradually decrease until machine precision
is reached. It is for this reason that we provide the means to leave that decision to the user instead.
erefore, there is no strict confirmation that any packing is in a jammed state at termination—that
is not the focus of our research. However, our algorithm should lead to at least collectively jammed
configurations if the simulation is run for a long enough time. Rigorous tests performed on pack-
ings of hard spheres generated with Lubackevsky–Stillinger’s algorithm and other methods [132]
show that the resulting packings are virtually strictly jammed, although packings of disks generated
with the same methods are not in general even collectively jammed. at is due to a fundamental
difference in the disordered–ordered phase transition in two and three dimensions. While there
is a clear phase transition in three dimensions, it is much less pronounced in two dimensions (if a
transition exists at all).
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(a) Strictly jammed disks (b) Strictly jammed spheres

Figure 7.2: Strictly jammed packings of disks are highly ordered while strictly jammed packings of
spheres can be disordered.

7.5 Hybrid Monte Carlo Packing Algorithm for Polyhedra

e Lubachevsky–Stillinger packing algorithm is very reliable for packing spheres. It leads to virtu-
ally strictly jammed states in almost every run with packing densities around φ ≈ 0.64. Packing
polyhedra, however, is much more difficult. e misleading belief that frictionless particles should
“nudge” themselves into place via collisions in a similar fashion to spheres made us struggle for a
long time to make the same algorithm work for polyhedra, to no avail. e packings always seemed
to get locked into low density states, since the collision response systemwas unable to find a suitable
impulse to prevent particles from growing into each other. We have investigated the source of the
problem and found it to be related to numerical errors in the computation of the normal vector
between colliding bodies. More specifically, during collision detection and collision response, if
particles are too close to each other, it is difficult to determine the normal vector of the collision.
Our first implementation of the GJK algorithm, which is the algorithm responsible for these com-
putations, was based on the so called Johnson’s distance algorithm to compute the closest point to
the origin in the Minkowski difference between the two bodies. When the bodies are too close,
the simplex—usually a triangle or tetrahedron—becomes degenerate or very near degenerate. at
causes a division by zero in the Johnson’s distance algorithm, which in turn breaks the normal com-
putation. We then reimplemented that part of the algorithm using a purely geometrical method
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that did not rely on inverting any matrices to find the closest point to the origin, leading to some
stability in the algorithm. Nevertheless, since the two bodies are always very close at the time of col-
lision, the flattened simplices still causedmany errors when computing normal vectors and collision
times. erefore, we needed to abandon collisions altogether and use a different method for pack-
ing polyhedra that did not make use of collisions. emost common algorithms in the literature for
packing polyhedra are based on Monte Carlo techniques. Instead of using growing particles with
collisions, in these algorithms trial displacements are randomly applied to particles and they are ac-
cepted whenever the packing fraction can grow further with the new configuration. is brute force
method has been used to find the highest packing fractions of tetrahedra in the past—although it
was later surpassed by analytical methods.

A drawback of Monte Carlo methods is their performance. e purely random rearrangements
oen displace particles that are already far apart, wasting processing power. For that reason, some
runs reported in the literature took up to a month of running time. at is a hey time investment
to make when trying to model the microstructure of a material. e ASC algorithm presented
by Torquato and Jiao [51] is more sophisticated, but its internals are not described in detail and it
seems to be needlessly complex for the kind of application that we aim for. erefore, in our pack-
ing algorithm for polyhedra, we merely replace the functions for collision prediction and collision
response with functions that resolve collisions by moving particles apart by a finite distance. is
makes our algorithm a hybrid between Monte Carlo methods and the Lubachevsky–Stillinger algo-
rithm, as it is still an event-driven algorithm. All of the code discussed in the previous section for
the Lubachevsky–Stillinger packing algorithm is shared between both implementations. However,
particles are not allowed to move and undergo elastic collisions, thereby greatly simplifying colli-
sion prediction and response. Since the particles do not move, but only grow in place, the only tests
needed between them to determine collisions are Boolean intersection tests between static particles.
is kind of test can be performedwithout problems with the GJK algorithm almost tomachine pre-
cision without any problems. e modified collision response function is shown in listing 6. When
particles are about to collide, they are randomly moved away from each other. If no move succeeds
for either particle (because they may be locally jammed), all of their neighbors are moved as well.
e number of trial moves and the size of the displacements both become smaller as packing density
increases, to compensate for the fact that particles are getting close together and large displacements
would invariably fail. ey are also decreased in each successive try, to increase the probability of
success. Optionally, it is possible to shake all particles in the packing when no progress is made
aer several iterations. However, this usually degrades performance of runs with a large number
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1 void collision_response(Particle& A, Particle& B)
2 {
3 unsigned int i;
4 static std::vector<Particle*> neighbors;
5

6 if(!move(A) && !move(B)) {
7 neighbors.clear();
8 hgrid->find_neighbors(&A, neighbors);
9 for (i = 0; i < neighbors.size(); i++) {

10 move(*neighbors[i]);
11 event_queue->update_id(neighbors[i]->get_event_id());
12 }
13

14 neighbors.clear();
15 hgrid->find_neighbors(&B, neighbors);
16 for (i = 0; i < neighbors.size(); i++) {
17 move(*neighbors[i]);
18 event_queue->update_id(neighbors[i]->get_event_id());
19 }
20

21 move(A); move(B);
22 }
23 }

Listing 6: Collision response for polyhedra.

of particles, since shaking the entire packing becomes very computationally expensive. erefore,
this procedure is usually only used in packings containing less than 104 particles. In the future, we
plan to speed up this algorithm by performing trial moves in parallel, or on the GPU, to allow sim-
ulations with large numbers of polyhedra. is will improve the calculation of statistical properties
of packings of polyhedra, such as the radial distribution function, for example.
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Chapter 8

Performance Benchmarks

In this chapter we present performance benchmarks of our codes using packings of spheres and Pla-
tonic solids. We have devoted special attention to the choice and implementation of the algorithms
we use in our codes to ensure that the improved performance would allow us to simulate large,
complex systems containing many particles. Solid propellant materials oen comprise mixtures of
particles of various sizes and shapes which can be a challenge to simulate if polydispersivity and the
performance of intersection tests are neglected during code design. Performance is also important
because algorithms based on molecular dynamics are inherently serial, and our codes are not an
exception to the rule. erefore, we cannot rely on hardware improvements alone to lower running
time.

e new codes developed for this dissertation offer significant improvements over previous
implementations, in addition to several new features, some of which were described in previous
chapters. We have successfully used our codes to generate packings containing up to a few million
spheres and tens of thousands of polyhedra, although larger systems can be simulated if time is not
an issue. Most runs we are interested in, however, typically finish in a few hours of runtime.

8.1 Packings of Spheres

eLubachevsky–Stillinger packing algorithmhas a direct linkwith the actual dynamics of a system
of hard particles. In the case of spheres, the behavior of the system resembles that of an ideal gas.
e collision frequency between particles, for example, is somewhat analogous to the pressure in
the system. As the packing density increases, the collision frequency also increases. erefore, the
collision frequency of the particles in the simulation is expected to diverge as the packing approaches
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a jammed state. is limits the maximum packing density that can be obtained with this packing
algorithm. In some studies, the collision frequency is used to estimate the “true” jamming density
of simulated packings using the equations of state for an ideal gas and extrapolating data into higher
densities. Here, due to the focus on performance, we will try a different approach using the running
time of the code for different numbers of particles and packing densities. Let us assume that, for a
fixed number of particles, the packing time is a function of the form

T (ϕ) =
A

(ϕ− ϕ∗)2
+B,

where A and B are constants proportional to the number of particles in the packing and represent
the packing cost and initialization cost of the algorithm, respectively.
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Figure 8.1: Packing time ofmonodisperse spheres as a function of final density for different numbers
of spheres.

e initialization cost is the time it takes to read input files, generate the particles, randomly
place them inside the simulation domain, predict the earliest event for each particle, and initialize
the event priority queue. e initialization cost is usually negligible compared with the total cost
of packing, but can become large in absolute terms (several seconds) for packings containing more
than a few hundred thousand particles. is function diverges at ϕ = ϕ∗, which is the point at
which the packing becomes jammed and the simulation cannot proceed any further. e exponent
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in the denominator was determined ad hoc, so while it may represent a deeper concept that we do
not capture in this analysis, it is also possible that for a different implementation of the same packing
algorithm this dependency could be different due to a number of factors.
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Figure 8.2: Packing time of monodisperse spheres as a function of the number of particles.

Figure 8.1 shows packing times for monodisperse packings of spheres as a function of the final
density for different numbers of spheres. Dashed lines show fits to the data using the expression
above for packing time T (N, ϕ), where N is the number of particles and its dependency is hidden
in the constants A and B, which change according with the number of particles. All runs were
performed on a desktop computer with an Intel®Quad Core i7 2.8 GHz processor with 8MB of
shared L3 cache and 4 G of DDR3 1067 MHz memory. In table 8.1 we list values of the jamming
packing density φ∗ obtained from the fits to the data. Ideally, if the code could run for a very long
time, the final packing density would slowly approach these values.

Table 8.1: Jamming Packing Density φ∗

N 103 104 105 106

φ∗ 0.6610 0.6657 0.6680 0.6809

In figure 8.2, we can see that our modified Lubachevsky–Stillinger packing algorithm scales
roughly linearly with the number of particles. e dashed lines are fits to the data of the form
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T (N) = AN b, where A and b are constants and N is the number of spheres. e exponent b
assumes values in the range 1.1 ≤ b ≤ 1.2 in the fits shown.

In order to see how polydispersivity affects the performance of the code, we generated packings
of 103, 104 and 105 particles with lognormal size distributions with varying polydispersivity σ. e
results are shown in figure 8.3. Except for one of the runs for 105 particles at σ = 0.3, that ran
atypically fast, all runs take longer as the polydispersivity increases. is is because as the number
of occupied levels increases, more cells need to be searched for neighbors during collision checks,
hence the simulation becomes slower. Larger particles also havemany neighbors against which they
must be checked every time one of them happens to be involved in an event. e higher number
of occupied levels also means that particles need to be transferred from lower to upper levels more
frequently as they grow. However, since particles with a lognormal size distribution do not vary
drastically in size, an additional test using uniform size distributions was performed. In this worst
case scenario, in which all levels are evenly occupied with spheres of varying sizes, the impact on
performance is much more clearly visible. e number of levels necessary to cover the full range of
sizes has a large impact on performance due to the larger number of cells with neighbors that need
to be checked for future collisions.
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Figure 8.3: Packing time of polydisperse spheres as a function of the polydispersivity σ.
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Figure 8.4: Packing time of polydisperse spheres with uniform distribution as a function of the ratio
between the largest and smallest spheres.
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8.2 Packings of Convex Polyhedra

When packing polyhedra, particle intersections become much more expensive to compute, so pack-
ing times are many times higher for the same number of particles. e impulse-based collision
response mechanism from the Lubachevsky–Stillinger packing algorithm is also ineffective in pre-
venting particles from intersecting each other, which leads to dead locks in the event queue. ere-
fore, the new algorithm for polyhedra presented here using random displacements becomes more
efficient when generating packings of polyhedra. is algorithm also scales linearly with the num-
ber of particles, as shown in figures 8.6 and 8.7. Figure 8.6 shows packing times for 104 icosahedra
and figure 8.7 shows the same data for cubes. In order to determine how our code scales as the
number of particles grows, we fitted a function of the form T = A ∗N b to the data. For polyhedra,
the exponent b is usually in the range 0.95 ≲ b ≲ 1.1, which means that the code for packing poly-
hedra also scales roughly linearly with the number of particles. Deviations from perfect linearity
are due to the random nature of the algorithm. However, the constant A is certainly much higher
for packings of polyhedra, and depend not only on the number of particles, but also on particle
shape. In figure 8.5 we compare how hard it is to pack each of the Platonic solids and show that
tetrahedra, although being the simplest polyhedron in number of features, is the hardest to pack
overall. Moreover, despite intersection calculations being cheaper for cubes, and the fact that cubes
can tile Euclidean space, cubes are harder to pack than icosahedra, since icosahedra are closer in
shape to a sphere. In general, the higher the asphericity of a polyhedron, the more difficult it is
to produce dense packings of those polyhedra. Packing tetrahedra tightly together, for example,
requires specially arranged initial conditions and very long runs [50].

81



0 0.1 0.2 0.3 0.4 0.5 0.6

100

101

102

103

104

Packing Density

Pa
ck
in
g
Ti
m
e(
s)

N = 104 particles

tetrahedra
cubes

octahedra
dodecahedra
icosahedra

Figure 8.5: Packing times as a function of packing density for 104 particles of each Platonic solid.
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Figure 8.6: Packing times of monodisperse icosahedra.
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Figure 8.7: Packing time of monodisperse cubes.
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Figure 8.8: Packing time of monodisperse octahedra.
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Figure 8.9: Packing time of monodisperse dodecahedra.
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Figure 8.10: Packing time of monodisperse tetrahedra.
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Part II

Particle Packings: Applications
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Chapter 9

Packings of Hard Spheres

9.1 Introduction

In this chapter we apply the Lubachevsky–Stillinger packing algorithm to study packings of hard
spheres. Despite their simplicity, spheres can be used in a wide variety of models of physical systems
such as liquids [26, 30, 93], glasses [34], colloids [35, 36], and granularmaterials [5, 37, 69, 133, 134].
ey also find applications inmodels of physical phenomena such as fluid flow through packed beds
[31, 135], as well as in seemingly unrelated areas of research, such as in communication theory [136].
Our interest in packings of spheres advenes from their use as a model of highly polydisperse alu-
minized solid rocket propellants. e agglomeration of fine aluminum particles in the liquefied
thermal layer near the burning surface plays an important role in nozzle erosion. Apart from the
direct applications of hard-sphere packings mentioned above, the scientific community has also
demonstrated a continuous interest in the statistical and geometric properties of hard-sphere pack-
ings [71, 76, 78, 83, 88, 94, 137–141] and related phenomena, such as thermal equilibrium and
jamming properties [90, 98, 99, 142–145]. Although these topics are not the main goal of our re-
search, we deem them to be of sufficient importance to justify a brief discussion of some of them
here. Unless otherwise stated, the results we present henceforth were obtained with our own imple-
mentation of the Lubachevsky–Stillinger molecular dynamics packing algorithm. We would like to
alert the reader, however, that we perform no rigorous tests that guarantee strict jamming of the
packings we present next. e implementation of rigorous tests for jamming requires significant
additional effort withoutmuch in return in our case, since enforcing jamming is not critical formod-
eling propellants. Moreover, our packing code can easily reach packing densities around 64% that
are typically associated with strictly jammed packings—namely, the RCP and MRJ states—, thus
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verification of strict jamming is not one of our major concerns. Rigorous tests that demonstrate
that the Lubachevsky–Stillinger packing algorithm generates virtually strictly jammed packings of
spheres have been performed recently by Donev as part of his PhD work [132].

9.2 Monodisperse Packings of Hard Spheres

e first systems we consider in our discussion are packings of monodisperse spheres. e most ef-
ficient arrangement of a packing of identical spheres—as proposed by Kepler and recently proved by
Hales [29]—is the face-centered cubic configuration, with packing densityφ = π

3
√
2
≈ 74.048%. At

a first glance, onemay conclude that packing experiments and simulations can easily reach this ideal
state. Perhaps surprisingly, however, both mechanical packing methods and packing simulations
employing algorithms such as the Lubachevsky–Stillinger packing algorithm usually stall much ear-
lier, aer reaching a random disordered configuration with a packing density close to 64%. is in-
teresting phenomenon became the subject ofmuch debate in the literature [39, 95, 98–101, 146, 147].
Nevertheless, the underlying physical processes behind the natural preference for disordered states
remain elusive. Over the years, solid evidence has accumulated that a disordered–ordered phase
transition happens near the jamming packing fraction of disordered spheres. Traditionally, the
jammed state of spheres at this density (ϕ ≈ 0.64) has been referred to in the literature as the “ran-
dom close packing” (RCP) state. However, the concept of the RCP state has been plagued by lack
of mathematical rigor in its definition; different packing protocols lead to different values for the
jamming packing fraction. In fact, using the Lubachevsky–Stillinger packing algorithm, Torquato
et al. demonstrated in [95] that the final packing fraction could be influenced by the growth rate
of the particles during the simulation. e fastest compression rates led to states with a packing
fraction around 64%, while slower compression rates allowed the packings to proceed further to
progressively more ordered states. ey argued against the notion of the RCP state due to its am-
biguity, and advocated the use of a more precisely defined state based on the jamming categories
proposed in [95] and local measures of randomness [97]—i.e., themaximally random jammed state
(MRJ). e MRJ state is the strictly jammed state that minimizes one of the order metrics (prefer-
ably many). Despite the introduction of the MRJ state, however, some recent publications still use
the more traditional concept of the RCP state [99–101]. ese studies provide alternative methods
for improving the definition of the RCP state as the point at which the phase transition into ordered
states takes place. In these studies, the definition of jamming is based on theminimum requirements
for mechanical stability. Mechanical equilibrium imposes a minimum number of constraints that
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is at least equal to the number of equations balancing the forces and torques in the system. is
so-called isostatic condition [148–150] is widely believed to be a necessary condition for jamming.
Jin and Makse [99] provide an in-depth analysis of the transition. Using the average coordination
number of spheres in jammed packings ranging from ϕ = 0.56 to 0.74 packing density, they found
that the jamming packing density ϕj and the average coordination number Zj are related to each
other by

ϕj =
Zj

Zj + 2
√
3

in the disordered branch of the phase diagram (see figure 1 in [99]). e isostatic condition for
frictionless spheres is then Z = 2d = 6, where d is the number of dimensions. erefore, to satisfy
the isostatic condition, the density of random close packed states should be ϕrcp =

6
6+2

√
3
≈ 0.634.

To provide an estimate for ϕrcp using our implementation of the Lubachevsky–Stillinger packing
algorithm, we performed 1000 runs of a packing of 1000 spheres inside a periodic box. Each run
is stopped when the rate of increase of packing density per unit time falls under 3 × 10−4/min.
is threshold is chosen to ensure that the system is close enough to jamming, since about 90% of
running time is spent on increasing the packing density by only a few times 10−4 at the end. e
choice of a small system is necessary to allow for a large number of runs in a reasonable amount of
time with this condition. A histogram of the packing densities is shown in figure 9.1. e average
packing fraction was found to be ϕ = 0.6410, with standard deviation σ = 0.0054. is is only
slightly higher than the computed density for the RCP state, ϕrcp ≈ 0.634. Nevertheless, our results
show the ambiguity argued by Torquato in the definition of the RCP state, since we obtain a different
mean packing density in our runs. Using the order metrics described in chapter 2, one could assign
different values for the amount of ordering in each packing, and choose the packing for which the
value or the order metric is minimum as the MRJ state. On the other hand, to get sufficiently close
to the true minimum of the order metric among jammed packings, it is necessary to use a large
ensemble of jammed packings. e growth rate of the particles can influence the final jamming
density of the packings [95, 99], but we do not reproduce these results here. As it can be seen in the
histogram, the great majority of the runs stop near ϕ ≈ 0.64. Although some packings do reach
higher densities, packings at ϕ > 0.66 are progressively more difficult to obtain. is is usually the
case for molecular dynamics algorithms in general.

Using a larger packing containing 105 particles, we compute the number of contacts per parti-
cle aer the packing becomes jammed. It should be noted that packings generated on a computer
inevitably contain finite (but small) interparticle gaps. ismeans that the particles do not form per-
fect contacts, and hence contacting neighbors must be determined via a gap tolerance. A common
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Figure 9.1: Histogram of final packing densities for a system of 100 spheres.

choice for the gap tolerance is the average gap size across the entire packing. e mean gap size in
our packing of spheres is about 2 × 10−4, which is slightly less than 10−2 times the particle diameter.
Gaps smaller than the gap tolerance are associated with a contact between the particles. e aver-
age coordination number obtained with this choice of gap tolerance is Zj = 6.026, which is very
close to the isostatic condition. e resulting histogram showing the probability for each number
of contacts is shown in figure 9.2. e interparticle distances typically decrease monotonically until
they reach machine precision if the packing is allowed to run for a very long time, although the cor-
responding increase in packing fraction is rather small. erefore, the packing can be considered
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Figure 9.2: Histogram of the coordination number for a packing of 105 spheres.
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to be virtually jammed despite the finite gaps that exist between particles. We can also conclude
that this jammed packing generated with our code is nearly isostatic, implying that it is likely to be
strictly jammed as well, or, in other words, the packing is mechanically stable.

9.2.1 Statistical Properties

e statistical properties of packings of congruent spheres are fairly well known. In some cases, it
is possible to compute the n-point probability functions exactly, if the pair correlation functions
are known. e n-point probability functions for monodisperse hard spheres can be expressed as
a summation of a series of integrals that depend on the pair correlation functions (see chapter 5 in
[39]). e expression for the n-point probability functions of impenetrable-sphere systems was first
derived by Torquato and Stell (1982). Although calculating the n-point probability functions and
radial distribution functions exactly is out of the scope of our work, we compute these functions
directly, using large systems of spheres simulated with our packing code.

Radial Distribution Function

e radial distribution function g(r) gives the probability of finding a particle center at a distance r
from a certain particle fixed at the origin. In figure 9.3we provide the radial distribution functions of
four different packings of 105 spheres at different packing fractions. e radial distribution function
can be used to illustrate how this system transitions from random configurations into more ordered
ones, as the packing fraction increases. Ordering occurs wherever g(r) deviates from 1, as g(r) is
normalized against the expected value for randomly distributed points in space. For small packing
fractions, the deviation from a random distribution is small, while at higher densities there are clear
peaks that grow as spheres come closer into contact. e two clearly visible peaks at r = 2

√
3 and

r = 4 for the packing at ϕ = 0.64 are very characteristic of the MRJ state. e peak at r = 2
√
3

represents nearly planar clusters of 4 spheres, arranged in a 1–2–1 configuration, while the peak at
r = 4 represents linear clusters of three spheres. Packings with crystalline structure exhibit infinite
peaks at discrete values of r. Peaks at r = 2

√
2 and r = 2

√
5 are characteristic of the face-centered

cubic configuration. Although at long range MRJ packings become uniform, in short- and mid-
range distances there are density fluctuations that decay with a power-law in r.
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Figure 9.3: Radial distribution functions for a system of 105 spheres.
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n-Point Probability Functions

en-point probability functions, as discussed in chapter 3, give the probability of finding randomly
placed points inside different phases of a given material. ey are particularly useful to determine
the minimum size for a system to be statistically homogeneous, but they can also provide informa-
tion about the shape and polydispersivity of the particles in a packing as well. e n-point proba-
bility function of monodisperse packings shows more structure corresponding to the shape of the
particles. In polydisperse packings, this structure is somewhat smoothed out by the varying sizes,
but the exact form of the function contains information about how much of each particle size the
packing contains. Figure 9.4 shows the two-point probability function for a packing of 105 spheres,
at ϕ = 0.64. Figure 9.5 shows the three-point probability function at a fixed angle of θ = 60◦ be-
tween the segments formed by joining the points x1, x2 and x3 and varying distances r1 = |x1−x2|
and r2 = |x3 − x2|. At either r1 = 0 or r2 = 0, the three point probability function is equal
to the two-point probability function if the extremities of the collapsed segment correspond to the
same phase; as one might imagine, it is equal to zero, otherwise. At larger scales, there is no more
spatial correlation between the points, so each function converges to the product of the volume
fractions of the extremal points, i.e., S111 converges to ϕ2

1, S000 converges to ϕ2
0, etc. e distinctive

features in the two- and three-point probability functions of monodisperse spheres are the decaying
oscillations that match the scale of the particles themselves.
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Figure 9.4: Two-point probability functions for a packing of 105 spheres.
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9.3 Polydisperse Packings of Hard Spheres

Monodisperse packings of spheres constitute a very idealized model for materials. In practice, syn-
thetic “monodisperse” particles have a continuous size distribution. For this reason, polydisperse
packings of spheres offer a better model for many systems of technological significance such as col-
loids [151], powders, foams, packed beds for fluid flow analysis, and solid rocket propellants. How-
ever, despite the small step in complexity from monodisperse to polydisperse packings of spheres,
the proportion of studies devoted to latter is rather small. e determination of structural and
statistical properties of polydisperse packings of spheres hence remains relatively unexplored. An
example of this is the optimal packing fraction for bidisperse packings of spheres, for arbitrary val-
ues of the radii r1 and r2 of the spheres and their partial concentrations, which was only explored
in depth very recently [152, 153]. Another interesting question is the determination of the RCP
limit for polydisperse packings of spheres with continuous distributions, as well as their statistical
properties. For instance, it has been suggested that even a small amount of polydispersivity can sup-
press the disordered to ordered phase transition observed for monodisperse packings [154]. e
structural stability and jamming properties can be similarly affected by polydispersivity. e first
comprehensive study of bidisperse packings of spheres—cited by Torquato in his review of hard-
particle packings and applications [147]—has been reported by Hudson and Harrowell [152]. ey
determine optimal packing fractions of bidisperse systems composed of small spheres packed into
the interstices of crystalline lattices of large spheres for a variety of tiling lattices generated from reg-
ular polyhedra. Hopkins, Stillinger, and Torquato later explored binary packings of spheres further.
Using the Torquato–Jiao packing algorithm, they found the densest binary packings with minimal
bases of 12 spheres or fewer for a wide range of size ratios and partial concentration of small spheres
[153]. ey then utilized the same algorithm to study disordered strictly jammed binary packings
[155]. In a more recent study, Baranau and Tallarek [156] determined the random-close packing
limits of polydisperse packings of spheres with lognormal size distributions.

Since polydispersivity is indispensable for simulating the microstructure of heterogeneous ma-
terials, our packing code supports both particles with fixed sizes, as well as sets of particles with
continuous size distributions. In the next sections, we provide some brief remarks about how poly-
dispersivity affects the packing density and the radial distribution function of the RCP states of
bidisperse and polydisperse packings by reproducing some of the results of the most recent studies
on disordered packings by Hopkins et al. [155], and Baranau and Tallarek [156].
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9.3.1 Polydisperse Packings with Continuous Size Distributions

We would like to know the effect that a continuous distribution of particle sizes can have on the
characteristics of hard-sphere packings. We use packings containing from 103 to 105 spheres with
a lognormal size distribution to determine their random-close packing limits and radial distribu-
tion functions. e simulations are run until packings become virtually jammed—at which point
the collision rate exceeds 1013 collisions per unit time in the simulation. e random-close pack-
ing limits are averaged over 10 runs with the same conditions. Rattler particles are not excluded
from the packings when computing packing densities. All sphere packings were generated with
our Lubachevsky–Stillinger packing code keeping the growth rate of the particles constant. e
lognormal distribution has the form

p(x|µ, σ) = 1

σx
√
2π

exp[−(lnx− µ)2/2σ2].

We used a constant µ = 1.0 and varied the standard deviation of the lognormal distribution from
σ = 0.01 to σ = 0.38. Our code also supports other particle size distributions, such as uniform,
Gaussian, Weibull, etc, but we will limit the current discussion to particles with a lognormal distri-
bution.
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Figure 9.6: Maximum packing fraction for polydisperse packings of spheres as a function of the
polydispersivity.

e random-close packing fractions are shown in figure 9.6. We observe that the maximum
packing density increases as the standard deviation of the size distribution increases. e solid line
in figure 9.6 was obtained with a simple polynomial fit to the data. Farr and Groot have developed a
theoretical expression for the maximum packing density of particles with a lognormal distribution
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Figure 9.7: Variation in the radial distribution function due to polydispersivity.
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in [157]. Our results are compatible with both the results of Farr and Groot [157], and those by
Baranau and Tallarek [156] for similar packings generated with both a force-bias method and the
Lubachevsky–Stillinger algorithm. While the difference in packing density due to polydispersivity
is fairly small, the differences in the radial distribution functions are much more pronounced. e
sharp peaks observed in jammed packings of monodisperse spheres are quickly smoothed out as
the polydispersivity increases, as shown in figure 9.7. e broadening of the first peak at r = 2

is a consequence of the varying radii of the particles. Since the works cited above only use a few
thousand particles in their simulations, however, no data exists in the literature for comparing the
radial distribution functions.

9.3.2 Binary Packings

Binary packings of spheres are particularly interesting because the densest packings can correspond
to the arrangement of atoms in binary solids with steep mutual repulsion and for matter in high
temperature and pressure conditions. In [152], Hudson andHarrowell performed the first extensive
survey of the maximum packing fractions of binary packings of spheres on several lattices based
on polyhedral tilings of space using analytical methods. e highest packing fraction they report
in their work is ϕ = 0.84849, for a tiling lattice based on octahedra and truncated cubes. e
highest possible density for binary packings, in the limit that the size ratio approaches infinity, is
ϕ = 1 − (1 − ϕfcc)

2 = 1 − (1 − π
3
√
2
)2 ≈ 0.93265. is is the density for an hcp packing of large

spheres in which interstices are filled with an hcp packing of infinitesimally small spheres. A more
thorough investigation of binary packings using the Torquato–Jiao packing protocol, by Hopkins
et al. [153], led to the discovery of new alloy structures that could correspond to yet unidentified
stable configurations of binary atomic and molecular materials. ey provide a detailed picture of
the phase diagram of binary matter and the maximal packing surface for size ratios in the range
0.2 ≤ α ≤ 0.66 and partial concentrations x < 11/12. It is important to note that for α > 0.66

the densest arrangements are always phase-separated Barlow packings (such as hcp and fcc) of each
sphere type. In a later work, Hopkins et al. explore the properties of disordered binary packings.
ey report that disordered binary packings of spheres can be produced in a wide range of average
packing densities 0.634 ≤ ϕ ≤ 0.829 for small to large sphere ratios α ≥ 0.100.

Here, we show the average packing density of binary packings of various size ratios for equal
volume fractions of large and small spheres and compute the radial distribution function of a large
binary packing containing 106 spheres. To compute the average packing density as function of
size ratio, we generated packings containing between 2.1 × 103 to 1.26 × 105 spheres for size ratios
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0.30 ≤ α ≤ 0.95, in steps of 0.05. e total number of spheres was chosen such that the minimum
number of large spheres was always equal to or larger than 103. e average packing fraction as a
function of size ratio is shown in figure 9.8.
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Figure 9.8: Maximum packing fraction for binary packings of spheres as a function of the size ratio.

For the radial distribution function, we use a single packing containing 106 spheres with a size
ratio between large and small spheres α = 0.45, and small sphere partial concentration x = 0.8.
e packing is shown in figure 9.11, and its packing density is ϕ = 0.6772. e radial distribution
function calculated for our packing is compared with the same function reported in [155] in fig-
ure 9.9. In addition, we provide separate radial distribution functions for small and large spheres.
e radial distribution function reported in [155] has been computed from the ensemble averaging
of ten packings of 103 spheres. e high-performance of our code enables us to use many more
particles to calculate the radial distribution function with high resolution without the need for any
ensemble averaging. e x-axis is different because our plots are in units of the radius of the larger
sphere, rather than the diameter. In their work, Hopkins et al. [155] argue that the split peaks
commonly found in monodisperse packings of spheres are not present in binary packings, indicat-
ing a fundamental difference in the structure of binary and monodisperse packings. However, we
do observe peaks that correspond to similar structures as those represented by the split peak of
monodisperse packings in our high-resolution calculation of the radial distribution function. As
remarked by Hopkins, nevertheless, there is a preference for collinearity between spheres that is
clearly evident by prominent peaks at distances corresponding to aligned spheres.
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Figure 9.9: Comparison of radial distribution function for all spheres of binary packing of spheres
with α = 0.45 and x = 0.8.
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Figure 9.10: Radial distribution functions of a binary packing of 106 spheres with size ratioα = 0.45
and small sphere partial concentration x = 0.8.

99



Figure 9.11: Binary packing of 106 spheres at packing density ϕ = 0.6772 (α = 0.45 and x = 0.8).
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9.4 Packings of Spheres in Finite Containers

In packings we have considered heretofore, the boundary conditions have always been periodic.
Nevertheless, there are interesting problems that require packings simulated inside a finite region—
as is the case in fluid flow through packed beds, for example. In order to simulate how water would
flow through a filter consisting of a narrow channel packed with particles, the boundary of the chan-
nel needs to be properly taken into account. e local packing density in the vicinity of the solid
walls of the channel, if very different from the average density, may affect the overall porosity of the
channel. A study of these effects is presented by Khirevich in his PhD work [135] using rectangular,
circular, and trapezoidal channels filled with monodisperse spheres. Since we have not yet devel-
oped computer codes for the simulation of fluid flow through packed beds in three dimensions, we
compare here some of the characteristics of packings with solid boundary with periodic packings.
More specifically, we look at the local packing densities and the volume distribution of the Voronoi
cells defined by the particles in the packings.

An interesting question—and perhaps also one of the most important—is how thick is the layer
of particles under the effects of the solid boundary. To answer this question, we use several packings
of 104 spheres inside boxes with solid and periodic boundaries, in a cylinder, and an annulus. Figure
9.12 shows two packings of 104 monodisperse spheres in boxes with solid and periodic boundary
conditions. Figure 9.13 shows packings of 104 monodisperse spheres in a cylinder and an annulus.
e local packing density, integrated along the z-axis, is shown in figure 9.14. Along with the four
packings from figures 9.12 and 9.13, it shows two polydisperse packings of spheres with a lognormal
particle size distribution. As we can see from these plots, the monodisperse packings inside solid
boundaries have a clearly visible boundary layer of ordered particles that change the local density.
From figures 9.15, that shows the local packing fraction as a function of the position inside the
packing along the x-axis, we can see that the boundary layer extends into the packing by a distance
roughly equivalent to 4 particle diameters. In the case of the annulus, since there are boundaries on
both sides, the whole packing is ordered in radial layers of particles, as the packing itself is less than
8 particle layers thick. is is also visible in figure 9.16, where the local packing fraction is plotted
along the center line of the cylindrical and annular packings. From figures 9.14 and 9.15, we can
also conclude that the thickness of the boundary layer is reduced with polydispersivity.

A distinct measurement of the heterogeneity of the packings can be obtained from the distribu-
tion of the Voronoi cell volumes of each particle in each packing. Figure 9.17 shows this volume
distribution for the two monodisperse packings inside solid and periodic boxes. e long tail of
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large Voronoi cell volumes in the solid box packing corresponds to the loosely packed cells of the
particles near the boundary. On the other hand, the Voronoi cell volume distribution for the peri-
odic packing is much narrower, indicating that it is packed more homogeneously.

(a) Solid Boundary (b) Periodic Boundary

Figure 9.12: Packings of 104 monodisperse spheres in: (a) a solid box; and (b) a periodic box.

(a) Cylinder (b) Annulus

Figure 9.13: Packings of 104 spheres inside cylinder and annulus.
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Figure 9.14: Local packing density, integrated along z-axis for 104 monodisperse spheres in: (a)
a solid box, (b) a periodic box, (c) a cylinder; 104 polydisperse spheres with a lognormal size dis-
tribution of (d) σ = 0.1 and (e) σ = 0.2 in a solid box; and (f) 104 monodisperse spheres in an
annulus.
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Figure 9.15: Local packing density integrated in two dimensions.
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Figure 9.16: Local packing density across center line of the cylinder and annulus, integrated only in
the axial direction.
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Figure 9.17: Voronoi cell volume distribution for packings ofmonodisperse spheres inside solid and
periodic boxes.
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Chapter 10

Packings of Polyhedra

10.1 Introduction

Whilst packings of spheres are relatively straightforward to generate, packing nonspherical parti-
cles involves considerably more effort due to the extra complexity introduced by the new rotational
degrees of freedom. Even particles that could be considered small deviations from spheres, such
as nearly spherical ellipsoids, make it necessary to abandon the simple algebraic formulas in favor
of complex algorithms when computing intersections and predicting collisions between particles.
Moreover, if particles are significantly elongated, efficient algorithms for minimizing the number
of collision checks against neighboring particles also become more complicated compared to algo-
rithms for monodisperse—or even polydisperse—systems of spheres. Nevertheless, even if these
obstacles seem discouraging, they have not prevented researchers from searching for answers for
the many interesting mathematical questions that arise when packing particles with shapes other
than spheres. In this chapter, we will discuss packings of convex polyhedra. It is easy to find studies
on smooth non-spherical particles in the literature [46–49, 75, 86, 87, 147, 158, 159], and our code
does currently support at least ellipsoids and cylinders. Polyhedra, however, are particularly inter-
esting for us because many of the explosive materials used as oxidizers in solid rocket propellants
are powders whose particles have crystalline polyhedral shapes.

Packings of polyhedra have only begun to be explored recently, in the last couple of decades
[51, 53–62, 89, 147, 160–165]. Polyhedra themselves, however, have been known and studied since
ancient times. e Platonic solids, for example, were extensively studied by the ancient Greek—they
were described byPlato in hisTimaeus, around 350BC.Contrary towhat onemight expect, however,
they were not discovered by Plato, but predate him by a wholemillennium! e late neolithic people
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of Scotland are believed to be the first to produce the Platonic solids. ey carved these solids and
similar shapes in ornamental stones, some of which are now kept in the Ashmolean Museum in
Oxford [166].

(a) Tetrahedron (b) Icosahedron (c) Dodecahedron (d) Octahedron (e) Cube

Figure 10.1: e five Platonic solids.

e Platonic solids are also commonly referred to as regular solids or regular polyhedra. ey
are the set of polyhedra whose faces are congruent regular polygons. Euclid, in his book Elements,
proved that there are exactly five Platonic solids in three dimensions: the tetrahedron, the icosahe-
dron, the dodecahedron, the octahedron, and the cube. Schläfli [167] later proved that there are six
regular solids in four dimensions, three in five dimensions, and three in all higher dimensions.

In ancient times, Plato associated the Platonic solids with the classical elements of fire (tetrahe-
dron), water (icosahedron), air (octahedron) and earth (cube). He even provided some intuitive
reasoning for his associations—e.g., earth’s solidity means that it is made of cubes, since this is the
only regular solid that tiles space, while tetrahedra are sharp and stabbing, like fire. Kepler was also
enchanted by the regularity of the Platonic solids, and attempted to relate them to the orbits of the
known planets at the time, before the real laws that govern the orbits of the planets were discovered.

A basic geometric characteristic of a Platonic solid is its dihedral angle, i.e., the interior angle
between any two faces, which is equal to

sin( θ
2
) =

cos(π/q)
sin(π/p)

,

where p and q are the number of sides of each face and the number of faces meeting at a vertex,

respectively. Since the dihedral angle of the cube is the only submultiple of 2π, the cube is the
only Platonic solid that can tile space. In fact, there are an infinite number of irregular tessellations
of space by cubes (where the cubes are not aligned, but each layer is shied with respect to the
previous).

e Platonic solids are composed of only one type of regular polygon meeting at identical ver-
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tices. If we relax this requirement to allow different types of regular polygons for each face, we
obtain a different family of highly symmetric semi-regular polyhedra named aer their discoverer,
the Greek mathematician Archimedes. Archimedes is generally considered to be one of the great-
est mathematicians of all time. He was the first to calculate an accurate approximation of π, and
aer the discovery in 1906 of the Archimedes Palimpsest [168], it became clear that he had already
begun to develop the basic ideas of calculus almost two millennia ahead of Newton! Unfortunately,
unlike his inventions, his written mathematical work was little known in his time, and few copies of
it survived through the Middle Ages. e Archimedean solids (shown in figure 10.2) are 13 in total:
truncated tetrahedron, truncated icosahedron, snub cube, snub dodecahedron, rhombicosidodec-
ahdron, truncated icosidodecahdron, truncated cuboctahedron, icosidodecahedron, rhombicuboc-
tahedron, truncated dodecahedron, cuboctahedron, truncated cube, and truncated octahedron.

In geometry, all polyhedra are associated into pairs called duals, in which all of the vertices and
faces are interchanged. Every polyhedron has a dual, and the dual of its dual is the original poly-
hedron. e dual of a Platonic solid is another Platonic solid. e icosahedron and dodecahedron
form a dual pair; the cube and octahedron form another dual pair; and the tetrahedron is self-dual.
e dual polyhedra of the Archimedean solids are called Catalan solids. Archimedean and Catalan
solids can both be obtained from regular polyhedron seeds (Platonic solids) via geometric opera-
tors such as the dual operator, and the truncation operator defined by Kepler, among others. e
idea of using these operators was extended by Conway [169], and the resulting notation to describe
polyhedra generated from successive operators is thus called Conway polyhedron notation. In this
notation, each Platonic solid is described by its uppercase initial, and operators are denoted by low-
ercase letters, such as ‘t’ for the truncation operator and ‘d’ for the dual operator. Using Conway
polyhedron notation is a very convenient way of creating new shapes for use with our packing code.
Many of the shapes we include with it were generated using Conway notation with external tools
and later converted to our own input format. Some shapes, however, such as HMX, ADN, and CL-
20, were created in the past [162] from crystals of these explosive materials for use in packings of
particles to model the microstructure of solid propellants [40].
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(a) Truncated Tetrahedron (b) Truncated Cube (c) Cuboctahedron (d) Truncated Octahedron

(e) Truncated Cuboctahedron (f) Rhombicuboctahedron (g) Snub Cube

(h) Truncated Dodecahedron (i) Icosidodecahedron (j) Truncated Icosidodecahedron

(k) Truncated Icosahedron (l) Rhombicosidodecahedron (m) Snub Dodecahedron

Figure 10.2: e Archimedean solids.
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10.2 Packings of Regular Polyhedra

Until some recent developments in the algorithms to generate packings of polyhedra, little was
known about the densest packings of polyhedral particles. In one of the early works, Betke and
Henk [160] found the densest lattice packings of the Platonic and Archimedean solids analytically.
It is conjectured by Torquato et al. [51, 52], that Bravais lattice packings are the densest possible
arrangement for centrally symmetric convex polyhedra. However, for polyhedra without central
symmetry, Bravais lattices are usually not the optimal configuration for maximum packing density.
at is the case of the tetrahedron and truncated tetrahedron, for example. Few studies provide
systematic investigations of packings of polyhedra. Damasceno et al. [57] seem to be the first to
study computationally how polyhedra self-assemble into complex structures such as glasses, liquids,
and crystals, depending on their shape. Chen et al. [165] recently combined analytic calculations
and Monte Carlo simulations of three families of two-parameter polyhedra to study their optimal
packing-density surfaces. On the experimental side, Henzie et al. [60] used silver nanocrystals to
provide additional insights into self-assembly. Many questions regarding packings of polyhedra,
however, remain wide open.

e main application of the particle packing code that we have developed is in the generation
of realistic computer models of energetic materials. Nevertheless, it can produce packings of any
mixture of convex particles with various shapes and sizes, so it is useful to explore many of the
unanswered problems concerning packings of polyhedra and much more. However, since our code
does not use a deformable boundary, it is not possible to use it to determine the crystal structure
of nonorthogonal Bravais lattices, although it can be used to create packings of any Bravais lattice
in general. Packings of polyhedra generated with our code use a periodic box boundary (other
boundary types are not yet supported), and the initial condition is a dilute packing of infinitesimal
particles. In the following sections, we discuss the most relevant results concerning packings of
the Platonic and Archimedean Solids and present packings generated with our code. It is possible
to mix different particle types and different particle sizes, but in this chapter we will discuss only
packings of identical particles.

10.2.1 Platonic Solids

Tetrahedron

e tetrahedron is without doubt the most interesting among the Platonic solids when packing
is concerned. Since the tetrahedron is not centrally symmetric, its densest lattice packing is only
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ϕ ≈ 0.36, while much denser (ϕ > 0.85) disordered packings have been reported in the litera-
ture. Tetrahedra are notoriously difficult to pack, so it is not surprising that determining the high-
est packing density of tetrahedra in three dimensions is still an open question. Nevertheless, a lot
of progress has been made to answer this question in the last few years. Torquato and Jiao [62]
provide an interesting account of the latest developments in this area. e first dense non-Bravais
packings of tetrahedra to be reported were the so-called “Welsh” packings, with a packing density of
ϕ = 0.708333 and 34 particles in the fundamental cell. At a slightly higher density (ϕ = 0.716559)
are icosahedral packings, in which tetrahedra are roughly arranged into imaginary icosahedra and
packed in groups of 20. Aer experiments had shown that tetrahedral packings could form dense
jammed configurations with a packing density of about ϕ = 0.75 [59], a dense periodic lattice pack-
ing of tetrahedra with ϕ = 0.7786 density was discovered via computer algebra [170]. Using their
adaptive-shrinking-cell (ASC) optimization scheme, Torquato and Jiao improved the density until
they finally reached about ϕ = 0.823. To their surprise, the resulting packing did not present any
long-range order. Haji-Akbari et al. [50] broke that record soon later using Monte Carlo simula-
tions to construct a quasi-crystalline packing of tetrahedra with a density of ϕ = 0.8503. Despite
all effort employed to generate these disordered dense packings, subsequent improvements to the
packing density of tetrahedra byKallus et al. [61] were based on a simple uniform packingwith high
symmetry with only four particles in the fundamental cell. e packing density of this configuration
is ϕ = 100
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≈ 0.854700.

Further parametrizations by Torquato and Jiao

Figure 10.3: Tetrahedra at ϕ = 0.5583.

[63], and Chen [64] led to packings with densities
of ϕ = 0.855506 and 0.856347, respectively. is
seems to be the best packing fraction of tetrahedra
so far. Monte Carlomethods to generate packings of
polyhedra, such as the one used in our code, are of
course no match to the specialized analytical meth-
ods used for the latest improvements in packing tetra-
hedra. Haji-Akbari mentions in his work [50] that
some runs took close to a month of running time,
oen with carefully craed initial conditions. Simi-
larly to what happens with packings of spheres, that
usually reach a jammed state with lower than opti-
mal density, we observe that packings of tetrahedra generated with our code jam much earlier than
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even “Welsh” packings. Figure 10.3 shows a packing of tetrahedra generated with our code with a
packing density of ϕ = 0.5583. We do not have sophisticated tools to prepare the necessary initial
conditions for denser packings of tetrahedra.

With a smaller number of particles, it is possible to build fundamental cells with higher packing
fraction with our code, but reaching densities higher than ϕ = 0.7 with our code is still fairly dif-
ficult (although not impossible). is is certainly an area where we could improve later with more
work to determine the best recipe for the trial displacements and their acceptance rules. During
development of our code, we noticed that packing performance can be significantly affected by the
several parameters involved, such as the number of trial moves per particle, how large the displace-
ments should be, how to rotate particles, how displacements become smaller as density increases,
etc. We have used several test cases with different particle shapes and different number of particles
to tune these parameters for the best performance overall. However, a more systematic approach
could lead to further improvements.

Icosahedron

e icosahedron is centrally symmetric, so its highest packing density, according to Torquato’s con-
jecture, is ϕ ≈ 0.836. Since the choice of initial conditions is not as crucial in getting dense packings
of icosahedra if compared with tetrahedra, we are able to create small packings of icosahedra with a
fundamental cell containing 20 particles that are very close to the optimal lattice packing with our
packing code. e example shown in figure 10.4 is slightly lower than optimal because one of the
icosahedra (highlighted in red) is rotated relative to the others—in other words, there is a lattice
defect in the packing.

(a) Disordered (ϕ = 0.6403) (b) Partially Ordered (ϕ = 0.7006) (c) Nearly optimal (ϕ = 0.8239)

Figure 10.4: Packings of icosahedra.
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e final state of a packing is highly dependent on the initial conditions. If started completely
at random, we observe that icosahedra usually reach a disordered jammed state in the range of
0.64 ≤ ϕ ≤ 0.70. However, it is possible to obtain denser disordered packings of icosahedra by
using lattices as initial conditions. e packing at the center in figure 10.4 was generated with such
an initial condition. Torquato and Jiao [54] claim that the MRJ packing density of icosahedra is
slightly above ϕ = 0.70, while our code can only reliably reach up to ϕ = 0.68 depending on the
number of particles. Regardless of the number of particles, the success rate in generating denser
packings gets progressively smaller for densities above ϕ = 0.64. On the other hand, packings with
densities up to ϕ = 0.64 can be generated very reliably, with a success rate of virtually 100%. Similar
to spheres, icosahedra can become jammed in a wide range of densities.

Dodecahedron

Packings of dodecahedra are similar in characteristics to packings of icosahedra. e optimal den-
sity for a Bravais lattice packing of dodecahedra is ϕ = 0.904508, and the MRJ packing fraction as
reported by Jiao [54] is ϕ = 0.716. Figure 10.5 shows packings of dodecahedra generated with our
code. Dodecahedra have a higher tendency to get stuck in local-density minima than icosahedra,

(a) Disordered (ϕ = 0.6070) (b) Highly Ordered (ϕ = 0.7244)

Figure 10.5: Packings of dodecahedra.

so it is difficult to generate near-optimal packings with our code in its current state. In contrast
with icosahedra and octahedra, orientation alignment of particles is less likely in packings of dodec-
ahedra. Another point worth mentioning is that packings of icosahedra essentially behave like a
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hard-sphere fluid at low densities—the asphericity of icosahedra only plays a role when the packing
is already near its jamming point. For packings of dodecahedra, the asphericity begins to influence
the structure of the packing somewhat earlier. Dodecahedra tend to form face-to-face contacts that
force jamming at lower densities than for icosahedra and octahedra when particles are started at
random positions and random orientations. When we use lattices as initial conditions, we can eas-
ily achieve the reported MRJ packing density for dodecahedra, as seen in the packing on the right
in figure 10.5, which has a packing density of ϕ = 0.7244. We believe that with especially craed
routines for the Monte Carlo trial displacements our code could be able to overcome local minima
and produce packings at higher densities in the future without needing special initial conditions.

Octahedron

For octahedra, the optimal lattice packing has a density of ϕ = 0.947368. e packing on the right
of figure 10.6 shows such a lattice packing, although the packing density is lower because the lack of
a deformable boundary means that the periodic walls are not perfectly adjusted to the lattice itself.
Packings of octahedra with random initial conditions generated with our packing code usually get
stuck in states of lower density, around ϕ ≈ 0.6. Although octahedra are in principle easier to
pack than dodecahedra, when random dilutions are used as initial conditions, the ability to form
ordered layers of particles (that allow packing to proceed further) is impaired. To generate high-
density packings, it is necessary to use lattice configurations as initial conditions. Partially ordered
states can also be generated by perturbing the lattice, as can be seen in the center packing of figure
10.6. Notice that the orientations of the particles in this packing are much more aligned than in the
completely disordered packing on the le.

(a) Disordered (ϕ = 0.6044) (b) Partially ordered (ϕ = 0.6466) (c) Highly ordered (ϕ = 0.8553)

Figure 10.6: Packings of octahedra.
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Hexahedron (Cube)

Cubes are rather uninteresting to pack, since they tile space, but we present packings of cubes here
merely for completion. Many materials form crystals with cubic shape, so the random packing
characteristics of cubes are just as important to us as the other shapes. It is interesting to note that
although cubes can be readily arranged into a tiling lattice, a computer packing code using random
displacements does not necessarily find the optimal packing configuration every time. Figure 10.7
shows a relatively large packing of cubes containing 183 particles (le) and a small packing demon-
strating the type of sub-optimal configuration that makes the packing become jammed earlier than
expected.

(a) Disordered (ϕ = 0.6023) (b) Sub-optimal jamming (ϕ = 0.6435)

Figure 10.7: Packings of cubes.

10.2.2 Archimedean Solids

We have also generated disordered packings of the Archimedean solids containing 183 = 5832

particles each to determine their jamming densities. Since several Archimedean solids are roughly
spherical, it is not surprising that disordered packings of the Archimedean solids become jammed
at densities close to that of monodisperse packings of spheres. e packing densities obtained here
are lower bounds for the MRJ packing density of Archimedean solids. It is possible to generate
denser packings of these solids with our code with lower numbers of particles. However, since at the
moment we lack the tools to quantify ordering in packings of polyhedra, we can not yet estimate the
trueMRJ density of these packings. Jiao and Torquato [54] recently investigatedmaximally random
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(a) Truncated Tetrahedra (b) Cuboctahedra (c) Truncated Cubes (d) Truncated Octahedra

(e) Rhombicuboctahedra (f) Truncated Cuboctahedra (g) Snub Cubes

(h) Icosidodecahedra (i) Truncated Dodecahedra (j) Truncated Icosahedra

(k) Rhombicosidodecahedra (l) Truncated Icosidodecahedra (m) Snub Dodecahedra

Figure 10.8: Disordered packings of the Archimedean solids.
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Table 10.1: Jamming density of Disordered Packings of Archimedean Solids.
Polyhedron Density Polyhedron Density

Truncated Tetrahedron 0.6411 Cuboctahedron 0.6080
Truncated Cube 0.6578 Truncated Octahedron 0.6325
Rhombicuboctahedron 0.6026 Truncated Cuboctahedron 0.6270
Snub Cube 0.6380 Icosidodecahedron 0.6327
Truncated Dodecahedron 0.6056 Truncated Icosahedron 0.6457
Rhombicosidodecahedron 0.6398 Truncated Icosidodecahedron 0.6268
Snub Dodecahedron 0.6380

jammedpackings of Platonic solids (results for packings ofArchimedean solids are yet unpublished).
eir reported MRJ densities of these polyhedra are somewhat higher than densities of jammed
packings generated with our packing code. ey use a two-step process to generate MRJ packings:
first, a pre-jammed configuration is found using the positions of disordered jammed spheres as
initial condition; then, a slow compression algorithm is used to allow a contact network between
particles to be established which induces the jamming of the particles. Our packing algorithm, on
the other hand, currently uses a single-step packing procedure starting with a dilute packing of
infinitesimal particles with random positions and orientations. In the future, we hope to improve
our packing code for polyhedra and develop the necessary tools to better investigate the properties
of packings of Platonic and Archimedean solids, as well as other families of polyhedra, such as the
Catalan and Johnson solids, whose packing properties still remain virtually unknown.

10.2.3 ComparisonwithExperimentalDataofPackingsofPolyhedralDice

In this section, we compare the packing densities of packings of the Platonic solids generated with
our packing code with experimental data found in the literature. Experiments with plastic dice were
performed by Jaoshvilli [59] (tetrahedra), and Baker and Kudrolli (Platonic solids) [58]. Baker and
Kudrolli [58] use four different packing methods to produce packings of plastic dice with regular
polyhedral shapes. In the first method, particles are simply poured into the container from the
height of a few particle sizes. e average height of a lid is then used to determine the packing
density for an ensemble of ten packings. In the secondmethod, the container is shaken by hand aer
each few layers is inserted, in order to let particles settle and rearrange. In the third method, the
container is shaken with an electrical shaker rather than by hand. Finally, the last packing method
they used was to fill the container (in which particles were already present) with water from the
bottom with various fluid flow rates to suspend the particles in the liquid. en, the container is
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slowly drained to allow the particles to settle into position. e jamming densities of the packings
of dice of each shape and for each packing method are shown in table 10.2. Results for simulations
of large polyhedral packings using our code are shown in table 10.3. Except for tetrahedra, our
packing code is able to generate packings at least as dense as mechanically shaken packings of the
Platonic solids produced experimentally. With lower numbers of particles, however, it is possible
to produce denser packings with our code. erefore, we can conclude that the performance of our
packing code for the simulation of particulate materials is satisfactory, since in these simulations
particles are usually packed at lower densities.

Table 10.2: Jamming density of polyhedral dice, reproduced from [58].

Sequential Addition Hand Shaken Mechanically Shaken Fluidization

Tetrahedron (plastic) 0.54± 0.01 0.62± 0.02 0.64± 0.01 0.51± 0.01
Cube (plastic) 0.57± 0.01 0.66± 0.02 0.67± 0.02 0.54± 0.01
Octahedron (plastic) 0.57± 0.01 0.62± 0.01 0.64± 0.01 0.52± 0.01
Dodecahedron (plastic) 0.56± 0.01 0.60± 0.01 0.63± 0.01 0.51± 0.01
Icosahedron (plastic) 0.53± 0.01 0.57± 0.01 0.59± 0.01 0.50± 0.01
Tetrahedron (ceramic) 0.48± 0.02 0.59± 0.01

Table 10.3: Typical jamming density range of packings of Platonic solids simulated with our code.

Polyhedron Jamming density

Tetrahedron 0.50–0.60
Cube 0.60–0.80

Octahedron 0.60–0.65
Dodecahedron 0.60–0.62
Icosahedron 0.62–0.68
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Chapter 11

Modeling theMicrostructure of Energetic

Materials

11.1 Introduction

In the preceding chapters we presented packings of particles of various shapes to demonstrate the
capabilities of the packing code that constitutes the bulk of our work. In this chapter, we in turn
discuss how packings generated with our code can be applied to model the microstructure of real
materials. e microstructural information and the phase properties of a heterogeneous material
play a crucial role in the determination its macroscopic—or effective—properties. erefore, under-
standing the relationship between the structure and the effective properties of materials is one of the
main goals of materials science. However, while the connection between structure and properties
is well developed for single-phase media such as metallic alloys, polymers, and ceramics, it is much
less well understood for heterogeneous materials composed of several single-phase materials. is
is because the dependency of the effective properties on the microstructure and phase properties is
quite complex [171]. Simple mixture relations based on the volume fractions of the material phases
and their properties are insufficient to describe the interactions that arise between material phases.
Solid rocket propellants are a clear example of this fact. e burning rate of solid propellants de-
pends strongly on the surface area between the fuel and oxidizer phases. erefore, a propellant that
is composed of alternating flat layers of fuel and oxidizer will burnwith different characteristics than
a propellant in which the oxidizer is made of particles that are embedded in a fuel matrix, even if
the quantity of each material is the same in each case. Similarly, these two examples of propellants
would respond very differently to shock waves. In the layered material, the direction of propagation
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of the shock wave relative to the interface between the phases can significantly affect the behavior
of the material; in the particulate material, on the other hand, the direction of the shock wave is
much less important, since the material is most likely statistically homogeneous and isotropic. Nev-
ertheless, the sensitivity to ignition is also affected by features of themicrostructure at much smaller
scales. For example, tiny voids inside explosive particles can lead to the formation of local hotspots
that in turn can trigger detonation. is makes the relationship between microscopic and macro-
scopic properties of energetic heterogeneousmaterials evenmore difficult to simulate inmulti-scale
models. To further illustrate the complex relation between structure and effective properties, con-
sider now the effective electric conductivity of two heterogeneous materials, each composed of two
phases: one that is highly electrically conductive; the other, highly insulating. Both materials are

(a) (b)

Figure 11.1: Materials with disconnected (a) and connected (b) conducting phases.

shown in figure 11.1. In the first material the conductive phase is disconnected across the sample,
while in the second material there is a continuous path that can be followed from one side of the
sample to the other through the conductive phase. Even if both of these samples have the same
quantities of each material, their electric conductivity will be clearly different. e connectedness
of the conductive phase in the second sample makes its conductivity much higher. Hence, simple
formulas like the average or harmonic mean of the conductivities for each phase are not adequate
to describe either material. ese formulas either grossly underestimate or overestimate the results,
not to mention that they yield the same results for two materials that obviously have distinct values
for the conductivity.

For a systematic theory to be able to predict how changes in the microstructure quantitatively
affect the effective properties of compositematerials, it is necessary to develop themeans to describe
the microstructural information. e most basic information is the volume fraction of each phase.
For random heterogeneous materials, it is also necessary to obtain information about the connec-
tivity of each phase, the surface areas between the interface, etc, and for particulate materials the
orientations, sizes, shapes, and spatial distributions of the particles are just as important. Quantita-
tive information about the materials can also be obtained via statistical descriptors, such as the ones
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described in chapter 3. In particular, the n-point probability functions appear frequently in the av-
eraging process of effective properties, since in the resulting integrals over the spatial domain of the
material, the local fields of the relevant properties are weighed by the n-point probability functions.
Since these functions appear naturally in the description of the microstructural information of het-
erogeneous materials, they can be used as a benchmark to test how realistic simulated materials are
when compared with data obtained for real materials.

emicrostructural information of amaterial can be obtained through various techniques, such
as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X–ray com-
puted tomography (XCT), among others. X–ray computed tomography, for example, can be used to
produce volumetric images of material samples nondestructively. is means that not only can the
information be obtained from thematerial samples, but it is also possible to later test models against
the same microstructure directly. Figure 11.2 shows a volumetric image of salt particles obtained
via X–ray computed tomography. From an image like this, it is possible to obtain the size distribu-
tion of the particles, volume fraction, n-point probability functions, etc. Combined with knowledge
about the shape of salt crystals, it is possible to use our packing code to produce virtual packings
of particles with very similar characteristics as the original sample of the material. In the next sec-
tions we use our packing codes to reconstruct the microstructure of a few materials and compare
the statistical properties obtained via tomography with that obtained from simulated packings.

Figure 11.2: Volumetric rendering of salt particles obtained via X–ray computed tomography.
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11.2 Microstructure Reconstruction from Tomography

In order to compare how packings generated with our code reproduce real materials, we performed
tomographic scans of a small set of samples of heterogeneousmaterials, including some solid rocket
propellants. All material samples shown henceforth have been scanned at University of Illinois’
Beckman Institute for Advanced Science and Technology. e scans were performed on an Xradia
MicroXCT-200 high-resolution 3D X–ray computed tomography machine. e Xradia machine is
capable of scanning samples up to 100 mm in diameter and weighting up to 1 kg at resolutions as
high as 1 μm per pixel. In practice, however, samples containing very small particles (r < 10 μm) are
difficult to be resolved. To be able to resolve them, some samples have been cut to a smaller size to
fit entirely within the scanning volume of the X–ray machine. Higher resolution scans have higher
amounts of noise, which compromises later processing steps to obtain statistical data. However,
using smaller samples to resolve finer particles also has its own drawbacks—it is not possible to
compute the radial distribution function for those samples, since there are not enough particles in
the scanning volume. Nevertheless, it is still possible to compute the n-point probability functions.

Samples embedded in polymer binders were hand-mixed, hence they inevitably contain a cer-
tain amount of voids. In those cases, the voids have been incorporated into the binder phase in the
statistical analysis. Vacuum-packed samples would have been ideal, but we did not have access to
them. e shape of the samples was either a cylinder or a square rod. Samples were about 4–5 mm
in diameter and 1–2 cm in length, as shown in figure 11.10.

(a) Raw Image (b) Manual Filtering (c) Input (d) Distance
Transform

(e) Watershed
Segmentation

(f) Output

︸ ︷︷ ︸
Automated

Figure 11.3: Image processing workflow.

Once we acquire data for each sample, we process the raw images to segment them into the
separate phases. We use the soware Amira [172] for all volumetric image processing work. First,
we apply filters to reduce the noise in the raw image, until it becomes possible to binarize it into
the particle and binder/void phases. en we use a watershed segmentation algorithm to separate
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particles that may have clumped together if the gap between them was too small to be resolved.
ese steps are depicted in figure 11.3. Although we show each step of the watershed segmentation
algorithm, this process is automated in Amira. Particle separation is very important to obtain good
data on the size distribution and shape information of the particles. Clumped particles may skew
the size distribution into larger particles and generate errors in the calculation of particle flatness
and elongation distributions. Aer particle separation, we use Amira’s shape analysis module to
obtain information about the shape and size distribution of the particles.

11.2.1 Spherical Glass Particles

e first model we discuss is a packing of small glass spheres with a diameter of about 45 μm into a
cylindrical plastic container. e spheres were packed via mechanical deposition into the container,
without any binder material to hold them together. e scanned volume and a cross section of the
sample are shown in figure 11.4. e length and diameter of the scanning volume are each about
2 mm; resolution is about 2.8 μm per pixel. Roughly 60500 particles fill the volume of the scan.

(a) Volume rendering (b) Cross section

Figure 11.4: Glass spheres with diameterD ≈ 45 μm.

Aer processing the raw image files to reduce noise, we segmented the sample into its void and
particle phases. We then separated the particles using the same process shown in figure 11.3 and
used Amira’s shape analysis module to obtain the size distribution. Particle sizes are calculated from
their volume, assuming they are perfectly spherical. From figure 11.4 we can see that this is a rea-
sonable assumption. However, since the glass particles are not perfectly spherical, we needed to
apply a small correction to the mean radius (to be about 1% larger) to ensure that the scale of the
radial distribution functions matched. e size distribution is shown in figure 11.5. e solid curve
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fit is a lognormal distribution with µ = 3.802 ± 0.0014 and σ = 0.0691 ± 0.0011. Particles that
intersect the boundary of the scanning volume were excluded from the calculation of size distribu-
tion. Figure 11.6 shows the distribution of flatness and elongation of the particles—most particles
are indeed almost spherical. e broader distribution of elongated particles is due to clusters of two
particles that have not been separated properly by the watershed algorithm in Amira. Aer obtain-
ing the particle size distribution, we reproduced the packing with our packing code. We compare
the statistical properties with two systems: a monodisperse packing of spheres, and a packing with
a lognormal size distribution. e packing density ϕ ≈ 0.57was determined by counting the voxels
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Figure 11.5: Particle size distribution obtained from tomography scan.
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Figure 11.6: Distributions of flatness and elongation of the glass particles.
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belonging to particles in the scanning volume. e radial distribution function of the particles is
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Figure 11.7: Radial distribution function obtained from tomography (black), compared with those
obtained from packings of 106 monodisperse (red) and 105 polydisperse (blue) spheres with a log-
normal size distribution.

shown in figure 11.7 in comparison with the two different simulated packings. For the polydisperse
packings, we scaled the radii of the particles by their median value to be able to compare the results
with a monodisperse packing of spheres with r = 1. Monodisperse spheres have a very sharp peak
in the radial distribution function at r = 2, so the lognormal distribution of spheres reproduces the
data much better. e peaks corresponding to small clusters of spheres, typical in monodisperse
packings, are smoothed out by the polydispersivity of the particles. is is well reproduced by the
simulated packing with a size distribution similar to that of the glass sample. It is also important to
note that using monodisperse spheres with radii based on the median radius of the size distribution
slightly underestimates the scale of the radial distribution function. is is probably due to a small
error in the curve fit of the lognormal distribution. We still observe a small discrepancy with the
data near r ≈ 2, which we believe is either due to a small error in the standard deviation used in the
simulation, or a consequence of using perfect spheres to simulate the particles rather than ellipsoids,
but overall agreement with the data is very good. Figure 11.8 shows the two-point probability func-
tion for the glass particles (solid lines) and the corresponding function for the polydisperse packing
generated with our code. In this case, the monodisperse and polydisperse packings yielded almost
identical results, hence we only show a comparison of the data with the latter in figure 11.8.
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Figure 11.8: Two-point probability function for glass spheres (solid), compared with polydisperse
computer generated packing (dashed).

(a) Tomography (b) Simulation

Figure 11.9: Volume renderings of the glass sample and simulated polydisperse packing.

In conclusion, we can say that the statistical characteristics of packings of particles with a small
polydispersivity are very well reproduced with our code. Figure 11.9 shows a visual comparison of
the glass sample and the computer-generated packing.
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11.2.2 Salt Particles Embedded in a Polymer Matrix

e second material we discuss is a surrogate material for rocket propellants. We reconstruct two
samples of table salt particles embedded in binder materials commonly used in solid propellants.
One sample is packed in dicyclopentadiene (DCPD), and the other in hydroxyl-terminated polybu-
tadiene (HTPB). Pictures of one of the samples before and aer the tomography scan are shown in
figure 11.10. e yellow coloration due to the excitation of sodium atoms gives an idea of the size
of the total scanned volume. Both samples are scanned at a resolution of about 5 μm per pixel, and
the scanned volume is about 5 mm in each dimension. Figure 11.11 shows volume renderings and
a cross section of each sample. Although these samples are larger than the glass sample discussed in
the previous section, they contain less particles because salt particles are much larger. ey contain
2–3 thousand particles that are on average 220 μm across. e packing density is slightly different
for each of the two samples: ϕDCPD ≈ 0.49, and ϕHTPB ≈ 0.55.

(a) Before scan (b) Aer scan

Figure 11.10: Photo of a sample of salt embedded in HTPB binder.

Instead of using a lognormal size distribution, this time we use the size distribution directly
from the data. Although many particles have rounded shapes due to rubbing against each other,
salt crystals are in general approximately cubic. erefore, we use cubic particles in our simulations,
as well as spheres for comparison. Again, particle sizes are calculated from their volume. For cubic
particles, the size is calculated from their volume assuming a perfect cubic shape, i.e., we choose
the edge size a = 3

√
V . e scale of the spherical particles has been chosen such that they have

the same volume as the cubes, using the same distribution of sizes. is time we could not exclude
particles that intersect the boundary from the particle distribution. Even though the number of
small particles is large, they occupy only a small fraction of the total volume of the particles in
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(a) Salt in DCPD binder (b) Salt in HTPB binder

Figure 11.11: Salt samples embedded in DCPD and HTPB.

the packings. Figure 11.12 shows the histogram of size distributions for each sample. Using this
information, we generate packings with particles of similar sizes and shapes as the salt particles. We
use about 45 different sizes and a total number of 19790 particles in our polydisperse simulations.
e packing of monodisperse cubes contains only 10000 particles.
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Figure 11.12: Particle size distributions.

A comparison of the two-point probability functions of the DCPD sample with simulated pack-
ings is shown in figure 11.13. To illustrate the importance of particle shape in reproducing the sta-
tistical properties, we also compare the three-point statistical functions of each sample with those
of packings of polydisperse spheres, monodisperse cubes, and polydisperse cubes. Figure 11.14
shows the three-point probability function calculated from tomography, and figures 11.15, 11.16,
and 11.17 show the same function for simulated packings using polydisperse cubes, monodisperse
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Figure 11.13: Comparison of two-point probability functions computed from tomographic data
(solid) against various computer generated packings (dashed).
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Figure 11.14: ree-point probability function for theDCPD-packed sample of salt, calculated from
tomographic data. (Note the different orientations of each plot.)
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Figure 11.15: ree-point probability function for the simulated packing using polydisperse cubes.
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Figure 11.16: ree-point probability function for the simulated packing usingmonodisperse cubes.
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Figure 11.17: ree-point probability function for the simulated packing using polydisperse
spheres.
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Figure 11.18: Error in the three-point probability function of the DCPD sample calculated using
polydisperse cubes.
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Figure 11.19: Error in the three-point probability function of the DCPD sample calculated using
monodisperse cubes.
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Figure 11.20: Error in the three-point probability function of the DCPD sample calculated using
polydisperse spheres.
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cubes, and polydisperse spheres, respectively. e difference between the three-point probability
functions for the tomography scan and those for each of the simulated samples is shown in figures
11.18, 11.19, and 11.20, respectively. Polydisperse cubes perform the best, as expected. e L2 er-
ror norm for polydisperse cubes is 0.441187, compared with 1.13473 for monodisperse cubes and
0.701959 for polydisperse spheres. Divided by the number of grid points, we get about 1.7 × 10−4

for polydisperse cubes, 2.7 × 10−4 for polydisperse spheres, and 4.4 × 10−4 formonodisperse cubes.
Although using particles of the right shape is important in reproducing the statistical properties of

(a) Tomography (b) Polydisperse Cubes

(c) Monodisperse Cubes (d) Polydisperse Spheres

Figure 11.21: Volume renderings of the DCPD salt sample and computer-generated packings.
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the sample more accurately, we can see from the error plots that the size distribution is clearly more
important, since monodisperse cubes perform the worst among the simulated samples. At higher
packing fractions, we expect these differences to become even larger. Overall, using perfect cubes
as a model for salt is a good approximation, although spheres do not perform too bad either, most
likely because many particles have broken corners from rubbing against other particles. However,
the right scale of sizes is essential for properly reproducing the statistical properties, as well as the
correct value of packing fraction. A difference of even a few times 10−3 in the packing fraction can
significantly increase the errors. For the packing with monodisperse cubes, we scaled the particle
sizes to best fit the data, whichmeans that we usedmonodisperse cubes about 275 μm across instead
of the mean size of about 220 μm. Nevertheless, the total error was almost three times higher than
that for polydisperse cubes. Unfortunately, the tomographic scans do not contain enough particles
to let us compute and compare radial distribution functions. Figure 11.21 shows a visual compari-
son of the scanned sample and the various simulated packings. Since the virtual packings contain
more particles, the scale of the particles in the volume appears smaller. e calculation of statistical
functions does not depend on sample size, however, since resolution is taken into account through
the dimensions of each voxel in microns (which differs across samples).

Results were similar for the reconstruction of the sample of salt packed in HTPB binder. For
brevity, we show here only a visual comparison of the sample with the simulation and a comparison
of the three-point probability functions.

(a) Tomography (b) Polydisperse Cubes

Figure 11.22: Volume renderings of the HTPB salt sample and computer-generated packing.
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Figure 11.23: ree-point probability function for the HTPB-packed sample of salt, calculated from
tomographic data.
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Figure 11.24: ree-point probability function for the simulated packing using polydisperse cubes.
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Figure 11.25: Error in the three-point probability function of the HTPB sample calculated using
polydisperse cubes.
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11.2.3 Solid Rocket Propellants and Explosive Materials

e final set of samples we reconstruct using our packing code are two common solid propellant
materials and an explosive. e three samples are packed in HTPB binder. e two solid pro-
pellant samples contain ammonium perchlorate (AP) oxidizer particles, while the explosive mate-
rial contains particles of the explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane
(C6H6N12O12), known as CL-20. CL-20, along with HMX, is one of the organic compounds with
highest known energy density. Unlike HMX, however, CL-20 is very sensitive to impact, so the two
are oen mixed in high-grade explosives to increase energy content while maintaining impact sen-
sitivity close to that of pure HMX. Both AP and CL-20 being organic materials, their contrast with
HTPB in the tomography scans is not as good as that of inorganicmaterials like salt and glass, which
contain elements with heavier nuclei (chlorine and silicon). is means that processing the volu-
metric images to obtain particle size and shape distributions is much harder. Only one of the three
samples—containing only coarse AP particles—yielded usable results. e second solid propellant
sample contained too many small particles that were difficult to resolve using the tomography ma-
chine available to us, and the CL-20 particles in the explosive sample have very irregular shapes and
sizes that are difficult to characterize using simple polyhedra or ellipsoids. Nevertheless, we can still
try to use visual information alone to see how well we can reconstruct such samples. Figure 11.26
shows volume renderings of the scanned volumes and cross sections of each sample.

Reconstruction of Coarse AP Sample

Since this sample is the only one for which we could obtain reliable data on the size and shape dis-
tributions of the particles, we will try to reconstruct it in more detail. First, we find the distribution
of particle sizes from their volumes. We use a simple formula to obtain the size distribution using
the cubic root of the volume, and later scale the particles appropriately so that their scale matches
that of the sample. e size and shape distributions obtained are shown in figure 11.27. e solid
curve in the le of figure 11.27 is a lognormal distribution with parameters µ = 4.529 ± 0.004

and σ = 0.307± 0.004. e shape distribution was obtained using Amira’s shape analysis module,
which fits an ellipsoid to each particle. We divide the [0, 1] interval of values of flatness and elon-
gation into 20 bins and calculate how many particles fall in each bin. We then create a multiple of
the number of particles in each bin with the appropriate ellipsoidal shape and the size distribution
shown at the right of figure 11.27. e simulated packing contains 8753 particles in total.

Renderings of the actual sample and the simulated packing are shown in figure 11.28. In total,
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(a) Coarse AP

(b) Mixture AP

(c) CL-20 Explosive

Figure 11.26: Volume renderings and cross sections of solid propellants and explosive samples.
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Figure 11.27: Size and shape distributions of coarse AP particles

105 different shapes of ellipsoids were used in the packing. Particles too far into the tail of the distri-
bution of flatness and elongation were discarded. Using a distribution of particle sizes and different
shapes is enough to reproduce the statistical characteristics of this sample quite well. Figures 11.29
and 11.30 show the three-point probability functions of the sample and the simulated packing, and
figure 11.31 shows the difference between the functions of the simulated packing and those of the
sample itself. e minimum and maximum differences across all six plots is -0.0078 and 0.0068; the
L2 error norm is 0.367558, which, divided by the number of grid points yields 1.41 × 10−4. is
is the smallest difference across all samples we have reconstructed—with the exception of the glass
sample, for which we compare the more sensitive radial distribution function instead.

(a) Tomography (b) Simulation

Figure 11.28: Volume renderings of the coarse AP sample and computer-generated packing.
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Figure 11.29: ree-point probability function for the coarse ap sample, calculated from tomo-
graphic data.
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Figure 11.30: ree-point probability function for the simulated packing using polydisperse ellip-
soids.
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Figure 11.31: Error in the three-point probability function of the simulated coarse ap packing.
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Reconstruction of AP Sample with aMixture of Coarse and Fine Particles

e propellant sample containing only coarse AP particles yielded reliable data on the distribution
of particle sizes and shapes. e scan of the polydisperse sample, however, was difficult to process
due to the large number of small particles. Many large large particles remained clustered together
even aer the particle separation step of the image analysis as well. Perhaps withmore reliable image
processing soware it could be possible to properly separate the particles and reproduce the packing
accordingly. Since Amira is the only soware available to us, we need to attempt to reproduce the
sample using only the image of the sample and the specifications we received with the sample. e
sample was prepared at Purdue University, with a mixture of coarse and fine powders of AP, with
roughly the same weight proportions. e coarse particles are in principle roughly 200 μm across
and the fine particles, about 20 μm. However, these are only rough estimates. We would like to
know how well such a specification can be used to reconstruct the sample. erefore, we use two
different particle sizes in our simulation: 130 μm for large particles, and 25 μm for small particles.
Although the coarse particles are rated at 200 μm, we decided to use smaller particles based on the
distribution obtained for the previous sample. However, since there are many particles larger than
100 μm in the sample, we decided to choose a size somewhat higher than the median value in the
distribution in figure 11.27, so that all particles could be approximately represented by a single size.
In this particular case, our intention is not to reproduce the sample as exactly as possible as we have
done in the preceding sections, but to use a suboptimal case to try to understandwhat can be learned
from the differences that arise in the statistical properties. e proportion between large and small
particles, for example, was adjusted only visually. Nevertheless, we do try to keep the shape of the
particles well represented by using the same distribution of flatness and elongation found for the
previous sample. We used the same 105 ellipsoidal shapes, but this time only in two different fixed
sizes rather than using a lognormal distribution. e simulated packing contains 45476 particles
in total (1711 large particles, and 43765 small particles). A volume rendering of the result is shown
in 11.32, along with the actual sample. e simulation looks similar to the material, but can the
statistical functions tell us if they really are similar? e three-point probability functions for the
tomographic data and the simulation are shown in figures 11.33 and 11.34, respectively. Although
the plots do look quite similar, there is some information we can extract from the differences be-
tween the two, shown in figure 11.35. For short distances, up to about 150 μm, the difference is
small across all plots. is is the same scale of the particles themselves, so at this scale, the small
amount of error indicates that the shape of the particles is accurate. However, if we look at the plot
for S111 we see that it is underestimated at the scale of about 100 μm. Similarly, in the plot of S010,
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the region around 100 μm is underestimated, while there are two regions around 300 μm that have
a slight overestimation. e most visible of all differences, however, is in S000, which seems cor-
rect around 100 μm, but is overestimated at larger scales. ese are all signs of the same thing: in
choosing only two sizes of particles, we have neglected the mid-sized particles. Looking closer at
the renderings of the sample and the simulation, it is easy to notice that the voids between particles
seem larger in the simulation than the actual sample, since in the actual sample there are mid-sized
particles that bridge this gap. Although the overall packing fraction is the same, a fact that can be
confirmed by the small error in S111, when we have three points that are more distant apart than
the scale of a large particle in the simulation, the probability that they all fall in the void region is
slightly larger because there are no mid-sized particles to fill those gaps. Indeed, the differences in
the statistical functions do tell us what is wrong with our simulation. is is a good thing, since
this information can be used to improve later simulations by including the right amounts of each
particle type. Could we know when we are using the wrong particle shapes in a simulation using
the same statistical functions? We investigate that in the next section.

(a) Tomography (b) Simulation

Figure 11.32: Volume renderings of the AP sample with coarse and fine particles and computer-
generated packing.
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Figure 11.33: ree-point probability function for the polydisperse AP sample, calculated from
tomographic data.
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Figure 11.34: ree-point probability function for the simulated polydisperse AP packing using
ellipsoids.
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Figure 11.35: Error in the three-point probability function of the simulated polydisperse AP pack-
ing.
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Reconstruction of CL-20 Explosive Sample

e last sample we reconstruct is a sample of the explosive material CL-20. is sample is very
challenging to reconstruct, since the broken crystals of CL-20 have irregular shapes. Resolving
individual particles in the sample is difficult as well, so we cannot rely on any information provided
by Amira. Looking at a cross section of the sample, we can see that there are both large andmedium
size particles. Since size and shape information is limited, we attempt to reconstruct the sample with
a mix of three different types of polyhedra and two different sizes, at a ratio of 3.5:1. To make the
size distribution somewhat more realistic, we use a narrow Gaussian distribution of sizes for each
particle type with a standard deviation of about 12%. e particle shapes used in the simulation
were: a roughly spherical polyhedron, the snub cube; a somewhat elongated polyhedron, the snub
triangular prism; and, finally, a polyhedron derived from crystals of HMX.e polyhedra are shown
in figure 11.36.

(a) Snub Cube (b) Snub Triangular Prism (c) HMX

Figure 11.36: Shapes used in the simulation of CL-20 particle packing.

e simulated packing contains 31500 particles, of which 30000 are small and 1500 are large.
e packing density by weight is roughly 70%, which translates to about 50% of the volume filled
with particles, since CL-20 is denser than the HTPB binder. e end result is shown in figure 11.37.

e three-point statistical function for both the sample and the simulated packing are shown in
figures 11.38 and 11.39. As with the other samples, the differences are difficult to be visualized just
by visual inspection. Since the packing density is the same, several characteristics of the function
are reproduced automatically, such as the value for r1 = r2 = 0, which is just the value of the vol-
ume fraction for the given phase for S000 and S111, or zero otherwise, since a point cannot fall into
two different phases. Also, in the absence of large voids between particles, the function converges
faster to the square of the volume fractions at large distances. From the plot of the difference be-
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(a) Tomography (b) Simulation

Figure 11.37: Volume renderings of the CL-20 sample and computer-generated packing.

tween the three-point statistical functions of the simulated packing and the actual sample, shown
in figure 11.40, we can see that the discrepancies are largest at the scale of the particle sizes, around
100 μm. On the other hand, at large scales, the values to which the functions converge have a much
smaller error. is is a clear indication that the shape we have used for the particles is not similar to
the shapes of the particles in the sample. e function S000, for example, is lower in the simulation
than in the sample throughout the entire region we calculated. Indeed, since many of the particles
of CL-20 are concave, it is more likely that points will fall in the binder/void phase more frequently,
especially at small scales. at is also why S111 is lower at lower scales. When the distance between
random points in the material is roughly the same as the scale of a particle, there is a higher proba-
bility for one of them to fall into the binder/void region, since particles are concave and have ragged
boundaries. When we decide to use convex particles only, the probability that points fall all in the
same phase at small scales is higher. is is also clear in the function S011. When the mid point falls
inside a particle, the probability that one of the others will also fall inside a particle is overestimated,
while the probability that they will fall outside is underestimated. In the function S001, this trend is
reversed, which means that when the mid point falls in the binder region, the probability that one
of the other points will also fall in the binder region is underestimated, while the probability that
one of the other points falls inside a particle is overestimated. Not surprisingly, the minimum and
maximum differences are the largest when compared with other reconstructed samples, at -0.028
and 0.021, respectively. e L2 error norm is 0.8725, or 5.2 × 10−4, when divided by the number
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of grid points. Even the monodisperse cubes used to describe salt performed better. It is certainly
possible to improve the reconstruction of this sample with better choices for the particle shapes and
more accurate particle size distributions. e differences in the statistical functions can serve as a
guide towards those better choices. e size distribution could bemeasured independently via laser
diffraction, for example. However, a better reconstruction should probably be accomplished with
the addition of concave particles—something our code is not yet capable of packing. For the mo-
ment, convex particles are still capable of reproducing a wide variety of materials—not only glass,
salt, and propellants, but also concrete, foams, emulsions, colloids, among many other materials.
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Figure 11.38: ree-point probability function for the CL-20 sample, calculated from tomographic
data.
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Figure 11.40: Error in the three-point probability function of the simulated CL-20 packing.
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Chapter 12

FutureWork

In the preceding chapters we have presented a set of tools developed to simulate and statistically
analyze microstructures of particulate materials. is set of tools uses new and efficient algorithms
to provide a significant performance leap over previous implementations, enabling the simulation
of much larger systems of particles while also taking considerably less time to do so. e new codes
also introduced several new features not present in other soware, such as the possibility to mix
all of the particle types together in the same simulation, continuous particle size distributions, and
new boundary types for packing spheres. Nevertheless, in a project like this, in which soware
development is the main product of research, there will always be interesting features le behind
due to time constraints. is project is no exception. While ourmain goal of enabling the simulation
ofmore complex structures has been accomplished, there is still much that could be done to improve
the codes we have developed. We leave suggestions for some of these improvements in the following
sections as a reminder to ourselves and as guidelines to others that might also want to improve the
code.

12.1 Code Design

e main objective of our implementation of a particle packing code was to provide a robust, high-
performance code capable of simulating large systems that were previously impossible to simulate.
We have put much effort into the design of the basic elements of the code and in the choice of algo-
rithms that we used, keeping performance, clarity, and simplicity as top priorities. Unfortunately,
the design process leading to our current implementation is not as well documented in this work
as we would like. It could have been useful to save others from incurring into the same mistakes
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we had to go through before we reached a reasonable implementation. Since it was not possible
to refine the design in all areas, there is inevitably some technical debt le to be repaid in future
implementations. In most cases the technical debt is due to lack of time for further development,
but there are also instances where simplicity was favored over performance. is is the case of the
algorithm for collision prediction, for example, that could have used more sophisticated methods
for find the time of impact, such as Brent’s method, but uses a simple bisection method instead.

e most obvious improvements that could be easily implemented are in the user interface of
the code. We have a simple text input file format and visualization window for the simulation in
the code. e input and output file formats are supported by a simple implementation of a recur-
sive descent parser. It allows the user to set variables that control the behavior of the code, create
new shapes, and declare how many particles of each type must be created in the simulation. How-
ever, many variables controlling the code are still not exposed through this interface, so they must
be changed inside the code and require a recompilation. Among these variables are the floating
point tolerances used in several algorithms to compute particle intersections between themselves
and other particles and boundaries, variables to control the camera view of the visualization win-
dow, frequency between progress updates, choice of collision response mechanism, etc. Exposing
these variables would give the user more control over the simulations, although at the same time it
would make the code more prone to failure due to poorly chosen parameters. (Admittedly, several
of these parameters required some fine tuning to prevent catastrophic failures due to floating point
rounding and truncation errors.) Improvements could also be done to the OpenGL interface of the
code. e current interface is fairly simplistic, with mostly hard-coded parameters for the camera
view, lighting conditions, etc, and a small list of commands to control the visualization. Our plan
was to have a more sophisticated interface that would automatically center and zoom the camera to
fit the packing simulation, record videos, and allow the user to create packings without the need to
write input files. However, numerical problems in some algorithms, that prevented the code from
working, created unexpected delays during the development of the code. erefore, noncritical
areas such as the graphical and input/output interfaces received less attention than deserved. We
intend to remedy this situation by continuing to develop the code in the future.

e first thing we would like to address in the near future are glaringly missing features, such
as the ability to pack polyhedra in all of the same new boundary types introduced for spheres. e
solid box and solid sphere boundaries are not too complicated to implement, but the same cannot
be said for boundaries with more complex geometry such as the wedge of an annulus, or a torus.
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12.2 Proposed Improvements for the Packing Algorithm

We currently have two different codes: one for packing spheres, and another for packing general
convex shapes (including spheres). Initially, we planned to use the Lubachevsky–Stillinger packing
algorithm to simulate packings of both spheres and polyhedra. Aer much chagrin over numerical
issues in the Lubachevsky–Stillinger code for polyhedra, we felt compelled to abandon it entirely
and develop a different packing algorithm to pack polyhedra. e numerical problems arise when
trying to compute the collision normal of two particles that are almost touching—floating point
errors yield normal vectors slightly off the correct direction, which in turn means that the applied
collision impulses are not effective to make particles move away from each other. If particles don’t
move away from each other, the code then gets stuck on an infinite loop at low densities.

A thorough research in the literature then led us to the conclusion that the adaptive shrinking cell
scheme by Torquato and Jiao [51, 52] or something similar was the only real option going forward.
However, we had spent a considerable amount of time developing the current code and starting
from scratch one more time was not a viable option anymore. In the end, we decided to reuse
the existing code for the Lubachevsky–Stillinger algorithm to implement a new hybrid algorithm
based on molecular dynamics and Monte Carlo trial displacements as described in chapter 7. e
resulting code turned out to be quite reliable and outperformed its predecessor by a few orders
of magnitude, although the adaptation and late development have le their marks. ere are a few
areas in particular that we believe deserve more attention going forward, since there is an enormous
potential for further performance gains over the current implementation.

e Lubachevsky–Stillinger packing algorithm is inherently serial, since at each step the next
event is computed, and events must be processed linearly in time. When a collision happens, the
collision response via an impulse is computed and applied once; it is also a serial process. However,
in the new algorithm for packing polyhedra, collision impulses had to be abandoned because of
numerical issues, so the colliding particle pair is instantly translated and rotated away using trial
Monte Carlo displacements. In the current version of the code, displacements are tried sequentially
until one of them can be accepted that effectively prevents the particles from growing onto each
other. With some modifications to the code, these displacements could be tried in parallel using
threads, resulting in a significant speedup of the code near jamming, when most trial moves are
rejected due to intersections.

eMonteCarlo trial displacements also depend on several parameters that greatly affect perfor-
mance, such as the number of trial moves for each collision, and how the size of trial displacements
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should change according to several parameters such as the number of past attempts, the current
volume fraction, the size of the particles, etc. In the current implementation we have utilized an ex-
ponentially decaying displacement size that varies with these parameters, and used a few test cases
to roughly optimize their values. However, the optimal parameters also depend on the shapes of
the particles being packed, such as the asphericity, for example. Tetrahedra cannot be packed much
further than 0.55 with the current parameters that were determined for other particles, but it is pos-
sible to change these parameters to allow packing tetrahedra up to about 0.7 packing fraction. Such
a systematic study of how to tune trial displacements depending on particle shape, including when
to perform a full shaking of the packing to allow unjamming, is something that we have painfully
le behind due to lack of time.

Nevertheless, paralellizing and tuning Monte Carlo displacements are not the only means to
improve the performance of the code. Another option is to develop a deterministic algorithm that
can reconfigure the system to avoid intersections without relying on randomness. Torquato and Jiao
have shown this to be possible for spheres [80] using a linear programming algorithm to optimally
dislocate a sphere relative to its neighbors at each step. is allowed them to produce packings of
spheres much more efficiently compared to packings generated with their Lubachevsky–Stillinger
code. However, they have not implemented an equivalent algorithm for polyhedra, choosing instead
to rely on Monte Carlo trial moves as well. One idea we have for such an algorithm is to use a
combination of attraction and repulsion forces between features of the polyhedra tomove them into
a new minimum located in the interstice between all neighbors. at is, given a list of all neighbors
of a given particle that is about to collide with another, compute mutual forces between the particle
and its neighbors such that iterating over small consecutive displacements given by these forces,
the position of the particle will converge to an optimal minimum that will maximize the amount
of time until the next expansion. is could be accomplished, for example, with repulsive forces
between particle centroids and rotational forces that promote face–face contacts, as they tend to
optimize packing fraction. A danger of such approach is that the interactions between particles
during the packing process could lead to unrealistic configurations. On the other hand, this might
be the only option to generate materials that are random, but also not isotropic, such as a particulate
material with particles roughly aligned in a given direction. While our code can be used to produce
anisotropic materials, the possibilities are fairly limited and currently require directly changing the
source code.
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12.3 Proposed New Features

Despite all of the possible improvements to the current code that certainly should take precedence
over the implementation of new features, this chapter would not be complete if we did not present
what our vision is for what our code could become in the long term.

e packing code and auxiliary tools presented in this work have been implemented with ma-
terial modeling in mind. e design of the code and the decisions about whether or not to support
certain features were thus strongly influenced by how they could impact typical microstructure
modeling simulations. For example, our code does not support a deformable boundary that en-
sures strict jamming of the particles, since that is not an important feature of the microstructures of
solid rocket propellants. On the other hand, the shape and size distribution of the particles are quite
important, and our code does support user-defined polyhedral particle shapes created in external
files, as well as discrete and continuous particle size distributions. e design of the hierarchical
grid of particles, for instance, needed to take into account the high polydispersivity of propellants,
and the choice of the GJK algorithm for particle intersections was made based on its excellent per-
formance for polyhedral particles, which are found in solid propellants and explosivematerials, that
commonly contain crystalline particles. Nevertheless, the choice of the GJK algorithm does limit
the particle types to convex shapes. Moreover, the lack of support for deformable boundaries—
and solid boundaries for polyhedra—also restrict the classes of problems the code can be applied
to. erefore, new boundary types and more complex particle shapes are significant improvements
that should be implemented in the future. New boundary types would be useful to study the crystal
structure of materials, to study boundary effects in the flow through porous media, etc, while sup-
port for concave shapes and more complex shapes based on triangle meshes or constructive solid
geometry would enable the simulation of more types of materials.

In addition to features that could be implemented into the packing code itself, there are several
new auxiliary tools that could be developed to provide further insights into the simulated materials.
e statistical tools we currently provide cover only a fraction of the functions discussed in chapter
3. We have tools for computing n-point probability functions, radial distribution functions, etc, and
it is also possible to use the packing code itself to calculate the contact network, some benchmarks
of the packing algorithms, and to generate simple Cartesian meshes. Tools for computing pore
size distributions could be very useful in the development of aluminum agglomeration models, for
example. A complete set of statistical analysis tools would greatly increase our ability to understand
how the effective properties of heterogeneous materials are affected by their microstructure.
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